

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

Re: H3-91

SUMMIT HOMES

The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Mid America MO.

Pages or sheets covered by this seal: I44738396 thru I44738425

My license renewal date for the state of Missouri is December 31, 2021.

Missouri COA: Engineering 001193

February 10,2021

Sevier, Scott

,Engineer

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job Truss Truss Type Qty SUMMIT HOMES 144738396 H3-91 CJ1 Diagonal Hip Girder 2

Mid America Truss, Jefferson City, MO - 65101,

1-2-14

Job Reference (optional) 8.430 s Nov 30 2020 MiTek Industries, Inc. Tue Feb 9 15:06:49 2021 Page 1

4x4 =

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

Scale = 1:19.9

ID:Z_Eg7_y5DGhi_ENvQbP05Vz4M0m-7W1JD4Mor9Q1uv1ksE5vJeV8Fd3zM6z6GQTwEDzmqmK 6-10-5 6-10-5

2x4 || 3 Special 3.54 12 Special 4x4 = 0-11-4

	<u> </u>		6-10-5 6-10-5					\dashv	
LOADING (psf)	1.15 cr NO	CSI. TC 0.85 BC 0.43 WB 0.01 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.12 -0.00	(loc) 4-5 4-5 4	l/defl >999 >650 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 36 lb	GRIP 244/190 FT = 3%

TOP CHORD

BOT CHORD

8 Special Special

LUMBER-BRACING-

TOP CHORD 2x4 SP No.1 2x4 SP No.2 **BOT CHORD**

WEBS 2x4 SP No.2

> 5=0-4-9, 4=Mechanical (size) Max Horz 5=91(LC 8)

Max Uplift 5=-57(LC 7), 4=-22(LC 8) Max Grav 5=374(LC 16), 4=301(LC 16)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-5=-306/96

NOTES-

REACTIONS.

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 2 degree rotation about its center.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 4.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 63 lb down and 36 lb up at 4-1-7, and 63 lb down and 36 lb up at 4-1-7 on top chord, and 13 lb down and 5 lb up at 4-1-7, and 13 lb down and 5 lb up at 4-1-7 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15. Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-2=-51, 2-3=-51, 4-5=-20

Concentrated Loads (lb)

Vert: 7=-31(F=-16, B=-16) 8=-6(F=-3, B=-3)

February 10,2021

Job Truss Truss Type Qty Ply SUMMIT HOMES 144738397 H3-91 G1 Common Girder ■ Job Reference (optional)
8.430 s Nov 30 2020 MiTek Industries, Inc. Tue Feb 9 15:07:00 2021 Page 1 Mid America Truss, Jefferson City, MO - 65101, ID:Z_Eg7_y5DGhi_ENvQbP05Vz4M0m-leBTXrVhFYoTjbNr02oVGyS7?2rLR0Kjoee?74zmqm9 15-6-0 20-8-0 5-2-0 5-2-0 5-2-0 Scale = 1:40.5 7x8 = 3 6.00 12 5x5 / 5x5 < 10 2

6x	11 8 JUS24	12 JUS24	¹³ ₈ _{2x6}	14 JUS24	15 JUS24	$_{7}^{16}$ $_{8x10} =$	17 JUS24	18 6 JUS24 _{2x6}	19 5 ^{JUS24}	20 JUS24	6x8
			JUS24			JUS24					
	ı	5-2-0	1	10-4	4-0	1	15-6-0	1		20-8-0	1
		5-2-0	1	5-2	2-0	1	5-2-0			5-2-0	1
Plate Offsets (X,Y)	[7:0-5-0,0-6-0]										

ПП

CSI. (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.43 Vert(LL) -0.05 6-7 >999 360 MT20 244/190 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 BC 0.31 Vert(CT) -0.08 6-7 >999 240 TCDL 10.0 Rep Stress Incr NO WB 0.36 Horz(CT) 0.02 5 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 FT = 3% Matrix-SH Weight: 304 lb BCDL 10.0

BRACING-

TOP CHORD

BOT CHORD

ПП

DEFL

ПП

I/defl

ПП

L/d

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

ПП

PLATES

GRIP

LUMBER-

LOADING (psf)

TOP CHORD 2x6 SP No.1 2x8 SP 2400F 2.0E BOT CHORD WEBS 2x4 SP No.2

1-0-4

WEDGE

Left: 2x4 SP No.2, Right: 2x4 SP No.2

REACTIONS. (size) 1=0-4-0, 5=0-4-0

Max Horz 1=64(LC 10)

Max Uplift 1=-400(LC 11), 5=-334(LC 12) Max Grav 1=3334(LC 2), 5=3331(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD

1-2=-4959/573, 2-3=-3697/438, 3-4=-3697/438, 4-5=-5215/566 **BOT CHORD** 1-8=-494/4190, 7-8=-494/4190, 6-7=-428/4412, 5-6=-428/4412

WEBS 3-7=-319/2912, 4-7=-1383/215, 4-6=-121/1434, 2-7=-1125/223, 2-8=-178/1176

ПП

2-0-0

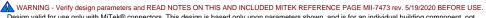
SPACING-

ПΠ

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x8 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.


- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 6) Unbalanced snow loads have been considered for this design.
- 7) Plates checked for a plus or minus 2 degree rotation about its center.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=400 5=334
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Use USP JUS24 (With 4-10d nails into Girder & 2-10d nails into Truss) or equivalent spaced at 2-0-0 oc max. starting at 0-8-0 from the left end to 18-8-0 to connect truss(es) to back face of bottom chord.
- 11) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

OF MISS SCOTT M. SEVIER WITS SIONAL NUMBER PE-2001018807

February 10,2021

Continued on page 2

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply SUMMIT HOMES 144738397 H3-91 G1 Common Girder Z | Job Reference (optional) 8.430 s Nov 30 2020 MiTek Industries, Inc. Tue Feb 9 15:07:00 2021 Page 2

Mid America Truss,

Jefferson City, MO - 65101,

ID:Z_Eg7_y5DGhi_ENvQbP05Vz4M0m-leBTXrVhFYoTjbNr02oVGyS7?2rLR0Kjoee?74zmqm9

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-51, 3-5=-51, 1-5=-20

Concentrated Loads (lb)

Vert: 11=-299(B) 12=-294(B) 13=-290(B) 14=-290(B) 15=-521(B) 16=-417(B) 17=-417(B) 18=-417(B) 19=-417(B) 20=-547(B)

Job Truss Truss Type Qty Ply SUMMIT HOMES 144738398 H3-91 G2 Roof Special Girder Z Job Reference (optional) 8.430 s Nov 30 2020 MiTek Industries, Inc. Tue Feb 9 15:07:01 2021 Page 1 Mid America Truss, Jefferson City, MO - 65101, ID:Z_Eg7_y5DGhi_ENvQbP05Vz4M0m-mqlskBWK0rwKKly2ZlJkoA?NjSBvAQMt1INZfWzmqm8 10-0-0 13-4-0 3-4-0 3-4-0 Scale = 1:27.9 6x6 = 3 6.00 12 5x5 / 5x5 > 4 10 1-0-4 11 12 13 14 15 8 6 THD26 THD26 THD26 THD26 2x8 || 8x8 = 2x8 || 5x6 = 5x6 = THD26 THD26 10-0-0 3-4-0 13-4-0 3-4-0 Plate Offsets (X,Y)--[6:0-6-4,0-1-0], [7:0-4-0,0-5-12], [8:0-6-4,0-1-0] LOADING (psf) SPACING-CSI. DEFL. (loc) I/defl L/d **PLATES** GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.11 Vert(LL) -0.03 6-7 >999 360 244/190 MT20 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 BC 0.29 Vert(CT) -0.06 6-7 >999 240 **TCDL** 10.0 Rep Stress Incr NO WB 0.56 Horz(CT) 0.02 5 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 FT = 3% Matrix-P Weight: 216 lb BCDL 10.0

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x8 SP 2400F 2.0E 2x8 SP 2400F 2.0E **BOT CHORD** 2x4 SP No.2 **WEBS**

REACTIONS. (size) 1=0-4-0, 5=0-4-0 Max Horz 1=-42(LC 7)

Max Uplift 1=-42(LC 11), 5=-46(LC 12) Max Grav 1=4984(LC 2), 5=5466(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-2=-7582/66, 2-3=-5745/75, 3-4=-5743/75, 4-5=-7685/69 TOP CHORD BOT CHORD 1-8=-60/6242, 7-8=-60/6242, 6-7=-24/6327, 5-6=-24/6327 WFBS 3-7=-29/4595, 4-7=-1378/65, 4-6=0/2428, 2-7=-1279/62, 2-8=0/2313

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x8 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x8 - 2 rows staggered at 0-6-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc. Except member 4-6 2x4 - 1 row at 0-5-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 6) Unbalanced snow loads have been considered for this design
- 7) Plates checked for a plus or minus 2 degree rotation about its center.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Use USP THD26 (With 18-16d nails into Girder & 12-10d x 1-1/2 nails into Truss) or equivalent spaced at 2-0-0 oc max. starting at 2-0-0 from the left end to 12-0-0 to connect truss(es) to back face of bottom chord.
- 11) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-51, 3-5=-51, 1-5=-20

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

February 10,2021

Continued on page 2

\Lambda WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Truss Type SUMMIT HOMES Job Truss Qty Ply 144738398 H3-91 G2 Roof Special Girder

Mid America Truss,

Jefferson City, MO - 65101,

Z Job Reference (optional) 8.430 s Nov 30 2020 MiTek Industries, Inc. Tue Feb 9 15:07:01 2021 Page 2 ID:Z_Eg7_y5DGhi_ENvQbP05Vz4M0m-mqlskBWK0rwKKly2ZlJkoA?NjSBvAQMt1INZfWzmqm8

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 6=-1386(B) 11=-1386(B) 12=-1386(B) 13=-1386(B) 14=-1386(B) 15=-1386(B)

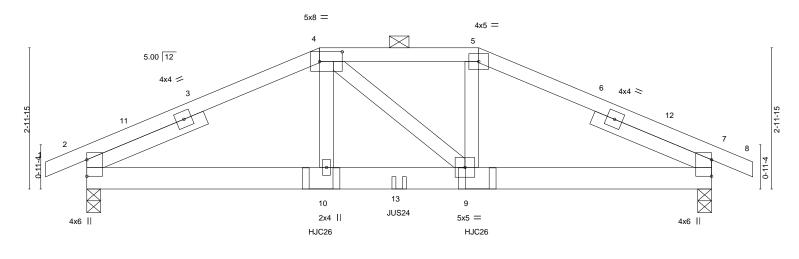
Job Truss Truss Type Qty Ply SUMMIT HOMES 144738399 H3-91 H1 Hip Girder Z Job Reference (optional) 8.430 s Nov 30 2020 MiTek Industries, Inc. Tue Feb 9 15:07:03 2021 Page 1 Mid America Truss, Jefferson City, MO - 65101, ID:Z_Eg7_y5DGhi_ENvQbP05Vz4M0m-jDtc9tXaYTB2a35QhALCub4aeGuxeRMAVcsfkPzmqm6

8-3-12

3-4-8

Scale = 1:24.4

0-10-8


13-3-0

4-11-4

Structural wood sheathing directly applied or 6-0-0 oc purlins, except

2-0-0 oc purlins (6-0-0 max.): 4-5.

Rigid ceiling directly applied or 10-0-0 oc bracing

4-11-4 Plate Offsets (X,Y)--[4:0-5-12,0-2-8] LOADING (psf) SPACING-2-0-0 CSI. **DEFL** (loc) I/defl L/d **PLATES** GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.66 Vert(LL) -0.03 9-10 >999 360 244/190 MT20 Snow (Pf/Pg) 20.4/20.0 Lumber DOL 1.15 BC 0.19 Vert(CT) -0.06 9-10 >999 240 TCDL 10.0 Rep Stress Incr NO WB 0.08 Horz(CT) 0.01 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-P Weight: 150 lb FT = 3%BCDL 10.0

BRACING-

TOP CHORD

BOT CHORD

3-4-8

LUMBER-

0-10-8

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x6 SP No.1

WEBS 2x4 SP No.2 Left 2x4 SP No.2 -t 2-8-14, Right 2x4 SP No.2 -t 2-8-14 **SLIDER**

REACTIONS.

(size) 2=0-3-8, 7=0-3-8 Max Horz 2=25(LC 13)

Max Uplift 2=-97(LC 7), 7=-97(LC 8) Max Grav 2=1244(LC 34), 7=1244(LC 34)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

4-11-4

2-4=-2013/185, 4-5=-1738/181, 5-7=-2013/185 TOP CHORD 2-10=-132/1701, 9-10=-133/1738, 7-9=-129/1702 BOT CHORD

WEBS 4-10=-36/658, 5-9=-43/684

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0 Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 6) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 8) Provide adequate drainage to prevent water ponding.
- 9) Plates checked for a plus or minus 2 degree rotation about its center.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 7.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 13) Use USP HJC26 (With 16-16d nails into Girder & 10d nails into Truss) or equivalent spaced at 3-3-12 oc max. starting at 4-11-10 from the left end to 8-3-6 to connect truss(es) to back face of bottom chord.
- 14) Use USP JUS24 (With 4-10d nails into Girder & 2-10d nails into Truss) or equivalent at 6-7-8 from the left end to connect truss(es)

February 10,2021

Continue ackriance ef 2 bottom chord.

\Lambda WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply SUMMIT HOMES 144738399 H3-91 Н1 Hip Girder 2 Job Reference (optional) 8.430 s Nov 30 2020 MiTek Industries, Inc. Tue Feb 9 15:07:03 2021 Page 2

Mid America Truss,

Jefferson City, MO - 65101,

ID:Z_Eg7_y5DGhi_ENvQbP05Vz4M0m-jDtc9tXaYTB2a35QhALCub4aeGuxeRMAVcsfkPzmqm6

NOTES-

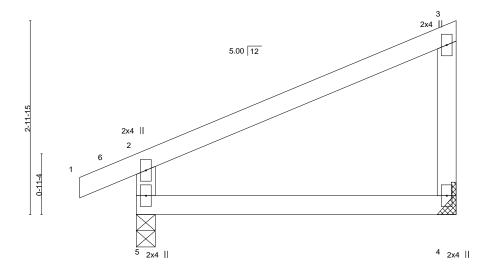
15) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard
1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-4=-51, 4-5=-61, 5-8=-51, 2-7=-20

Concentrated Loads (lb)

Vert: 10=-472(B) 9=-472(B) 13=-200(B)


Job Truss Truss Type Qty SUMMIT HOMES 144738400 H3-91 J1 MONO TRUSS 3

Mid America Truss, Jefferson City, MO - 65101,

Job Reference (optional) 8.430 s Nov 30 2020 MiTek Industries, Inc. Tue Feb 9 15:07:03 2021 Page 1 ID:Z_Eg7_y5DGhi_ENvQbP05Vz4M0m-jDtc9tXaYTB2a35QhALCub4fdGvkeSfAVcsfkPzmqm6

-0-10-8 0-10-8 4-11-4

Scale = 1:17.8

4-11-4

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	
TCLL (roof) 20.0				in	(100)	i/deli	L/u	
- ()	Plate Grip DOL 1.15	TC 0.34	Vert(LL)	-0.01	4-5	>999	360	
Snow (Pf/Pg) 15.4/20.0			/		4.5	>999		
TCDL 10.0	Lumber DOL 1.15	BC 0.14	Vert(CT)	-0.02	4-5	>999	240	
	Rep Stress Incr YES	WB 0.00	Horz(CT)	0.00	4	n/a	n/a	
BCLL 0.0	Code IRC2018/TPI2014	Matrix-R	,					
BCDI 10.0	Code IRC2016/1712014	IVIALITX-IX						

Weight: 21 lb FT = 3%

GRIP 244/190

PLATES

MT20

LUMBER-BRACING-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD WEBS 2x4 SP No.2 TOP CHORD

Structural wood sheathing directly applied or 4-11-4 oc purlins,

except end verticals. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. 5=0-3-8, 4=Mechanical (size)

Max Horz 5=92(LC 8)

Max Uplift 5=-16(LC 7), 4=-18(LC 8) Max Grav 5=296(LC 16), 4=220(LC 16)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-5=-262/47

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 2 degree rotation about its center.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 4.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

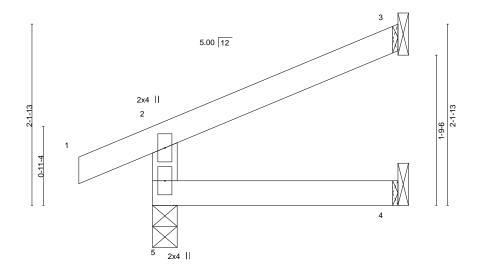
February 10,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chore members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty SUMMIT HOMES 144738401 H3-91 J2 Jack-Open Job Reference (optional)

Mid America Truss, Jefferson City, MO - 65101, 8.430 s Nov 30 2020 MiTek Industries, Inc. Tue Feb 9 15:07:04 2021 Page 1


Structural wood sheathing directly applied or 2-10-15 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

ID:Z_Eg7_y5DGhi_ENvQbP05Vz4M0m-BPR_NDYCJmJvBDgdFusRQoduxgHONvvJjGcDGrzmqm5 -0-10-8 2-10-15 2-10-15 0-10-8

Scale = 1:13.7

	H		2-10-15 2-10-15				
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.11 BC 0.05 WB 0.00 Matrix-R	DEFL. Vert(LL) Vert(CT) Horz(CT)	c) I/defl -5 >999 -5 >999 3 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 3%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.2 2x4 SP No.2

BOT CHORD WEBS 2x4 SP No.2

> 5=0-3-8, 3=Mechanical, 4=Mechanical (size) Max Horz 5=43(LC 8)

Max Uplift 5=-10(LC 7), 3=-28(LC 11)

Max Grav 5=216(LC 16), 3=84(LC 16), 4=29(LC 16)

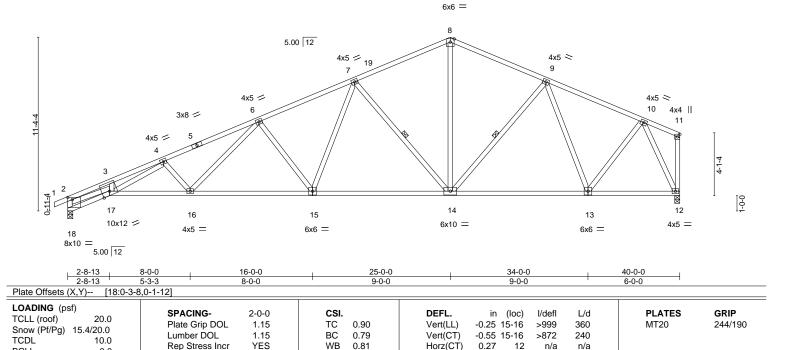
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 2 degree rotation about its center.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

February 10,2021

Job Truss Truss Type Qty SUMMIT HOMES 144738402 H3-91 S1 **ROOF SPECIAL** 2 Job Reference (optional) 8.430 s Nov 30 2020 MiTek Industries, Inc. Tue Feb 9 15:07:05 2021 Page 1


Mid America Truss, Jefferson City, MO - 65101,

ID:Z_Eg7_y5DGhi_ENvQbP05Vz4M0m-fb?MaZZq44RmpNFpobOgz0AsQ3Q16ARSywLmoIzmqm4 40-0-0 -0-10-8 2-8-13 0-10-8 2-8-13 25-0-0 37-6-0 3-6-3 6-3-0 6-3-0 6-3-0 6-3-0 6-3-0 2-6-0

Scale = 1:75.3

FT = 3%

Weight: 246 lb

LUMBER-

BCLL

BCDL

TOP CHORD 2x4 SP No.2

2x4 SP No.2 *Except* **BOT CHORD** 15-17: 2x4 SP No.1

2x4 SP No.2 *Except* WEBS 2-17: 2x4 SP No.1

BRACING-TOP CHORD

Matrix-SH

Structural wood sheathing directly applied or 1-7-12 oc purlins,

except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing **WEBS**

1 Row at midpt 7-14, 9-14

REACTIONS. (size) 18=0-4-0, 12=0-4-0

0.0

10.0

Max Horz 18=158(LC 8)

Max Uplift 18=-52(LC 11), 12=-1(LC 12) Max Grav 18=1650(LC 2), 12=1588(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-18=-1670/121, 2-3=-4992/277, 3-4=-4883/315, 4-6=-3722/165, 6-7=-2673/128,

Code IRC2018/TPI2014

7-8=-1696/104, 8-9=-1697/116, 9-10=-1429/50

BOT CHORD 17-18=-163/288, 16-17=-243/3721, 15-16=-130/2813, 14-15=-41/2129, 13-14=0/1460,

12-13=-27/727

WFBS 2-17=-213/4276, 4-17=-141/942, 4-16=-560/141, 6-16=-36/816, 6-15=-702/143,

7-15=-13/789, 7-14=-992/148, 8-14=-12/905, 9-13=-586/59, 10-13=0/884,

10-12=-1693/38

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Plates checked for a plus or minus 2 degree rotation about its center.
- 7) Bearing at joint(s) 18 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 18, 12.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

February 10,2021

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty SUMMIT HOMES 144738403 H3-91 S₁A Roof Special 2 Job Reference (optional) Mid America Truss,

Jefferson City, MO - 65101,

8.430 s Nov 30 2020 MiTek Industries, Inc. Tue Feb 9 15:07:07 2021 Page 1

ID:Z_Eg7_y5DGhi_ENvQbP05Vz4M0m-b_67?Ea4bhhU2gPBw0Q82RFGTtAua4vlPEqttAzmqm2 -0-10-8 2-8-13 0-10-8 2-8-13 43-9-0 48-0-0 18-9-0 21-11-8 25-0-0 28-2-0 31-3-0 37-6-0 3-6-3 6-3-0 6-3-0 3-2-8 3-0-8 3-2-0 3-1-0 6-3-0 6-3-0 4-3-0

Scale = 1:83.2

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2

WEBS 2x4 SP No.2 BRACING-TOP CHORD

Structural wood sheathing directly applied or 3-9-4 oc purlins, except end verticals. **BOT CHORD** Rigid ceiling directly applied or 6-0-0 oc bracing. Except:

1 Row at midpt 8-21

WEBS 7-21, 10-19, 11-19 1 Row at midpt 2 Rows at 1/3 pts 9-19

REACTIONS. (size) 25=0-4-0, 19=0-4-0, 16=Mechanical

Max Horz 25=104(LC 11)

Max Uplift 25=-29(LC 11), 19=-40(LC 11), 16=-134(LC 29) Max Grav 25=802(LC 29), 19=2903(LC 2), 16=440(LC 30)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-25=-805/88, 2-3=-2147/167, 3-4=-2099/208, 4-6=-1290/86, 6-7=-359/62, 7-8=0/480, 8-9=0/490, 9-10=0/1296, 10-11=0/1291, 11-12=-49/860, 12-14=-403/404

23-24=-141/1411, 22-23=-43/654, 18-19=-911/141, 17-18=-602/135, 16-17=-252/397

2-24=-117/1797, 4-24=-116/622, 4-23=-452/132, 6-23=-22/694, 6-22=-671/144,

7-22=-25/744, 7-21=-834/120, 19-21=-687/114, 9-21=-87/969, 9-19=-1794/71, 10-19=-264/52, 11-19=-807/114, 11-18=-18/711, 12-18=-628/119, 12-17=0/505,

14-17=-282/83, 14-16=-469/336

NOTES-

WEBS

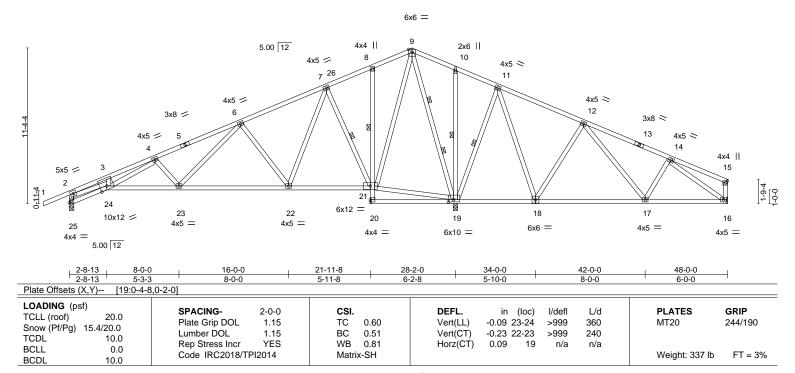
BOT CHORD

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Plates checked for a plus or minus 2 degree rotation about its center.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Bearing at joint(s) 25 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 25, 19 except (jt=lb) 16=134
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

February 10,2021

Job Truss Truss Type Qty SUMMIT HOMES 144738404 H3-91 S₁B Roof Special 2 Job Reference (optional) Mid America Truss, Jefferson City, MO - 65101, 8.430 s Nov 30 2020 MiTek Industries, Inc. Tue Feb 9 15:07:08 2021 Page 1

21-11-8


3-2-8

18-9-0

6-3-0

ID:Z_Eg7_y5DGhi_ENvQbP05Vz4M0m-3AgVCabjM?pLgq_OUjxNbeoRHHXCJWFveuaQPczmqm1 31-3-0 25-0-0 28-2-0 37-6-0 43-9-0 48-0-0 3-0-8 3-2-0 3-1-0 6-3-0 6-3-0 4-3-0

Scale = 1:84.0

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 WEBS 2x4 SP No.2

1-10-8 2-8-13 1-10-8 2-8-13

3-6-3

6-3-0

BRACING-TOP CHORD **BOT CHORD**

Structural wood sheathing directly applied or 3-10-7 oc purlins,

except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing. Except:

1 Row at midpt 8-21 **WEBS** 7-21, 10-19, 11-19 1 Row at midpt

2 Rows at 1/3 pts 9-19

REACTIONS. (size) 25=0-4-0, 19=0-4-0, 16=Mechanical

Max Horz 25=113(LC 11)

Max Uplift 25=-41(LC 11), 19=-37(LC 11), 16=-125(LC 29) Max Grav 25=871(LC 29), 19=2886(LC 2), 16=443(LC 30)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-25=-842/95, 2-3=-2059/153, 3-4=-2003/192, 4-6=-1282/85, 6-7=-368/64, 7-8=0/467,

8-9=0/477, 9-10=0/1279, 10-11=0/1273, 11-12=-46/843, 12-14=-407/391

23-24=-138/1395, 22-23=-44/658, 18-19=-895/138, 17-18=-588/132, 16-17=-242/400 **BOT CHORD** WEBS

2-24=-114/1796, 4-24=-102/537, 4-23=-438/130, 6-23=-19/678, 6-22=-664/143, 7-22=-24/738, 7-21=-830/120, 19-21=-675/112, 9-21=-87/967, 9-19=-1780/68, 10-19=-267/52, 11-19=-806/114, 11-18=-18/709, 12-18=-626/119, 12-17=0/501,

14-17=-279/83, 14-16=-474/323

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Plates checked for a plus or minus 2 degree rotation about its center.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Bearing at joint(s) 25 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 25, 19 except (jt=lb) 16=125
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

February 10,2021

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty SUMMIT HOMES 144738405 H3-91 S1C Roof Special Job Reference (optional) 8.430 s Nov 30 2020 MiTek Industries, Inc. Tue Feb 9 15:07:10 2021 Page 1

Mid America Truss, Jefferson City, MO - 65101,

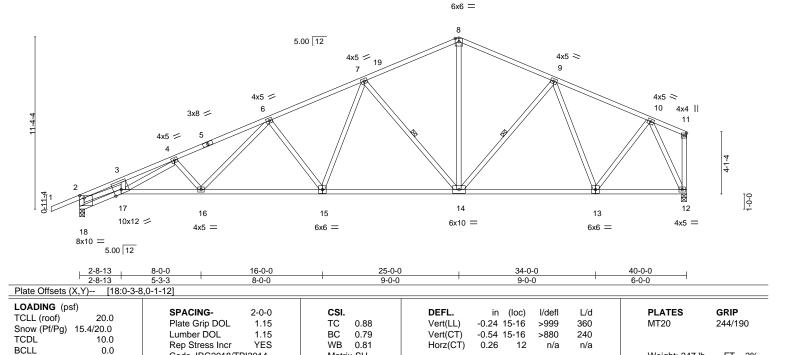
ID:Z_Eg7_y5DGhi_ENvQbP05Vz4M0m-?ZoFdGdzuc33v88mb8zrg3tjM48DnQhC6B3XUVzmqm? 25-0-0 40-0-0 1-10-8 2-8-13 1-10-8 2-8-13 31-3-0 37-6-0 3-6-3 6-3-0 6-3-0 6-3-0 6-3-0 6-3-0 2-6-0

Scale = 1:75.9

FT = 3%

Weight: 247 lb

Structural wood sheathing directly applied or 1-8-12 oc purlins,


7-14, 9-14

Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

except end verticals.

1 Row at midpt

6-0-0 oc bracing: 17-18.

BRACING-

TOP CHORD

BOT CHORD

WEBS

Matrix-SH

LUMBER-

BCDL

TOP CHORD 2x4 SP No.2

2x4 SP No.2 *Except* **BOT CHORD** 15-17: 2x4 SP No.1

10.0

WEBS 2x4 SP No.2 *Except* 2-17: 2x4 SP No.1

REACTIONS. (size) 18=0-4-0, 12=0-4-0 Max Horz 18=165(LC 8)

Max Uplift 18=-63(LC 11), 12=-1(LC 12) Max Grav 18=1713(LC 2), 12=1585(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-18=-1700/128, 2-3=-4882/259, 3-4=-4766/295, 4-6=-3695/161, 6-7=-2664/126,

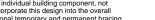
Code IRC2018/TPI2014

7-8=-1692/103, 8-9=-1693/115, 9-10=-1427/50

BOT CHORD 16-17=-237/3686, 15-16=-127/2800, 14-15=-40/2122, 13-14=0/1457, 12-13=-27/726 WEBS

2-17=-207/4255, 4-17=-127/855, 4-16=-544/138, 6-16=-34/799, 6-15=-695/142,

7-15=-12/783, 7-14=-987/147, 8-14=-11/902, 9-13=-584/59, 10-13=0/883,


10-12=-1690/38

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed: MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Plates checked for a plus or minus 2 degree rotation about its center.
- 7) Bearing at joint(s) 18 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 18, 12.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

February 10,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

AMSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty SUMMIT HOMES 144738406 H3-91 T1 Common Job Reference (optional) Mid America Truss, Jefferson City, MO - 65101, 8.430 s Nov 30 2020 MiTek Industries, Inc. Tue Feb 9 15:07:11 2021 Page 1 ID:Z_Eg7_y5DGhi_ENvQbP05Vz4M0m-UIMdrcdbfwBvXliz9sU4CHQxaUXQVq0LKro50xzmqm_

6-3-0

31-3-0

6-3-0

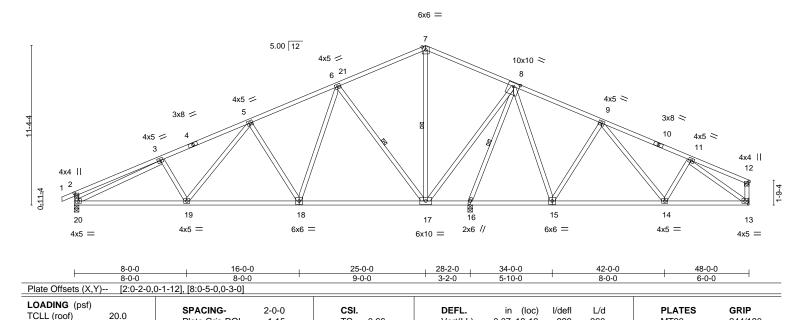
6-3-0

Scale = 1:81.9

244/190

FT = 3%

MT20


Weight: 305 lb

48-0-0

4-3-0

43-9-0

6-3-0

LUMBER-

TCDL

BCLL

BCDL

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2

10.0

10.0

0.0

Snow (Pf/Pg) 15.4/20.0

WEBS 2x4 SP No.2

REACTIONS.

-0₋10₋8 0-10-8

6-3-0

6-3-0

6-3-0

(size) 13=Mechanical, 20=0-4-0, 16=0-4-0

Max Horz 20=104(LC 11)

Max Uplift 13=-39(LC 12), 20=-45(LC 11), 16=-2(LC 11) Max Grav 13=650(LC 30), 20=1036(LC 29), 16=2285(LC 2)

Plate Grip DOL

Rep Stress Incr

Code IRC2018/TPI2014

Lumber DOL

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-431/77, 3-5=-1488/103, 5-6=-876/102, 8-9=-269/174, 9-11=-740/99, 2-20=-383/81 **BOT CHORD** 19-20=-134/1418, 18-19=-64/1037, 17-18=0/537, 16-17=-1002/106, 14-15=-13/439,

13-14=-52/663

WEBS 5-19=-13/444, 5-18=-574/129, 6-18=-7/709, 6-17=-937/142, 7-17=-387/0, 8-17=-28/1569, 8-15=-11/609, 9-15=-516/119, 9-14=0/333, 11-13=-805/63,

3-20=-1229/12, 8-16=-2355/31

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

1.15

1.15

YES

TC

BC

WB

Matrix-SH

0.66

0.54

1.00

Vert(LL)

Vert(CT)

BRACING-

TOP CHORD

BOT CHORD

WEBS

Horz(CT)

-0.07 18-19

-0.25 17-18

except end verticals.

1 Row at midpt

13

0.04

>999

>999

n/a

Rigid ceiling directly applied or 5-7-11 oc bracing.

360

240

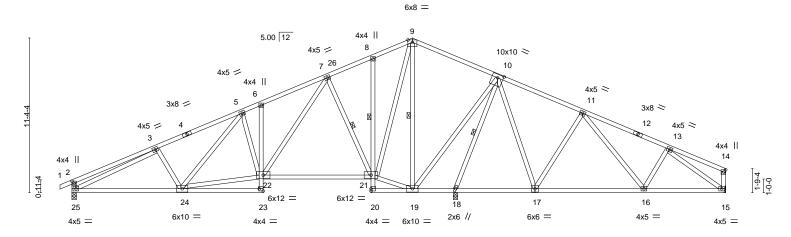
n/a

Structural wood sheathing directly applied or 4-5-14 oc purlins,

6-17, 7-17, 8-16

- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Plates checked for a plus or minus 2 degree rotation about its center.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 13, 20, 16.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

February 10,2021



Job Truss Truss Type Qty SUMMIT HOMES 144738407 H3-91 T1A Roof Special Job Reference (optional)

Mid America Truss, Jefferson City, MO - 65101, 8.430 s Nov 30 2020 MiTek Industries, Inc. Tue Feb 9 15:07:12 2021 Page 1

ID:Z_Eg7_y5DGhi_ENvQbP05Vz4M0m-yyw02yeDQEJm9RH9jZ0JIUy6futjElyUZVYeXOzmqlz 43-9-0 48-0-0 -0₇10₇8 0-10-8 21-11-8 25-0-0 31-3-0 37-6-0 6-3-0 6-3-0 1-6-8 4-8-8 3-2-8 3-0-8 6-3-0 6-3-0 6-3-0 4-3-0

Scale = 1:84.6

	0-0-0	17-0-0		-11-0	25-0-0	20-2-0	J 1 -0-0		72-0-0	70-0-0	
	8-0-0	6-0-8	7-	-11-0	3-0-8	3-2-0	5-10-0		8-0-0	6-0-0	
Plate Offset	ts (X,Y) [2:0-2-0,0	0-1-12], [10:0-5-0,0-3-0], [23	3:Edge,0-2-0]								
LOADING TCLL (roof) Snow (Pf/Pg TCDL BCLL BCDL	u ,	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TPI2	2-0-0 1.15 1.15 YES 2014	BC 0.	64 53 96 H	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.08 21-22 -0.30 21-22 0.05 15	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 350 lb	GRIP 244/190 FT = 3%

LUMBER-

WEBS

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2

2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 4-7-0 oc purlins,

42-0-0

except end verticals.

BOT CHORD Rigid ceiling directly applied or 5-4-12 oc bracing. Except:

1 Row at midpt 8-21 **WEBS** 7-21, 9-19, 10-18 1 Row at midpt

REACTIONS. (size) 25=0-4-0, 15=Mechanical, 18=0-4-0

Max Horz 25=104(LC 11)

Max Uplift 25=-45(LC 11), 15=-46(LC 12)

Max Grav 25=1010(LC 29), 15=629(LC 30), 18=2350(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-3=-427/72, 3-5=-1421/103, 5-6=-1147/114, 6-7=-1168/153, 7-8=-286/96, TOP CHORD

8-9=-273/133, 10-11=-225/252, 11-13=-707/111, 2-25=-379/79

24-25=-138/1367, 21-22=0/514, 18-19=-1085/112, 17-18=-320/93, 16-17=-81/402,

15-16=-62/637 WEBS

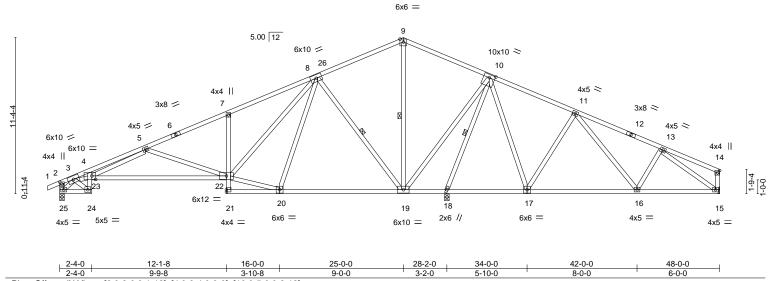
22-24=-35/1120, 5-22=-396/98, 7-22=-83/954, 7-21=-798/137, 9-21=-80/1030, 9-19=-1218/33, 10-19=-48/1587, 10-17=-12/611, 11-17=-524/117, 11-16=0/354,

3-25=-1175/22, 13-15=-773/75, 10-18=-2380/54

NOTES-


BOT CHORD

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed: MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Plates checked for a plus or minus 2 degree rotation about its center.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 25, 15.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



February 10,2021

Plate Offsets (X,Y) [2:0-2-0,0	0-1-12], [4:0-3-4,0-3-0], [10:0-5-0,0-2-12	.]		
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCDL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.70 BC 0.87 WB 0.99 Matrix-SH	DEFL. in (loc) l/defl L/d Vert(LL) -0.13 22-23 >999 360 Vert(CT) -0.56 22-23 >594 240 Horz(CT) 0.13 18 n/a n/a	PLATES GRIP MT20 244/190 Weight: 320 lb FT = 3%

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

REACTIONS.

WEBS

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.2

(size) 15=Mechanical, 25=0-4-0, 18=0-4-0

Max Horz 25=104(LC 13)

Max Uplift 15=-63(LC 12), 25=-31(LC 11), 18=-34(LC 11) Max Grav 15=547(LC 30), 25=889(LC 29), 18=2635(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

3-4=-2346/172, 4-5=-2822/166, 5-7=-1078/52, 7-8=-1057/132, 8-9=0/481, 9-10=0/480, TOP CHORD

10-11=-57/602, 11-13=-576/204

BOT CHORD 24-25=-112/637, 23-24=-53/443, 22-23=-180/1586, 7-22=-348/130, 19-20=0/265, 18-19=-1538/155, 17-18=-656/133, 16-17=-382/257, 15-16=-94/535

3-24=-596/89, 3-23=-193/1906, 5-23=-24/1155, 5-22=-699/162, 20-22=0/369,

8-22=-122/1022, 8-19=-960/144, 9-19=-665/27, 10-19=-60/1916, 10-17=-6/651,

11-17=-566/113, 11-16=0/436, 13-15=-644/137, 3-25=-942/23, 10-18=-2724/64

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Plates checked for a plus or minus 2 degree rotation about its center.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 15, 25, 18.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1

February 10,2021

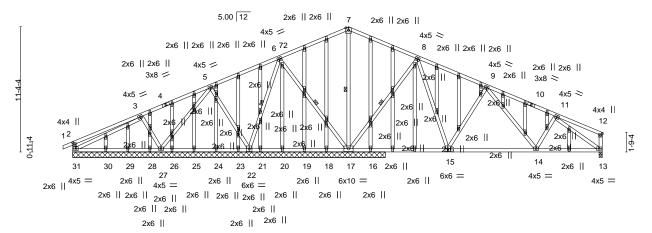
Structural wood sheathing directly applied or 2-11-13 oc purlins,

8-19, 9-19, 10-18

Rigid ceiling directly applied or 4-6-4 oc bracing.

except end verticals.

1 Row at midpt


Job Truss Truss Type Qty SUMMIT HOMES 144738409 H3-91 T1GE **GABLE** Job Reference (optional)

Mid America Truss, Jefferson City, MO - 65101, 8.430 s Nov 30 2020 MiTek Industries, Inc. Tue Feb 9 15:07:18 2021 Page 1

6-22, 6-17, 7-17, 8-17

ID:Z_Eg7_y5DGhi_ENvQbP05Vz4M0m-m5HHJ?j_044wtMlJ3q7j?lC8fJzle8cNxR?yl1zmqlt 31-3-0 37-6-0 43-9-0 48-0-0 0-10-8 6-3-0 6-3-0 6-3-0 6-3-0 6-3-0 6-3-0 6-3-0 4-3-0

> Scale = 1:104.4 6x6 =

	8-0-0	16-0-0	25-0-0	34-0-0	42-0-0	48-0-0	
	8-0-0	8-0-0	9-0-0	9-0-0	8-0-0	6-0-0	
Plate Offsets (X,Y) [2:0-2-0	,0-1-12], [32:0-2-14,0-	1-0], [34:0-2-14,0-1-0], [43:0-2-9,0-1-0], [45:0)-2-9,0-1-0], [52:0-2-14,0-1-0	0], [55:0-2-14,0-1-0]		
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DO Lumber DOL Rep Stress Ind Code IRC201	1.15 or YES	CSI. TC 0.67 BC 0.37 WB 0.43 Matrix-SH	DEFL. in (I-Vert(LL) -0.03 14-Vert(CT) -0.12 14-Horz(CT) 0.01		PLATES MT20 Weight: 451 lb	GRIP 244/190 FT = 3%

WEBS

1 Row at midpt

LUMBER-BRACING-

TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 5-11-1 oc purlins, **BOT CHORD** 2x4 SP No.2 except end verticals. **WEBS** 2x4 SP No.2 **BOT CHORD** Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 28-4-0 except (jt=length) 13=0-3-8.

Max Horz 31=104(LC 11) (lb) -

2x4 SP No.2

Max Uplift All uplift 100 lb or less at joint(s) 31, 13 except 22=-157(LC 11), 27=-133(LC 11), 17=-174(LC 12) Max Grav All reactions 250 lb or less at joint(s) 18, 19, 20, 21, 23, 24, 25, 26, 28, 29, 30, 16 except 22=410(LC 29), 27=440(LC 29), 17=1593(LC 2), 31=306(LC 29), 13=723(LC 30)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 5-6=0/274, 6-7=0/469, 7-8=0/469, 8-9=-422/98, 9-11=-855/83, 2-31=-301/91 **BOT CHORD** 14-15=0/571, 13-14=-39/753 **WEBS** 3-27=-362/137, 5-22=-306/110, 6-17=-342/81, 7-17=-649/4, 8-17=-851/145,

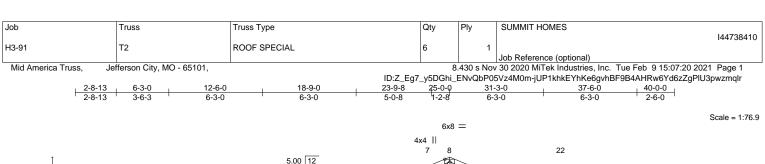
8-15=-12/599, 9-15=-483/123, 9-14=0/252, 11-13=-917/47

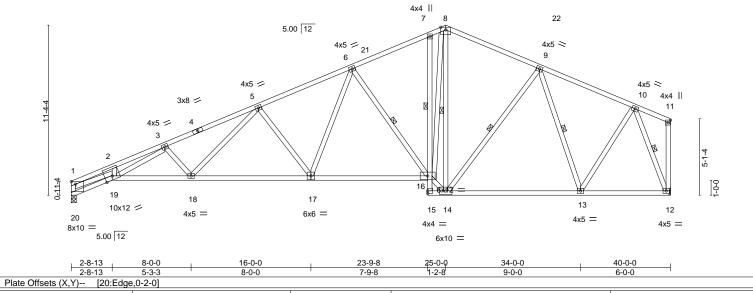
NOTES-

OTHERS

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 7) Plates checked for a plus or minus 2 degree rotation about its center.
- 8) Gable studs spaced at 2-0-0 oc.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 31, 13 except (it=lb) 22=157, 27=133, 17=174.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

February 10,2021




MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Flate Oilsets (A, 1) [20.Euge, v-2-v]									
CADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.88 BC 0.79 WB 0.72 Matrix-SH	DEFL. in (loc) l/defl L/d Vert(LL) -0.26 17 >999 360 Vert(CT) -0.59 16-17 >806 240 Horz(CT) 0.33 12 n/a n/a	PLATES GRIP MT20 244/190 Weight: 284 lb FT = 3%					

LUMBER-BRACING-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 *Except*

17-19: 2x4 SP No.1

2x4 SP No.2 *Except* WEBS

1-19: 2x4 SP No.1

TOP CHORD **BOT CHORD**

Structural wood sheathing directly applied or 1-8-14 oc purlins,

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing: 15-16.

1 Row at midpt

WEBS 1 Row at midpt 6-16, 8-14, 9-14, 9-13, 10-12

REACTIONS. (size) 20=0-4-0, 12=Mechanical

Max Horz 20=164(LC 8)

Max Uplift 20=-42(LC 11), 12=-1(LC 12) Max Grav 20=1588(LC 2), 12=1588(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD $1-20 = -1590/100, \ 1-2 = -5032/258, \ 2-3 = -4943/299, \ 3-5 = -3729/159, \ 5-6 = -2678/126, \ 3-6 = -267$

6-7=-1784/112, 7-8=-1660/143, 8-9=-1557/122, 9-10=-1241/61

BOT CHORD 18-19=-220/3730, 17-18=-112/2821, 16-17=-22/2126, 13-14=0/1289, 12-13=-29/604 WEBS

1-19=-206/4368, 3-19=-132/994, 3-18=-563/137, 5-18=-32/816, 5-17=-709/145,

6-17=-14/805, 6-16=-955/130, 14-16=0/1751, 8-16=-108/1921, 8-14=-1014/36,

9-14=-50/260, 9-13=-663/56, 10-13=0/915, 10-12=-1641/38

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 2 degree rotation about its center.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Bearing at joint(s) 20 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 20, 12.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

February 10,2021

Job Truss Truss Type Qty SUMMIT HOMES 144738411 H3-91 T2GE COMMON SUPPORTED GAB Job Reference (optional)

Mid America Truss, Jefferson City, MO - 65101, 8.430 s Nov 30 2020 MiTek Industries, Inc. Tue Feb 9 15:07:21 2021 Page 1

ID:Z_Eg7_y5DGhi_ENvQbP05Vz4M0m-BgzPx1lsl?SVkqTukygQcOqobW3Cra9pdPDcMMzmqlq 25-0-0 15-0-0

Scale = 1:82.1 6x6 = 2x6 || 2x6 || 13 14 15 5.00 12 2x6 || 2x6 || 2x6 || 16 2x6 || 12 45 17 2x6 || 2x6 II 11 18 2x6 || 10 2x6 2x6 || 2x6 || 2x6 || 19 2x6 || 4x4 || 20 2x6 || 8 3x8 = 21 Ш 2x6 || 2x6 || 5-1-4 4x4 || 0-11-4 40 39 38 37 32 31 30 28 27 26 2x6 || 4x4 = 3x8 2x6 ||

40-0-0 Plate Offsets (X.Y)-- [23:Edge.0-2-0]

2x6 | | 2x6 | |

1 late Choose (X,1) [26.2090,0 2 0]									
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.12 BC 0.13 WB 0.13	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) -0.00 23 n/a n/a	PLATES GRIP MT20 244/190					
BCDL 10.0	Code IRC2018/TPI2014	Matrix-R		Weight: 321 lb FT = 3%					
DODL 10.0									

LUMBER-BRACING-

TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, **BOT CHORD** 2x4 SP No.2 except end verticals. WEBS 2x4 SP No.2 **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing.

OTHERS 2x4 SP No.2 **WEBS** 14-31, 13-32, 12-33, 11-35, 15-30, 16-29, 1 Row at midpt

REACTIONS. All bearings 40-0-0.

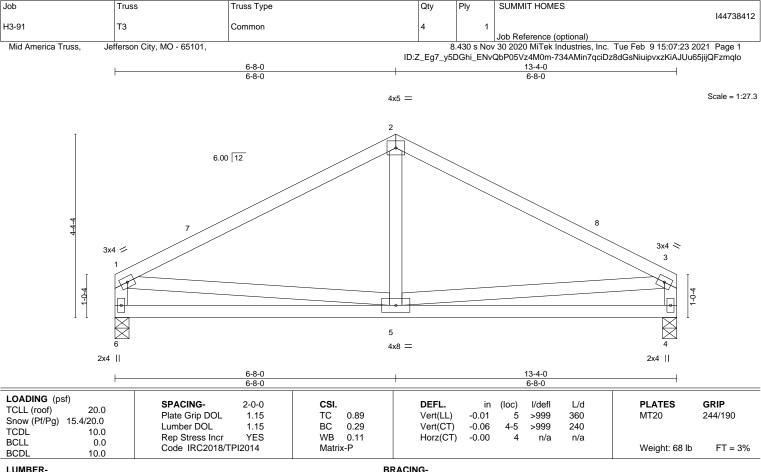
Max Horz 44=163(LC 8) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 23, 32, 33, 35, 36, 37, 38, 39, 40, 41, 43, 30, 29, 28, 27, 26,

25, 24

All reactions 250 lb or less at joint(s) 44, 23, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 30, Max Grav

29, 28, 27, 26, 25, 24


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) Plates checked for a plus or minus 2 degree rotation about its center.
- 7) Gable requires continuous bottom chord bearing.
- 8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 9) Gable studs spaced at 2-0-0 oc.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 23, 32, 33, 35, 36, 37, 38, 39, 40, 41, 43, 30, 29, 28, 27, 26, 25, 24.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

February 10,2021

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.2

REACTIONS. 6=0-4-0, 4=0-4-0 (size) Max Horz 6=61(LC 8)

Max Uplift 6=-6(LC 11), 4=-6(LC 12) Max Grav 6=522(LC 2), 4=522(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

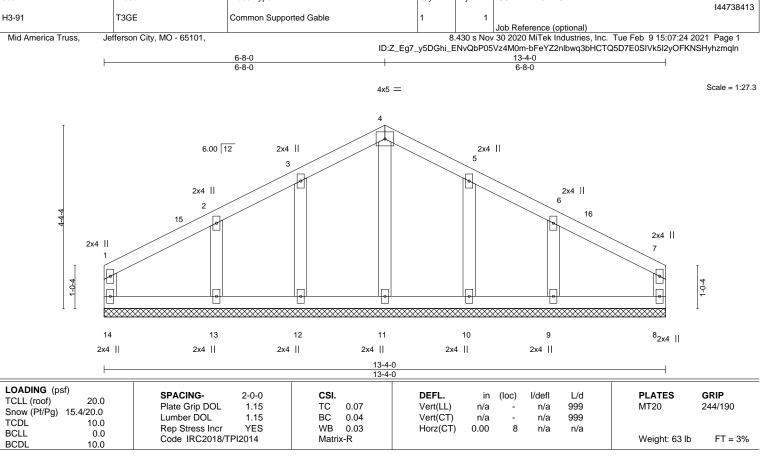
1-2=-568/10, 2-3=-568/0, 1-6=-472/35, 3-4=-472/35 TOP CHORD

WEBS 1-5=0/449, 3-5=0/449

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 2 degree rotation about its center.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 4.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


Structural wood sheathing directly applied or 2-2-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

Qty

SUMMIT HOMES

LUMBER-

Job

Truss

Truss Type

TOP CHORD 2x4 SP No.2 2x4 SP No.2

BOT CHORD 2x4 SP No.2 WEBS **OTHERS** 2x4 SP No.2 BRACING-TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 13-4-0.

Max Horz 14=61(LC 8) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 14, 8, 12, 13, 10, 9 Max Grav All reactions 250 lb or less at joint(s) 14, 8, 11, 12, 13, 10, 9

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

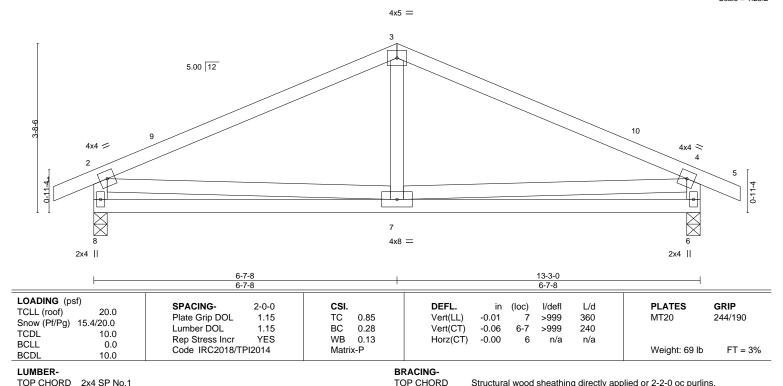
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) Plates checked for a plus or minus 2 degree rotation about its center.
- 7) Gable requires continuous bottom chord bearing.
- 8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 9) Gable studs spaced at 2-0-0 oc.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 8, 12, 13, 10,
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

February 10,2021

Job Truss Truss Type Qty SUMMIT HOMES 144738414 H3-91 T4 COMMON 2 Job Reference (optional) 8.430 s Nov 30 2020 MiTek Industries, Inc. Tue Feb 9 15:07:25 2021 Page 1 Mid America Truss, Jefferson City, MO - 65101, ID:Z_Eg7_y5DGhi_ENvQbP05Vz4M0m-3SCwnOoNMDywDRnfzolMnE?H87NknO8PY1BqV7zmqlm

6-7-8

Structural wood sheathing directly applied or 2-2-0 oc purlins,


Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

Scale = 1:25.2

14-1-8

0-10-8

TOP CHORD

BOT CHORD

2x4 SP No.2 REACTIONS. (size) 8=0-3-8, 6=0-3-8

2x4 SP No.2

0-10-8

Max Horz 8=22(LC 10)

Max Uplift 8=-19(LC 11), 6=-19(LC 12) Max Grav 8=580(LC 2), 6=580(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-619/2, 3-4=-619/0, 2-8=-530/48, 4-6=-530/48 TOP CHORD

WFRS 2-7=0/517, 4-7=0/517

NOTES-

BOT CHORD

WEBS

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

6-7-8

- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Plates checked for a plus or minus 2 degree rotation about its center.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

February 10,2021

Job Truss Truss Type Qty SUMMIT HOMES 144738415 COMMON SUPPORTED GAB H3-91 T4GE Job Reference (optional) Mid America Truss, Jefferson City, MO - 65101, 8.430 s Nov 30 2020 MiTek Industries, Inc. Tue Feb 9 15:07:26 2021 Page 1 ID:Z_Eg7_y5DGhi_ENvQbP05Vz4M0m-XemI_kp?7X4nqbMrXVGbJRXfAXngWqDYnhxN1azmqll 20-8-0 10-4-0 10-4-0 Scale = 1:41.5 5x5 = 6 2x4 || 2x4 || 5 6.00 12 2x4 II 2x4 || 8 25 2x4 || 2x4 || 3 6-2-4 2x4 || 2x4 || 10 2x4 | 2x4 || 11 1-0-4 23 22 20 19 18 17 16 15 13 12 14 2x4 || 3x6 = 2x4 | 20-8-0 20-8-0 LOADING (psf) SPACING-2-0-0 CSI. DEFL. I/defI L/d **PLATES** GRIP

LUMBER-

TCLL (roof)

TCDI

BCLL

BCDL

TOP CHORD 2x4 SP No.2

20.0

10.0

0.0

10.0

BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.2 **OTHERS** 2x4 SP No.2

Snow (Pf/Pg) 15.4/20.0

BRACING-

Vert(LL)

Vert(CT)

Horz(CT)

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,

n/a

n/a

n/a

999

999

n/a

except end verticals.

(loc)

12

n/a

n/a

0.00

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 20-8-0.

(lb) -Max Horz 23=-82(LC 7)

Max Uplift All uplift 100 lb or less at joint(s) 23, 12, 19, 20, 21, 22, 17, 15, 14, 13 Max Grav All reactions 250 lb or less at joint(s) 23, 12, 18, 19, 20, 21, 22, 17, 15, 14, 13

1.15

1.15

YES

TC

ВС

WB

Matrix-R

0.06

0.04

0.07

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Plate Grip DOL

Rep Stress Incr

Code IRC2018/TPI2014

Lumber DOL

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) Plates checked for a plus or minus 2 degree rotation about its center.
- 7) Gable requires continuous bottom chord bearing.
- 8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 9) Gable studs spaced at 2-0-0 oc.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 23, 12, 19, 20, 21, 22, 17, 15, 14, 13.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

244/190

FT = 3%

MT20

Weight: 113 lb

February 10,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

AMSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Truss Type Qty 144738416 H3-91 T5 **KINGPOST** 5 Job Reference (optional) 8.430 s Nov 30 2020 MiTek Industries, Inc. Tue Feb 9 15:07:27 2021 Page 1 Mid America Truss, Jefferson City, MO - 65101, ID:Z_Eg7_y5DGhi_ENvQbP05Vz4M0m-0qKhC4qdurCeSlx15Dnqsf4oax51FIPi0LgxZ0zmqlk 6-8-0 3-4-0 3-4-0 Scale = 1:19.5 4x4 = 2 6.00 12 2x4 || 2x4 || 2x4 || 2x4 3-4-0 3-4-0 LOADING (psf) SPACING-2-0-0 CSI. DEFL. I/defI L/d **PLATES GRIP** (loc) TCLL (roof) 20.0 Plate Grip DOL TC Vert(LL) -0.01 >999 244/190 1.15 0.15 5 360 MT20 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 ВС 0.16 Vert(CT) -0.02 >999 240 5 **TCDL** 10.0 Rep Stress Incr YES WB 0.01 Horz(CT) 0.00 4 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-R Weight: 26 lb FT = 3% **BCDL** 10.0

BRACING-

TOP CHORD

BOT CHORD

SUMMIT HOMES

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

LUMBER-

Job

Truss

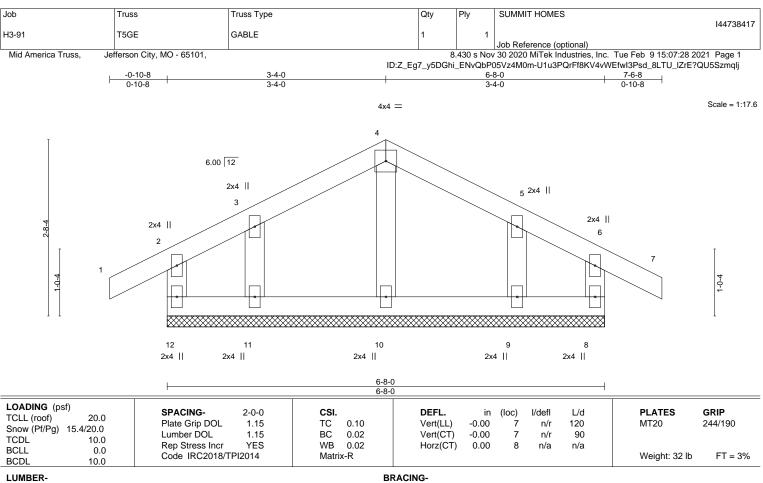
TOP CHORD 2x4 SP No.2 2x4 SP No.2

BOT CHORD WEBS 2x4 SP No.2

REACTIONS. 6=0-3-8, 4=0-3-8 (size) Max Horz 6=42(LC 8)

Max Uplift 6=-3(LC 11), 4=-3(LC 12) Max Grav 6=263(LC 15), 4=263(LC 16)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 2 degree rotation about its center.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 4.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

2x4 SP No.2 WEBS **OTHERS** 2x4 SP No.2

TOP CHORD Structural wood sheathing directly applied or 6-8-0 oc purlins,

except end verticals.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 6-8-0.

Max Horz 12=48(LC 10) (lb) -

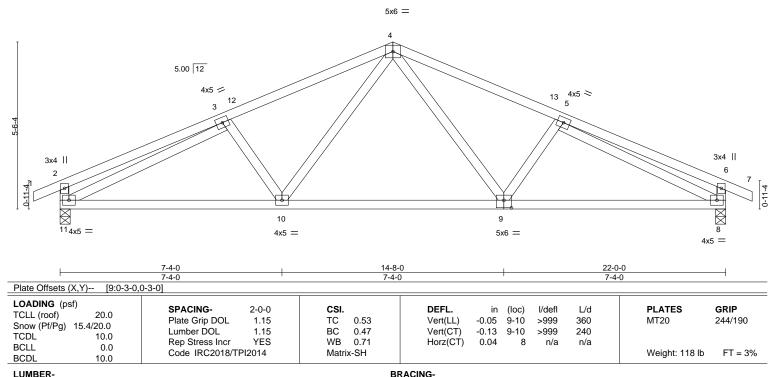
Max Uplift All uplift 100 lb or less at joint(s) 12, 8, 11, 9 Max Grav All reactions 250 lb or less at joint(s) 12, 8, 10, 11, 9

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 7) Plates checked for a plus or minus 2 degree rotation about its center.
- 8) Gable requires continuous bottom chord bearing.
- 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 8, 11, 9.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

February 10,2021


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chore members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty SUMMIT HOMES 144738418 H3-91 T6 Common Job Reference (optional) 8.430 s Nov 30 2020 MiTek Industries, Inc. Tue Feb 9 15:07:29 2021 Page 1 Mid America Truss, Jefferson City, MO - 65101, ID:Z_Eg7_y5DGhi_ENvQbP05Vz4M0m-yDRRcmruQSSMh35QCeplx4926limj10?Tf92evzmqli 22-10-8 0-10-8 0-10-8 22-0-0 5-6-0 5-6-0 5-6-0 5-6-0

Scale = 1:38.1

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

WEBS

TOP CHORD 2x4 SP No.2 BOT CHORD

2x4 SP No.2 2x4 SP No.2

> (size) 11=0-4-0, 8=0-4-0 Max Horz 11=36(LC 11)

Max Uplift 11=-24(LC 11), 8=-24(LC 12) Max Grav 11=930(LC 2), 8=930(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-329/52, 3-4=-1286/51, 4-5=-1286/51, 5-6=-329/52, 2-11=-322/64, 6-8=-322/64 TOP CHORD

BOT CHORD 10-11=-36/1231, 9-10=0/905, 8-9=-0/1231

WFBS 4-9=-12/413, 4-10=-12/413, 3-11=-1121/0, 5-8=-1121/0

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Plates checked for a plus or minus 2 degree rotation about its center.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11, 8.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 4-3-8 oc purlins,

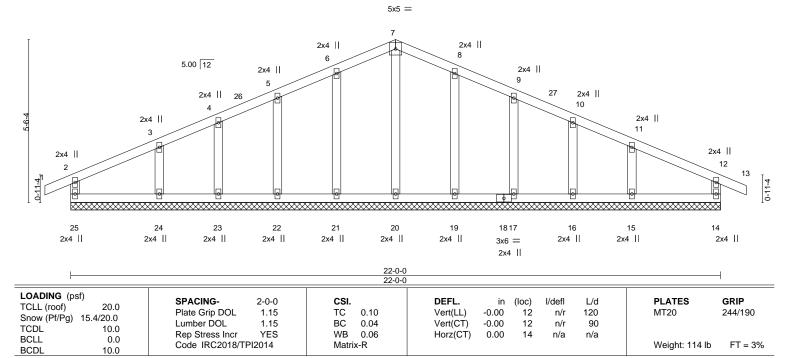
Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

February 10,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see


AMSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty SUMMIT HOMES 144738419 H3-91 T6GE Common Supported Gable Job Reference (optional) Mid America Truss, Jefferson City, MO - 65101, 8.430 s Nov 30 2020 MiTek Industries, Inc. Tue Feb 9 15:07:30 2021 Page 1

ID:Z_Eg7_y5DGhi_ENvQbP05Vz4M0m-QP?pq6sWBmaDJCfcmLKXUHiKe89eSfT8iJvbALzmqlh 22-10-8 0-10-8 22-0-0 11-0-0

Scale = 1:39.0

LUMBER-BRACING-

11-0-0

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS

0-10-8 0-10-8

2x4 SP No.2 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 22-0-0.

(lb) -Max Horz 25=36(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 25, 14, 21, 22, 23, 24, 19, 17, 16, 15 Max Grav All reactions 250 lb or less at joint(s) 25, 14, 20, 21, 22, 23, 24, 19, 17, 16, 15

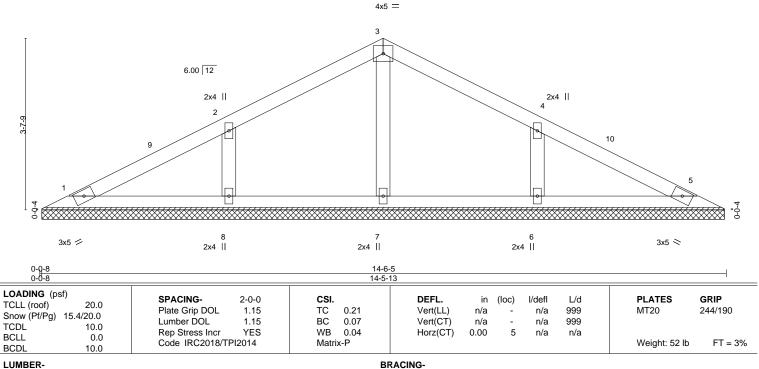
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

OTHERS

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 7) Plates checked for a plus or minus 2 degree rotation about its center.
- 8) Gable requires continuous bottom chord bearing.
- 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 25, 14, 21, 22, 23, 24, 19, 17, 16, 15.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

February 10,2021



Job Truss Truss Type Qty SUMMIT HOMES 144738420 H3-91 V1 Valley Job Reference (optional) 8.430 s Nov 30 2020 MiTek Industries, Inc. Tue Feb 9 15:07:31 2021 Page 1 Mid America Truss, Jefferson City, MO - 65101, ID:Z_Eg7_y5DGhi_ENvQbP05Vz4M0m-ubZB1St8y3i4xMEpK3rm0VFTZYTSB60Hxze8inzmqlg

7-3-2

Scale = 1:24.4

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD**

OTHERS 2x4 SP No.2

REACTIONS. All bearings 14-5-5. Max Horz 1=-38(LC 7)

Max Uplift All uplift 100 lb or less at joint(s) 6, 8

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 6=382(LC 16), 8=382(LC 15)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

4-6=-306/97, 2-8=-306/97 WEBS

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 2 degree rotation about its center.
- 6) Gable requires continuous bottom chord bearing.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 8.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Job Truss Truss Type Qty SUMMIT HOMES 144738421 H3-91 V2 **GABLE** Job Reference (optional) 8.430 s Nov 30 2020 MiTek Industries, Inc. Tue Feb 9 15:07:31 2021 Page 1 Mid America Truss, Jefferson City, MO - 65101, ID:Z_Eg7_y5DGhi_ENvQbP05Vz4M0m-ubZB1St8y3i4xMEpK3rm0VFMpYSoB6_Hxze8inzmqlg 5-7-2 Scale = 1:20.4 4x4 = 6.00 12 6 3 3x4 / 3x4 ≿ 2x4 || 11-2-5 11-2-5 LOADING (psf) SPACING-2-0-0 CSI. DEFL. I/defI L/d **PLATES GRIP** (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC Vert(LL) 999 244/190 0.64 n/a n/a MT20 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 ВС 0.17 Vert(CT) 999 n/a n/a **TCDL** 10.0 Rep Stress Incr YES WB 0.04 Horz(CT) 0.00 3 n/a n/a

BRACING-

TOP CHORD

BOT CHORD

Matrix-P

LUMBER-

BCLL

BCDL

TOP CHORD 2x4 SP No.2 2x4 SP No.2

0.0

10.0

BOT CHORD OTHERS 2x4 SP No.2

REACTIONS. 1=11-2-5, 3=11-2-5, 4=11-2-5 (size) Max Horz 1=28(LC 8)

Max Uplift 1=-21(LC 11), 3=-26(LC 12)

Max Grav 1=238(LC 15), 3=238(LC 16), 4=394(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Code IRC2018/TPI2014

2-4=-270/44 WEBS

NOTES-

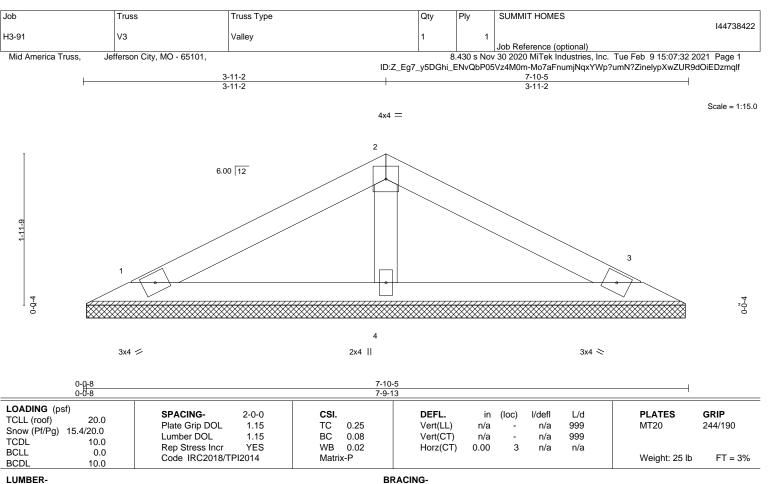
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 2 degree rotation about its center.
- 6) Gable requires continuous bottom chord bearing.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Weight: 36 lb

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

FT = 3%


February 10,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chore members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2

OTHERS 2x4 SP No.2

REACTIONS. 1=7-9-5, 3=7-9-5, 4=7-9-5 (size) Max Horz 1=19(LC 8)

Max Uplift 1=-14(LC 11), 3=-17(LC 12)

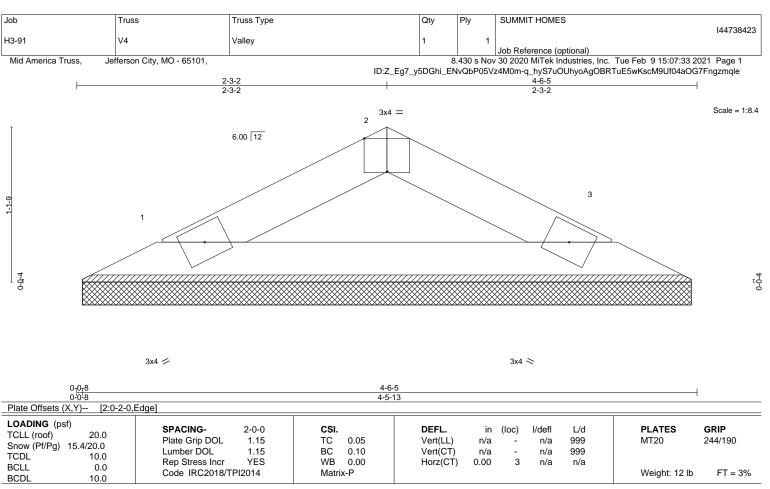
Max Grav 1=155(LC 15), 3=155(LC 16), 4=262(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 2 degree rotation about its center.
- 6) Gable requires continuous bottom chord bearing.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING-

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 4-6-5 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

1=4-5-5, 3=4-5-5 (size) Max Horz 1=-9(LC 7)

Max Uplift 1=-2(LC 11), 3=-2(LC 12) Max Grav 1=131(LC 2), 3=131(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 2 degree rotation about its center.
- 6) Gable requires continuous bottom chord bearing.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

February 10,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chore members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty SUMMIT HOMES 144738424 H3-91 V5 **GABLE** Job Reference (optional) 8.430 s Nov 30 2020 MiTek Industries, Inc. Tue Feb 9 15:07:34 2021 Page 1 Mid America Truss, Jefferson City, MO - 65101, ID:Z_Eg7_y5DGhi_ENvQbP05Vz4M0m-IAFKgTv0F_5foqzO?BPTe7tv9mUhOTnkdwtoJ6zmqld 5-6-10 5-6-10 Scale = 1:17.8 4x4 = 5.00 12 3x4 = 3x4 > 2x4 || 11-1-4 11-1-4 LOADING (psf) SPACING-2-0-0 CSI. DEFL. I/defI L/d **PLATES GRIP** (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC Vert(LL) 999 244/190 0.57 n/a n/a MT20 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 ВС 0.16 Vert(CT) 999 n/a n/a **TCDL** 10.0 Rep Stress Incr YES WB 0.04 Horz(CT) 0.00 3 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-P Weight: 34 lb FT = 3% **BCDL** 10.0 LUMBER-**BRACING-**

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2

OTHERS 2x4 SP No.2

REACTIONS. 1=11-1-4, 3=11-1-4, 4=11-1-4 (size) Max Horz 1=-21(LC 12)

Max Uplift 1=-19(LC 11), 3=-23(LC 12)

Max Grav 1=227(LC 15), 3=227(LC 16), 4=390(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-4=-270/46 WEBS

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 2 degree rotation about its center.
- 6) Gable requires continuous bottom chord bearing.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

February 10,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chore members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty SUMMIT HOMES 144738425 H3-91 V₆ **GABLE** Job Reference (optional) 8.430 s Nov 30 2020 MiTek Industries, Inc. Tue Feb 9 15:07:35 2021 Page 1 Mid America Truss, Jefferson City, MO - 65101, ID:Z_Eg7_y5DGhi_ENvQbP05Vz4M0m-nNpitpwe?IDWP_YaZuwiBLPAJ9sa7wltracMrYzmqlc 3-6-10 3-6-10 Scale = 1:13.2 4x4 = 2 5.00 12 3 3x4 = 2x4 || 3x4 > LOADING (psf) SPACING-2-0-0 DEFL. I/defI L/d **PLATES GRIP** (loc) TCLL (roof) 20.0 Plate Grip DOL TC Vert(LL) 999 244/190 1.15 0.16 n/a n/a MT20 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 ВС 0.06 Vert(CT) 999 n/a n/a **TCDL** 10.0 Rep Stress Incr YES WB 0.02 Horz(CT) 0.00 3 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-P Weight: 21 lb FT = 3% **BCDL** 10.0 LUMBER-**BRACING-**TOP CHORD TOP CHORD 2x4 SP No.2 Structural wood sheathing directly applied or 6-0-0 oc purlins. **BOT CHORD** 2x4 SP No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

OTHERS 2x4 SP No.2

REACTIONS. 1=7-1-4, 3=7-1-4, 4=7-1-4 (size)

Max Horz 1=12(LC 13)

Max Uplift 1=-11(LC 11), 3=-13(LC 12)

Max Grav 1=124(LC 15), 3=124(LC 16), 4=228(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 2 degree rotation about its center.
- 6) Gable requires continuous bottom chord bearing.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.
Dimensions are in ft-in-sixteenths.
Apply plates to both sides of truss and fully embed teeth.

For 4 x 2 orientation, locate plates 0- $\frac{1}{16}$ from outside edge of truss.

This symbol indicates the required direction of slots in connector plates.

* Plate location details available in MiTek 20/20 software or upon request.

PLATE SIZE

4 × 4

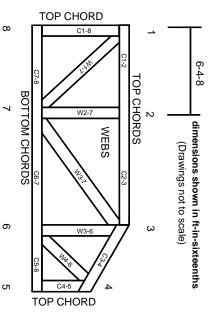
The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number where bearings occur.


Min size shown is for crushing only

Industry Standards:

National Design Specification for Metal Plate Connected Wood Truss Construction. Design Standard for Bracing.
Building Component Safety Information, Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses.

ANSI/TPI1: DSB-89:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2012 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473 rev. 5/19/2020

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.

ω

- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other.

Ģ

- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber

9

- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
 21.The design does not take into account any dynamic or other loads other than those expressly stated.