

Calc. By RJS Checked By JH Date 1/11/2021

Structural Calculations For:

# **Balderston Auto**

# Lee's Summit, MO

| <u>Section</u> | <u>Description</u> | <u>No. Pages</u> |
|----------------|--------------------|------------------|
| Α              | Design Loads       | 11               |
| В              | Gravity Framing    | 33               |
| С              | CMU Design         | 18               |
| D              | Lateral Stability  | 13               |
| E              | Foundations        | 21               |





| Project Balderston Au | ito           | Project No. 20-467 |
|-----------------------|---------------|--------------------|
|                       |               | ,                  |
| Calc. By RS           | Checked By_JH | Date 02/01/2021    |

# <u>Summary</u>

Loads for the project referenced above were determined based on the governing International Building Code (IBC) and the American Society of Civil Engineers Minimum Design Loads for Buildings and Other Structures (ASCE 7).

All vertical/gravity loads were determined as follow: All dead loads were determined based on the building composition and all live loads were determined based on the expected occupancy for each of the spaces within the building. Snow loads were determined based on the building dimensions, the roof profile and the project location.

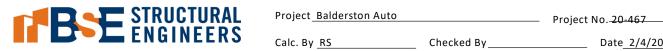
All lateral loads were determined as follows: All wind loading was based on the building dimensions and project location. All seismic loads were determined based on the building composition, the type of lateral stability system and the project location.

The following section of calculations covers the process used to determine the gravity and lateral loads for the project referenced above. Refer to all other sections for the application of these loads.



| Project Balderston Auto | Project No. 20-467 |
|-------------------------|--------------------|
|                         | FI0JECT NO. 20-407 |
|                         |                    |

Calc. By RJS Checked By JH Date 02/18/2021


# **DEAD LOADING**

| DEAD LOAD CONSTRUCTION |        |
|------------------------|--------|
| Roof Dead Load         | 15 psf |
|                        |        |

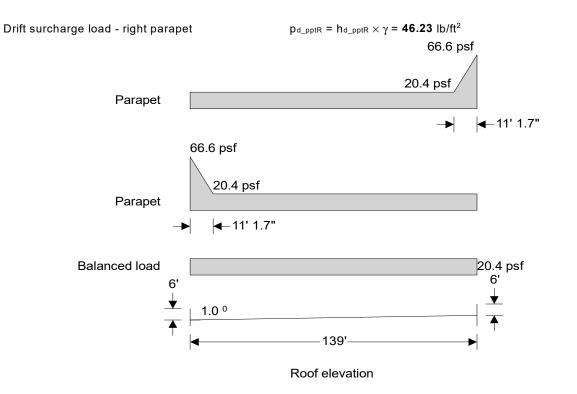
# LIVE LOADING

LIVE LOAD CONSTRUCTION

Roof Live Load IBC 2012, Table 1607.1 20 psf

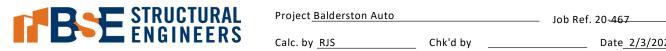


Calc. By <u>RS</u> Checked By Date <u>2/4/2021</u>


| SNOW LOADING                                     |                                                                                                                                                                    |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| In accordance with ASCE7-10                      |                                                                                                                                                                    |
|                                                  | Tedds calculation version 1.0.09                                                                                                                                   |
| Building details                                 |                                                                                                                                                                    |
| Roof type                                        | Monopitch                                                                                                                                                          |
| Width of roof                                    | b = <b>139.00</b> ft                                                                                                                                               |
| Slope of roof 1                                  | α = <b>1.00</b> deg                                                                                                                                                |
| Ground snow load                                 |                                                                                                                                                                    |
| Ground snow load (Figure 7-1)                    | p <sub>g</sub> = <b>20.00</b> lb/ft <sup>2</sup>                                                                                                                   |
| Density of snow                                  | $\gamma = min(0.13 \times p_g / 1ft + 14lb/ft^3, 30lb/ft^3) = 16.60 lb/ft^3$                                                                                       |
| Terrain typeSect. 26.7                           | C                                                                                                                                                                  |
| Exposure condition (Table 7-2)                   | Partially exposed                                                                                                                                                  |
| Exposure factor (Table 7-2)                      | Ce = 1.00                                                                                                                                                          |
| Thermal condition (Table 7-3)                    | Structures kept just above freezing                                                                                                                                |
| Thermal factor (Table 7-3)                       | Ct = <b>1.10</b>                                                                                                                                                   |
| Importance category (Table 1.5-1)                | II                                                                                                                                                                 |
| Importance factor (Table 1.5-2)                  | ls = 1.00                                                                                                                                                          |
| Min snow load for low slope roofs (Sect 7.3.4)   | $p_{f_{min}} = I_s \times p_g = 20.00 \text{ lb/ft}^2$                                                                                                             |
| Rain on snow surcharge (Sect 7.10)               | p <sub>f_sur</sub> = <b>5.00</b> lb/ft <sup>2</sup>                                                                                                                |
| Flat roof snow load (Sect 7.3)                   | $p_f = 0.7 \times C_e \times C_t \times I_s \times p_g + p_{f_sur} = 20.40 \text{ lb}/ft^2$                                                                        |
| Unbalanced flat roof snow load (Sect 7.3)        | $p_{f\_unbal}$ = max( $p_{f\_min}$ , 0.7 × C <sub>e</sub> × C <sub>t</sub> × I <sub>s</sub> × $p_g$ ) = <b>20.00</b> lb/ft <sup>2</sup>                            |
| Cold roof slope factor (Ct > 1.0)                |                                                                                                                                                                    |
| Roof surface type                                | Slippery                                                                                                                                                           |
| Ventilation                                      | Ventilated                                                                                                                                                         |
| Thermal resistance (R-value)                     | R = <b>30.00</b> °F h ft <sup>2</sup> / Btu                                                                                                                        |
| Roof slope factor Fig 7-2b (solid line)          | $C_{s} = 1.00$                                                                                                                                                     |
| Monoslope                                        |                                                                                                                                                                    |
| Sloped roof snow load (CI.7.4)                   | $p_{s} = max(C_{s} \times p_{f}, p_{f_{min}}) = 20.40 \text{ lb/ft}^{2}$                                                                                           |
| Left parapet                                     |                                                                                                                                                                    |
| Balanced snow load height                        | $h_b = p_f \times C_s / \gamma = 1.23 ft$                                                                                                                          |
| Height of left parapet                           | $h_{pptL} = 6.00 \text{ ft}$                                                                                                                                       |
| Height from balance load to top of left parapet  | $h_{c_{pptL}} = h_{pptL} - h_{b} = 4.77 \text{ ft}$                                                                                                                |
| Length of roof - left parapet                    | $l_{u \text{ pptL}} = b_1 = 139.00 \text{ ft}$                                                                                                                     |
| Drift height windward drift - left parpet        | $h_{d\_pptL} = 0.75 \times (0.43 \times (max(20 \text{ ft, } l_{u\_pptL}) \times 1 \text{ ft}^2)^{1/3} \times (p_g / 1 \text{ lb/ft}^2 + 10)^{1/4})^{1/4}$         |
| Dint neight windward dint - ien parpet           | -1.5ft) = 2.78 ft                                                                                                                                                  |
| Drift height - left parapet                      | hd_pptL = min(hd_l_pptL, hpptL - hb) = 2.78 ft                                                                                                                     |
| Drift width                                      | $W_{d_pptL} = min(4 \times h_{d_l_pptL}, 8 \times (h_{pptL} - h_b), b) = 11.14 \text{ ft}$                                                                         |
| Drift surcharge load - left parapet              | $p_{d_pptL} = h_{d_pptL} \times \gamma = 46.23 \text{ Ib/ft}^2$                                                                                                    |
| Right parapet                                    |                                                                                                                                                                    |
| Height of right parapet                          | h <sub>pptR</sub> = <b>6.00</b> ft                                                                                                                                 |
| Height from balance load to top of right parapet | $h_{c_pptR} = h_{pptR} - h_b = 4.77$ ft                                                                                                                            |
| Length of roof - right parapet                   | Iu_pptR = b1 = <b>139.00</b> ft                                                                                                                                    |
| Drift height windward drift - right parpet       | $h_{d\_pptR} = 0.75 \times (0.43 \times (max(20 \text{ ft, } l_{u\_pptR}) \times 1 \text{ ft}^2)^{1/3} \times (p_g / 1 \text{ lb/ft}^2 + 1 \text{ lb/ft}^2)^{1/3}$ |
|                                                  | $10)^{1/4}$ - 1.5ft) = <b>2.78</b> ft                                                                                                                              |
| Drift height - right parapet                     | $h_{d_{pptR}} = min(h_{d_{l_{pptR}}}, h_{pptR} - h_b) = 2.78$ ft                                                                                                   |
| Drift width                                      | $W_{d_pptR} = min(4 \times h_{d_pptR}, 8 \times (h_{pptR} - h_b), b) = 11.14 \text{ ft}$                                                                           |
|                                                  | , , ,                                                                                                                                                              |



Project Balderston Auto \_\_\_\_\_ Project No.-<u>20-467</u>\_\_\_


\_\_\_\_\_ Checked By\_\_\_\_\_

Date 2/4/2021



Calc. By <u>RS</u>

Sht. No. 2 A4<sup>of</sup> 11 2



Calc. by <u>RJS</u> Chk'd by \_\_\_\_\_ Date\_2/3/2021

## **SEISMIC FORCES (ASCE 7-10)**

Tedds calculation version 3.1.00

|                                                   | led                                                                                                      |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Site parameters                                   |                                                                                                          |
| Site class                                        | D                                                                                                        |
| Mapped acceleration parameters (Section 11.4.1)   |                                                                                                          |
| at short period                                   | Ss = 0.099                                                                                               |
| at 1 sec period                                   | S <sub>1</sub> = <b>0.068</b>                                                                            |
| Site coefficientat short period (Table 11.4-1)    | $F_{a} = 1.600$                                                                                          |
| at 1 sec period (Table 11.4-2)                    | $F_{v} = 2.400$                                                                                          |
| Spectral response acceleration parameters         |                                                                                                          |
| at short period (Eq. 11.4-1)                      | $S_{MS} = F_a \times S_S = 0.158$                                                                        |
| at 1 sec period (Eq. 11.4-2)                      | S <sub>M1</sub> = F <sub>v</sub> × S <sub>1</sub> = <b>0.163</b>                                         |
| Design spectral acceleration parameters (Sect 1   | 1.4.4)                                                                                                   |
| at short period (Eq. 11.4-3)                      | SDS = 2/3 × SMS = 0.106                                                                                  |
| at 1 sec period (Eq. 11.4-4)                      | $S_{D1} = 2/3 \times S_{M1} = 0.109$                                                                     |
|                                                   | 301 - 273 × 3m1 - 0.103                                                                                  |
| Seismic design category                           |                                                                                                          |
| Risk category (Table 1.5-1)                       | II                                                                                                       |
|                                                   |                                                                                                          |
| Seismic design category based on short period res |                                                                                                          |
|                                                   |                                                                                                          |
| Seismic design category based on 1 sec period res |                                                                                                          |
| Solomia design estagony                           | B                                                                                                        |
| Seismic design category                           | В                                                                                                        |
| Approximate fundamental period                    |                                                                                                          |
| Height above base to highest level of building    | hn = <b>17.2</b> ft                                                                                      |
| From Table 12.8-2:                                |                                                                                                          |
|                                                   | All other overtome                                                                                       |
| Structure type                                    | All other systems<br>Ct = <b>0.02</b>                                                                    |
| Building period parameter Ct                      | x = 0.75                                                                                                 |
| Building period parameter x                       | x = 0.75                                                                                                 |
| Approximate fundamental period (Eq 12.8-7)        | $T_a = C_t \times (h_n)^x \times 1 \sec t / (1ft)^x = 0.169 \sec t$                                      |
| Building fundamental period (Sect 12.8.2)         | $T = T_a = 0.169 \text{ sec}$                                                                            |
| Long-period transition period                     | $T_{L} = 12 \text{ sec}$                                                                                 |
|                                                   |                                                                                                          |
| Seismic response coefficient                      | D DUU DING EDAME OVOTEMO                                                                                 |
| Seismic force-resisting system (Table 12.2-1)     | B_BUILDING_FRAME_SYSTEMS                                                                                 |
|                                                   | 18. Ordinary reinforced masonry shear walls                                                              |
| Response modification factor (Table 12.2-1)       | R = 2                                                                                                    |
| Seismic importance factor (Table 1.5-2)           | le = 1.000                                                                                               |
| Seismic response coefficient (Sect 12.8.1.1)      | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                  |
| Calculated (Eq 12.8-3)                            | $C_{s_{calc}} = S_{DS} / (R / I_e) = 0.0528$                                                             |
| Maximum (Eq 12.8-3)                               | $C_{s_{max}} = S_{D1} / ((T / 1 \text{ sec}) \times (R / I_e)) = 0.3220$                                 |
| Minimum (Eq 12.8-5)                               | $C_{\text{s}\_\text{min}} = max(0.044 \times S_{\text{DS}} \times I_{\text{e}}, 0.01) = \textbf{0.0100}$ |
| Seismic response coefficient                      | C <sub>s</sub> = <b>0.0528</b>                                                                           |
| Seismic base shear (Sect 12.8.1)                  |                                                                                                          |
| Effective seismic weight of the structure         | W = <b>375.0</b> kips                                                                                    |
|                                                   |                                                                                                          |



\_\_\_\_\_ Job Ref. 20-467\_\_\_

Calc. by <u>RJS</u> Chk'd by \_\_\_\_\_ Date <u>2/3/2021</u>

| Seismic response coefficient   | Cs = 0.0528                             |
|--------------------------------|-----------------------------------------|
| Seismic base shear (Eq 12.8-1) | $V$ = $C_s \times W$ = <b>19.8</b> kips |

## Vertical distribution of seismic forces (Sect 12.8.3)

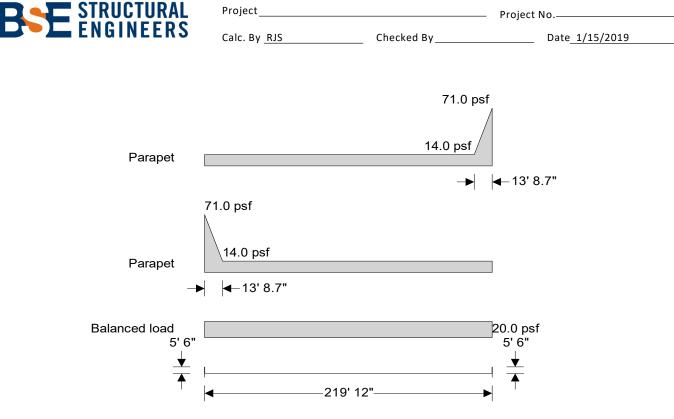
Vertical distribution factor (Eq 12.8-12)

 $C_{vx} = w_x \times h_x^k / \Sigma(w_i \times h_i^k)$ 

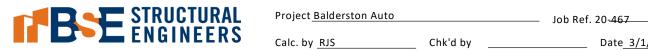
Lateral force induced at level i (Eq 12.8-11)  $F_x = C_{vx} \times V$ 

 $\nabla x = W \times W + 2(W \times W)$ 

Vertical force distribution table


| Level | Height from<br>base to Level i<br>(ft), h <sub>x</sub> | Portion of<br>effective<br>seismic weight<br>assigned to<br>Level i (kips), w <sub>x</sub> | Distribution<br>exponent<br>related to<br>building period,<br>k | Vertical<br>distribution<br>factor, C <sub>vx</sub> | Lateral force<br>induced at<br>Level i (kips), F <sub>x</sub> |
|-------|--------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------|
| 1     | 17.2;                                                  | 375.0;                                                                                     | 1.00;                                                           | 1.000;                                              | 19.8                                                          |




# SNOW LOADING (ASCE7-10)

Tedds calculation version 1.0.06

| Building details                                 |                                                                                                                                                      |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Roof type                                        | Flat                                                                                                                                                 |
| Width of roof                                    | b = <b>220.00</b> ft                                                                                                                                 |
| Ground snow load                                 |                                                                                                                                                      |
| Ground snow load                                 | pg = <b>20.00</b> lb/ft <sup>2</sup>                                                                                                                 |
| Density of snow                                  | $\gamma = min(0.13 \times p_g / 1ft + 14lb/ft^3, 30lb/ft^3) = 16.60 lb/ft^3$                                                                         |
| Terrain type                                     | С                                                                                                                                                    |
| Exposure condition (Table 7-2)                   | Partially exposed                                                                                                                                    |
| Exposure factor (Table 7-2)                      | C <sub>e</sub> = 1.00                                                                                                                                |
| Thermal condition (Table 7-3)                    | All                                                                                                                                                  |
| Thermal factor (Table 7-3)                       | Ct = 1.00                                                                                                                                            |
| Importance category (Table 1-1)                  | II                                                                                                                                                   |
| Importance factor (Table 7-4)                    | ls = 1.00                                                                                                                                            |
| Min snow load for low slope roofs (Sect 7.3.4)   | $p_{f_{min}} = I_s \times p_g = 20.00 \text{ lb/ft}^2$                                                                                               |
| Flat roof snow load (Sect 7.3)                   | $p_{f} = 0.7 \times C_{e} \times C_{t} \times I_{s} \times p_{g} = 14.00 \text{ lb/ft}^{2}$                                                          |
| Left parapet                                     |                                                                                                                                                      |
| Balanced snow load height                        | $h_{\rm b} = p_{\rm f} / \gamma = 0.84  {\rm ft}$                                                                                                    |
| Height of left parapet                           | h <sub>pptL</sub> = <b>5.50</b> ft                                                                                                                   |
| Height from balance load to top of left parapet  | hc_pptL = hpptL - hb = <b>4.66</b> ft                                                                                                                |
| Length of roof - left parapet                    | $l_{u_pptL} = b = 220.00 \text{ ft}$                                                                                                                 |
| Drift height windward drift - left parpet        | $h_{d_{\perp}pptL} = 0.75 \times (0.43 \times (max(20 \text{ ft, } l_{u_pptL}) \times 1\text{ft}^2)^{1/3} \times (p_g / 1\text{lb/ft}^2 + 10)^{1/4}$ |
| Drift height left nerenet                        | -1.5ft = 3.43 ft                                                                                                                                     |
| Drift height - left parapet                      | $h_{d_pptL} = min(h_{d_pptL}, h_{pptL} - h_b) = 3.43 \text{ ft}$                                                                                     |
| Drift width                                      | $W_{d_pptL} = min(4 \times h_{d_pptL}, 8 \times (h_{pptL} - h_b)) = 13.73 \text{ ft}$                                                                |
| Drift surcharge load - left parapet              | $p_{d_pptL} = h_{d_pptL} \times \gamma = 56.96 \text{ lb/ft}^2$                                                                                      |
| Right parapet                                    |                                                                                                                                                      |
| Height of right parapet                          | $h_{pptR} = 5.50 \text{ ft}$                                                                                                                         |
| Height from balance load to top of right parapet | $h_{c_{pptR}} = h_{pptR} - h_b = 4.66 \text{ ft}$                                                                                                    |
| Length of roof - right parapet                   | $I_{u_{pptR}} = b = 220.00 \text{ ft}$                                                                                                               |
| Drift height windward drift - right parpet       | $h_{d\_l\_pptR}$ = 0.75 × (0.43 × (max(20 ft, Iu_pptR) × 1ft <sup>2</sup> ) <sup>1/3</sup> × (pg / 1Ib/ft <sup>2</sup> +                             |
|                                                  | 10) <sup>1/4</sup> - 1.5ft) = <b>3.43</b> ft                                                                                                         |
| Drift height - right parapet                     | $h_{d_pptR} = min(h_{d_pptR}, h_{pptR} - h_b) = 3.43 \text{ ft}$                                                                                     |
| Drift width                                      | $W_{d_pptR} = min(4 \times h_{d_pptR}, 8 \times (h_{pptR} - h_b)) = 13.73 \text{ ft}$                                                                |
| Drift surcharge load - right parapet             | $p_{d_pptR} = h_{d_pptR} \times \gamma = 56.96 \text{ lb/ft}^2$                                                                                      |



Roof elevation



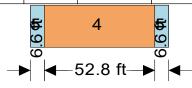
Calc. by <u>RJS</u> Chk'd by \_\_\_\_\_ Date <u>3/1/2021</u>

### WIND LOADING

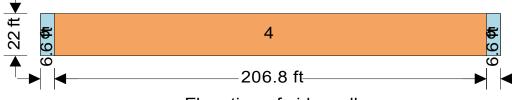
#### In accordance with ASCE7-10

#### Using the components and cladding design method

|                                                                                                                                                                                                                                                                                                                                                                                                                             | Tedds calculation version 2.1.05                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| €<br>©<br>©<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V                                                                                                                                                                                                                                                                                                                            | $ \begin{array}{c}                                     $                                                                                  |
| <b>Building data</b><br>Type of roof<br>Length of building<br>Width of building<br>Height to eaves<br>Height of parapet<br>Mean height                                                                                                                                                                                                                                                                                      | Flat<br>b = 220.00 ft<br>d = 66.00 ft<br>H = 22.00 ft<br>h <sub>P</sub> = 5.00 ft<br>h = 22.00 ft                                         |
| General wind load requirements<br>Basic wind speed<br>Risk category<br>Velocity pressure exponent coef (Table 26.6-1)<br>Exposure category (cl 26.7.3)<br>Enclosure classification (cl.26.10)<br>Internal pressure coef +ve (Table 26.11-1)<br>Internal pressure coef -ve (Table 26.11-1)<br>Parapet internal pressure coef +ve (Table 26.11-1)<br>Parapet internal pressure coef -ve (Table 26.11-1)<br>Gust effect factor |                                                                                                                                           |
| <b>Topography</b><br>Topography factor not significant<br><b>Velocity pressure</b><br>Velocity pressure coefficient (T.30.3-1)<br>Velocity pressure                                                                                                                                                                                                                                                                         | $K_{zt} = 1.0$<br>$K_{z} = 0.92$<br>$q_{h} = 0.00256 \times K_{z} \times K_{zt} \times K_{d} \times V^{2} \times 1psf/mph^{2} = 26.4 psf$ |
| <b>Velocity pressure at parapet</b><br>Velocity pressure coefficient (T.30.3-1)<br>Velocity pressure                                                                                                                                                                                                                                                                                                                        | $K_z = 0.96$<br>$q_p = 0.00256 \times K_z \times K_{zt} \times K_d \times V^2 \times 1psf/mph^2 = 27.5 psf$                               |
| Peak velocity pressure for internal pressure<br>Peak velocity pressure – internal (as roof press.)<br>Equations used in tables<br>Net pressure<br>Parapet net pressure                                                                                                                                                                                                                                                      | $q_i = 26.36 \text{ psf}$ $p = q_h \times [GC_p - GC_{pi}]$ $p = q_p \times [GC_p - GC_{pi\_p}]$                                          |




\_\_\_\_\_ Job Ref. 20-467\_\_\_


Calc. by <u>RJS</u> Chk'd by \_\_\_\_\_ Date\_<u>3/1/2021</u>

#### Components and cladding pressures - Wall (Table 30.4-1 and Figure 30.4-2A)

| Component | Zone | Length<br>(ft) | Width<br>(ft) | Eff. area (ft <sup>2</sup> ) | +GCp | -GCp  | Pres (+ve)<br>(psf) | Pres (-ve)<br>(psf) |
|-----------|------|----------------|---------------|------------------------------|------|-------|---------------------|---------------------|
| <10sf     | 4    | -              | -             | 10.0                         | 0.90 | -0.99 | 28.5                | -30.8               |
| 50sf      | 4    | -              | -             | 50.0                         | 0.79 | -0.88 | 25.5                | -27.9               |
| 200sf     | 4    | -              | -             | 200.0                        | 0.69 | -0.78 | 23.0                | -25.4               |
| >500sf    | 4    | -              | -             | 500.0                        | 0.63 | -0.72 | 21.4                | -23.7               |
| <10sf     | 5    | -              | -             | 10.0                         | 0.90 | -1.26 | 28.5                | -38.0               |
| 50sf      | 5    | -              | -             | 50.0                         | 0.79 | -1.04 | 25.5                | -32.1               |
| 200sf     | 5    | -              | -             | 200.0                        | 0.69 | -0.85 | 23.0                | -27.1               |
| >500sf    | 5    | -              | -             | 500.0                        | 0.63 | -0.72 | 21.4                | -23.7               |
| 20 sff    | 5    | -              | -             | 20.0                         | 0.85 | -1.16 | 27.2                | -35.4               |
| 20 sff    | 4    | -              | -             | 20.0                         | 0.85 | -0.94 | 27.2                | -29.6               |



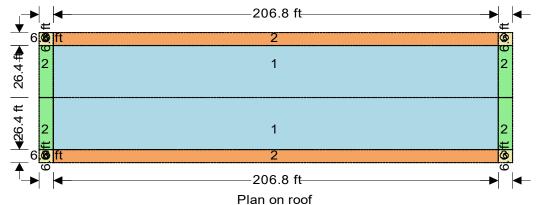
Elevation of gable wall



Elevation of side wall

## Components and cladding pressures - Roof (Figure 30.4-2A)

| Component | Zone | Length<br>(ft) | Width<br>(ft) | Eff. area (ft <sup>2</sup> ) | +GC <sub>p</sub> | -GCp  | Pres (+ve)<br>(psf) | Pres (-ve)<br>(psf) |
|-----------|------|----------------|---------------|------------------------------|------------------|-------|---------------------|---------------------|
| <10sf     | 1    | -              | -             | 10.0                         | 0.30             | -1.00 | 12.7 #              | -31.1               |
| 25sf      | 1    | -              | -             | 25.0                         | 0.26             | -0.96 | 11.6 #              | -30.1               |
| 50sf      | 1    | -              | -             | 50.0                         | 0.23             | -0.93 | 10.8 #              | -29.3               |
| >100sf    | 1    | -              | -             | 100.0                        | 0.20             | -0.90 | 10.0 #              | -28.5               |
| <10sf     | 2    | -              | -             | 10.0                         | 0.90             | -1.80 | 28.5                | -52.2               |
| 25sf      | 2    | -              | -             | 25.0                         | 0.84             | -1.52 | 26.8                | -44.9               |
| 50sf      | 2    | -              | -             | 50.0                         | 0.79             | -1.31 | 25.5                | -39.3               |
| >100sf    | 2    | -              | -             | 100.0                        | 0.74             | -1.10 | 24.3                | -33.7               |
| <10sf     | 3    | -              | -             | 10.0                         | 0.90             | -1.80 | 28.5                | -52.2               |
| 25sf      | 3    | -              | -             | 25.0                         | 0.84             | -1.52 | 26.8                | -44.9               |
| 50sf      | 3    | -              | -             | 50.0                         | 0.79             | -1.31 | 25.5                | -39.3               |




 Project Balderston Auto
 Job Ref. 20-467

 Calc. by RJS
 Chk'd by
 Date 3/1/2021

| Component | Zone | Length<br>(ft) | Width<br>(ft) | Eff. area (ft <sup>2</sup> ) | +GC <sub>p</sub> | -GCp  | Pres (+ve)<br>(psf) | Pres (-ve)<br>(psf) |
|-----------|------|----------------|---------------|------------------------------|------------------|-------|---------------------|---------------------|
| >100sf    | 3    | -              | -             | 100.0                        | 0.74             | -1.10 | 24.3                | -33.7               |

# The final net design wind pressure, including all permitted reductions, used in the design shall not be less than 16psf acting in either direction

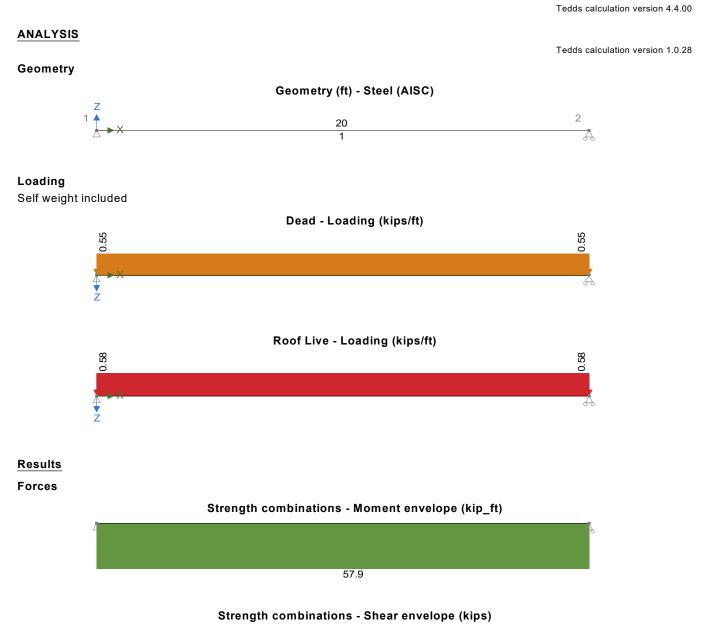




| Project Balderston A | uto P         | Project No. 20-467 |
|----------------------|---------------|--------------------|
| Calc. By_RS          | Checked By_JB | Date_01/2/2020     |

# **Summary**

The gravity structure system of the project referenced above consists primarily of steel joists and girders, load-bearing CMU walls and steel columns. Loading criteria and depth criteria are shown for all roof framing members. These members are to be designed by the Project joist manufacturer and reviewed by BSE. Interior steel framing is supported by steel columns. The locations of all roof framing and columns are indicated on the structural framing plans.


The following section of calculations covers the complete design of the roof framing system for project referenced above, including the design of the gravity columns and canopy framing. Refer to the "Loads" section of these calculations for the determination of all dead, live, roof live, and snow loads.



Calc. By <u>RJS</u> Checked By <u>JH</u> Date <u>2/10/2021</u>

#### **STEEL MEMBER ANALYSIS & DESIGN (AISC 360)**

In accordance with AISC360 14th Edition published 2010 using the ASD method







Project No. <u>20-467</u>

Calc. By <u>RJS</u>

Checked By\_JH

Flange thickness,  $t_{\rm f}$ , 0.345 in Web thickness,  $t_{\rm w}$ , 0.25 in Area of section, A, 7.7 in<sup>2</sup>

Radius of gyration about x-axis, r  $_{\rm x}$ , 6.26 in Radius of gyration about y-axis, r  $_{\rm y}$ , 1.12 in

Elastic section modulus about x-axis,  $S_x$ , 38.4 in<sup>3</sup> Elastic section modulus about y-axis,  $S_y$ , 3.49 in<sup>3</sup> Plastic section modulus about x-axis,  $Z_x$ , 44.2 in<sup>3</sup> Plastic section modulus about y-axis,  $Z_y$ , 5.48 in<sup>3</sup> Second moment of area about x-axis,  $I_x$ , 301 in<sup>4</sup>

Second moment of area about y-axis, I  $_{\rm y}^{*}$ , 9.59 in<sup>4</sup>

| Safety factors         |   |               |  |                                                                                                                                       |
|------------------------|---|---------------|--|---------------------------------------------------------------------------------------------------------------------------------------|
| Shear                  |   |               |  | Ω <sub>v</sub> = <b>1.67</b>                                                                                                          |
| Flexure                |   |               |  | $\Omega_{\rm b}$ = 1.67                                                                                                               |
| Tensile yielding       |   |               |  | Ω <sub>t,y</sub> = <b>1.67</b>                                                                                                        |
| Tensile rupture        |   |               |  | Ω <sub>t,r</sub> = <b>2.00</b>                                                                                                        |
| Compression            |   |               |  | Ωc = <b>1.67</b>                                                                                                                      |
| Beam design            |   |               |  |                                                                                                                                       |
| Section details        |   |               |  |                                                                                                                                       |
| Section type           |   |               |  | W 16x26 (AISC 15th Edn (v15.0))                                                                                                       |
| ASTM steel designation |   |               |  | A992                                                                                                                                  |
| Steel yield stress     |   |               |  | F <sub>y</sub> = <b>50</b> ksi                                                                                                        |
| Steel tensile stress   |   |               |  | Fu = <b>65</b> ksi                                                                                                                    |
| Modulus of elasticity  |   |               |  | E = <b>29000</b> ksi                                                                                                                  |
|                        |   | H0.35"        |  |                                                                                                                                       |
|                        | Ť | <u>↓</u><br>↑ |  | W 16x26 (AISC 15th Edn (v15.0))<br>Section depth, d, 15.7 in<br>Section breadth, $b_p$ 5.5 in<br>Weight of section, Weight, 26 lbf/ft |

#### Lateral restraint

Top flange has lateral restraint at supports plus 6ft, 12ft & 18ft Bottom flange has lateral restraint at supports only

▶ 10.35

4

15.7

#### Consider Combination 1 - 1.0D + 1.0Lr (Strength)

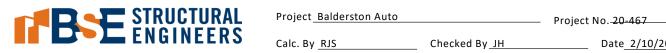
Classification of sections for local buckling - Section B4

| Classification of flanges in flexure - Table B4.1b (case 10) |                                                           |         |  |  |
|--------------------------------------------------------------|-----------------------------------------------------------|---------|--|--|
| Width to thickness ratio                                     | bf / (2 × tf) = <b>7.97</b>                               |         |  |  |
| Limiting ratio for compact section                           | $\lambda_{\text{pff}}$ = 0.38 × $\sqrt{[E / F_y]}$ = 9.15 |         |  |  |
| Limiting ratio for non-compact section                       | $\lambda_{rff}$ = 1.0 × $\sqrt{[E / F_y]}$ = 24.08        | Compact |  |  |
| Classification of web in flexure - Table B4.1b (case 15)     |                                                           |         |  |  |
| Width to thickness ratio                                     | (d - 2 × k) / t <sub>w</sub> = <b>56.82</b>               |         |  |  |
| Limiting ratio for compact section                           | $\lambda_{pwf} = 3.76 \times \sqrt{[E / F_y]} = 90.55$    |         |  |  |

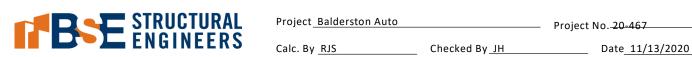
-0.25"

-5.5"------

->


| Limiting ratio for compact section     | $\lambda_{pwf} = 3.76 \times \sqrt{[E / F_y]} = 90.55$      |         |
|----------------------------------------|-------------------------------------------------------------|---------|
| Limiting ratio for non-compact section | $\lambda_{rwf}$ = 5.70 × $\sqrt{[E / F_y]}$ = <b>137.27</b> | Compact |

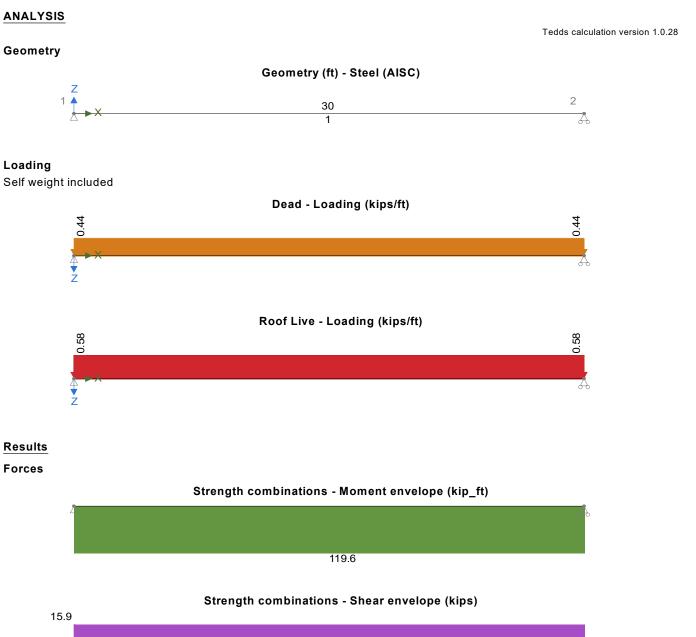
Section is compact in flexure




| Check design at start of span                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Design of members for shear - Chapter G                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Required shear strength                                      | V <sub>r,x</sub> = <b>11.6</b> kips                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Web area                                                     | $A_w = d \times t_w = 3.925 in^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Web plate buckling coefficient                               | k <sub>v</sub> = 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                              | (d - 2 × k) / t <sub>w</sub> > 2.24 × $\sqrt{(E / F_y)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Web shear coefficient - eq G2-3                              | C <sub>v</sub> = <b>1.000</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Nominal shear strength - eq G2-1                             | $V_{n,x}$ = 0.6 × F <sub>y</sub> × A <sub>w</sub> × C <sub>v</sub> = <b>117.8</b> kips                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Safety factor                                                | $\Omega_{\rm V} = 1.67$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Allowable shear strength                                     | V <sub>c,x</sub> = V <sub>n,x</sub> / Ω <sub>v</sub> = <b>70.5</b> kips                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                              | V <sub>r,x</sub> / V <sub>c,x</sub> = <b>0.164</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                              | PASS - Allowable shear strength exceeds required shear strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Check design 10ft along span                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Design of members for flexure - Chapter F                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Required flexural strength                                   | M <sub>r,x</sub> = <b>57.9</b> kips_ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Yielding - Section F2.1                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Nominal flexural strength for yielding - eq F2-1             | $M_{n,yld,x} = M_{p,x} = F_y \times Z_x = 184.2 \text{ kips_ft}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lateral-torsional buckling - Section F2.2<br>Unbraced length | L <sub>b</sub> = <b>6</b> ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -                                                            | $L_p = 1.76 \times r_y \times \sqrt{(E / F_y)} = 3.956 \text{ ft}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Limiting unbraced length for yielding - eq F2-5              | $L_p = 1.76 \times 19 \times 1(E 7 Fy) = 3.936 ft$<br>h <sub>o</sub> = <b>15.4</b> in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Distance between flange centroids                            | c = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                              | r <sub>ts</sub> = <b>1.38</b> in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Limiting unbraced length for inelastic LTB - eg E2-f         | $5 \text{ Lr} = 1.95 \times \text{rt}_{\text{s}} \times \text{E} / (0.7 \times \text{F}_{\text{y}}) \times \sqrt{((J \times \text{c} / (S_{\text{x}} \times \text{h}_{\text{o}})) + \sqrt{((J \times \text{c} / (S_{\text{x}} \times \text{h})) + \sqrt{((J \times \text{c} / (S_{\text{x}} \times \text{h}$ |
|                                                              | $h_{0}))^{2} + 6.76 \times (0.7 \times F_{y} / E)^{2})) = 11.167 \text{ ft}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Moment at quarter point of segment                           | $M_A = 54.2$ kips ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Moment at center-line of segment                             | $M_B = 57.3 \text{ kips_ft}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Moment at three quarter point of segment                     | Mc = <b>57.7</b> kips_ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Maximum moment in segment                                    | $M_{max} = 57.9$ kips ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| LTB modification factor - eq F1-1                            | $C_b = 12.5 \times M_{max} / (2.5 \times M_{max} + 3 \times M_A + 4 \times M_B + 3 \times M_c) = 1.019$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Nominal flexural strength for lateral-torsional buckli       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -                                                            | $M_{n,ltb,x} = min(C_b \times (M_{p,x} - (M_{p,x} - 0.7 \times F_y \times S_x) \times (L_b - L_p) / (L_r - L_p)), M_{p,x})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                              | = 166.8 kips_ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Allowable flexural strength - F1                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Nominal flexural strength                                    | M <sub>n,x</sub> = min(M <sub>n,yld,x</sub> , M <sub>n,ltb,x</sub> ) = <b>166.8</b> kips_ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Allowable flexural strength                                  | M <sub>c,x</sub> = M <sub>n,x</sub> / Ω <sub>b</sub> = <b>99.9</b> kips_ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                              | M <sub>r,x</sub> / M <sub>c,x</sub> = <b>0.580</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| P                                                            | ASS - Allowable flexural strength exceeds required flexural strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Check design 10ft along span                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Design of members for x-x axis deflection                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Maximum deflection                                           | δ <sub>x</sub> = <b>0.493</b> in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Allowable deflection                                         | $\delta_{x,Allowable} = L_{m1_{s1}} / 360 = 0.667$ in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                              | $\delta_x / \delta_{x,Allowable} = 0.74$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

PASS - Allowable deflection exceeds design deflection




Calc. By <u>RJS</u> Checked By <u>JH</u> Date <u>2/10/2021</u>



Calc. By <u>RJS</u> Checked By <u>JH</u> Date <u>11/13/2020</u>

#### **STEEL MEMBER ANALYSIS & DESIGN (AISC 360)**

In accordance with AISC360 14th Edition published 2010 using the ASD method





Tedds calculation version 4.4.00



Project No.-20-467

Calc. By <u>RJS</u> Checked By <u>JH</u> Date <u>11/13/2020</u>

| Safatu faatara          |          |           |          |                                                                                                                                          |
|-------------------------|----------|-----------|----------|------------------------------------------------------------------------------------------------------------------------------------------|
| Safety factors<br>Shear |          |           |          | Ω <sub>v</sub> = <b>1.67</b>                                                                                                             |
| Flexure                 |          |           |          | $\Omega_{\rm b} = 1.67$                                                                                                                  |
|                         |          |           |          |                                                                                                                                          |
| Tensile yielding        |          |           |          | $\Omega_{t,y} = 1.67$                                                                                                                    |
| Tensile rupture         |          |           |          | $\Omega_{t,r} = 2.00$                                                                                                                    |
| Compression             |          |           |          | $\Omega_{c} = 1.67$                                                                                                                      |
| Beam design             |          |           |          |                                                                                                                                          |
| Section details         |          |           |          |                                                                                                                                          |
| Section type            |          |           |          | W 21x48 (AISC 15th Edn (v15.0))                                                                                                          |
| ASTM steel designation  |          |           |          | A992                                                                                                                                     |
| Steel yield stress      |          |           |          | F <sub>y</sub> = <b>50</b> ksi                                                                                                           |
| Steel tensile stress    |          |           |          | F <sub>u</sub> = <b>65</b> ksi                                                                                                           |
| Modulus of elasticity   |          |           |          | E = <b>29000</b> ksi                                                                                                                     |
|                         |          | "€+-0.43" |          |                                                                                                                                          |
|                         | ▲        | ¥         |          | W 21x48 (AISC 15th Edn (v15.0))                                                                                                          |
|                         |          | т         | 1        | Section depth, d, 20.6 in<br>Section breadth, b, 8.14 in                                                                                 |
|                         |          |           |          | Weight of section, Weight, 48 lbf/ft                                                                                                     |
|                         |          |           |          | Flange thickness, $t_{p}$ , 0.43 in<br>Web thickness, $t_{w}$ , 0.35 in                                                                  |
|                         |          |           |          | Area of section, A, 14.1 in <sup>2</sup><br>Radius of gyration about x-axis, r <sub>y</sub> , 8.24 in                                    |
|                         |          |           |          | Radius of gyration about y-axis, $r_{y}$ , 1.66 in                                                                                       |
|                         | -20.6    |           |          | Elastic section modulus about x-axis, S $_x$ , 93 in <sup>3</sup><br>Elastic section modulus about y-axis, S $_y$ , 9.52 in <sup>3</sup> |
|                         |          |           |          | Plastic section modulus about x-axis, $Z_{x'}$ , 107 in <sup>3</sup>                                                                     |
|                         |          |           | → -0.35" | Plastic section modulus about y-axis, $Z_y$ , 14.9 in <sup>3</sup><br>Second moment of area about x-axis, $I_x$ , 959 in <sup>4</sup>    |
|                         |          |           |          | Second moment of area about y-axis, I $_{\rm y},38.7$ in $^{\rm 4}$                                                                      |
|                         |          | 0.43"     |          |                                                                                                                                          |
|                         | <b>↓</b> | ⊥<br>⊥    |          |                                                                                                                                          |
|                         |          | T         |          |                                                                                                                                          |

-8.14"-----

#### Lateral restraint

Top flange has lateral restraint at supports plus 6ft, 12ft & 18ft Bottom flange has lateral restraint at supports only

#### Consider Combination 1 - 1.0D + 1.0Lr (Strength)

Classification of sections for local buckling - Section B4

| Classification of flanges in flexure - Table B4          | l.1b (case 10)                                                          |            |  |  |
|----------------------------------------------------------|-------------------------------------------------------------------------|------------|--|--|
| Width to thickness ratio                                 | bf / (2 × tf) = <b>9.47</b>                                             |            |  |  |
| Limiting ratio for compact section                       | $\lambda_{\text{pff}}$ = 0.38 $\times$ $\sqrt{[\text{E} / F_y]}$ = 9.15 |            |  |  |
| Limiting ratio for non-compact section                   | $\lambda_{rff}$ = 1.0 × $\sqrt{[E / F_y]}$ = 24.08                      | Noncompact |  |  |
| Classification of web in flexure - Table B4.1b (case 15) |                                                                         |            |  |  |
| Width to thickness ratio                                 | (d - 2 × k) / t <sub>w</sub> = <b>53.54</b>                             |            |  |  |
|                                                          |                                                                         |            |  |  |
| Limiting ratio for compact section                       | $\lambda_{pwf}$ = 3.76 × $\sqrt{[E / F_y]}$ = 90.55                     |            |  |  |

Section is noncompact in flexure



| oneek deeligh de statt er opan          |                                                                          |
|-----------------------------------------|--------------------------------------------------------------------------|
| Design of members for shear - Chapter G |                                                                          |
| Required shear strength                 | V <sub>r,x</sub> = <b>15.9</b> kips                                      |
| Web area                                | $A_{w} = d \times t_{w} = 7.21 in^{2}$                                   |
| Web plate buckling coefficient          | k <sub>v</sub> = <b>5</b>                                                |
|                                         | $(d - 2 \times k) / t_w \le 2.24 \times \sqrt{(E / F_y)}$                |
| Web shear coefficient - eq G2-2         | C <sub>v</sub> = <b>1.000</b>                                            |
| Nominal shear strength - eq G2-1        | $V_{n,x} = 0.6 \times F_y \times A_w \times C_v = 216.3$ kips            |
| Safety factor                           | $\Omega_{\rm v}$ = 1.50                                                  |
| Allowable shear strength                | V <sub>c,x</sub> = V <sub>n,x</sub> / Ω <sub>v</sub> = <b>144.2</b> kips |
|                                         | V <sub>r,x</sub> / V <sub>c,x</sub> = <b>0.111</b>                       |
|                                         | PASS - Allowable shear strength exceeds required shear strength          |

#### Check design 15ft along span

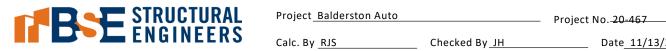
| M <sub>r,x</sub> = <b>119.6</b> kips_ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $M_{p,x} = F_y \times Z_x = 445.8 \text{ kips_ft}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $L_{b} = 6 ft$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $L_p = 1.76 \times r_y \times \sqrt{(E / F_y)} = 5.863 \text{ ft}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| h <sub>o</sub> = <b>20.2</b> in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| c = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| rts = <b>2.05</b> in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $L_r = 1.95 \times r_{ts} \times E \ / \ (0.7 \times F_y) \times ((J \times c \ / \ (S_x \times h_o)) + \sqrt{((J \times c \ / \ (S_x \times h_o)) + \sqrt{((J \times c \ / \ (S_x \times h_o)) + \sqrt{((J \times c \ / \ (S_x \times h_o)) + \sqrt{((J \times c \ / \ (S_x \times h_o)) + \sqrt{((J \times c \ / \ (S_x \times h_o)) + \sqrt{((J \times c \ / \ (S_x \times h_o)) + \sqrt{((J \times c \ / \ (S_x \times h_o)) + \sqrt{((J \times c \ / \ (S_x \times h_o)) + \sqrt{((J \times c \ / \ (S_x \times h_o)) + \sqrt{((J \times c \ / \ (S_x \times h_o)) + \sqrt{((J \times c \ / \ (S_x \times h_o)) + \sqrt{((J \times c \ / \ (S_x \times h_o)) + \sqrt{((J \times c \ / \ (S_x \times h_o)) + \sqrt{((J \times c \ / \ (S_x \times h_o)) + \sqrt{((J \times c \ / \ (S_x \times h_o)) + \sqrt{((J \times c \ / \ (S_x \times h_o)) + \sqrt{((J \times c \ / \ (S_x \times h_o)) + \sqrt{((J \times c \ / \ (S_x \times h_o)) + \sqrt{((J \times c \ / \ (S_x \times h_o)) + \sqrt{((J \times c \ / \ (S_x \times h_o)) + \sqrt{((J \times c \ / \ (S_x \times h_o)) + \sqrt{((J \times c \ / \ (S_x \times h_o)) + \sqrt{((J \times c \ / \ (S_x \times h_o)) + \sqrt{((J \times c \ / \ (S_x \times h_o)) + \sqrt{((J \times c \ / \ (S_x \times h_o)) + \sqrt{((J \times c \ / \ (S_x \times h_o)) + \sqrt{((J \times c \ / \ (S_x \times h_o)) + \sqrt{((J \times c \ / \ (S_x \times h_o)) + \sqrt{((J \times c \ / \ (S_x \times h_o)) + \sqrt{((J \times c \ / \ (S_x \times h_o)) + \sqrt{((J \times c \ / \ (S_x \times h_o)) + \sqrt{((J \times c \ / \ (S_x \times h_o)) + \sqrt{((J \times c \ / \ (S_x \times h_o)) + \sqrt{((J \times c \ / \ (S_x \times h_o)) + \sqrt{((J \times c \ / \ (S_x \times h_o)) + \sqrt{((J \times c \ / \ (S_x \times h_o)) + \sqrt{((J \times c \ / \ (S_x \times h_o)) + \sqrt{((J \times c \ / \ (S_x \times h_o)) + \sqrt{((J \times c \ / \ (S_x \times h_o)) + \sqrt{((J \times c \ / \ (S_x \times h_o)) + \sqrt{((J \times c \ / \ (S_x \times h_o)) + \sqrt{(J \times c \ / \ (S_x \times h_o)) + \sqrt{(J \times c \ / \ (S_x \times h_o)) + \sqrt{(J \times c \ / \ (S_x \times h_o)) + \sqrt{(J \times c \ / \ (S_x \times h_o)) + \sqrt{(J \times c \ / \ (S_x \times h_o)) + \sqrt{(J \times c \ / \ (S_x \times h_o)) + \sqrt{(J \times c \ / \ (S_x \times h_o)) + \sqrt{(J \times c \ / \ (S_x \times h_o)) + \sqrt{(J \times c \ / \ (S_x \times h_o)) + \sqrt{(J \times c \ / \ (S_x \times h_o)) + \sqrt{(J \times c \ / \ (S_x \times h_o)) + \sqrt{(J \times c \ / \ (S_x \times h_o)) + \sqrt{(S_x \times h_o) + \sqrt{(S_x \times h_o)) + \sqrt{(S_x \times h_o) + \sqrt$ |
| h₀)) <sup>2</sup> + 6.76 × (0.7 × F <sub>y</sub> / E) <sup>2</sup> )) = <b>16.548</b> ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MA = 118.4 kips_ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MB = <b>119.6</b> kips_ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Mc = <b>118.4</b> kips_ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| M <sub>max</sub> = <b>119.6</b> kips_ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $C_{\text{b}} = 12.5 \times M_{\text{max}} / (2.5 \times M_{\text{max}} + 3 \times M_{\text{A}} + 4 \times M_{\text{B}} + 3 \times M_{\text{C}}) = 1.005$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ng - eq F2-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

Compression flange local buckling - Section F3.2

# $\lambda = b_f / (2 \times t_f) = 9.465$

= 445.7 kips\_ft

 $M_{n,ltb,x} = min(C_b \times (M_{p,x} - (M_{p,x} - 0.7 \times F_y \times S_x) \times (L_b - L_p) / (L_r - L_p)), M_{p,x})$ 


Nominal flexural strength for compression flange local buckling - eq F3-1

|                    | 0           |      | 0 | 5 1                                                                                                                                                        |
|--------------------|-------------|------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    |             |      |   | $M_{n,fib,x} = M_{p,x} - (M_{p,x} - 0.7 \times F_y \times S_x) \times (\lambda - \lambda_{pff}) / (\lambda_{rff} - \lambda_{pff}) = 442.2 \text{ kips_ft}$ |
| Allowable flexur   | al strength | - F1 |   |                                                                                                                                                            |
| Nominal flexural s | strength    |      |   | M <sub>n,x</sub> = min(M <sub>n,Itb,x</sub> , M <sub>n,Itb,x</sub> ) = <b>442.2</b> kips_ft                                                                |
| Allowable flexural | strength    |      |   | M <sub>c,x</sub> = M <sub>n,x</sub> / Ω <sub>b</sub> = <b>264.8</b> kips_ft                                                                                |
|                    |             |      |   | Mr,x / Mc,x = <b>0.452</b>                                                                                                                                 |
|                    |             |      | F | ASS - Allowable flexural strength exceeds required flexural strength                                                                                       |

#### Check design 15ft along span

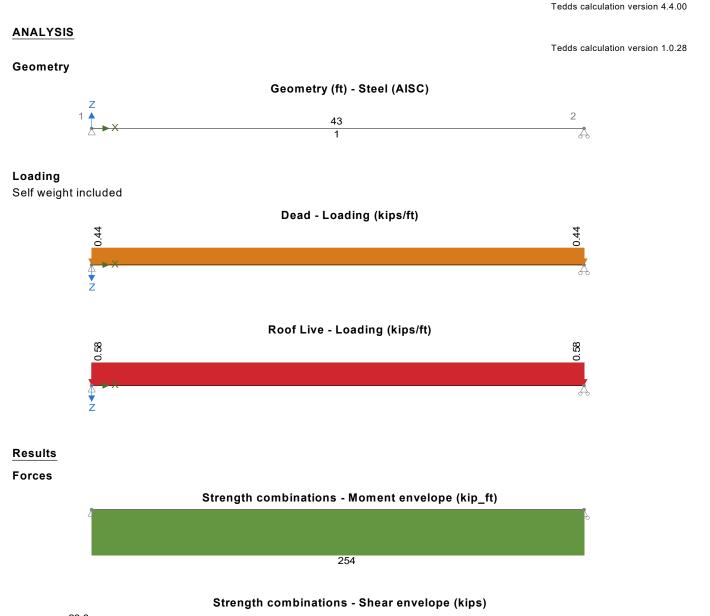
Design of members for x-x axis deflection Maximum deflection Allowable deflection

 $\delta_x = 0.714$  in  $\delta_{x,\text{Allowable}}$  =  $L_{m1\_s1}$  / 360 = 1 in



Calc. By <u>RJS</u> Checked By <u>JH</u> Date <u>11/13/2020</u>

 $\delta_x / \delta_{x,Allowable} = 0.714$ 


PASS - Allowable deflection exceeds design deflection



Calc. By <u>RJS</u> Checked By <u>JH</u> Date <u>11/13/2020</u>

### **STEEL MEMBER ANALYSIS & DESIGN (AISC 360)**

In accordance with AISC360 14th Edition published 2010 using the ASD method







Project Balderston Auto Project No.-20-467

Calc. By <u>RJS</u> Checked By <u>JH</u> Date <u>11/13/2020</u>

| Safety factorsShear $\Omega_v = 1.67$ Flexure $\Omega_b = 1.67$ Tensile yielding $\Omega_{1y} = 1.67$ Tensile rupture $\Omega_{1r} = 2.00$ Compression $\Omega_c = 1.67$ Beam designSection detailsSection detailsSection typeSteel designationA992Steel yield stressFy = 50 ksiSteel tensile stressFu = 65 ksiModulus of elasticityE = 29000 ksiV 24x84 (AISC 15th Edn (v15.0))Section depth. d. 24.1 in<br>Section breath, b. 902 in<br>Veithickness. t., 0.47 in<br>Area of section, Weight, 84 Ibfth<br>Flange thickness. t., 0.47 in<br>Area of section, Weight, 84 Jbfth<br>Flange thickness. t., 0.47 in<br>Area of section, Weight, 84 Jbfth<br>Flange thickness. t., 0.47 in<br>Area of section, Weight, 84 Jbfth<br>Flange thickness. t., 0.47 in<br>Area of section, Weight, 84 Jbfth<br>Flange thickness. t., 0.47 in<br>Area of section, Weight, 84 Jbfth<br>Flange thickness. t., 0.27 in<br>Radius of gration about yaxis. S., 198 in<br>Blastic section modulus about yaxis. S., 208 in<br>Second moment of area about yaxis. J., 244 in*<br>Second moment of area about yaxis. J., 244 in*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                   |          |                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------|----------|----------------------------------------------------|
| Flexure $\Omega_b = 1.67$ Tensile yielding $\Omega_{ty} = 1.67$ Tensile rupture $\Omega_{tr} = 2.00$ Compression $\Omega_c = 1.67$ Beam designSection detailsSection detailsSection typeSection typeW 24x84 (AISC 15th Edn (v15.0))ASTM steel designationA992Steel yield stressFy = 50 ksiSteel tensile stressFu = 65 ksiModulus of elasticityE = 29000 ksiV 24x84 (AISC 15th Edn (v15.0))Section depth, d, 24.1 in<br>Section depth, d, 24.1 in<br>Section A24.7 in<br>Area of section, A24.7 in<br>Area of section about xaxis, r., 9.79 in<br>Radius of gyration about xaxis, r., 9.79 in<br>Radius about xaxis, r., 9.79 in<br>Radius about xaxis, r., 9.70 in<br>Plastic section modulus about xaxis, r., 2.224 in <sup>3</sup><br>Plastic section modulus about xaxis, r., 2.230 in <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Safety factors         |                   |          |                                                    |
| Tensile yielding<br>Tensile rupture<br>Compression<br>$\Omega_{c} = 1.67$<br>Beam design<br>Section details<br>Section details<br>Section type<br>ASTM steel designation<br>Steel yield stress<br>Steel tensile stress<br>Modulus of elasticity<br>V 24x84 (AISC 15th Edn (v15.0))<br>ASTM steel designation<br>Steel yield stress<br>Fu = 65 ksi<br>E = 29000 ksi<br>V 24x84 (AISC 15th Edn (v15.0))<br>Section depth, d, 24.1 in<br>Section breadth, b <sub>x</sub> , 902 in<br>Weight of section, Weight, 24 lbf/ft<br>Flange thickness, t <sub>w</sub> , 0.77 in<br>We bitickness, t <sub>w</sub> , 0.77 in<br>We bitickness, t <sub>w</sub> , 0.77 in<br>Neb thickness, t <sub>w</sub> , 0.79 in<br>Radius of gyration about yeaks, s <sub>x</sub> , 196 in <sup>3</sup><br>Elastic section modulus about yeaks, s <sub>x</sub> , 2.224 in <sup>3</sup><br>Plastic section modulus about yeaks, s <sub>x</sub> , 2.224 in <sup>3</sup><br>Plastic section modulus about yeaks, s <sub>x</sub> , 2.24 in <sup>3</sup><br>Second moment of area about xeaks, t <sub>x</sub> , 2.270 in <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Shear                  |                   |          | Ω <sub>v</sub> = <b>1.67</b>                       |
| Tensile rupture $\Omega_{t,r} = 2.00$ Compression $\Omega_c = 1.67$ Beam designSection detailsSection detailsW 24x84 (AISC 15th Edn (v15.0))ASTM steel designationA992Steel yield stress $F_y = 50$ ksiSteel tensile stress $F_u = 65$ ksiModulus of elasticityE = 29000 ksiVV24x84 (AISC 15th Edn (v15.0))Section depth, d, 24.1 in<br>Section breadth, b, 9.02 in<br>Weight of section, Weight, 84 lbf/ft<br>Flange tickness, $t_v$ , 0.77 in<br>Web tickness, $t_v$ , 0.77 in<br>Web tickness, $t_v$ , 0.47 in<br>Area of section, A24.7 in2<br>Radius of gyration about x-axis, $r_v$ , 9.99 in<br>Radius of gyration about x-axis, $r_v$ , 1.95 in<br>Elastic section modulus about x-axis, $r_v$ , 2.24 in3<br>Plastic section modulus about x-axis, $r_v$ , 2.24 in3<br>Pla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Flexure                |                   |          | Ω <sub>b</sub> = <b>1.67</b>                       |
| Compression $\Omega_c = 1.67$ Beam designSection detailsSection detailsSection typeW 24x84 (AISC 15th Edn (v15.0))ASTM steel designationA992Steel yield stressFy = 50 ksiSteel tensile stressFu = 65 ksiModulus of elasticityW 24x84 (AISC 15th Edn (v15.0))Section depti, d, 24.1 in<br>Section depti, d, 24.1 in<br>Section type of section Weight of section Weight, 84 lbf/th<br>Flange thickness, t_u, 0.47 in<br>Area of section, A, 24.7 in <sup>2</sup><br>Radius of gyration about x-axis, r_u, 195 in<br>Elastic section modulus about x-axis, s_u, 196 in <sup>3</sup><br>Elastic section modulus about x-axis, z_u, 224 in <sup>3</sup><br>Plastic section modulus about x-axis, z_u, 32.6 in <sup>3</sup><br>Second moment of area about x-axis, z_u, 32.6 in <sup>3</sup><br>Second moment of area about x-axis, z_u, 23.0 in <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tensile yielding       |                   |          | Ω <sub>t,y</sub> = <b>1.67</b>                     |
| Beam designSection detailsSection typeW 24x84 (AISC 15th Edn (v15.0))ASTM steel designationA992Steel yield stress $F_y = 50 \text{ ksi}$ Steel tensile stress $F_u = 65 \text{ ksi}$ Modulus of elasticity $E = 29000 \text{ ksi}$ W 24x84 (AISC 15th Edn (v15.0))M 24x84 (AISC 15th Edn (v15.0))Section depth, d, 24.1 in<br>Section breadth, b, 9.02 in<br>Weight of section, Weight, 84 lbi/ft<br>Flange thickness, t_u, 0.77 in<br>Web thickness, t_u, 0.47 in<br>Area of section modulus about x-axis, s_v, 1.95 in<br>Elastic section modulus about x-axis, s_v, 2.92 in a<br>Plastic section modulus about x-axis, s_v, 2.92 in a<br>Plastic section modulus about x-axis, s_v, 2.22 in a<br>Plastic section modulus about x-axis, s_v, 2.23 in a<br>Second moment of area about x-axis, 1, 2.370 in4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tensile rupture        |                   |          | Ω <sub>t,r</sub> = <b>2.00</b>                     |
| Section detailsSection typeW 24x84 (AISC 15th Edn (v15.0))ASTM steel designationA992Steel yield stressFy = 50 ksiSteel tensile stressFu = 65 ksiModulus of elasticityE = 29000 ksiW 24x84 (AISC 15th Edn (v15.0))Section depth, d, 24.1 in<br>Section depth, d, 24.1 in<br>Section breadth, br, 9.02 in<br>Weight of section, Weight, 84 lb/ft<br>Flange thickness, tr, 0.77 in<br>Web thickness, tr, 0.77 in<br>Area of section, X, 24.7 in²<br>Radius of gyration about x-axis, r, 9.79 in<br>Radius of gyration about x-axis, r, 1.95 in<br>Elastic section modulus about x-axis, s, 196 in³<br>Elastic section modulus about x-axis, s, 2.24 in³<br>Plastic section modulus about x-axis, t, 230 in³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Compression            |                   |          | Ωc = <b>1.67</b>                                   |
| Section type<br>Section type<br>ASTM steel designation<br>Steel yield stress<br>Steel tensile stress<br>Modulus of elasticity<br>$F_y = 50$ ksi<br>$F_u = 65$ ksi<br>E = 29000 ksi<br>E = 29000 ksi<br>$F_u = 65$ ksi<br>$F_u =$ | Beam design            |                   |          |                                                    |
| ASTM steel designation<br>Steel yield stress<br>Steel tensile stress<br>Modulus of elasticity<br>$F_y = 50 \text{ ksi}$<br>$F_u = 65 \text{ ksi}$<br>E = 29000  ksi<br>W 24x84 (AISC 15th Edn (v15.0))<br>Section depth, d, 24.1 in<br>Section breath, b <sub>y</sub> .02 in<br>Weight of section, Weight, 84 lbf/ft<br>Flange thickness, t <sub>w</sub> . 0.47 in<br>Area of section, A, 24.7 in <sup>2</sup><br>Radius of gyration about x-axis, r <sub>w</sub> . 9.79 in<br>Radius of gyration about x-axis, s <sub>w</sub> . 196 in <sup>3</sup><br>Elastic section modulus about y-axis, s <sub>w</sub> . 20 in <sup>3</sup><br>Plastic section modulus about y-axis, s <sub>w</sub> . 20 in <sup>3</sup><br>Plastic section modulus about y-axis, s <sub>w</sub> . 2370 in <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Section details        |                   |          |                                                    |
| Steel yield stress $F_y = 50 \text{ ksi}$ Steel tensile stress $F_u = 65 \text{ ksi}$ Modulus of elasticity $E = 29000 \text{ ksi}$ Image: tensile stress $F_u = 65 \text{ ksi}$ Modulus of elasticity $E = 29000 \text{ ksi}$ Image: tensile stress $F_u = 65 \text{ ksi}$ <td>Section type</td> <td></td> <td></td> <td>W 24x84 (AISC 15th Edn (v15.0))</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Section type           |                   |          | W 24x84 (AISC 15th Edn (v15.0))                    |
| Steel tensile stress $F_u = 65 \text{ ksi}$ Modulus of elasticity $E = 29000 \text{ ksi}$ $\underbrace{F_u} = 65 \text{ ksi}$ $\underbrace{F_u} = 29000 \text{ ksi}$ $\underbrace{F_u} = 65 \text{ ksi}$ $\underbrace{F_u} = 29000 \text{ ksi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ASTM steel designation |                   |          | A992                                               |
| Modulus of elasticity<br>E = 29000  ksi $W 24x84  (AISC 15th Edn (v15.0))$ Section depth, d, 24.1 in<br>Section breadth, b <sub>0</sub> .9.02 in<br>Weight of section, Weight, 84 lbf/ft<br>Flange thickness, t <sub>n</sub> . 0.77 in<br>Web thickness, t <sub>n</sub> . 0.47 in<br>Area of section, A, 24.7 in <sup>2</sup><br>Radius of gyration about x-axis, r <sub>x</sub> . 9.79 in<br>Radius of gyration about x-axis, r <sub>x</sub> . 9.79 in<br>Elastic section modulus about x-axis, s <sub>x</sub> . 196 in <sup>3</sup><br>Elastic section modulus about x-axis, s <sub>x</sub> . 209 in <sup>3</sup><br>Plastic section modulus about y-axis, s <sub>x</sub> . 224 in <sup>3</sup><br>Second moment of area about x-axis, 1 <sub>x</sub> . 2370 in <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Steel yield stress     |                   |          | F <sub>y</sub> = <b>50</b> ksi                     |
| W 24x84 (AISC 15th Edn (v15.0))<br>Section depth, d, 24.1 in<br>Section breadth, b, 9.02 in<br>Weight of section, Weight, 84 lbf/ft<br>Flange thickness, t <sub>w</sub> . 0.77 in<br>Web thickness, t <sub>w</sub> . 0.77 in<br>Web thickness, t <sub>w</sub> . 0.47 in<br>Area of section, A, 24.7 in <sup>2</sup><br>Radius of gyration about x-axis, r <sub>x</sub> . 9.79 in<br>Radius of gyration about x-axis, s <sub>x</sub> . 196 in <sup>3</sup><br>Elastic section modulus about x-axis, S <sub>x</sub> , 209 in <sup>3</sup><br>Plastic section modulus about y-axis, S <sub>x</sub> , 224 in <sup>3</sup><br>Plastic section modulus about y-axis, S <sub>x</sub> , 230 in <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Steel tensile stress   |                   |          | Fu = <b>65</b> ksi                                 |
| <ul> <li>★ United (allocation)</li> <li>Section depth, d, 24.1 in<br/>Section breadth, b<sub>1</sub>, 9.02 in<br/>Weight of section, Weight, 84 lbf/ft<br/>Flange thickness, t<sub>w</sub>, 0.77 in<br/>Web thickness, t<sub>w</sub>, 0.47 in<br/>Area of section, A, 24.7 in<sup>2</sup><br/>Radius of gyration about x-axis, r<sub>x</sub>, 9.79 in<br/>Radius of gyration about x-axis, r<sub>x</sub>, 9.79 in<br/>Elastic section modulus about x-axis, S<sub>x</sub>, 196 in<sup>3</sup><br/>Elastic section modulus about y-axis, S<sub>x</sub>, 20.9 in<sup>3</sup><br/>Plastic section modulus about y-axis, Z<sub>y</sub>, 32.6 in<sup>3</sup><br/>Second moment of area about x-axis, I<sub>x</sub>, 2370 in<sup>4</sup></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Modulus of elasticity  |                   |          | E = <b>29000</b> ksi                               |
| <ul> <li>★ United (allocation)</li> <li>Section depth, d, 24.1 in<br/>Section breadth, b<sub>1</sub>, 9.02 in<br/>Weight of section, Weight, 84 lbf/ft<br/>Flange thickness, t<sub>w</sub>, 0.77 in<br/>Web thickness, t<sub>w</sub>, 0.47 in<br/>Area of section, A, 24.7 in<sup>2</sup><br/>Radius of gyration about x-axis, r<sub>x</sub>, 9.79 in<br/>Radius of gyration about x-axis, r<sub>x</sub>, 9.79 in<br/>Elastic section modulus about x-axis, S<sub>x</sub>, 196 in<sup>3</sup><br/>Elastic section modulus about y-axis, S<sub>x</sub>, 20.9 in<sup>3</sup><br/>Plastic section modulus about y-axis, Z<sub>y</sub>, 32.6 in<sup>3</sup><br/>Second moment of area about x-axis, I<sub>x</sub>, 2370 in<sup>4</sup></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | 77.0              |          |                                                    |
| Section breadth, b <sub>r</sub> , 9.02 in<br>Weight of section, Weight, 84 lbf/ft<br>Flange thickness, t <sub>w</sub> , 0.77 in<br>Web thickness, t <sub>w</sub> , 0.47 in<br>Area of section, A, 24.7 in <sup>2</sup><br>Radius of gyration about x-axis, r <sub>x</sub> , 9.79 in<br>Radius of gyration about x-axis, s <sub>x</sub> , 196 in <sup>3</sup><br>Elastic section modulus about y-axis, S <sub>x</sub> , 196 in <sup>3</sup><br>Elastic section modulus about y-axis, S <sub>y</sub> , 20.9 in <sup>3</sup><br>Plastic section modulus about y-axis, Z <sub>x</sub> , 224 in <sup>3</sup><br>Plastic section modulus about y-axis, I <sub>x</sub> , 2370 in <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        | $\overline{+}$    |          | W 24x84 (AISC 15th Edn (v15.0))                    |
| Weight of section, Weight, 84 lbf/ft         Flange thickness, t <sub>x</sub> , 0.77 in         Web thickness, t <sub>x</sub> , 0.47 in         Area of section, A, 24.7 in <sup>2</sup> Radius of gyration about x-axis, r <sub>x</sub> , 9.79 in         Radius of gyration about x-axis, r <sub>x</sub> , 1.95 in         Elastic section modulus about y-axis, S <sub>x</sub> , 196 in <sup>3</sup> Elastic section modulus about y-axis, S <sub>x</sub> , 20.9 in <sup>3</sup> Plastic section modulus about y-axis, S <sub>x</sub> , 2.24 in <sup>3</sup> Plastic section modulus about y-axis, S <sub>x</sub> , 2.32.6 in <sup>3</sup> Second moment of area about x-axis, I <sub>x</sub> , 2.370 in <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        | 1                 | )(       |                                                    |
| Web thickness, t <sub>w</sub> , 0.47 in<br>Area of section, A, 24.7 in <sup>2</sup><br>Radius of gyration about x-axis, r <sub>x</sub> , 9.79 in<br>Radius of gyration about y-axis, r <sub>y</sub> , 1.95 in<br>Elastic section modulus about y-axis, S <sub>x</sub> , 196 in <sup>3</sup><br>Elastic section modulus about x-axis, S <sub>y</sub> , 20.9 in <sup>3</sup><br>Plastic section modulus about y-axis, S <sub>y</sub> , 22.0 in <sup>3</sup><br>Plastic section modulus about y-axis, Z <sub>y</sub> , 32.6 in <sup>3</sup><br>Second moment of area about x-axis, I <sub>y</sub> , 2370 in <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                   |          | Weight of section, Weight, 84 lbf/ft               |
| Radius of gyration about x-axis, r <sub>x</sub> , 9.79 in<br>Radius of gyration about y-axis, r <sub>y</sub> , 1.95 in<br>Elastic section modulus about y-axis, S <sub>y</sub> , 196 in <sup>3</sup><br>Elastic section modulus about y-axis, S <sub>y</sub> , 20.9 in <sup>3</sup><br>Plastic section modulus about x-axis, Z <sub>y</sub> , 224 in <sup>3</sup><br>Plastic section modulus about y-axis, Z <sub>y</sub> , 32.6 in <sup>3</sup><br>Second moment of area about x-axis, I <sub>x</sub> , 2370 in <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                   |          |                                                    |
| Radius of gyration about y-axis, r <sub>y</sub> , 1.95 in<br>Elastic section modulus about x-axis, S <sub>y</sub> , 196 in <sup>3</sup><br>Elastic section modulus about x-axis, S <sub>y</sub> , 20.9 in <sup>3</sup><br>Plastic section modulus about x-axis, Z <sub>y</sub> , 224 in <sup>3</sup><br>Plastic section modulus about y-axis, Z <sub>y</sub> , 32.6 in <sup>3</sup><br>Second moment of area about x-axis, I <sub>x</sub> , 2370 in <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |                   |          |                                                    |
| Elastic section modulus about x-axis, S <sub>x</sub> , 196 in <sup>3</sup><br>Elastic section modulus about y-axis, S <sub>y</sub> , 20.9 in <sup>3</sup><br>Plastic section modulus about y-axis, S <sub>y</sub> , 224 in <sup>3</sup><br>Plastic section modulus about y-axis, Z <sub>y</sub> , 32.6 in <sup>3</sup><br>Second moment of area about x-axis, I <sub>x</sub> , 2370 in <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                   |          |                                                    |
| Plastic section modulus about x-axis, $Z_x$ , 224 in <sup>3</sup><br>$\rightarrow$ Plastic section modulus about y-axis, $Z_y$ , 32.6 in <sup>3</sup><br>Second moment of area about x-axis, $I_x$ , 2370 in <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | 24.1              |          | Elastic section modulus about x-axis, S x, 196 in3 |
| Second moment of area about x-axis, I <sub>x</sub> , 2370 in <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                   |          |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                   | → -0.47" | ,                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                   |          |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                   |          |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | ↓ ¥               |          | 7                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | <u>→</u> <b>→</b> |          | -                                                  |

#### Lateral restraint

Top flange has full lateral restraint Bottom flange has lateral restraint at supports only

#### Consider Combination 1 - 1.0D + 1.0Lr (Strength)

Classification of sections for local buckling - Section B4

| Classification of flanges in flexure - Table B4.1b (case 10)                  |                                                                                |                                                          |  |  |  |  |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------|--|--|--|--|
| Width to thickness ratio                                                      | bf / (2 × tf) = <b>5.86</b>                                                    |                                                          |  |  |  |  |
| Limiting ratio for compact section                                            | $\lambda_{\text{pff}}$ = 0.38 $\times$ $\sqrt{[\text{E} / F_y]}$ = <b>9.15</b> |                                                          |  |  |  |  |
| Limiting ratio for non-compact section                                        | $\lambda_{rff}$ = 1.0 × $\sqrt{[E / F_y]}$ = 24.08                             | Compact                                                  |  |  |  |  |
|                                                                               |                                                                                | Classification of web in flexure - Table B4.1b (case 15) |  |  |  |  |
| Classification of web in flexure - Table B4.1b (c                             | ase 15)                                                                        |                                                          |  |  |  |  |
| Classification of web in flexure - Table B4.1b (c<br>Width to thickness ratio | ase 15)<br>(d - 2 × k) / t <sub>w</sub> = 45.87                                |                                                          |  |  |  |  |
| · ·                                                                           | ,                                                                              |                                                          |  |  |  |  |

Section is compact in flexure



Calc. By RJS

Checked By JH Date 11/13/2020

#### Check design at start of span

| Design of members for shear - Chapter G |                                                                          |
|-----------------------------------------|--------------------------------------------------------------------------|
| Required shear strength                 | V <sub>r,x</sub> = <b>23.6</b> kips                                      |
| Web area                                | $A_w = d \times t_w = 11.327 \text{ in}^2$                               |
| Web plate buckling coefficient          | k <sub>v</sub> = <b>5</b>                                                |
|                                         | (d - 2 $\times$ k) / tw <= 2.24 $\times$ $\sqrt{(E / F_y)}$              |
| Web shear coefficient - eq G2-2         | C <sub>v</sub> = 1.000                                                   |
| Nominal shear strength - eq G2-1        | $V_{n,x} = 0.6 \times F_y \times A_w \times C_v = 339.8$ kips            |
| Safety factor                           | $\Omega_v = 1.50$                                                        |
| Allowable shear strength                | V <sub>c,x</sub> = V <sub>n,x</sub> / Ω <sub>v</sub> = <b>226.5</b> kips |
|                                         | V <sub>r,x</sub> / V <sub>c,x</sub> = <b>0.104</b>                       |
|                                         | PASS - Allowable shear strength exceeds required shear strength          |

#### Check design 21ft 6in along span

**Design of members for flexure - Chapter F** Required flexural strength

**Yielding - Section F2.1** Nominal flexural strength for yielding - eq F2-1

Allowable flexural strength - F1 Nominal flexural strength

Allowable flexural strength

M<sub>r,x</sub> = **254** kips\_ft

 $M_{n,yld,x} = M_{p,x} = F_y \times Z_x = 933.3 \text{ kips_ft}$ 

$$\begin{split} M_{n,x} &= M_{n,y|d,x} = \textbf{933.3 kips_ft} \\ M_{c,x} &= M_{n,x} \; / \; \Omega_{b} = \textbf{558.9 kips_ft} \\ M_{r,x} \; / \; M_{c,x} = \textbf{0.454} \end{split}$$

#### PASS - Allowable flexural strength exceeds required flexural strength

#### Check design 21ft 6in along span

**Design of members for x-x axis deflection** Maximum deflection Allowable deflection

 $\delta_x = 1.254$  in  $\delta_{x,\text{Allowable}} = L_{m1_{s1}} / 360 = 1.433$  in  $\delta_x / \delta_{x,\text{Allowable}} = 0.875$ 

PASS - Allowable deflection exceeds design deflection



| Project  | Balderston Auto |            |    | t No | 20-467   |
|----------|-----------------|------------|----|------|----------|
| Calc. By | RJS             | Checked By | JH | Date | 03/01/21 |

### FLEXURAL ANALYSIS OF ANGLES

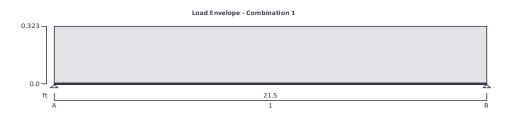
# AISC "F10"

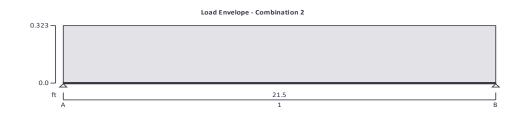
| b d t<br>L 5 x 5 x 3/8 | Fy = <u>36</u> ksi                             |
|------------------------|------------------------------------------------|
| Cb =                   | 1.00 (conservatively)                          |
| L =                    | 48.00 in                                       |
| Iz =                   | 3.55 in <sup>4</sup>                           |
| rz =                   | 0.99 in                                        |
| t =                    | 0.38 in                                        |
| βw =                   | 0.00 (see table C-F10.1 in commentary)         |
| S =                    | 2.41 in <sup>3</sup> (in direction of bending) |

| Mi           | n/Ω =                          | 5.57     | K-ft | = | 66.84       | K-in       | ]                       |
|--------------|--------------------------------|----------|------|---|-------------|------------|-------------------------|
|              |                                |          |      |   |             |            | _                       |
| IVI          | n/12 = 1                       | 33./11/1 | K-IN | = | 11.1426     | κ-π        | Eq. F10-8               |
|              |                                |          |      |   |             |            | •                       |
| M            | n/O = 6                        | 7 412415 | K-in | = | 5.6177      | K-ft       | Eg. F10-7               |
| 4.) LEG LOC  | AL BUCK                        | LING     |      |   | NEED THI    | S CALC     |                         |
| M            | n/Ω =                          | 66.84    | K-in | = | 5.56982     | K-ft       | Eq. F10-2 & Eq. F10-3   |
|              | Me = 9                         | 77.05078 | K-in | = | 81.4209     | K-ft       | Eq. F10-6               |
| 3.) LATERAL  | TORSIO                         | NAL BUCK | LING |   |             | (using maj | or principal axis)      |
| M            | n/Ω =                          | 73.59    | K-in | = | 6.13228     | K-ft       | Eq. F10-2 & Eq. F10-3   |
|              |                                |          |      |   | 354.53      | -          | Eq. F10-4a & Eq. F10-4b |
|              | 0                              | •        |      |   | ension (C c | ,          | Т                       |
|              | 2.) LATERAL TORSIONAL BUCKLING |          |      |   | _           |            | metric axis)            |
| M            | n/Ω =                          | 77.93    | K-in | = | 6.49401     | K-ft       | Eq. F10-1               |
| 1.) YEILDING | G                              |          |      |   |             |            |                         |



Calc. by <u>RS</u>


\_\_\_\_\_ Job Ref. 20-467\_\_\_\_


\_\_\_\_\_ Chk'd by \_\_\_\_\_ Date 2/8/2021

# STEEL BEAM ANALYSIS & DESIGN (AISC360-16)

#### In accordance with AISC360-16 using the ASD method

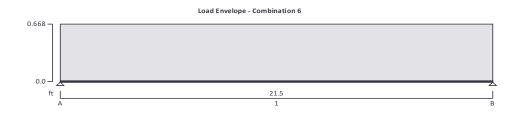

Tedds calculation version 3.0.14

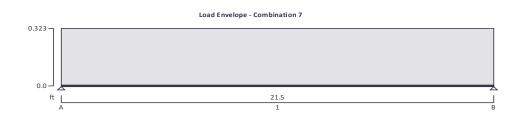




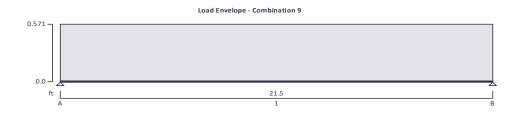
Load Envelope - Combination 3 0.653 -0.0 -21.5 ft 

Load Envelope - Combination 4 0.783 -





Load Envelope - Combination 5 0.571 -0.0 21.5 ft I 1




Job Ref. 20-467\_\_\_\_\_

Calc. by <u>RS</u> Chk'd by \_\_\_\_\_ Date\_<u>2/8/2021</u>

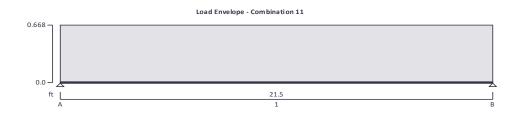


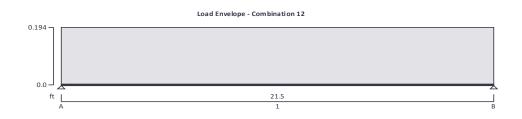


Load Envelope - Combination 8 0.323 <mark>-</mark> 0.0 21.5 ft 1

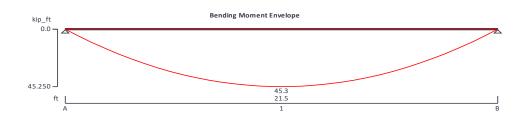


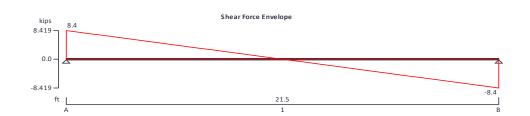
Load Envelope - Combination 10 0.668 0.0 21.5 ft L A 1 В


Sht. No. 2 B15 of 33 8




\_\_\_\_\_ Job Ref. 20-467\_


Calc. by <u>RS</u> Chk'd by \_\_\_\_\_

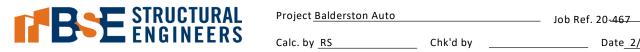

Date 2/8/2021





Load Envelope - Combination 13

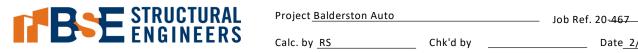





# Support conditions

Support A

Support B


Vertically restrained Rotationally free Vertically restrained Rotationally free



Calc. by <u>RS</u> Chk'd by \_\_\_\_\_ Date\_<u>2/8/2021</u>

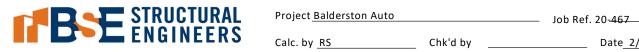
| Applied loading                     |                             |                                      |
|-------------------------------------|-----------------------------|--------------------------------------|
| Beam loads                          | Dead full UDL 0.297 kips/i  |                                      |
|                                     | Snow full UDL 0.46 kips/ft  |                                      |
|                                     | Roof live full UDL 0.33 kip |                                      |
|                                     | Dead self weight of beam    | × 1                                  |
| Load combinations                   |                             |                                      |
| Load combination 1 - D              | Support A                   | $Dead \times 1.00$                   |
|                                     |                             | Dead 	imes 1.00                      |
|                                     | Support B                   | $Dead \times 1.00$                   |
| Load combination 2 - D + L          | Support A                   | Dead 	imes 1.00                      |
|                                     |                             | $Live \times 1.00$                   |
|                                     |                             | $Dead \times 1.00$                   |
|                                     |                             | $Live \times 1.00$                   |
|                                     | Support B                   | Dead 	imes 1.00                      |
|                                     |                             | $Live \times 1.00$                   |
| Load combination 3 - D + Lr         | Support A                   | $Dead \times 1.00$                   |
|                                     |                             | Roof live $\times$ 1.00              |
|                                     |                             | Dead 	imes 1.00                      |
|                                     |                             | Roof live $\times$ 1.00              |
|                                     | Support B                   | Dead 	imes 1.00                      |
|                                     |                             | Roof live $\times$ 1.00              |
| Load combination 4 - D + S          | Support A                   | $Dead \times 1.00$                   |
|                                     |                             | Snow × 1.00                          |
|                                     |                             | Dead × 1.00                          |
|                                     |                             | Snow × 1.00                          |
|                                     | Support B                   | Dead × 1.00                          |
|                                     |                             | Snow × 1.00                          |
| Load combination 5 - D+0.75L+0.75Lr | Support A                   | Dead × 1.00                          |
|                                     |                             | Live × 0.75                          |
|                                     |                             | Roof live $\times 0.75$              |
|                                     |                             | Dead × 1.00                          |
|                                     |                             | Live × 0.75                          |
|                                     |                             | Roof live $\times 0.75$              |
|                                     | Support B                   | Dead $\times$ 1.00                   |
|                                     |                             | Live $\times$ 0.75                   |
|                                     |                             | Roof live $\times 0.75$              |
| Load combination 6 - D+0.75L+0.75S  | Support A                   | Dead $\times$ 1.00                   |
|                                     | Support A                   | Live $\times$ 0.75                   |
|                                     |                             | Snow $\times$ 0.75                   |
|                                     |                             | Dead × 1.00                          |
|                                     |                             | Live $\times$ 0.75                   |
|                                     |                             |                                      |
|                                     | Support P                   | Snow × 0.75                          |
|                                     | Support B                   | Dead × 1.00                          |
|                                     |                             | Live $\times$ 0.75                   |
|                                     |                             | Snow $\times$ 0.75                   |
|                                     |                             | Sht No. 4 -f C                       |
|                                     |                             | Sht. No. <u>4</u> B17 of <u>33</u> 8 |

|                                   | Project Balderston Auto  |          | Job Ref. 20-467                      |  |
|-----------------------------------|--------------------------|----------|--------------------------------------|--|
|                                   | Calc. by <u>RS</u>       | Chk'd hy |                                      |  |
|                                   | Calc. by <u>KS</u>       | Chk'd by | Date <u>2/8/2021</u>                 |  |
|                                   |                          |          |                                      |  |
| Load combination 7 - D+ 0.6W      | Support A                |          | $Dead \times 1.00$                   |  |
|                                   | oupportit                |          | Wind $\times$ 0.60                   |  |
|                                   |                          |          | Dead $\times$ 1.00                   |  |
|                                   |                          |          | Wind $\times$ 0.60                   |  |
|                                   | Support B                |          | Dead × 1.00                          |  |
|                                   |                          |          | Wind $\times$ 0.60                   |  |
| Load combination 8 - D+0.7E       | Support A                |          | $Dead \times 1.00$                   |  |
|                                   |                          |          | Seismic × 0.70                       |  |
|                                   |                          |          | Dead × 1.00                          |  |
|                                   |                          |          | Seismic × 0.70                       |  |
|                                   | Support B                |          | Dead $\times$ 1.00                   |  |
|                                   |                          |          | Seismic × 0.70                       |  |
| Load combination 9 - D+0.75L+0.75 | 5(0.6W)+0.75Lr Support A |          | Dead $\times$ 1.00                   |  |
|                                   | (0.01.) 00 <u>-</u> . 0  |          | $Live \times 0.75$                   |  |
|                                   |                          |          | Roof live $\times 0.75$              |  |
|                                   |                          |          | Wind $\times$ 0.45                   |  |
|                                   |                          |          | Dead $\times$ 1.00                   |  |
|                                   |                          |          | Live $\times$ 0.75                   |  |
|                                   |                          |          | Roof live $\times 0.75$              |  |
|                                   |                          |          | Wind $\times$ 0.45                   |  |
|                                   | Support B                |          | Dead $\times$ 1.00                   |  |
|                                   | oupport D                |          | Live $\times$ 0.75                   |  |
|                                   |                          |          | Roof live $\times 0.75$              |  |
|                                   |                          |          | Wind $\times 0.45$                   |  |
| Load combination 10 - D+0.75L+0.7 | 75(0.6W)+0.75S Support A |          | Dead $\times$ 1.00                   |  |
|                                   | 0(0.0W) 0.700 0upport /  |          | Live $\times 0.75$                   |  |
|                                   |                          |          | Snow × 0.75                          |  |
|                                   |                          |          | Wind $\times 0.45$                   |  |
|                                   |                          |          | Dead $\times$ 1.00                   |  |
|                                   |                          |          | Live $\times$ 0.75                   |  |
|                                   |                          |          | Snow $\times$ 0.75                   |  |
|                                   |                          |          | Wind $\times$ 0.45                   |  |
|                                   | Support B                |          | Dead $\times$ 1.00                   |  |
|                                   | Ouppoir D                |          | Live $\times 0.75$                   |  |
|                                   |                          |          | Snow $\times$ 0.75                   |  |
|                                   |                          |          | Wind $\times$ 0.45                   |  |
| Load combination 11 - D+0.75L+0.7 | 75(0.7E)+0.758 Support A |          | Dead $\times$ 1.00                   |  |
|                                   |                          |          | Live $\times$ 0.75                   |  |
|                                   |                          |          | Snow $\times$ 0.75                   |  |
|                                   |                          |          | Seismic $\times$ 0.53                |  |
|                                   |                          |          | Dead $\times$ 1.00                   |  |
|                                   |                          |          | Live $\times$ 0.75                   |  |
|                                   |                          |          | Snow $\times$ 0.75                   |  |
|                                   |                          |          | Seismic $\times$ 0.75                |  |
|                                   | Support B                |          | Dead $\times$ 1.00                   |  |
|                                   | Support B                |          |                                      |  |
|                                   |                          |          | Sht. No. 5 profess 8                 |  |
|                                   |                          |          | Sht. No. <u>5</u> B18 of <u>33</u> 8 |  |



Calc. by <u>RS</u> Chk'd by \_\_\_\_\_ Date\_<u>2/8/2021</u>

|                                                 |                                                | Live $\times$ 0.75                         |
|-------------------------------------------------|------------------------------------------------|--------------------------------------------|
|                                                 |                                                | Snow $\times 0.75$                         |
|                                                 |                                                |                                            |
|                                                 |                                                | Seismic × 0.53                             |
| Load combination 12 - 0.6D + 0.6W               | Support A                                      | Dead $\times$ 0.60                         |
|                                                 |                                                | Wind $\times$ 0.60                         |
|                                                 |                                                | $Dead \times 0.60$                         |
|                                                 |                                                | Wind $\times$ 0.60                         |
|                                                 | Support B                                      | Dead 	imes 0.60                            |
|                                                 |                                                | Wind $\times$ 0.60                         |
| Load combination 13 - 0.6D + 0.7E               | Support A                                      | $\text{Dead}\times 0.60$                   |
|                                                 |                                                | Seismic $	imes$ 0.70                       |
|                                                 |                                                | Dead 	imes 0.60                            |
|                                                 |                                                | Seismic × 0.70                             |
|                                                 | Support B                                      | Dead 	imes 0.60                            |
|                                                 |                                                | Seismic $	imes$ 0.70                       |
| Analysis results                                |                                                |                                            |
| Maximum moment                                  | M <sub>max</sub> = <b>45.3</b> kips_ft         | M <sub>min</sub> = <b>0</b> kips_ft        |
| /laximum moment span 1 segment 1                | M <sub>s1_seg1_max</sub> = <b>40.2</b> kips_ft | M <sub>s1_seg1_min</sub> = <b>0</b> kips_f |
| Maximum moment span 1 segment 2                 | Ms1_seg2_max = <b>45.3</b> kips_ft             | Ms1_seg2_min = 0 kips_f                    |
| Maximum moment span 1 segment 3                 | Ms1_seg3_max = <b>40.2</b> kips_ft             | Ms1_seg3_min = 0 kips_f                    |
| /laximum shear                                  | V <sub>max</sub> = <b>8.4</b> kips             | V <sub>min</sub> = <b>-8.4</b> kips        |
| Maximum shear span 1 segment 1                  | V <sub>s1_seg1_max</sub> = <b>8.4</b> kips     | Vs1_seg1_min = <b>0</b> kips               |
| Maximum shear span 1 segment 2                  | V <sub>s1_seg2_max</sub> = <b>2.8</b> kips     | Vs1_seg2_min = <b>-2.8</b> kips            |
| Maximum shear span 1 segment 3                  | Vs1_seg3_max = 0 kips                          | Vs1_seg3_min = <b>-8.4</b> kips            |
| Deflection segment 4                            | $\delta_{max} = 0.6$ in                        | $\delta_{min} = 0$ in                      |
| laximum reaction at support A                   | R <sub>A_max</sub> = <b>8.4</b> kips           | RA_min = <b>2.1</b> kips                   |
| Jnfactored dead load reaction at support A      | RA_Dead = 3.5 kips                             |                                            |
| Infactored roof live load reaction at support A | RA_Roof live = 3.5 kips                        |                                            |
| Infactored snow load reaction at support A      | RA_Snow = <b>4.9</b> kips                      |                                            |
| Maximum reaction at support B                   | R <sub>в_max</sub> <b>= 8.4</b> kips           | R <sub>B_min</sub> = 2.1 kips              |
| Unfactored dead load reaction at support B      | R <sub>B_Dead</sub> = 3.5 kips                 |                                            |
| Unfactored roof live load reaction at support B | R <sub>B_Roof</sub> live = <b>3.5</b> kips     |                                            |
| Jnfactored snow load reaction at support B      | R <sub>B_Snow</sub> = 4.9 kips                 |                                            |
| Section details                                 |                                                |                                            |
| Section type                                    | W 16x26 (AISC 15th Edn (v1                     | 5.0))                                      |
| ASTM steel designation                          | A992                                           |                                            |
| Steel yield stress                              | F <sub>y</sub> = <b>50</b> ksi                 |                                            |
| Steel tensile stress                            | Fu = <b>65</b> ksi                             |                                            |
| Modulus of elasticity                           | E = <b>29000</b> ksi                           |                                            |




Job Ref. 20-467

Calc. by <u>RS</u> Chk'd by \_\_\_\_\_ Date <u>2/8/2021</u>



| ť                                                                               | <b>◄</b> ——5.5"—— <b>→</b>                                  |                                      |  |  |
|---------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------|--|--|
|                                                                                 | · ·                                                         |                                      |  |  |
| Safety factors                                                                  |                                                             |                                      |  |  |
| Safety factor for tensile yielding                                              | $\Omega_{ty} = 1.67$                                        |                                      |  |  |
| Safety factor for tensile rupture                                               | $\Omega_{\rm tr}$ = 2.00                                    |                                      |  |  |
| Safety factor for compression                                                   | Ω <sub>c</sub> = <b>1.67</b>                                |                                      |  |  |
| Safety factor for flexure                                                       | Ω <sub>b</sub> = <b>1.67</b>                                |                                      |  |  |
| Lateral bracing                                                                 |                                                             |                                      |  |  |
|                                                                                 | Span 1 has lateral bracing at sup                           | ports plus third points              |  |  |
| Classification of sections for local buckling - Se                              | ection B4.1                                                 |                                      |  |  |
| Classification of flanges in flexure - Table B4.1t                              | o (case 10)                                                 |                                      |  |  |
| Width to thickness ratio                                                        | bf / (2 × tf) = <b>7.97</b>                                 |                                      |  |  |
| Limiting ratio for compact section                                              | $\lambda_{\text{pff}}$ = 0.38 × $\sqrt{[E / F_y]}$ = 9.15   |                                      |  |  |
| Limiting ratio for non-compact section                                          | $\lambda_{rff}$ = 1.0 × $\sqrt{[E / F_y]}$ = 24.08          | Compact                              |  |  |
| Classification of web in flexure - Table B4.1b (c                               | ase 15)                                                     |                                      |  |  |
| Width to thickness ratio                                                        | (d - 2 × k) / t <sub>w</sub> = <b>56.82</b>                 |                                      |  |  |
| Limiting ratio for compact section                                              | $\lambda_{pwf}$ = 3.76 × $\sqrt{[E / F_y]}$ = 90.55         |                                      |  |  |
| Limiting ratio for non-compact section                                          | $\lambda_{rwf}$ = 5.70 × $\sqrt{[E / F_y]}$ = <b>137.27</b> | Compact                              |  |  |
|                                                                                 |                                                             | Section is compact in flexure        |  |  |
| Design of members for shear - Chapter G                                         |                                                             |                                      |  |  |
| Required shear strength                                                         | $V_r = max(abs(V_{max}), abs(V_{min})) = 8$                 | 3 <b>.419</b> kips                   |  |  |
| Web area                                                                        | $A_w = d \times t_w = 3.925 \text{ in}^2$                   |                                      |  |  |
| Web plate buckling coefficient                                                  | k <sub>v</sub> = <b>5.34</b>                                |                                      |  |  |
| Web shear coefficient - eq G2-3                                                 | C <sub>v1</sub> = <b>1</b>                                  |                                      |  |  |
| Nominal shear strength – eq G6-1                                                | $V_n = 0.6 \times F_y \times A_w \times C_{v1} = 117.750$   | ) kips                               |  |  |
| Safety factor for shear                                                         | Ω <sub>v</sub> = <b>1.67</b>                                |                                      |  |  |
| Allowable shear strength                                                        | $V_{c}$ = $V_{n}$ / $\Omega_{v}$ = <b>70.509</b> kips       |                                      |  |  |
|                                                                                 | PASS - Allowable shear streng                               | th exceeds required shear strength   |  |  |
| Design of members for flexure in the major axis at span 1 segment 2 - Chapter F |                                                             |                                      |  |  |
| Required flexural strength                                                      | Mr = max(abs(Ms1_seg2_max), abs(M                           | s1_seg2_min)) = <b>45.25</b> kips_ft |  |  |
| Yielding - Section F2.1                                                         |                                                             |                                      |  |  |
| Nominal flexural strength for yielding - eq F2-1                                | $M_{nyld} = M_p = F_y \times Z_x = 184.167 \text{ kip}$     | s_ft                                 |  |  |



Calc. by <u>RS</u> Chk'd by \_\_\_\_\_ Date\_<u>2/8/2021</u>

| Lateral-torsional buckling - Section F2.2                                                        |                                                                                                                          |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Unbraced length                                                                                  | $L_{b} = L_{s1\_seg2} = 86$ in                                                                                           |
| Limiting unbraced length for yielding - eq F2-5                                                  | $L_p = 1.76 \times r_y \times \sqrt{[E / F_y]} = 47.473$ in                                                              |
| Distance between flange centroids                                                                | h₀ = d - t <sub>f</sub> = <b>15.355</b> in                                                                               |
| -                                                                                                | c = 1                                                                                                                    |
|                                                                                                  | $r_{ts} = \sqrt{[\sqrt{(I_y \times C_w)} / S_x]} = 1.385$ in                                                             |
| Limiting unbraced length for inelastic LTB - eq F2-                                              | 6                                                                                                                        |
| $L_r = 1.95 \times r_{ts} \times E / (0.7 \times F_y) \times \sqrt{[(J = 1.05) \times 10^{-5}]}$ | × c / (S <sub>x</sub> × h <sub>o</sub> )) + $\sqrt{((J × c / (S_x × h_o))^2 + 6.76 × (0.7 × F_y / E)^2)]} = 134.473$ in  |
| Cross-section mono-symmetry parameter                                                            | R <sub>m</sub> = 1.000                                                                                                   |
| Moment at quarter point of segment                                                               | M <sub>A</sub> = <b>43.993</b> kips_ft                                                                                   |
| Moment at center-line of segment                                                                 | M <sub>B</sub> = <b>45.250</b> kips_ft                                                                                   |
| Moment at three quarter point of segment                                                         | Mc = <b>43.993</b> kips_ft                                                                                               |
| Maximum moment in segment                                                                        | M <sub>abs</sub> = <b>45.250</b> kips_ft                                                                                 |
| Lateral torsional buckling modification factor - eq F                                            | = 1-1 $C_b = 12.5 \times M_{abs} / [2.5 \times M_{abs} + 3 \times M_A + 4 \times M_B + 3 \times M_C] =$                  |
|                                                                                                  | 1.014                                                                                                                    |
| Nominal flexural strength for lateral torsional buck                                             | ling - eq F2-2 $M_{\text{nitb}} = C_b \times [M_p - (M_p - 0.7 \times F_y \times S_x) \times (L_b - L_p) / (L_r - L_p)]$ |
|                                                                                                  | = <b>154.265</b> kips_ft                                                                                                 |
| Nominal flexural strength                                                                        | Mn = min(Mnyld, Mnltb) = <b>154.265</b> kips_ft                                                                          |
| Allowable flexural strength                                                                      | Mc = Mn / Ωb = <b>92.374</b> kips_ft                                                                                     |
| P                                                                                                | ASS - Allowable flexural strength exceeds required flexural strength                                                     |
| Design of members for vertical deflection                                                        |                                                                                                                          |
| Consider deflection due to dead, live, roof live, sno                                            | ow, wind and seismic loads                                                                                               |
| Limiting deflection                                                                              | δ <sub>lim</sub> = L <sub>s1</sub> / 360 = <b>0.717</b> in                                                               |
| Maximum deflection span 1                                                                        | $\delta = max(abs(\delta_{max}), abs(\delta_{min})) = 0.613$ in                                                          |
|                                                                                                  | PASS - Maximum deflection does not exceed deflection limit                                                               |

#### Joists With Drift Along Length of Joist

| Joists with Drift Along | <u>t Length of</u> | JOIST            |   |
|-------------------------|--------------------|------------------|---|
| Dead Load=              | 15                 | psf Area         | - |
| Balance Load=           | 20.4               | psf              |   |
| Total Load=             | 35.4               | psf (DL+Balance) |   |
| Max. Drift Load         | 47                 | psf              |   |
| Length of Drift=        | 11                 | ft               |   |
|                         |                    |                  | L |
| Joist Space #1=         | 4.6                | ft               |   |
| Joist Space #2=         | 4.6                | ft               |   |
| Joist Space #3=         | 4.6                | ft               |   |
| Joist Space #4=         | 4.6                | ft               |   |
| Joist Space #5=         | 5.1                | ft               |   |
| Joist Space #6=         | 5.1                | ft               |   |
| Joist Space #7=         | 5.1                | ft               |   |
|                         |                    |                  |   |
| Pressure Load #1=       | 62.95909           | psf              |   |
| Pressure Load #2=       | 43.51818           | psf              |   |
| Pressure Load #3=       | 35.4               | psf              |   |
| Pressure Load #4=       | 35.4               | psf              |   |
| Pressure Load #5=       | 35.4               | psf              |   |
| Pressure Load #6=       | 35.4               | psf              |   |
|                         |                    |                  |   |
|                         |                    |                  |   |
| Uniform Load #1=        | 286.4639           | lb/ft (Joist #1) |   |
| Uniform Load #2=        | 198.0077           | lb/ft (Joist #2) |   |
| Uniform Load #3=        | 161.07             | lb/ft (Joist #3) |   |
| Uniform Load #4=        | 170.805            | lb/ft (Joist #4) |   |
| Uniform Load #5=        | 180 54             | lb/ft (loist #5) |   |

| K | Parape           | et Wall          |                  |                    |                 |                 |                 |                                   |
|---|------------------|------------------|------------------|--------------------|-----------------|-----------------|-----------------|-----------------------------------|
|   | Max Drift I      | Load= 47         | PSF              |                    |                 |                 |                 |                                   |
|   |                  |                  |                  |                    |                 |                 | Balanc          | e Load + DL= 35.4 PSF             |
|   | 4.55<br><u>1</u> | 4.55<br><u>2</u> | 4.55<br><u>3</u> | 5 4.55<br><u>4</u> | 5.1<br><u>5</u> | 5.1<br><u>6</u> | 5.1<br><u>Z</u> | Joist Space (ft)<br>Joist Space # |
|   | t+<br>t+1        | T# JSIDC         | Joist #2         | Joist #3           | Joist #4        | Joist #5        | Joist #6        |                                   |

| UIIIUIIII LUdu #1- | 200.4059 | ID/IL (JOISL #1) |
|--------------------|----------|------------------|
| Uniform Load #2=   | 198.0077 | lb/ft (Joist #2) |
| Uniform Load #3=   | 161.07   | lb/ft (Joist #3) |
| Uniform Load #4=   | 170.805  | lb/ft (Joist #4) |
| Uniform Load #5=   | 180.54   | lb/ft (Joist #5) |
| Uniform Load #6=   | 180.54   | lb/ft (Joist #6) |
|                    |          |                  |

\_

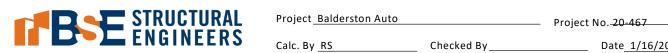
| Max Loading =     | 286.4639 lb/ft |
|-------------------|----------------|
| Joist Span =      | 29 ft          |
| Joist Selection = | 24K4           |
| Joist Capacity =  | 290 lb/ft      |
| % Capacity =      | 98.781%        |

OK use 24K4

Interior Joists - Non-Drift Loaded Joists

#### Joists With Drift Along Length of Joist

| Joists with Drift Along Length of Joist |          |                  |   |  |  |
|-----------------------------------------|----------|------------------|---|--|--|
| Dead Load=                              | 15       | psf Area -       | - |  |  |
| Balance Load=                           | 20.4     | psf              |   |  |  |
| Total Load=                             | 35.4     | psf (DL+Balance) |   |  |  |
| Max. Drift Load                         | 8        | psf              |   |  |  |
| Length of Drift=                        | 11.5     | ft               |   |  |  |
|                                         |          |                  |   |  |  |
| Joist Space #1=                         | 6.0      | ft               |   |  |  |
| Joist Space #2=                         | 6.0      | ft               |   |  |  |
| Joist Space #3=                         | 6.0      | ft               |   |  |  |
| Joist Space #4=                         | 6.0      | ft               |   |  |  |
| Joist Space #5=                         | 6.0      | ft               |   |  |  |
| Joist Space #6=                         | 6.0      | ft               |   |  |  |
| Joist Space #7=                         | 6.0      | ft               |   |  |  |
|                                         |          |                  |   |  |  |
| Pressure Load #1=                       | 39.22609 | psf              |   |  |  |
| Pressure Load #2=                       | 35.4     | psf              |   |  |  |
| Pressure Load #3=                       | 35.4     | psf              |   |  |  |
| Pressure Load #4=                       | 35.4     | psf              |   |  |  |
| Pressure Load #5=                       | 35.4     | psf              |   |  |  |
| Pressure Load #6=                       | 35.4     | psf              |   |  |  |
|                                         |          |                  |   |  |  |
|                                         |          |                  |   |  |  |
| Uniform Load #1=                        | 235.3565 | lb/ft (Joist #1) |   |  |  |
| Uniform Load #2=                        | 212.4    | lb/ft (Joist #2) |   |  |  |
| Uniform Load #3=                        | 212.4    | lb/ft (Joist #3) |   |  |  |
| Uniform Load #4=                        | 212.4    | lb/ft (Joist #4) |   |  |  |
| Uniform Load #5=                        | 212.4    | lb/ft (Joist #5) |   |  |  |


| K | Parap         | et Wall     |               |               |          |          |          |               |                                   |
|---|---------------|-------------|---------------|---------------|----------|----------|----------|---------------|-----------------------------------|
|   | Max Drift     | Load= 8 PSI |               |               |          |          | Bal      | ance Lo       | pad + DL= 35.4 PSF                |
|   | 6<br><u>1</u> | 6<br>2      | 6<br><u>3</u> | 6<br><u>4</u> | 6<br>5   |          | 6<br>6   | 6<br><u>7</u> | Joist Space (ft)<br>Joist Space # |
|   |               | T# 1SIOL    | 7# 1310L      | Joist #3      | Joist #4 | Joist #5 | Joist #6 |               |                                   |

| Uniform Load #1= | 235.3565 | lb/ft (Joist #1) |
|------------------|----------|------------------|
| Uniform Load #2= | 212.4    | lb/ft (Joist #2) |
| Uniform Load #3= | 212.4    | lb/ft (Joist #3) |
| Uniform Load #4= | 212.4    | lb/ft (Joist #4) |
| Uniform Load #5= | 212.4    | lb/ft (Joist #5) |
| Uniform Load #6= | 212.4    | lb/ft (Joist #6) |
|                  |          |                  |

| Max Loading =     | 235.3565 lb/ft |
|-------------------|----------------|
| Joist Span =      | 29 ft          |
| Joist Selection = | 20K6           |
| Joist Capacity =  | 242 lb/ft      |
| % Capacity =      | 97.255%        |

OK use 20K6

Interior Joists - Non-Drift Loaded Joists



Calc. By <u>RS</u> Checked By \_\_\_\_\_ Date <u>1/16/2019</u>

### STEEL COLUMN DESIGN

In accordance with AISC360-10 and the ASD method

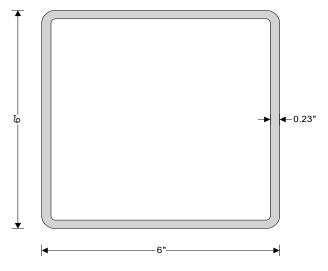
ڻ **4**−0.23" V 4 6"-

Tedds calculation version 1.0.09

| Column | and | loading | details |
|--------|-----|---------|---------|
|--------|-----|---------|---------|

| Column details                                     |                                              |
|----------------------------------------------------|----------------------------------------------|
| Column section                                     | HSS 6x6x1/4                                  |
| Design loading                                     |                                              |
| Required axial strength                            | Pr = <b>45</b> kips (Compression)            |
| Maximum moment about x axis                        | M <sub>x</sub> = <b>0.0</b> kips_ft          |
| Maximum moment about y axis                        | M <sub>y</sub> = <b>0.0</b> kips_ft          |
| Maximum shear force parallel to y axis             | V <sub>ry</sub> = <b>0.0</b> kips            |
| Maximum shear force parallel to x axis             | V <sub>rx</sub> = <b>0.0</b> kips            |
| Material details                                   |                                              |
| Steel grade                                        | A500 Gr. B                                   |
| Yield strength                                     | F <sub>y</sub> = <b>46</b> ksi               |
| Ultimate strength                                  | Fu = <b>58</b> ksi                           |
| Modulus of elasticity                              | E = <b>29000</b> ksi                         |
| Shear modulus of elasticity                        | G = <b>11200</b> ksi                         |
| Unbraced lengths                                   |                                              |
| For buckling about x axis                          | L <sub>x</sub> = <b>198</b> in               |
| For buckling about y axis                          | L <sub>y</sub> = <b>198</b> in               |
| For torsional buckling                             | L <sub>z</sub> = <b>198</b> in               |
| Effective length factors                           |                                              |
| For buckling about x axis                          | K <sub>x</sub> = <b>1.00</b>                 |
| For buckling about y axis                          | K <sub>y</sub> = <b>1.00</b>                 |
| For torsional buckling                             | Kz = 1.00                                    |
| Section classification                             |                                              |
| Section classification for local buckling (cl. B4) |                                              |
| Critical flange width                              | b = b <sub>f</sub> - 3 × t = <b>5.301</b> in |

| <b>E</b> STRUCTURAL<br>ENGINEERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Toject <u>balde</u>                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | — Project No. <del>20-467</del>                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Calc. By <u>RS</u>                                | Checked By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date_ <u>1/16/2019</u>                               |
| Width to thickness ratio of flange (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | compression)                                      | λ <sub>f_c</sub> = b / t = <b>22.751</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |
| Width to thickness ratio of web (co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mpression)                                        | λ <sub>w_c</sub> = h / t = <b>22.751</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |
| Width to thickness ratio of flange (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | major flexure)                                    | $\lambda_{f_{fx}} = b / t = 22.751$                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |
| Width to thickness ratio of web (ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ajor flexure)                                     | $\lambda_{w_{fx}} = h / t = 22.751$                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |
| Width to thickness ratio of flange (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | minor flexure)                                    | $\lambda_{f_{fy}} = h / t = 22.751$                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |
| Width to thickness ratio of web (mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nor flexure)                                      | $\lambda_{w_{fy}} = b / t = 22.751$                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |
| Compression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      |
| Limit for nonslender section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   | $\lambda_{r_c}$ = 1.40 × $\sqrt{(E / F_y)}$ = 35.152                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   | The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | section is nonslender in comp                        |
| Slenderness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      |
| Member slenderness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      |
| Slenderness ratio about x axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                   | SR <sub>x</sub> = K <sub>x</sub> × L <sub>x</sub> / r <sub>x</sub> = <b>84.6</b>                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |
| Slenderness ratio about y axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                   | $SR_y = K_y \times L_y / r_y = 84.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |
| Reduction factor for slender elements<br>Reduction factor for slender elements<br>The section does not contain any s                                                                                                                                                                                                                                                                                                                                                                                                                                         | ments (E7)                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | slender element                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      |
| Slender element reduction factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | slender element                                   | s therefore:-<br>Q = <b>1.0</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | slender element                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      |
| Slender element reduction factor<br>Compressive strength<br>Flexural buckling about x axis (c                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   | Q = <b>1.0</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      |
| Slender element reduction factor<br><u>Compressive strength</u><br>Flexural buckling about x axis (of<br>Elastic critical buckling stress                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                   | Q = 1.0<br>F <sub>ex</sub> = $(\pi^2 \times E) / (SR_x)^2 = 40.0$ ks                                                                                                                                                                                                                                                                                                                                                                                                                                    | si                                                   |
| Slender element reduction factor<br><u>Compressive strength</u><br>Flexural buckling about x axis (of<br>Elastic critical buckling stress<br>Reduction factor                                                                                                                                                                                                                                                                                                                                                                                                | sl. E3)                                           | Q = 1.0<br>$F_{ex} = (\pi^2 \times E) / (SR_x)^2 = 40.0 \text{ ks}$<br>$Q_x = Q = 1.000$                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |
| Slender element reduction factor<br><u>Compressive strength</u><br>Flexural buckling about x axis (of<br>Elastic critical buckling stress<br>Reduction factor<br>Flexural buckling stress about x axis                                                                                                                                                                                                                                                                                                                                                       | sl. E3)                                           | Q = 1.0<br>F <sub>ex</sub> = $(\pi^2 \times E) / (SR_x)^2$ = 40.0 ks<br>Q <sub>x</sub> = Q = 1.000<br>F <sub>crx</sub> = Q <sub>x</sub> × (0.658 <sup>QxxFy/Fex</sup> ) × F <sub>y</sub> =                                                                                                                                                                                                                                                                                                              |                                                      |
| Slender element reduction factor<br><u>Compressive strength</u><br>Flexural buckling about x axis (of<br>Elastic critical buckling stress<br>Reduction factor<br>Flexural buckling stress about x ax<br>Nominal flexural buckling strength                                                                                                                                                                                                                                                                                                                   | : <b>I. E3)</b><br>:is                            | Q = 1.0<br>$F_{ex} = (\pi^2 \times E) / (SR_x)^2 = 40.0 \text{ ks}$<br>$Q_x = Q = 1.000$                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |
| Slender element reduction factor<br><u>Compressive strength</u><br>Flexural buckling about x axis (of<br>Elastic critical buckling stress<br>Reduction factor<br>Flexural buckling stress about x axis<br>Nominal flexural buckling strength<br>Flexural buckling about y axis (or                                                                                                                                                                                                                                                                           | : <b>I. E3)</b><br>:is                            | Q = 1.0<br>$F_{ex} = (\pi^2 \times E) / (SR_x)^2 =$ 40.0 ks<br>$Q_x = Q =$ 1.000<br>$F_{crx} = Q_x \times (0.658^{Q_{XX}Fy/Fex}) \times F_y =$<br>$P_{nx} = F_{crx} \times A_g =$ 148.9 kips                                                                                                                                                                                                                                                                                                            | = <b>28.4</b> ksi                                    |
| Slender element reduction factor<br><u>Compressive strength</u><br>Flexural buckling about x axis (of<br>Elastic critical buckling stress<br>Reduction factor<br>Flexural buckling stress about x ax<br>Nominal flexural buckling strength<br>Flexural buckling about y axis (of<br>Elastic critical buckling stress                                                                                                                                                                                                                                         | : <b>I. E3)</b><br>:is                            | Q = 1.0<br>F <sub>ex</sub> = $(\pi^2 \times E) / (SR_x)^2 =$ 40.0 ks<br>Q <sub>x</sub> = Q = 1.000<br>F <sub>crx</sub> = Q <sub>x</sub> × (0.658 <sup>Qx</sup> ×Fy/Fex) × Fy =<br>P <sub>nx</sub> = F <sub>crx</sub> × A <sub>g</sub> = 148.9 kips<br>F <sub>ey</sub> = $(\pi^2 \times E) / (SR_y)^2 =$ 40.0 ks                                                                                                                                                                                         | = <b>28.4</b> ksi                                    |
| Slender element reduction factor<br><u>Compressive strength</u><br>Flexural buckling about x axis (of<br>Elastic critical buckling stress<br>Reduction factor<br>Flexural buckling stress about x axis<br>Nominal flexural buckling strength<br>Flexural buckling about y axis (of<br>Elastic critical buckling stress<br>Reduction factor                                                                                                                                                                                                                   | : <b>I. E3)</b><br>:is<br>: <b>I. E3</b> )        | Q = 1.0<br>F <sub>ex</sub> = $(\pi^2 \times E) / (SR_x)^2 =$ 40.0 ks<br>Q <sub>x</sub> = Q = 1.000<br>F <sub>crx</sub> = Q <sub>x</sub> × (0.658 <sup>Qx×Fy/Fex</sup> ) × Fy =<br>P <sub>nx</sub> = F <sub>crx</sub> × A <sub>g</sub> = 148.9 kips<br>F <sub>ey</sub> = $(\pi^2 \times E) / (SR_y)^2 =$ 40.0 ks<br>Q <sub>y</sub> = Q = 1.000                                                                                                                                                           | = <b>28.4</b> ksi<br>si                              |
| Slender element reduction factor<br><u>Compressive strength</u><br>Flexural buckling about x axis (of<br>Elastic critical buckling stress<br>Reduction factor<br>Flexural buckling stress about x axis<br>Nominal flexural buckling strength<br>Flexural buckling about y axis (of<br>Elastic critical buckling stress<br>Reduction factor<br>Flexural buckling stress about y axis                                                                                                                                                                          | : <b>I. E3)</b><br>:is<br>: <b>I. E3</b> )        | Q = 1.0<br>F <sub>ex</sub> = $(\pi^2 \times E) / (SR_x)^2 =$ 40.0 ks<br>Q <sub>x</sub> = Q = 1.000<br>F <sub>crx</sub> = Q <sub>x</sub> × (0.658 <sup>Qx×Fy/Fex</sup> ) × F <sub>y</sub> =<br>P <sub>nx</sub> = F <sub>crx</sub> × A <sub>g</sub> = 148.9 kips<br>F <sub>ey</sub> = $(\pi^2 \times E) / (SR_y)^2 =$ 40.0 ks<br>Q <sub>y</sub> = Q = 1.000<br>F <sub>cry</sub> = Q <sub>y</sub> × (0.658 <sup>Qy×Fy/Fey</sup> ) × F <sub>y</sub> =                                                       | = <b>28.4</b> ksi<br>si                              |
| Slender element reduction factor<br><u>Compressive strength</u><br>Flexural buckling about x axis (of<br>Elastic critical buckling stress<br>Reduction factor<br>Flexural buckling stress about x axis<br>Nominal flexural buckling strength<br>Flexural buckling about y axis (of<br>Elastic critical buckling stress<br>Reduction factor<br>Flexural buckling stress about y axis<br>Nominal flexural buckling stress about y axis<br>Nominal flexural buckling strength                                                                                   | : <b>I. E3)</b><br>:is<br>: <b>I. E3</b> )<br>:is | Q = 1.0<br>F <sub>ex</sub> = $(\pi^2 \times E) / (SR_x)^2 =$ 40.0 ks<br>Q <sub>x</sub> = Q = 1.000<br>F <sub>crx</sub> = Q <sub>x</sub> × (0.658 <sup>Qx×Fy/Fex</sup> ) × Fy =<br>P <sub>nx</sub> = F <sub>crx</sub> × A <sub>g</sub> = 148.9 kips<br>F <sub>ey</sub> = $(\pi^2 \times E) / (SR_y)^2 =$ 40.0 ks<br>Q <sub>y</sub> = Q = 1.000                                                                                                                                                           | = <b>28.4</b> ksi<br>si                              |
| Slender element reduction factor<br><u>Compressive strength</u><br>Flexural buckling about x axis (or<br>Elastic critical buckling stress<br>Reduction factor<br>Flexural buckling stress about x axis<br>Nominal flexural buckling strength<br>Flexural buckling about y axis (or<br>Elastic critical buckling stress<br>Reduction factor<br>Flexural buckling stress about y axis<br>Nominal flexural buckling stress about y axis<br>Nominal flexural buckling strength<br>Allowable compressive strength                                                 | : <b>I. E3)</b><br>:is<br>: <b>I. E3</b> )<br>:is | Q = 1.0<br>F <sub>ex</sub> = $(\pi^2 \times E) / (SR_x)^2 =$ 40.0 ks<br>Q <sub>x</sub> = Q = 1.000<br>F <sub>crx</sub> = Q <sub>x</sub> × $(0.658^{Qx \times Fy/Fex}) \times F_y =$<br>P <sub>nx</sub> = F <sub>crx</sub> × A <sub>g</sub> = 148.9 kips<br>F <sub>ey</sub> = $(\pi^2 \times E) / (SR_y)^2 =$ 40.0 ks<br>Q <sub>y</sub> = Q = 1.000<br>F <sub>cry</sub> = Q <sub>y</sub> × $(0.658^{Qy \times Fy/Fey}) \times F_y =$<br>P <sub>ny</sub> = F <sub>cry</sub> × A <sub>g</sub> = 148.9 kips | = <b>28.4</b> ksi<br>si                              |
| Slender element reduction factor<br><u>Compressive strength</u><br>Flexural buckling about x axis (of<br>Elastic critical buckling stress<br>Reduction factor<br>Flexural buckling stress about x axis<br>Nominal flexural buckling strength<br>Flexural buckling about y axis (of<br>Elastic critical buckling stress<br>Reduction factor<br>Flexural buckling stress about y axis<br>Nominal flexural buckling stress<br>Reduction factor<br>Flexural buckling stress about y axis<br>Nominal flexural buckling strength<br>Allowable compressive strength | : <b>I. E3)</b><br>:is<br>: <b>I. E3</b> )<br>:is | Q = 1.0<br>Fex = $(\pi^2 \times E) / (SR_x)^2 = 40.0 \text{ ks}$<br>Qx = Q = 1.000<br>Forx = Qx × $(0.658^{Qx \times Fy/Fex}) \times Fy =$<br>Pnx = Forx × Ag = 148.9 kips<br>Fey = $(\pi^2 \times E) / (SR_y)^2 = 40.0 \text{ ks}$<br>Qy = Q = 1.000<br>Fory = Qy × $(0.658^{Qy \times Fy/Fey}) \times Fy =$<br>Pny = Fory × Ag = 148.9 kips<br>$\Omega_c = 1.67$                                                                                                                                      | = 28.4 ksi<br>si<br>= 28.4 ksi                       |
| Slender element reduction factor<br>Compressive strength<br>Flexural buckling about x axis (of<br>Elastic critical buckling stress<br>Reduction factor<br>Flexural buckling stress about x axis<br>Nominal flexural buckling strength<br>Flexural buckling about y axis (of<br>Elastic critical buckling stress<br>Reduction factor<br>Flexural buckling stress about y axis<br>Nominal flexural buckling strength<br>Allowable compressive strength                                                                                                         | :I. E3)<br>:is<br>:I. E3)<br>:is<br>(CI. E1)      | Q = 1.0<br>F <sub>ex</sub> = $(\pi^2 \times E) / (SR_x)^2 =$ 40.0 ks<br>Q <sub>x</sub> = Q = 1.000<br>F <sub>crx</sub> = Q <sub>x</sub> × $(0.658^{Qx \times Fy/Fex}) \times F_y =$<br>P <sub>nx</sub> = F <sub>crx</sub> × A <sub>g</sub> = 148.9 kips<br>F <sub>ey</sub> = $(\pi^2 \times E) / (SR_y)^2 =$ 40.0 ks<br>Q <sub>y</sub> = Q = 1.000<br>F <sub>cry</sub> = Q <sub>y</sub> × $(0.658^{Qy \times Fy/Fey}) \times F_y =$<br>P <sub>ny</sub> = F <sub>cry</sub> × A <sub>g</sub> = 148.9 kips | = <b>28.4</b> ksi<br>si<br>= <b>28.4</b> ksi<br>kips |




Project\_\_\_\_\_ Project No.\_\_\_\_\_ Calc. By <u>RS</u> Checked By\_\_\_\_\_ Date\_<u>1/16/2019</u>

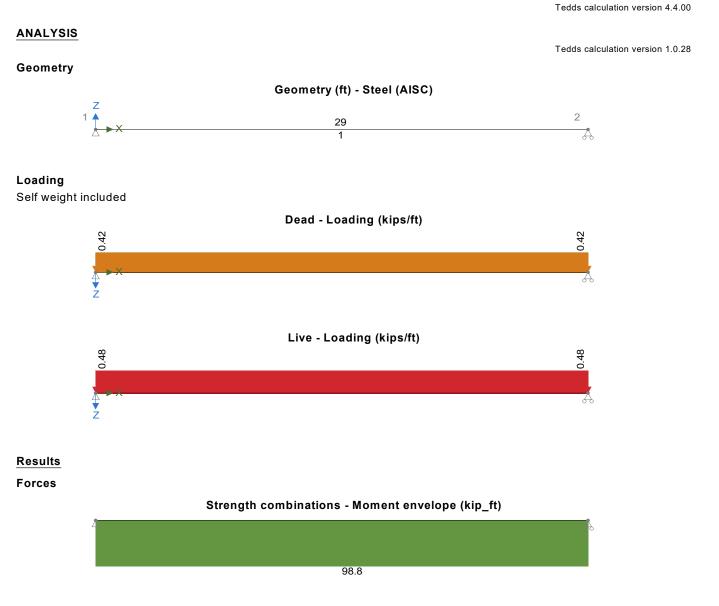
### STEEL COLUMN DESIGN

In accordance with AISC360-10 and the ASD method

Tedds calculation version 1.0.09



### Column and loading details


| Column details                                     |                                                     |
|----------------------------------------------------|-----------------------------------------------------|
| Column section                                     | HSS 6x6x1/4                                         |
| Design loading                                     |                                                     |
| Required axial strength                            | Pr = 9 kips (Compression)                           |
| Maximum moment about x axis                        | M <sub>x</sub> = <b>0.0</b> kips_ft                 |
| Maximum moment about y axis                        | M <sub>y</sub> = <b>0.0</b> kips_ft                 |
| Maximum shear force parallel to y axis             | V <sub>ry</sub> = <b>0.0</b> kips                   |
| Maximum shear force parallel to x axis             | V <sub>rx</sub> = <b>0.0</b> kips                   |
| Material details                                   |                                                     |
| Steel grade                                        | A500 Gr. B                                          |
| Yield strength                                     | F <sub>y</sub> = <b>46</b> ksi                      |
| Ultimate strength                                  | Fu = <b>58</b> ksi                                  |
| Modulus of elasticity                              | E = <b>29000</b> ksi                                |
| Shear modulus of elasticity                        | G = <b>11200</b> ksi                                |
| Unbraced lengths                                   |                                                     |
| For buckling about x axis                          | L <sub>x</sub> = <b>198</b> in                      |
| For buckling about y axis                          | L <sub>y</sub> = <b>198</b> in                      |
| For torsional buckling                             | Lz = <b>198</b> in                                  |
| Effective length factors                           |                                                     |
| For buckling about x axis                          | K <sub>x</sub> = 1.00                               |
| For buckling about y axis                          | K <sub>y</sub> = <b>1.00</b>                        |
| For torsional buckling                             | Kz = 1.00                                           |
| Section classification                             |                                                     |
| Section classification for local buckling (cl. B4) |                                                     |
| Critical flange width                              | b = b <sub>f</sub> - 3 $\times$ t = <b>5.301</b> in |
| Critical web width                                 | h = d - 3 × t = <b>5.301</b> in                     |
|                                                    |                                                     |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Project                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Project No                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Calc. By <u>RS</u>                                    | Checked By                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Date_1/16/2019             |
| Width to thickness ratio of flange (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | compression)                                          | λ <sub>f_c</sub> = b / t = <b>22.751</b>                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |
| Width to thickness ratio of web (co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mpression)                                            | λ <sub>w_c</sub> = h / t = <b>22.751</b>                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |
| Width to thickness ratio of flange (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | major flexure)                                        | $\lambda_{f_{fx}} = b / t = 22.751$                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |
| Width to thickness ratio of web (ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ajor flexure)                                         | $\lambda_{w_{fx}} = h / t = 22.751$                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |
| Width to thickness ratio of flange (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | minor flexure)                                        | $\lambda_{f_{fy}} = h / t = 22.751$                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |
| Width to thickness ratio of web (mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nor flexure)                                          | $\lambda_{w_{fy}} = b / t = 22.751$                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |
| Compression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |
| Limit for nonslender section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       | $\lambda_{r_c}$ = 1.40 × $\sqrt{(E / F_y)}$ = 35.152                                                                                                                                                                                                                                                                                                                                                                                                        |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | The sectior                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n is nonslender in compres |
| Slenderness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |
| Member slenderness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |
| Slenderness ratio about x axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                       | SR <sub>x</sub> = K <sub>x</sub> × L <sub>x</sub> / r <sub>x</sub> = <b>84.6</b>                                                                                                                                                                                                                                                                                                                                                                            |                            |
| Slenderness ratio about y axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                       | $SR_y = K_y \times L_y / r_y = 84.6$                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |
| Reduction factor for slender elements Reduction factor for slender elements and the statement of the stateme |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |
| <b>Reduction factor for slender ele</b><br>The section does not contain any s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ments (E7)                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |
| Reduction factor for slender elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ments (E7)                                            | s therefore:-<br>Q = <b>1.0</b>                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |
| Reduction factor for slender elements<br>The section does not contain any s<br>Slender element reduction factor<br>Compressive strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ments (E7)<br>slender elements                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |
| <b>Reduction factor for slender elen</b><br>The section does not contain any s<br>Slender element reduction factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ments (E7)<br>slender elements                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |
| Reduction factor for slender elements<br>The section does not contain any s<br>Slender element reduction factor<br>Compressive strength<br>Flexural buckling about x axis (c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ments (E7)<br>slender elements                        | Q = 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |
| Reduction factor for slender elements<br>The section does not contain any section factor<br>Slender element reduction factor<br>Compressive strength<br>Flexural buckling about x axis (of<br>Elastic critical buckling stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ments (E7)<br>slender elements<br>sl. E3)             | Q = 1.0<br>F <sub>ex</sub> = (π <sup>2</sup> × E) / (SR <sub>x</sub> ) <sup>2</sup> = 40.0 ksi                                                                                                                                                                                                                                                                                                                                                              | 3.4 ksi                    |
| Reduction factor for slender elements<br>The section does not contain any section factor<br>Slender element reduction factor<br>Compressive strength<br>Flexural buckling about x axis (of<br>Elastic critical buckling stress<br>Reduction factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ments (E7)<br>slender elements<br>sl. E3)             | Q = 1.0<br>$F_{ex} = (\pi^2 \times E) / (SR_x)^2 = 40.0 \text{ ksi}$<br>Qx = Q = 1.000                                                                                                                                                                                                                                                                                                                                                                      | 3.4 ksi                    |
| Reduction factor for slender element<br>The section does not contain any s<br>Slender element reduction factor<br>Compressive strength<br>Flexural buckling about x axis (o<br>Elastic critical buckling stress<br>Reduction factor<br>Flexural buckling stress about x ax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ments (E7)<br>slender elements<br>sl. E3)             | Q = 1.0<br>$F_{ex} = (\pi^2 \times E) / (SR_x)^2 = 40.0 \text{ ksi}$<br>$Q_x = Q = 1.000$<br>$F_{crx} = Q_x \times (0.658^{Qx \times Fy/Fex}) \times F_y = 28$                                                                                                                                                                                                                                                                                              | 3.4 ksi                    |
| Reduction factor for slender element<br>The section does not contain any s<br>Slender element reduction factor<br>Compressive strength<br>Flexural buckling about x axis (of<br>Elastic critical buckling stress<br>Reduction factor<br>Flexural buckling stress about x ax<br>Nominal flexural buckling strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ments (E7)<br>slender elements<br>sl. E3)             | Q = 1.0<br>$F_{ex} = (\pi^2 \times E) / (SR_x)^2 = 40.0 \text{ ksi}$<br>$Q_x = Q = 1.000$<br>$F_{crx} = Q_x \times (0.658^{Qx \times Fy/Fex}) \times F_y = 28$                                                                                                                                                                                                                                                                                              | 3.4 ksi                    |
| Reduction factor for slender element<br>The section does not contain any s<br>Slender element reduction factor<br>Compressive strength<br>Flexural buckling about x axis (o<br>Elastic critical buckling stress<br>Reduction factor<br>Flexural buckling stress about x ax<br>Nominal flexural buckling strength<br>Flexural buckling about y axis (o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ments (E7)<br>slender elements<br>sl. E3)             | Q = 1.0<br>F <sub>ex</sub> = $(\pi^2 \times E) / (SR_x)^2 =$ 40.0 ksi<br>Q <sub>x</sub> = Q = 1.000<br>F <sub>crx</sub> = Q <sub>x</sub> × (0.658 <sup>Qx×Fy/Fex</sup> ) × F <sub>y</sub> = 28<br>P <sub>nx</sub> = F <sub>crx</sub> × A <sub>g</sub> = 148.9 kips<br>F <sub>ey</sub> = $(\pi^2 \times E) / (SR_y)^2 =$ 40.0 ksi<br>Q <sub>y</sub> = Q = 1.000                                                                                              |                            |
| Reduction factor for slender element<br>The section does not contain any s<br>Slender element reduction factor<br>Compressive strength<br>Flexural buckling about x axis (o<br>Elastic critical buckling stress<br>Reduction factor<br>Flexural buckling stress about x ax<br>Nominal flexural buckling strength<br>Flexural buckling about y axis (o<br>Elastic critical buckling stress<br>Reduction factor<br>Flexural buckling stress<br>Reduction factor<br>Flexural buckling stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ments (E7)<br>slender elements<br>sl. E3)<br>is       | Q = 1.0<br>F <sub>ex</sub> = $(\pi^2 \times E) / (SR_x)^2$ = 40.0 ksi<br>Q <sub>x</sub> = Q = 1.000<br>F <sub>crx</sub> = Q <sub>x</sub> × (0.658 <sup>Qx×Fy/Fex</sup> ) × F <sub>y</sub> = 28<br>P <sub>nx</sub> = F <sub>crx</sub> × A <sub>g</sub> = 148.9 kips<br>F <sub>ey</sub> = $(\pi^2 \times E) / (SR_y)^2$ = 40.0 ksi                                                                                                                            |                            |
| Reduction factor for slender element<br>The section does not contain any s<br>Slender element reduction factor<br>Compressive strength<br>Flexural buckling about x axis (of<br>Elastic critical buckling stress<br>Reduction factor<br>Flexural buckling stress about x ax<br>Nominal flexural buckling strength<br>Flexural buckling about y axis (of<br>Elastic critical buckling stress<br>Reduction factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ments (E7)<br>slender elements<br>sl. E3)<br>is       | Q = 1.0<br>F <sub>ex</sub> = $(\pi^2 \times E) / (SR_x)^2 =$ 40.0 ksi<br>Q <sub>x</sub> = Q = 1.000<br>F <sub>crx</sub> = Q <sub>x</sub> × (0.658 <sup>Qx×Fy/Fex</sup> ) × F <sub>y</sub> = 28<br>P <sub>nx</sub> = F <sub>crx</sub> × A <sub>g</sub> = 148.9 kips<br>F <sub>ey</sub> = $(\pi^2 \times E) / (SR_y)^2 =$ 40.0 ksi<br>Q <sub>y</sub> = Q = 1.000                                                                                              |                            |
| Reduction factor for slender element<br>The section does not contain any s<br>Slender element reduction factor<br>Compressive strength<br>Flexural buckling about x axis (o<br>Elastic critical buckling stress<br>Reduction factor<br>Flexural buckling stress about x ax<br>Nominal flexural buckling strength<br>Flexural buckling about y axis (o<br>Elastic critical buckling stress<br>Reduction factor<br>Flexural buckling stress<br>Reduction factor<br>Flexural buckling stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ments (E7)<br>slender elements<br>sl. E3)<br>is<br>is | Q = 1.0<br>F <sub>ex</sub> = $(\pi^2 \times E) / (SR_x)^2 = 40.0 \text{ ksi}$<br>Q <sub>x</sub> = Q = 1.000<br>F <sub>crx</sub> = Q <sub>x</sub> × $(0.658^{Qx \times Fy/Fex}) \times F_y = 28$<br>P <sub>nx</sub> = F <sub>crx</sub> × A <sub>g</sub> = 148.9 kips<br>F <sub>ey</sub> = $(\pi^2 \times E) / (SR_y)^2 = 40.0 \text{ ksi}$<br>Q <sub>y</sub> = Q = 1.000<br>F <sub>cry</sub> = Q <sub>y</sub> × $(0.658^{Qy \times Fy/Fey}) \times F_y = 28$ |                            |
| Reduction factor for slender element<br>The section does not contain any section factor<br>Compressive strength<br>Flexural buckling about x axis (of<br>Elastic critical buckling stress<br>Reduction factor<br>Flexural buckling stress about x ax<br>Nominal flexural buckling strength<br>Flexural buckling about y axis (of<br>Elastic critical buckling stress<br>Reduction factor<br>Flexural buckling stress<br>Reduction factor<br>Flexural buckling stress about y ax<br>Nominal flexural buckling stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ments (E7)<br>slender elements<br>sl. E3)<br>is<br>is | Q = 1.0<br>F <sub>ex</sub> = $(\pi^2 \times E) / (SR_x)^2 = 40.0 \text{ ksi}$<br>Q <sub>x</sub> = Q = 1.000<br>F <sub>crx</sub> = Q <sub>x</sub> × $(0.658^{Qx \times Fy/Fex}) \times F_y = 28$<br>P <sub>nx</sub> = F <sub>crx</sub> × A <sub>g</sub> = 148.9 kips<br>F <sub>ey</sub> = $(\pi^2 \times E) / (SR_y)^2 = 40.0 \text{ ksi}$<br>Q <sub>y</sub> = Q = 1.000<br>F <sub>cry</sub> = Q <sub>y</sub> × $(0.658^{Qy \times Fy/Fey}) \times F_y = 28$ |                            |



### **STEEL MEMBER ANALYSIS & DESIGN (AISC 360)**

In accordance with AISC360 14th Edition published 2010 using the ASD method



#### Strength combinations - Shear envelope (kips)





Calc. By <u>RJS</u>

Checked By\_JH

\_\_\_\_\_ Project No.-<u>20-467</u>\_\_\_

Date 2/23/2021

| Safety factors         |                  |                                                                                                       |
|------------------------|------------------|-------------------------------------------------------------------------------------------------------|
| Shear                  |                  | Ω <sub>v</sub> = <b>1.67</b>                                                                          |
| Flexure                |                  | Ω <sub>b</sub> = <b>1.67</b>                                                                          |
| Tensile yielding       |                  | Ω <sub>t,y</sub> = <b>1.67</b>                                                                        |
| Tensile rupture        |                  | Ω <sub>t,r</sub> = <b>2.00</b>                                                                        |
| Compression            |                  | Ωc = <b>1.67</b>                                                                                      |
| Beam design            |                  |                                                                                                       |
| Section details        |                  |                                                                                                       |
| Section type           |                  | W 18x40 (AISC 15th Edn (v15.0))                                                                       |
| ASTM steel designation |                  | A992                                                                                                  |
| Ũ                      |                  |                                                                                                       |
| Steel yield stress     |                  | F <sub>y</sub> = <b>50</b> ksi                                                                        |
| Steel tensile stress   |                  | Fu = <b>65</b> ksi                                                                                    |
| Modulus of elasticity  |                  | E = <b>29000</b> ksi                                                                                  |
|                        | -0.53            |                                                                                                       |
|                        | o<br>↓           |                                                                                                       |
|                        | $\uparrow$ $\mp$ | W 18x40 (AISC 15th Edn (v15.0))<br>Section depth, d, 17.9 in                                          |
|                        |                  | Section depth, d, $17.9$ in<br>Section breadth, b, 6.02 in                                            |
|                        |                  | Weight of section, Weight, 40 lbf/ft                                                                  |
|                        |                  | Flange thickness, t <sub>f</sub> , 0.525 in                                                           |
|                        |                  | Web thickness, $t_w$ , 0.315 in                                                                       |
|                        |                  | Area of section, A, 11.8 in <sup>2</sup><br>Radius of gyration about x-axis, r <sub>v</sub> , 7.21 in |
|                        |                  | Dedius of gyration about v avia, r <sub>x</sub> , r.2 r in                                            |

#### Lateral restraint

Top flange has full lateral restraint Bottom flange has lateral restraint at supports only

### Consider Combination 1 - 1.0D + 1.0Lr (Strength)

Classification of sections for local buckling - Section B4

17.9"-

▶ ►0.53"

◄

| Classification of flanges in flexure - Table B4.1                             | b (case 10)                                                                    |         |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------|
| Width to thickness ratio                                                      | bf / (2 × tf) = <b>5.73</b>                                                    |         |
| Limiting ratio for compact section                                            | $\lambda_{\text{pff}}$ = 0.38 $\times$ $\sqrt{[\text{E / F}_y]}$ = <b>9.15</b> |         |
| Limiting ratio for non-compact section                                        | $\lambda_{\text{rff}}$ = 1.0 × $\sqrt{[E / F_y]}$ = 24.08                      | Compact |
|                                                                               |                                                                                |         |
| Classification of web in flexure - Table B4.1b (c                             | ase 15)                                                                        |         |
| Classification of web in flexure - Table B4.1b (c<br>Width to thickness ratio | ase 15)<br>(d - 2 × k) / t <sub>w</sub> = 50.94                                |         |
| · ·                                                                           | ,                                                                              |         |

-0.32"

Radius of gyration about y-axis,  $r_y$ , 1.27 in

Elastic section modulus about x-axis, S<sub>x</sub>, 68.4 in<sup>3</sup> Elastic section modulus about y-axis, S<sub>y</sub>, 6.35 in<sup>3</sup> Plastic section modulus about x-axis, Z<sub>x</sub>, 78.4 in<sup>3</sup> Plastic section modulus about y-axis, Z<sub>y</sub>, 10 in<sup>3</sup>

Second moment of area about x-axis,  $I_{x^{\prime}}^{2}$  612 in<sup>4</sup> Second moment of area about y-axis,  $I_{y^{\prime}}$  19.1 in<sup>4</sup>

Compact

Section is compact in flexure



Calc. By RJS

Checked By JH Date 2/23/2021

| Design of members for shear - Chapter G |                                                                         |
|-----------------------------------------|-------------------------------------------------------------------------|
| Required shear strength                 | V <sub>r,x</sub> = <b>13.6</b> kips                                     |
| Web area                                | $A_w = d \times t_w = 5.638 in^2$                                       |
| Web plate buckling coefficient          | k <sub>v</sub> = <b>5</b>                                               |
|                                         | (d - 2 $\times$ k) / t <sub>w</sub> <= 2.24 $\times$ $\sqrt{(E / F_y)}$ |
| Web shear coefficient - eq G2-2         | C <sub>v</sub> = <b>1.000</b>                                           |
| Nominal shear strength - eq G2-1        | $V_{n,x} = 0.6 \times F_y \times A_w \times C_v = 169.2$ kips           |
| Safety factor                           | $\Omega_{\rm v}=1.50$                                                   |
| Allowable shear strength                | $V_{c,x} = V_{n,x} / \Omega_v = 112.8$ kips                             |
|                                         | V <sub>r,x</sub> / V <sub>c,x</sub> = <b>0.121</b>                      |
|                                         | PASS - Allowable shear strength exceeds required shear strength         |

#### Check design 14ft 6in along span

Design of members for flexure - Chapter F Required flexural strength

Yielding - Section F2.1 Nominal flexural strength for yielding - eq F2-1

Allowable flexural strength - F1 Nominal flexural strength

Allowable flexural strength

M<sub>r,x</sub> = **98.8** kips\_ft  $M_{n,yld,x} = M_{p,x} = F_y \times Z_x = 326.7 \text{ kips_ft}$ 

 $M_{n,x} = M_{n,yld,x} = 326.7$  kips ft  $M_{c,x} = M_{n,x} / \Omega_b = 195.6 \text{ kips_ft}$ Mr,x / Mc,x = 0.505

PASS - Allowable flexural strength exceeds required flexural strength

#### Check design 14ft 6in along span

Design of members for x-x axis deflection Maximum deflection Allowable deflection

 $\delta_x = 0.862$  in  $\delta_{x,Allowable} = L_{m1_s1} / 360 = 0.967$  in  $\delta_x / \delta_{x.Allowable} = 0.891$ 

PASS - Allowable deflection exceeds design deflection



#### **STEEL MEMBER ANALYSIS & DESIGN (AISC 360)**

In accordance with AISC360 14th Edition published 2010 using the ASD method



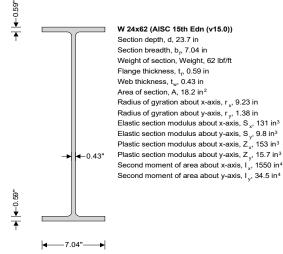
Forces



308.4

#### Strength combinations - Shear envelope (kips)






Project No. <u>20-467</u>

Calc. By <u>RJS</u>

Checked By JH

| Safety factors         |                                 |
|------------------------|---------------------------------|
| Shear                  | Ω <sub>v</sub> = <b>1.67</b>    |
| Flexure                | Ω <sub>b</sub> = <b>1.67</b>    |
| Tensile yielding       | Ω <sub>t,y</sub> = <b>1.67</b>  |
| Tensile rupture        | Ω <sub>t,r</sub> = <b>2.00</b>  |
| Compression            | Ωc = <b>1.67</b>                |
| Beam design            |                                 |
| Section details        |                                 |
| Section type           | W 24x62 (AISC 15th Edn (v15.0)) |
| ASTM steel designation | A992                            |
| Steel yield stress     | F <sub>y</sub> = <b>50</b> ksi  |
| Steel tensile stress   | F <sub>u</sub> = <b>65</b> ksi  |
| Modulus of elasticity  | E = <b>29000</b> ksi            |
|                        |                                 |



#### Lateral restraint

Top flange has full lateral restraint Bottom flange has lateral restraint at supports only

#### Consider Combination 1 - 1.0D + 1.0Lr (Strength)

Limiting ratio for non-compact section

Classification of sections for local buckling - Section B4

23.7"

| Classification of flanges in flexure - Table B4.1b (case 10) |                                                                                                  |         |  |  |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------|--|--|
| Width to thickness ratio                                     | bf / (2 × tf) = <b>5.97</b>                                                                      |         |  |  |
| Limiting ratio for compact section                           | $\lambda_{\text{pff}}$ = 0.38 $\times$ $\sqrt{[\text{E}$ / $\text{F}_{\text{y}}]}$ = <b>9.15</b> |         |  |  |
| Limiting ratio for non-compact section                       | $\lambda_{\text{rff}}$ = 1.0 × $\sqrt{[E / F_y]}$ = 24.08                                        | Compact |  |  |
| Classification of web in flexure - Table B4.1b (ca           | ase 15)                                                                                          |         |  |  |
| Width to thickness ratio                                     | (d - 2 × k) / t <sub>w</sub> = <b>50.05</b>                                                      |         |  |  |
| Limiting ratio for compact section                           | $\lambda_{\text{pwf}} = 3.76 \times \sqrt{[\text{E / F}_y]} = \textbf{90.55}$                    |         |  |  |

 $\lambda_{rwf} = 5.70 \times \sqrt{[E / F_y]} = 137.27$ 

| Compact |
|---------|
|---------|

Section is compact in flexure



Calc. By RJS

Checked By JH Date 3/1/2021

#### Check design at start of span

| Design of members for shear - Chapter G |                                                                                        |
|-----------------------------------------|----------------------------------------------------------------------------------------|
| Required shear strength                 | V <sub>r,x</sub> = <b>52</b> kips                                                      |
| Web area                                | $A_w = d \times t_w = 10.191 in^2$                                                     |
| Web plate buckling coefficient          | k <sub>v</sub> = <b>5</b>                                                              |
|                                         | (d - 2 $\times$ k) / t <sub>w</sub> <= 2.24 $\times$ $\sqrt{(E / F_y)}$                |
| Web shear coefficient - eq G2-2         | C <sub>v</sub> = <b>1.000</b>                                                          |
| Nominal shear strength - eq G2-1        | $V_{n,x}$ = 0.6 × F <sub>y</sub> × A <sub>w</sub> × C <sub>v</sub> = <b>305.7</b> kips |
| Safety factor                           | $\Omega_{\rm v}$ = 1.50                                                                |
| Allowable shear strength                | $V_{c,x} = V_{n,x} / \Omega_v = 203.8$ kips                                            |
|                                         | $V_{r,x} / V_{c,x} = 0.255$                                                            |
|                                         | PASS - Allowable shear strength exceeds required shear strength                        |

#### Check design 11ft 10.2in along span

Design of members for flexure - Chapter F Required flexural strength

Yielding - Section F2.1 Nominal flexural strength for yielding - eq F2-1

Allowable flexural strength - F1 Nominal flexural strength

Allowable flexural strength

M<sub>r,x</sub> = 308.4 kips\_ft  $M_{n,yld,x} = M_{p,x} = F_y \times Z_x = 637.5 \text{ kips_ft}$ 

 $M_{n,x} = M_{n,yld,x} = 637.5$  kips ft  $M_{c,x} = M_{n,x} / \Omega_b = 381.7 \text{ kips_ft}$ Mr,x / Mc,x = 0.808

PASS - Allowable flexural strength exceeds required flexural strength

#### Check design 11ft 10.2in along span

Design of members for x-x axis deflection Maximum deflection Allowable deflection

 $\delta_x = 0.726$  in  $\delta_{x,Allowable} = L_{m1_{s1}} / 360 = 0.79$  in  $\delta_x / \delta_{x.Allowable} = 0.919$ 

PASS - Allowable deflection exceeds design deflection



| Project Balderston Auto |               | Project No. 20-467 |  |
|-------------------------|---------------|--------------------|--|
| Calc. By_RS             | Checked By_JB | Date 1/1/21        |  |

### **Summary**

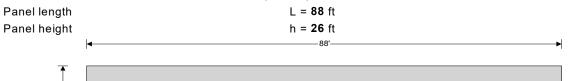
The gravity structure system of the project referenced above consists primarily of steel joists and girders, load-bearing CMU walls and steel columns. CMU walls support all gravity and lateral loads along the perimeter of the building. CMU wall designs are performed in RAM Elements with Tedds calculations, as required.

The following section of calculations covers the complete design of the tilt CMU system for project referenced above. Refer to the "Loads" section of these calculations for the determination of all dead, live, roof live, and snow loads. Refer to the "Lateral Stability" section of these calculations for the determination of all wind and seismic loads.



Calc. By RJS

\_\_\_\_\_ Project No.-<del>20-467</del>\_\_\_\_


Checked By JH Date 3/1/2021

#### MASONRY WALL PANEL DESIGN TO MSJC-11

#### Using the strength design method

#### Masonry wall panel details

Typical Exterior Wall - Reinforced single-wythe wall, the wall is pinned at the top and at the bottom for out of plane loads The wall is fixed at the bottom and free at the top for in plane loads

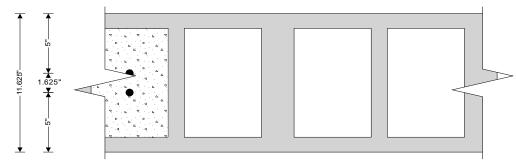




#### **Seismic properties**

| Seismic design category                          | В                            |
|--------------------------------------------------|------------------------------|
| Seismic importance factor (ASCE7 Table 1.5-2)    | le = 1                       |
| Design spectral response acceleration parameter, | short periods (ASCE7 11.4.4) |

Seismic wall classification


S<sub>DS</sub> = **0.345** Nonparticipating No prescriptive minimum seismic reinforcement p<sub>E</sub> = **1.0** 

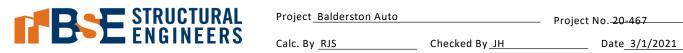
Redundancy factor, on out-of-plane load

#### **Construction details**

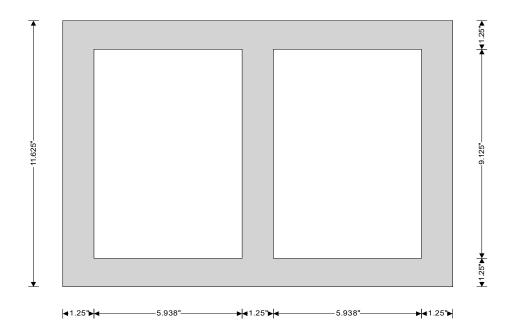
Wall thickness

t = **11.625** in



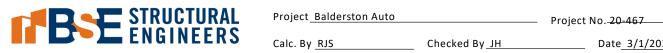

#### **Masonry details**

Hollow concrete units grouted at 48 in on center in running bond fully bedded with PCL class M mortar


 $\begin{array}{ll} \mbox{Compressive strength of unit} & f'_{cu} = 1900 \mbox{ psi} \\ \mbox{Density of masonry units} & & & \\ \mbox{Height of masonry units} & & & \\ \mbox{h}_b = 7.625 \mbox{ in} \\ \mbox{Length of masonry units} & & & \\ \mbox{Number of internal webs} & & & \\ \mbox{Number of end webs} & & & \\ \mbox{Nend} = 2 \end{array}$ 

Sht. No. 1 C2 of 18 6

Tedds calculation version 2.2.04




| Internal web thickness | t <sub>bw</sub> = <b>1.25</b> in                                                                                                                               |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Face shell thickness   | t <sub>bf</sub> = <b>1.25</b> in                                                                                                                               |
| End web thickness      | t <sub>be</sub> = <b>1.25</b> in                                                                                                                               |
| Area of block          | $A_{block} = [t \times I_{b} - (I_{b} - N_{web} \times t_{bw} - N_{end} \times t_{be}) \times (t - 2 \times t_{bf})] / I_{b} = 56.28 \text{ in}^{2}/\text{ft}$ |
| Area of grout          | $A_{grout} = [0.17 \times (I_b - N_{web} \times t_{bw} - N_{end} \times t_{be}) \times (t - 2 \times t_{bf})] / I_b = 14.15 \text{ in}^2/\text{ft}$            |
| Density of grout       | $\gamma_{grout}$ = <b>140</b> lb/ft <sup>3</sup>                                                                                                               |
| Self weight of wall    | wsw = Ablock $\times \gamma$ block + Agrout $\times \gamma$ grout = 58.7 psf                                                                                   |
|                        | 15.625"►                                                                                                                                                       |



#### From TMS 602-11 Table 2 - Compressive strength of masonry

|                                                 | an or masonry                                                |
|-------------------------------------------------|--------------------------------------------------------------|
| Net compressive strength of masonry             | f' <sub>m</sub> = <b>1500</b> psi                            |
| Modulus of elasticity for masonry               | E <sub>m</sub> = 900 × f'm = <b>1350000</b> psi              |
| Shear modulus of masonry                        | $G_v$ = 0.4 $\times$ Em = <b>540000</b> psi                  |
| From TMS 402 -11 Table 3.1.8.2 - Modulus of rug | oture                                                        |
| Modulus of rupture normal to bed                | fr_norm = <b>80</b> psi                                      |
| Modulus of rupture parallel to bed              | f <sub>r_para</sub> = <b>125</b> psi                         |
| Reinforcement details                           |                                                              |
| Yield strength of reinforcement                 | f <sub>y</sub> = <b>60000</b> psi                            |
| Allowable tensile stress in reinforcement       | Fs <b>= 32000</b> psi                                        |
| Modulus of elasticity for reinforcement         | Es <b>= 29000000</b> psi                                     |
| Vertical reinforcement provided                 | No.5 bars at 48 in centers                                   |
| Area of vertical reinforcement, per face        | $A_s = \pi \times Dia^2 / (4 \times s) = 0.08 in^2/ft$       |
| Lateral out-of-plane loads                      |                                                              |
| Wind load on panel                              | W = <b>28</b> psf                                            |
| Wind load on parapet                            | W <sub>p</sub> = <b>70</b> psf                               |
| Seismic load factor (ASCE7 12.11.1)             | $F_{p} = 0.4 \times S_{DS} \times I_{e} = \textbf{0.138}$    |
| Seismic load from wall                          | $E_{wall} = max(F_{p}, 0.1) \times w_{SW} = 8.1 \text{ psf}$ |
| Additional seimic load                          | E <sub>add</sub> = <b>0</b> psf                              |
|                                                 |                                                              |



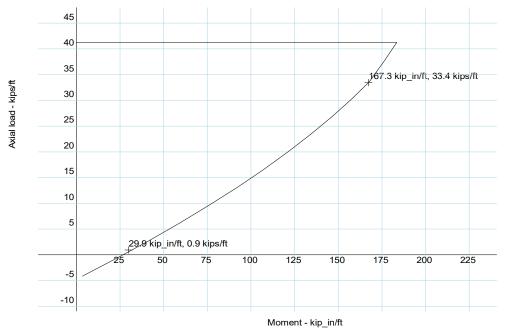
| Seismic lateral load on panel   |                          | E = E <sub>wall</sub> + E <sub>add</sub> = <b>8.1</b> psf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lateral in-plane loads          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Wind shear load on wall         |                          | Vw = 21800 lbs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Vertical loading details        |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dead load at supported level    |                          | DL = <b>276</b> lb/ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Live load from above            |                          | LLabove = 290 lb/ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Vertical seismic load factor ap | oplied to dead load      | $F_{Ev} = 0.2 \times S_{DS} = 0.069$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| From ASCE 7-10 cl.2.3.2 - C     | -                        | oads using strength design (Utilization)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Load combination no.1           | $1.4 \times DL$ (0.061)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Load combination no.5           | 1.2 × DL + W + LL        | + 0.5 × (LL <sub>r</sub> or SL or RL) (0.881)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Load combination no.7           | $0.9 \times DL + W$ (0.9 | 42)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Properties of masonry secti     | on                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Cross-sectional area            |                          | $\label{eq:alpha} \begin{split} A &= [t \times I_b \text{ - } 0.83 \times (I_b \text{ - } N_{web} \times t_{bw} \text{ - } N_{end} \times t_{be}) \times (t \text{ - } 2 \times t_{bf})] \text{ / } I_b = \textbf{70.4} \\ in^2 / ft \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Properties for walls loaded ou  | t-of-plane:              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Moment of inertia               |                          | $I = t^3 / 12 - 0.83 \times (I_b - N_{web} \times t_{bw} - N_{end} \times t_{be}) \times (t - 2 \times t_{bf})^3 / (12 \times I_b) = 1091.7 \text{ in}^4/\text{ft}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Section modulus                 |                          | $S = I / c = 187.8 \text{ in}^3/\text{ft}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Radius of gyration              |                          | r = √[l / A] = <b>3.937</b> in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Effective height factor         |                          | K = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Properties for walls loaded in- | plane:                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Net moment of inertia           |                          | $I_{x\_net} = t \times L^3 \ / \ 12 \ - \ 2 \times (I_{x\_cell} + A_{cell} \times x_{cell1^2}) \ - \ 2 \times (I_{x\_cell} + A_{cell} \times x_{cell2^2}) \ - \ 2 \times (I_{x\_cell} + A_{cell} \times x_{cell2^2}) \ - \ 2 \times (I_{x\_cell} + A_{cell} \times x_{cell2^2}) \ - \ 2 \times (I_{x\_cell} + A_{cell} \times x_{cell2^2}) \ - \ 2 \times (I_{x\_cell} + A_{cell} \times x_{cell2^2}) \ - \ 2 \times (I_{x\_cell} + A_{cell} \times x_{cell2^2}) \ - \ 2 \times (I_{x\_cell} + A_{cell} \times x_{cell2^2}) \ - \ 2 \times (I_{x\_cell} + A_{cell} \times x_{cell2^2}) \ - \ 2 \times (I_{x\_cell} \times x_{cell2^2} \times x_{cell2^2}) \ - \ 2 \times (I_{x\_cell} \times x_{cell2^2} \times x_{cell2^2}) \ - \ 2 \times (I_{x\_cell} \times x_{cell2^2} \times x_{cell2^2} \times x_{cell2^2} \times x_{cell2^2} \times x_{cell2^2}) \ - \ 2 \times (I_{x\_cell} \times x_{cell2^2} \times $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                 |                          | $	imes$ (I <sub>x_cell</sub> + A <sub>cell</sub> $	imes$ X <sub>cell</sub> <sup>2</sup> ) - 2 $	imes$ (I <sub>x_cell</sub> + A <sub>cell</sub> $	imes$ X <sub>cell</sub> <sup>2</sup> ) - 2 $	imes$ (I <sub>x_cell</sub> + A <sub>cell</sub> $	imes$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                 |                          | $x_{\text{cell5}^2}) - 2 \times (I_{x\_\text{cell}} + A_{\text{cell}} \times x_{\text{cell7}^2}) - 2 \times (I_{x\_\text{cell}} + A_{\text{cell}} \times x_{\text{cell8}^2}) - 2 \times (I_{x\_\text{cell}} + A_{\text{cell}} \times x_{\text{cell8}^2}) - 2 \times (I_{x\_\text{cell}} + A_{\text{cell}} \times x_{\text{cell8}^2}) - 2 \times (I_{x\_\text{cell}} \times x_{\text{cell8}^2}) - 2 \times (I_{x\_\text{cell}} \times x_{\text{cell8}^2}) - 2 \times (I_{x\_\text{cell}} \times x_{\text{cell8}^2}) - 2 \times (I_{x\_\text{cell8}^2} \times x_{\text{cell8}^2} \times x_{\text{cell8}^2}) - 2 \times (I_{x\_\text{cell8}^2} \times x_{\text{cell8}^2} \times x_{\text{cell8}^2} \times x_{\text{cell8}^2}) - 2 \times (I_{x\_\text{cell8}^2} \times x_{\text{cell8}^2} \times x_{\text{cell8}^2} \times x_{\text{cell8}^2} \times x_{\text{cell8}^2}) - 2 \times (I_{x\_\text{cell8}^2} \times x_{\text{cell8}^2} \times x_{\text{cel8}^2} \times x_{\text{cell8}^2} \times x_{\text{cell8}^2} \times x_{cel8$                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                 |                          | $A_{\text{cell}} \times x_{\text{cell9}^2}) - 2 \times (I_{x\_\text{cell}} + A_{\text{cell}} \times x_{\text{cell10}^2}) - 2 \times (I_{x\_\text{cell}} + A_{\text{cell}} \times x_{\text{cell11}^2}) - 2 \times (I_{x\_\text{cell}} + A_{\text{cell}} \times x_{\text{cell11}^2}) - 2 \times (I_{x\_\text{cell}} + A_{x\_\text{cell}} \times x_{x\_\text{cell11}^2}) - 2 \times (I_{x\_\text{cell}} \times x_{x\_\text{cell111}^2}) - 2 \times (I_{x\_\text{cell}} \times x_{x\_\text{cell1111}^2}) - 2 \times (I_{x\_\text{cell}} \times x_{x\_\text{cell}^2} \times x_{x\_\text{cell}^2}) - 2 \times (I_{x\_\text{cell}} \times x_{x\_\text{cell}^2} \times x_{x\_\text{cell}^2} \times x_{x\_\text{cell}^2}) - 2 \times (I_{x\_\text{cell}} \times x_{x\_\text{cell}^2} \times x_{x\_\text{cell}^2}) - 2 \times (I_{x\_\text{cell}} \times x_{x\_\text{cell}^2} \times x_{x\_\text{cell}^2} \times x_{x\_\text{cell}^2} \times x_{x\_\text{cell}^2}) - 2 \times (I_{x\_\text{cell}} \times x_{x\_\text{cell}^2} \times x_{x\_\text{cell}^2} \times x_{x\_\text{cell}^2} \times x_{x\_\text{cell}^2} \times x_{x\_\text{cell}^2} \times x_{x\_\text{cell}^2} \times x_{x\_\text{cell}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                 |                          | $(I_{x_{cell}} + A_{cell} \times x_{cell13}^2)$ - 2 × $(I_{x_{cell}} + A_{cell} \times x_{cell14}^2)$ - 2 × $(I_{x_{cell}} + A_{cell} \times x_{cell14}^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                 |                          | $x_{\text{cell15}^2}) \textbf{-} 2 \times (I_{x\_\text{cell}} \textbf{+} A_{\text{cell}} \times x_{\text{cell16}^2}) \textbf{-} 2 \times (I_{x\_\text{cell}} \textbf{+} A_{\text{cell}} \times x_{\text{cell17}^2}) \textbf{-} 2 \times (I_{x\_\text{cell}} \times x_{\text{cell}} \times x_{\text{cell17}^2}) \textbf{-} 2 \times (I_{x\_\text{cell}} \times x_{\text{cell}} $                                                                                                                           |
|                                 |                          | + $A_{cell} \times x_{cell19^2}$ ) - 2 × ( $I_{x_cell}$ + $A_{cell} \times x_{cell20^2}$ ) - 2 × ( $I_{x_cell}$ + $A_{cell} \times x_{cell21^2}$ ) - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                 |                          | $	imes$ (Ix_cell + Acell $	imes$ Xcell22 <sup>2</sup> ) - 2 $	imes$ (Ix_cell + Acell $	imes$ Xcell23 <sup>2</sup> ) - 2 $	imes$ (Ix_cell + Acell $	imes$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                 |                          | $x_{\texttt{cell25}^2}) \textbf{-} 2 \times (I_{x\_\texttt{cell}} \textbf{+} A_{\texttt{cell}} \times x_{\texttt{cell26}^2}) \textbf{-} 2 \times (I_{x\_\texttt{cell}} \textbf{+} A_{\texttt{cell}} \times x_{\texttt{cell27}^2}) \textbf{-} 2 \times (I_{x\_\texttt{cell}} \times x_{\texttt{cell27}^2} \times x_{\texttt{cell27}^2}) \textbf{-} 2 \times (I_{x\_\texttt{cell}} \times x_{\texttt{cell27}^2} \times x_{ce$ |
|                                 |                          | + $A_{cell} \times x_{cell28}^2$ ) - 2 × ( $I_{x_cell}$ + $A_{cell} \times x_{cell29}^2$ ) - 2 × ( $I_{x_cell}$ + $A_{cell} \times x_{cell31}^2$ ) - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                 |                          | $	imes$ (Ix_cell + Acell $	imes$ Xcell32 <sup>2</sup> ) - 2 $	imes$ (Ix_cell + Acell $	imes$ Xcell33 <sup>2</sup> ) - 2 $	imes$ (Ix_cell + Acell $	imes$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                 |                          | $x_{\text{cell34}^2}) - 2 \times (I_{x\_\text{cell}} + A_{\text{cell}} \times x_{\text{cell35}^2}) - 2 \times (I_{x\_\text{cell}} + A_{\text{cell}} \times x_{\text{cell37}^2}) - 2 \times (I_{x\_\text{cell}} \times x_{\text{cell37}^2})$                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 |                          | + $A_{cell} \times x_{cell38}^2$ ) - 2 × ( $I_{x_cell}$ + $A_{cell} \times x_{cell39}^2$ ) - 2 × ( $I_{x_cell}$ + $A_{cell} \times x_{cell40}^2$ ) - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                 |                          | $	imes$ (Ix_cell + Acell $	imes$ Xcell41 <sup>2</sup> ) - 2 $	imes$ (Ix_cell + Acell $	imes$ Xcell43 <sup>2</sup> ) - 2 $	imes$ (Ix_cell + Acell $	imes$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                 |                          | $x_{cell44^2}$ ) - 2 × (Ix_cell + Acell × $x_{cell45^2}$ ) - 2 × (Ix_cell + Acell × $x_{cell46^2}$ ) - 2 × (Ix_cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                 |                          | + Acell $\times$ Xcell47 <sup>2</sup> ) - 2 $\times$ (Ix_cell + Acell $\times$ Xcell49 <sup>2</sup> ) - 2 $\times$ (Ix_cell + Acell $\times$ Xcell50 <sup>2</sup> ) - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 |                          | $	imes$ (Ix_cell + Acell $	imes$ Xcell51 <sup>2</sup> ) - 2 $	imes$ (Ix_cell + Acell $	imes$ Xcell52 <sup>2</sup> ) - 2 $	imes$ (Ix_cell + Acell $	imes$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                 |                          | $x_{cell53^2}$ ) - 2 × (Ix_cell + Acell × $x_{cell55^2}$ ) - 2 × (Ix_cell + Acell × $x_{cell56^2}$ ) - 2 × (Ix_cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                 |                          | + Acell $\times$ Xcell57 <sup>2</sup> ) - 2 $\times$ (I <sub>x_cell</sub> + Acell $\times$ Xcell58 <sup>2</sup> ) - 2 $\times$ (I <sub>x_cell</sub> + Acell $\times$ Xcell59 <sup>2</sup> ) - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                 |                          | $\times$ (I <sub>x_cell</sub> + A <sub>cell</sub> $\times$ X <sub>cell61</sub> <sup>2</sup> ) - 2 $\times$ (I <sub>x_cell</sub> + A <sub>cell</sub> $\times$ X <sub>cell62</sub> <sup>2</sup> ) - 2 $\times$ (I <sub>x_cell</sub> + A <sub>cell</sub> $\times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                 |                          | $x_{cell63^2}$ ) - 2 × ( $I_{x_cell}$ + $A_{cell}$ × $x_{cell64^2}$ ) - 2 × ( $I_{x_cell}$ + $A_{cell}$ × $x_{cell65^2}$ ) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                 |                          | 587318944 in <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Net section modulus             |                          | S <sub>x_net</sub> = I <sub>x_net</sub> / (L / 2) = <b>1112346</b> in <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |



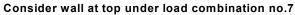
#### Consider wall at maximum moment location under load combination no.7

Axial force, out of plane - Combination No.7 - Ibs/ItShear force, out of plane - Combination No.7 - Ibs/ItMoment force, out of plane - Combination No.7 - Ib\_in 364 28392 1622 13 ft Maximum moment location P = 935 lb/ft Axial load at mid-height of panel Slenderness ratio  $(K \times h) / r = 79.244 < 99$ Nominal axial strength  $P_n = 0.8 \times (0.8 \times f'_m \times (A - 2 \times A_s) + 2 \times A_s \times 0 \text{ ksi}) \times [1 - ((K \times h) / (140 \times A_s) \times (K \times h) + (140 \times A_s) \times (K \times h) \times (K \times$ × r))<sup>2</sup>] = 45849 lb/ft φ = **0.9** Strength reduction factor Design axial strength φ × Pn = 41264 lb/ft  $P / (\phi \times P_n) = 0.023$ PASS - Nominal axial strength exceeds axial load Factored axial stress P / t = 7 psi Factored axial stress limit  $0.2 \times f'_m$  = 300 psi PASS - Allowable stress under out of plane loads exceeds factored axial stress Nominal cracking moment strength  $M_{cr} = S \times f_{r_norm} = 14963$  lb in/ft n = Es / Em = 21.481 Modular ratio Distance to neutral axis  $c_{cr} = (A_s \times f_y + P) / (0.64 \times f'_m) = 0.481$  in Moment of inertia of cracked section  $I_{cr} = n \times (A_s + P \times t / (f_y \times 2 \times d)) \times (d - c_{cr})^2 + c_{cr}^3 / 3 = 73.7 \text{ in}^4/\text{ft}$ Mu0 = M = 28392 lb in/ft By iteration  $\delta_{\text{u0}} = 5 \times M_{\text{cr}} \times h^2 / (48 \times E_m \times I) + 5 \times (M_{\text{u0}} - M_{\text{cr}}) \times h^2 / (48 \times E_m \times I_{\text{cr}}) =$ 1.471 in  $M_{u3} = M_{u0} + P \times \delta_{u2} = 29911 \text{ lb_in/ft}$ 

\_\_\_\_\_ Project No. <u>20-467</u>\_\_\_\_




Calc. By <u>RJS</u> Checked By <u>JH</u> Date <u>3/1/2021</u>


|                                                 | $\delta_{\tt u3}$ = 5 × M <sub>cr</sub> × h <sup>2</sup> / (48 × E <sub>m</sub> × I) + 5 × (M <sub>u3</sub> - M <sub>cr</sub> ) × h <sup>2</sup> / (48 × E <sub>m</sub> × I <sub>cr</sub> ) = |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                 | <b>1.626</b> in                                                                                                                                                                               |
| Bending moment at mid-height of panel           | M= M <sub>u0</sub> + P × δ <sub>u3</sub> = <b>29912</b> lb_in/ft                                                                                                                              |
| Depth of reinforcement                          | d = <b>6.625</b> in                                                                                                                                                                           |
| Strength reduction factor                       | $\phi = 0.9$                                                                                                                                                                                  |
| Tensile strain in reinforcement                 | $\epsilon_{s} = f_{y} / E_{s} = 0.0021$                                                                                                                                                       |
| Maximum usable compressive strain of masonry    | εmu = <b>0.0025</b>                                                                                                                                                                           |
| Fiber of max.compressive strain to neutral axis | $c_{bal} = \epsilon_{mu} \times d / (\epsilon_{mu} + \epsilon_s) = 3.625$ in                                                                                                                  |
| Tensile force at balance point                  | $T_{bal} = A_s \times f_y = 4602 \text{ lb/ft}$                                                                                                                                               |
|                                                 | $\beta_1 = 0.8$                                                                                                                                                                               |
| Compressive force at balance point              | $C_{\text{bal}} = 0.8 \times f'_{\text{m}} \times \beta_1 \times c_{\text{bal}} = 41760 \text{ lb/ft}$                                                                                        |
| Design axial force at balance point             | $P_{bal} = \phi \times (C_{bal} - T_{bal}) = 33442 \text{ lb/ft}$                                                                                                                             |
| Design moment at balance point                  | $M_{\text{bal}} = \phi \times [T_{\text{bal}} \times (d - t / 2) + C_{\text{bal}} \times (t / 2 - \beta_1 \times c_{\text{bal}} / 2)] = 167325 \text{ lb_in/ft}$                              |
| Maximum design moment from integration diagram  | Mc = <b>31767</b> lb_in/ft                                                                                                                                                                    |
|                                                 | M / Mc = 0.942                                                                                                                                                                                |
|                                                 | PASS - Combination of applied axial load and flexure is acceptable                                                                                                                            |

Maximum area of tensile reinforcement (3.3.3.5)

5)  $A_{s_max} = 0.64 \times f'_m \times [\epsilon_{mu} / (\epsilon_{mu} + 1.5 \times \epsilon_s)] \times d / f_y = 0.568 in^2/ft$ PASS - Area of reinforcement provided is less than maximum allowable



Strength interaction diagram



| Shear force                                         | V = <b>364</b> lb/ft                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Compressive force                                   | N <sub>u</sub> = <b>248</b> lb/ft                                                                                                                                                                                                                                                         |
| Net shear area                                      | $A_{nv}$ = d $\times$ I <sub>b</sub> / ((N <sub>web</sub> + 1) $\times$ s <sub>grout</sub> ) = <b>12.939</b> in <sup>2</sup> /ft                                                                                                                                                          |
| Nominal shear strength                              | $V_{n} = min([4 - 1.75 \times min(M / (V \times d), 1)] \times A_{nv} \times \sqrt{(f'_{m} \times 1 \text{ psi})} + 0.25 \times 10^{-1} \text{ m}$                                                                                                                                        |
|                                                     | $N_u$ , 6 × $A_{nv}$ × $\sqrt{(f'_m × 1 psi)}$ = 2067 lb/ft                                                                                                                                                                                                                               |
| Strength reduction factor                           | $\phi_{V} = 0.8$                                                                                                                                                                                                                                                                          |
| Design shear strength                               | $\phi_V \times V_n$ = 1653 lb/ft                                                                                                                                                                                                                                                          |
| Nominal shear strength<br>Strength reduction factor | $\begin{split} &V_n = \min([4 - 1.75 \times \min(M / (V \times d), 1)] \times A_{nv} \times \sqrt{(f'_m \times 1 \text{ psi})} + 0.25 \times \\ &N_u, \ 6 \times A_{nv} \times \sqrt{(f'_m \times 1 \text{ psi})} = \textbf{2067} \text{ lb/ft} \\ &\varphi_v = \textbf{0.8} \end{split}$ |



Project <u>Balderston Auto</u> Project No. <del>20-467</del> Calc. By <u>RJS</u> Checked By <u>JH</u> Date <u>3/1/2021</u>

 $V / (\phi_v \times V_n) = 0.220$ 

PASS - Design shear strength exceeds applied shear strength



Calc. By RJS

\_\_\_\_\_ Project No. <u>20-467</u>\_\_\_\_

\_\_\_\_\_ Checked By\_JH\_\_\_\_ Date\_3/1/2021\_

Tedds calculation version 2.2.04

#### MASONRY WALL PANEL DESIGN TO MSJC-11

Using the strength design method

#### Masonry wall panel details

GL4 Wall - Reinforced single-wythe wall, the wall is pinned at the top and at the bottom for out of plane loads The wall is fixed at the bottom and free at the top for in plane loads

| Panel length | L = <b>62</b> ft |
|--------------|------------------|
| Panel height | h = <b>26</b> ft |
|              | l◀62'▶           |



#### **Seismic properties**

| Seismic design category                          | В                                             |
|--------------------------------------------------|-----------------------------------------------|
| Seismic importance factor (ASCE7 Table 1.5-2)    | l <sub>e</sub> = 1                            |
| Design spectral response acceleration parameter, | short periods (ASCE7 11.4.4)                  |
|                                                  | S <sub>DS</sub> = 0.345                       |
| Seismic wall classification                      | Nonparticipating                              |
|                                                  | No prescriptive minimum seismic reinforcement |
| Redundancy factor, on out-of-plane load          | ρε <b>= 1.0</b>                               |
| Construction details                             |                                               |
| Wall thickness                                   | t = <b>7.625</b> in                           |
|                                                  |                                               |

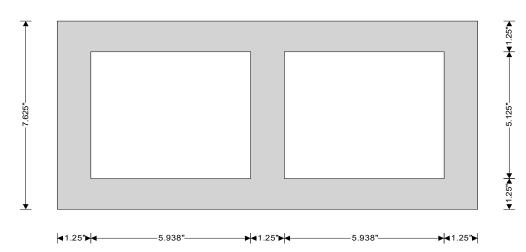


#### **Masonry details**

Hollow concrete units grouted at 48 in on center in running bond fully bedded with PCL class M mortar

Compressive strength of unit

Density of masonry units


Height of masonry units

f'<sub>cu</sub> = **1900** psi γ<sub>block</sub> = **115** lb/ft<sup>3</sup> h<sub>b</sub> = **7.625** in

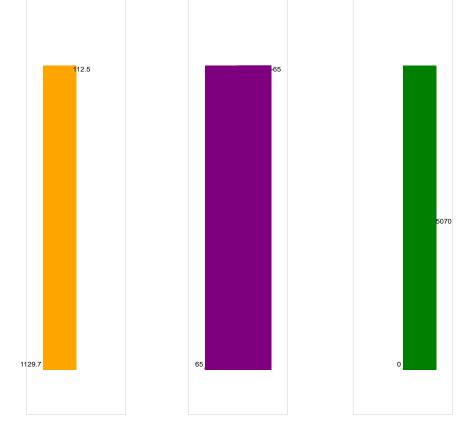
Sht. No. 1 C8<sup>of</sup> 18 5



| Length of masonry units | l₀ = <b>15.625</b> in                                                                                                                                                                                          |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number of internal webs | N <sub>web</sub> = 1                                                                                                                                                                                           |
| Number of end webs      | $N_{end} = 2$                                                                                                                                                                                                  |
| Internal web thickness  | t <sub>bw</sub> = <b>1.25</b> in                                                                                                                                                                               |
| Face shell thickness    | t <sub>bf</sub> = <b>1.25</b> in                                                                                                                                                                               |
| End web thickness       | t <sub>be</sub> = <b>1.25</b> in                                                                                                                                                                               |
| Area of block           | $A_{block} = [t \times l_{b} - (l_{b} - N_{web} \times t_{bw} - N_{end} \times t_{be}) \times (t - 2 \times t_{bf})] / l_{b} = 44.76 \text{ in}^2/ft$                                                          |
| Area of grout           | $A_{\text{grout}} = [0.17 \times (I_{\text{b}} - N_{\text{web}} \times t_{\text{bw}} - N_{\text{end}} \times t_{\text{be}}) \times (t - 2 \times t_{\text{bf}})] / I_{\text{b}} = 7.95 \text{ in}^2/\text{ft}$ |
| Density of grout        | $\gamma_{\text{grout}} = 140 \text{ lb/ft}^3$                                                                                                                                                                  |
| Self weight of wall     | wsw = $A_{block} \times \gamma_{block} + A_{grout} \times \gamma_{grout} = 43.47 \text{ psf}$                                                                                                                  |
| ◀                       | —15.625"►                                                                                                                                                                                                      |



#### From TMS 602-11 Table 2 - Compressive strength of masonry

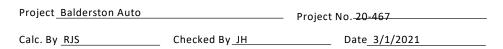

|                                                | gin or macomy                                                    |
|------------------------------------------------|------------------------------------------------------------------|
| Net compressive strength of masonry            | f' <sub>m</sub> = <b>1500</b> psi                                |
| Modulus of elasticity for masonry              | E <sub>m</sub> = 900 × f'm = <b>1350000</b> psi                  |
| Shear modulus of masonry                       | $G_v = 0.4 \times E_m = $ <b>540000</b> psi                      |
| From TMS 402 -11 Table 3.1.8.2 - Modulus of ru | upture                                                           |
| Modulus of rupture normal to bed               | fr_norm <b>= 80</b> psi                                          |
| Modulus of rupture parallel to bed             | f <sub>r_para</sub> = <b>125</b> psi                             |
| Reinforcement details                          |                                                                  |
| Yield strength of reinforcement                | fy = <b>60000</b> psi                                            |
| Allowable tensile stress in reinforcement      | F <sub>s</sub> = <b>32000</b> psi                                |
| Modulus of elasticity for reinforcement        | Es = <b>29000000</b> psi                                         |
| Vertical reinforcement provided                | No.5 bars at 48 in centers                                       |
| Area of vertical reinforcement                 | $A_s = \pi \times Dia^2 / (4 \times s) = 0.08 in^2/ft$           |
| Lateral out-of-plane loads                     |                                                                  |
| Wind load on panel                             | W = <b>5</b> psf                                                 |
| Wind load on parapet                           | W <sub>p</sub> = <b>70</b> psf                                   |
| Seismic load factor (ASCE7 12.11.1)            | $F_{p} = 0.4 \times S_{\text{DS}} \times I_{e} = \textbf{0.138}$ |
| Seismic load from wall                         | $E_{wall} = max(F_{p}, 0.1) \times w_{SW} = 6 psf$               |
| Additional seimic load                         | E <sub>add</sub> = <b>0</b> psf                                  |
| Seismic lateral load on panel                  | E = E <sub>wall</sub> + E <sub>add</sub> = <b>6</b> psf          |
|                                                |                                                                  |

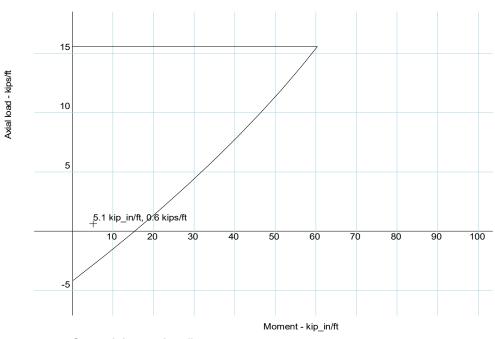





| Lateral in-plane loads         |                            |                                                                                                                                                                                                   |
|--------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vertical loading details       |                            |                                                                                                                                                                                                   |
| Dead load at supported level   |                            | DL = <b>125</b> lb/ft                                                                                                                                                                             |
| Live load from above           |                            | LL <sub>above</sub> = <b>250</b> lb/ft                                                                                                                                                            |
| Vertical seismic load factor a | oplied to dead load        | $F_{Ev} = 0.2 \times S_{DS} = 0.069$                                                                                                                                                              |
| From ASCE 7-10 cl.2.3.2 - C    | ombining factored I        | oads using strength design (Utilization)                                                                                                                                                          |
| Load combination no.1          | $1.4 \times DL$ (0.113)    |                                                                                                                                                                                                   |
| Load combination no.5          | 1.2 × DL + W + LL          | + $0.5 \times (LL_r \text{ or } SL \text{ or } RL) (0.272)$                                                                                                                                       |
| Load combination no.7          | $0.9 \times DL + W$ (0.29) | 94)                                                                                                                                                                                               |
| Properties of masonry sect     | ion                        |                                                                                                                                                                                                   |
| Cross-sectional area           |                            | $\label{eq:A} A = [t \times I_b - 0.83 \times (I_b - N_{web} \times t_{bw} - N_{end} \times t_{be}) \times (t - 2 \times t_{bf})] \ / \ I_b = \textbf{52.7}$ in²/ft                               |
| Properties for walls loaded ou | ıt-of-plane:               |                                                                                                                                                                                                   |
| Moment of inertia              |                            | I = t <sup>3</sup> / 12 - 0.83 × (I <sub>b</sub> - N <sub>web</sub> × t <sub>bw</sub> - N <sub>end</sub> × t <sub>be</sub> ) × (t - 2 × t <sub>bf</sub> ) <sup>3</sup> / (12 × I <sub>b</sub> ) = |
|                                |                            | <b>358.4</b> in <sup>4</sup> /ft                                                                                                                                                                  |
| Section modulus                |                            | S = I / c = <b>94</b> in <sup>3</sup> /ft                                                                                                                                                         |
| Radius of gyration             |                            | r = √[I / A] = <b>2.608</b> in                                                                                                                                                                    |
| Effective height factor        |                            | K = 1                                                                                                                                                                                             |
| Consider wall at maximum       | moment location un         | der load combination no.7                                                                                                                                                                         |

Axial force, out of plane - Combination No.7 - Ibs/ftShear force, out of plane - Combination No.7 - Ibs/ftMoment force, out of plane - Combination No.7 - Ib\_in





Maximum moment location



| Axial load at mid-height of panel               | P = <b>621</b> lb/ft                                                                                                                                                     |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Slenderness ratio                               | (K × h) / r = <b>119.645</b> > 99                                                                                                                                        |
| Nominal axial strength                          | $P_{n} = 0.8 \times (0.8 \times f'_m \times (A - A_s) + A_s \times 0 \text{ ksi}) \times (70 \times r \ / \ (K \times h))^2 = \textbf{17294}$                            |
|                                                 | lb/ft                                                                                                                                                                    |
| Strength reduction factor                       | $\phi = 0.9$                                                                                                                                                             |
| Design axial strength                           | $\phi \times P_n$ = <b>15565</b> lb/ft                                                                                                                                   |
|                                                 | P / (φ × P <sub>n</sub> ) = <b>0.040</b>                                                                                                                                 |
|                                                 | PASS - Nominal axial strength exceeds axial load                                                                                                                         |
| Factored axial stress                           | P / t = <b>7</b> psi                                                                                                                                                     |
| Factored axial stress limit                     | 0.05 × f'm = <b>75</b> psi                                                                                                                                               |
| PASS - Allo                                     | owable stress under out of plane loads exceeds factored axial stress                                                                                                     |
| Nominal cracking moment strength                | $M_{cr} = S \times f_{r_norm} = 7489 \text{ Ib_in/ft}$                                                                                                                   |
| Modular ratio                                   | $n = E_s / E_m = 21.481$                                                                                                                                                 |
| Distance to neutral axis                        | $c_{cr} = (A_s \times f_y + P) / (0.64 \times f_m) = 0.453$ in                                                                                                           |
| Moment of inertia of cracked section            | $I_{cr} = n \times (A_s + P \times t / (f_y \times 2 \times d)) \times (d - c_{cr})^2 + c_{cr}^3 / 3 = 22.1 \text{ in}^4/\text{ft}$                                      |
| By iteration                                    | $M_{u0} = M = 5070 \text{ lb_in/ft}$                                                                                                                                     |
|                                                 | $\delta_{u0}$ = 5 × M <sub>u0</sub> × h <sup>2</sup> / (48 × E <sub>m</sub> × I) = <b>0.106</b> in                                                                       |
|                                                 | $M_{u1} = M_{u0} + P \times \delta_{u0} = 5136 \text{ lb_in/ft}$                                                                                                         |
|                                                 | $\delta_{u1}$ = 5 $\times$ Mu1 $\times$ h² / (48 $\times$ Em $\times$ I) = 0.108 in                                                                                      |
| Bending moment at mid-height of panel           | $M=M_{u0} + P \times \delta_{u1} = 5137 \text{ Ib_in/ft}$                                                                                                                |
| Depth of reinforcement                          | d = <b>3.867</b> in                                                                                                                                                      |
| Strength reduction factor                       | $\boldsymbol{\varphi} = 0.9$                                                                                                                                             |
| Tensile strain in reinforcement                 | $\epsilon_{s} = f_{y} / E_{s} = 0.0021$                                                                                                                                  |
| Maximum usable compressive strain of masonry    | εmu = <b>0.0025</b>                                                                                                                                                      |
| Fiber of max.compressive strain to neutral axis | $c_{bal} = \epsilon_{mu} \times d / (\epsilon_{mu} + \epsilon_s) = 2.116$ in                                                                                             |
| Tensile force at balance point                  | $T_{bal} = A_s \times f_y = 4602 \text{ lb/ft}$                                                                                                                          |
|                                                 | $\beta_1 = 0.8$                                                                                                                                                          |
| Compressive force at balance point              | $C_{\text{bal}}$ = 0.8 × f'm × $\beta_1$ × $c_{\text{bal}}$ = 24375 lb/ft                                                                                                |
| Design axial force at balance point             | $P_{bal} = \phi \times (C_{bal} - T_{bal}) = 17796 \text{ lb/ft}$                                                                                                        |
| Design moment at balance point                  | $M_{\text{bal}} = \phi \times [T_{\text{bal}} \times (d - t / 2) + C_{\text{bal}} \times (t / 2 - \beta_1 \times c_{\text{bal}} / 2)] = \textbf{65296} \text{ Ib_in/ft}$ |
| Maximum design moment from integration diagram  | n Mc = <b>17473</b> Ib_in/ft                                                                                                                                             |
|                                                 | $M / M_c = 0.294$                                                                                                                                                        |
|                                                 | PASS - Combination of applied axial load and flexure is acceptable                                                                                                       |
| Maximum area of tensile reinforcement (3.3.3.5) | $A_{s\_max} = 0.64 \times f'_m \times [\epsilon_{mu} / (\epsilon_{mu} + 1.5 \times \epsilon_s)] \times d / f_y = 0.331 \text{ in}^2/\text{ft}$                           |
| PA                                              | SS - Area of reinforcement provided is less than maximum allowable                                                                                                       |







Strength interaction diagram

#### Consider wall at top under load combination no.7

| Shear force               | V = <b>65</b> lb/ft                                                                                                                            |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Compressive force         | Nu = <b>112</b> lb/ft                                                                                                                          |
| Net shear area            | $A_{nv} = d \times I_b / ((N_{web} + 1) \times s_{grout}) = 7.553 \text{ in}^2/\text{ft}$                                                      |
| Nominal shear strength    | $V_n = min([4 - 1.75 \times min(M / (V \times d), 1)] \times A_{nv} \times \sqrt{(f'_m \times 1 \text{ psi})} + 0.25 \times 10^{-1} \text{ m}$ |
|                           | Nu, $6 \times A_{nv} \times \sqrt{(f'_m \times 1 \text{ psi})} = 1198 \text{ lb/ft}$                                                           |
| Strength reduction factor | $\phi_v = 0.8$                                                                                                                                 |
| Design shear strength     | $\phi_v \times V_n = 959 \text{ lb/ft}$                                                                                                        |
|                           | $V / (\phi_{V} \times V_{n}) = 0.068$                                                                                                          |
|                           | PASS - Design shear strength exceeds applied shear strength                                                                                    |



Calc. by <u>RS</u>

\_\_\_\_\_ Job Ref. 20-467\_\_\_\_

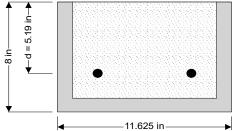
\_\_\_\_\_ Chk'd by \_\_\_\_\_ Date<u>3/1/2021</u>

### MASONRY LINTEL DESIGN TO TMS/MSJC 2013

#### Using the allowable stress design method

#### Masonry details

| Masonry type                                  | Concrete                                           |
|-----------------------------------------------|----------------------------------------------------|
| Density of masonry unit                       | $\gamma = 135 \text{ lb/ft}^3$                     |
| Pattern bond                                  | Running                                            |
| Mortar type                                   | PCL Type M                                         |
| Compressive strength of masonry unit          | f'cu = 1900.0 psi                                  |
| Net compressive strength of masonry (Table 2) | f'm = 1900.0 psi                                   |
| Modulus of elasticity (4.2.2)                 | $E_m$ = 900 × f' <sub>m</sub> = <b>1710000</b> psi |
| Allowable flexural tensile stress (8.2.4.2)   | Ft = 106.0 psi                                     |
| Deinfersement deteile                         |                                                    |


#### Reinforcement details

Allowable tensile stress Modulus of elasticity of steel

#### Cover to reinforcement

Bottom cover to reinforcement Side cover to reinforcement c<sub>nom\_b</sub> = 1.5 in c<sub>nom\_s</sub> = 1.5 in

F<sub>s</sub> = 32000 psi E<sub>s</sub> = 29000000 psi



2 x No.5 bars

| Section properties                           |                                                                                                           |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Modular ratio                                | n = E <sub>s</sub> / E <sub>m</sub> = <b>16.96</b>                                                        |
| Section width                                | b = <b>11.625</b> in                                                                                      |
| Section depth                                | h = 8 in                                                                                                  |
| Net shear area                               | $A_{nv} = b \times h = 93 \text{ in}^2$                                                                   |
| Section modulus                              | $S = b \times h^2 / 6 = 124 in^3$                                                                         |
| Depth to tension reinforcement               | d = <b>5.19</b> in                                                                                        |
| Flexure design (Chapter 8)                   |                                                                                                           |
| Tension reinforcement                        | 2 x No. 5 bars                                                                                            |
| Area of tension reinforcement                | As = Nbot × BarAreabot = 0.62 in <sup>2</sup>                                                             |
| Reinforcement ratio                          | $\rho_{ratio}$ = As / (b × d) = <b>0.01028</b>                                                            |
| Neutral axis factor                          | k = $\sqrt{(2 \times \rho_{ratio} \times n + (\rho_{ratio} \times n)^2)} - \rho_{ratio} \times n = 0.441$ |
| Lever arm factor                             | j = 1 - k / 3 = <b>0.853</b>                                                                              |
| Cracking moment                              | $M_{cr} = 2.5 \times F_t \times S = 2.7 \text{ kip}_ft$                                                   |
| Design bending moment                        | M = 1.00 kip_ft                                                                                           |
| Tensile stress in reinforcement              | f <sub>s</sub> = M / (A <sub>s</sub> × j × d) = <b>4372</b> psi                                           |
| Allowable tensile stress in reinf. (8.3.3.1) | Fs = <b>32000</b> psi                                                                                     |
| Reinforcement stress ratio                   | fs / Fs = 0.137                                                                                           |
|                                              |                                                                                                           |

Tedds calculation version 1.2.01



Calc. by <u>RS</u> Chk'd by \_\_\_\_\_ Date<u>3/1/2021</u>

|                                         | PASS - Allowable tensile stress exceeds tensile stress due to flexure                 |
|-----------------------------------------|---------------------------------------------------------------------------------------|
| Compressive stress in masonry           | $f_b = 2 \times M / (j \times k \times b \times d^2) = 203.6 \text{ psi}$             |
| Allowable stress in masonry (8.3.4.2.2) | F <sub>b</sub> = 0.45 × f' <sub>m</sub> = <b>855.0</b> psi                            |
| Masonry stress ratio                    | f <sub>b</sub> / F <sub>b</sub> = <b>0.238</b>                                        |
| PASS -                                  | Allowable compressive stress exceeds compressive stress due to flexure                |
| Shear design (Chapter 8)                |                                                                                       |
| Design shear force                      | V = <b>0.55</b> kips                                                                  |
| Depth of shear area                     | d <sub>v</sub> = <b>8.00</b> in                                                       |
| Moment shear relationship, M/Vd         | Assume M_Vd <sub>ratio</sub> = 1                                                      |
| Shear stress (8-24)                     | f <sub>v</sub> = V / A <sub>nv</sub> = <b>5.9</b> psi                                 |
| Allowable masonry shear stress (8-29)   | $F_v = 1/2 \times (4.0 - 1.75 \times M_V d_{ratio}) \times \sqrt{(f'_m \times 1psi)}$ |
|                                         | F <sub>v</sub> = <b>49.0</b> psi                                                      |
| Masonry shear stress ratio              | f <sub>v</sub> / F <sub>v</sub> = <b>0.121</b>                                        |

PASS - Allowable shear stress exceeds shear stress in masonry



Project Balderston

Calc. By RJS

\_\_\_\_\_ Project No.<u>-20-467</u>\_\_\_\_

Checked By\_\_\_\_\_ Date 2/10/2021

Tedds calculation version 1.2.01

#### MASONRY LINTEL DESIGN TO TMS/MSJC 2013

#### Using the allowable stress design method

#### Masonry details

| Masonry type                                  | Concrete                                                    |
|-----------------------------------------------|-------------------------------------------------------------|
| Density of masonry unit                       | $\gamma$ = 135 lb/ft <sup>3</sup>                           |
| Pattern bond                                  | Running                                                     |
| Mortar type                                   | PCL Type M                                                  |
| Compressive strength of masonry unit          | f'cu = 1900.0 psi                                           |
| Net compressive strength of masonry (Table 2) | f'm = 1900.0 psi                                            |
| Modulus of elasticity (4.2.2)                 | E <sub>m</sub> = 900 × f' <sub>m</sub> = <b>1710000</b> psi |
| Allowable flexural tensile stress (8.2.4.2)   | Ft = 106.0 psi                                              |
| Reinforcement details                         |                                                             |
| Allowable tensile stress                      | F <sub>s</sub> = 32000 psi                                  |

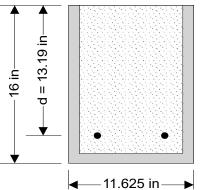
# Allowable tensile stress

Modulus of elasticity of steel

#### **Cover to reinforcement**

Bottom cover to reinforcement Side cover to reinforcement

 $c_{nom b} = 1.5 in$  $c_{nom_s} = 1.5$  in


Es = 29000000 psi

n = Es / Em = 16.96

 $A_{nv} = b \times h = 186 \text{ in}^2$ 

b = **11.625** in

h = **16** in



2 x No.5 bars

#### Section properties

Modular ratio Section width Section depth Net shear area Section modulus Depth to tension reinforcement

### Flexure design (Chapter 8)

Tension reinforcement Area of tension reinforcement Reinforcement ratio Neutral axis factor Lever arm factor Cracking moment

 $S = b \times h^2 / 6 = 496 in^3$ d = **13.19** in 2 x No. 5 bars As = Nbot × BarAreabot = 0.62 in<sup>2</sup>  $\rho_{ratio} = A_s / (b \times d) = 0.00404$  $k = \sqrt{(2 \times \rho_{ratio} \times n + (\rho_{ratio} \times n)^2)} - \rho_{ratio} \times n = 0.308$ j = 1 - k / 3 = **0.897**  $M_{cr}$  = 2.5 × F<sub>t</sub> × S = **11.0** kip\_ft

Sht. No. <u>1</u> C15 of 18 2

 Project Balderston
 Project No. -20-467

 Calc. By RJS
 Checked By
 Date 2/10/2021

| Design bending moment                        | M = <b>15.80</b> kip_ft                                                   |
|----------------------------------------------|---------------------------------------------------------------------------|
| Tensile stress in reinforcement              | fs = M / (As × j × d) = <b>25838</b> psi                                  |
| Allowable tensile stress in reinf. (8.3.3.1) | Fs <b>= 32000</b> psi                                                     |
| Reinforcement stress ratio                   | fs / Fs = <b>0.807</b>                                                    |
|                                              | PASS - Allowable tensile stress exceeds tensile stress due to flexure     |
| Compressive stress in masonry                | $f_b = 2 \times M / (j \times k \times b \times d^2) = 678.3 \text{ psi}$ |
| Allowable stress in masonry (8.3.4.2.2)      | Fb = 0.45 × f'm = <b>855.0</b> psi                                        |
| Masonry stress ratio                         | f <sub>b</sub> / F <sub>b</sub> = <b>0.793</b>                            |
| PASS - AI                                    | lowable compressive stress exceeds compressive stress due to flexure      |
| Shear design (Chapter 8)                     |                                                                           |
| Design shear force                           | V = <b>4.80</b> kips                                                      |
| Depth of shear area                          | d <sub>v</sub> = <b>16.00</b> in                                          |
| Moment shear relationship, M/Vd              | Assume M_Vd <sub>ratio</sub> = 1                                          |
| Shear stress (8-24)                          | f <sub>v</sub> = V / A <sub>nv</sub> = <b>25.8</b> psi                    |

F<sub>v</sub> = **49.0** psi

 $f_v / F_v = 0.526$ 

Masonry shear stress ratio

Allowable masonry shear stress (8-29)

PASS - Allowable shear stress exceeds shear stress in masonry

 $F_v = 1/2 \times (4.0 - 1.75 \times M_V d_{ratio}) \times \sqrt{(f'_m \times 1psi)}$ 



\_\_\_\_\_ Project No. <u>20-467</u>

Calc. By RJS

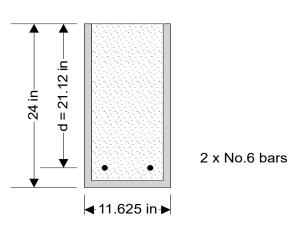
\_\_\_\_\_ Checked By\_\_\_\_\_ Date\_2/10/2021\_

#### MASONRY LINTEL DESIGN TO TMS/MSJC 2013

#### Using the allowable stress design method

### Masonry details

| Masonry type                                  | Concrete                                      |
|-----------------------------------------------|-----------------------------------------------|
| Density of masonry unit                       | $\gamma$ = 135 lb/ft <sup>3</sup>             |
| Pattern bond                                  | Running                                       |
| Mortar type                                   | РСL Туре М                                    |
| Compressive strength of masonry unit          | f'cu = 1900.0 psi                             |
| Net compressive strength of masonry (Table 2) | f'm = 1900.0 psi                              |
| Modulus of elasticity (4.2.2)                 | $E_m = 900 \times f'_m = 1710000 \text{ psi}$ |
| Allowable flexural tensile stress (8.2.4.2)   | Ft = 106.0 psi                                |
| Reinforcement details                         |                                               |
| Allowable tensile stress                      | F <sub>s</sub> = 32000 psi                    |


Allowable tensile stress Modulus of elasticity of steel

#### Cover to reinforcement

Bottom cover to reinforcement Side cover to reinforcement

 $c_{nom b} = 1.5 in$  $c_{nom_s} = 1.5$  in

Es = 29000000 psi



#### Section properties

Modular ratio Section width Section depth Net shear area Section modulus Depth to tension reinforcement

#### Flexure design (Chapter 8)

Tension reinforcement Area of tension reinforcement Reinforcement ratio Neutral axis factor Lever arm factor Cracking moment

n = Es / Em = 16.96 b = **11.625** in h = **24** in  $A_{nv} = b \times h = 279 \text{ in}^2$  $S = b \times h^2 / 6 = 1116 in^3$ d = **21.12** in 2 x No. 6 bars As = Nbot × BarAreabot = 0.88 in<sup>2</sup>  $\rho_{ratio}$ = As / (b × d) = 0.00358 k =  $\sqrt{(2 \times \rho_{ratio} \times n + (\rho_{ratio} \times n)^2)} - \rho_{ratio} \times n = 0.293$ j = 1 - k / 3 = **0.902**  $M_{cr}$  = 2.5 × F<sub>t</sub> × S = **24.6** kip\_ft

Tedds calculation version 1.2.01

Project Balderston Auto Project No.-20-467

PASS - Allowable shear stress exceeds shear stress in masonry

Calc. By <u>RJS</u> Checked By\_\_\_\_\_ Date <u>2/10/2021</u>

| Design bending moment                        | M = <b>28.00</b> kip_ft                                                   |
|----------------------------------------------|---------------------------------------------------------------------------|
| Tensile stress in reinforcement              | fs = M / (As × j × d) = <b>20036</b> psi                                  |
| Allowable tensile stress in reinf. (8.3.3.1) | Fs <b>= 32000</b> psi                                                     |
| Reinforcement stress ratio                   | fs / Fs = <b>0.626</b>                                                    |
|                                              | PASS - Allowable tensile stress exceeds tensile stress due to flexure     |
| Compressive stress in masonry                | $f_b = 2 \times M / (j \times k \times b \times d^2) = 490.0 \text{ psi}$ |
| Allowable stress in masonry (8.3.4.2.2)      | F <sub>b</sub> = 0.45 × f' <sub>m</sub> = <b>855.0</b> psi                |
| Masonry stress ratio                         | f <sub>b</sub> / F <sub>b</sub> = <b>0.573</b>                            |
| PASS - A                                     | llowable compressive stress exceeds compressive stress due to flexure     |
| Shear design (Chapter 8)                     |                                                                           |
| Design shear force                           | V = <b>5.00</b> kips                                                      |
| Depth of shear area                          | d <sub>v</sub> = <b>24.00</b> in                                          |
| Moment shear relationship, M/Vd              |                                                                           |
| Moment shear relationship, M/Vu              | Assume M_Vd <sub>ratio</sub> = 1                                          |
| Shear stress (8-24)                          | Assume $M_V d_{ratio} = 1$<br>$f_v = V / A_{nv} = 17.9$ psi               |
|                                              | —                                                                         |
| Shear stress (8-24)                          | $f_v = V / A_{nv} = 17.9$ psi                                             |

 $f_v / F_v = 0.365$ 

Masonry shear stress ratio

Sht. No. 2 C18 of 18 2



| Project Balderston | Auto          | Project No. 20-467 |
|--------------------|---------------|--------------------|
| Calc. By RS        | Checked By_JB | Date_02/17/2021    |

### **Summary**

The lateral stability system of the project referenced above consists of metal deck diaphragms and CMU shear walls. All roof diaphragms are designed to transfer lateral loads from the exterior walls, and those induced into the deck by seismic loads, into the shear wall system. Lateral resisting members directly transfer all lateral forces into the foundation system.

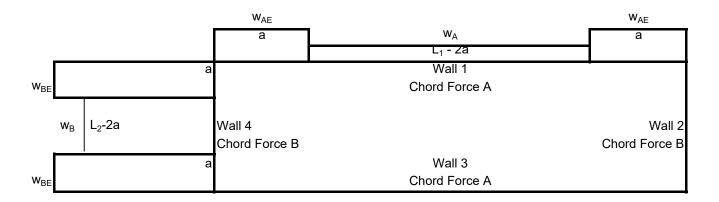
The following section of calculations covers the complete design of the lateral stability system for the project referenced above including the distribution of lateral forces into the individual elements. Refer to the "Loads" section of these calculations for the determination of all wind and seismic loads.



Calc. By RJS

### Wind Load Distribution - Single Diaphragm Design, Envelope Method

#### General Building Info :


|          |           | Wall Height to |                | Total Wall |
|----------|-----------|----------------|----------------|------------|
|          | Length    | Roof           | Parapet Height | Height     |
| Wall 1 = | 220.00 ft | 25.00 ft       | 3.00 ft        | 28.00 ft   |
| Wall 2 = | 58.00 ft  | 25.00 ft       | 3.00 ft        | 28.00 ft   |
| Wall 3 = | 220.00 ft | 25.00 ft       | 3.00 ft        | 28.00 ft   |
| Wall 4 = | 58.00 ft  | 25.00 ft       | 3.00 ft        | 28.00 ft   |

#### **General Wind Loading Info :**

| ASD Factor =<br>a =<br>Zone 1 Pressure =<br>Zone 1E Pressure =<br>Zone 4 Pressure = | 0.6<br>7.25 ft<br>5.60 psf<br>10.90 psf<br>11.90 psf<br>15.40 psf | (1 for ACSE 7-05, 0.6 for ASCE 7-10)<br>(Length of End Zone per ACSE)<br>(Refer to Tedd's Calculations for Pressures) |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Zone 4E Pressure =<br>WW Parapet Pressure =<br>LW Parapet Pressure =                | 15.40 psf<br>39.89 psf<br>26.59 psf                               |                                                                                                                       |

#### Wind Loading @ Roof:

| L <sub>1</sub> - 2a =<br>Distributed Force, w <sub>A</sub> =<br>Distributed Force, w <sub>AE</sub> = | 205.50 ft<br>418.19 plf<br>528.19 plf | (Pressures are Based on Entered Wind Pressures) |
|------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------|
| L <sub>2</sub> - 2a =<br>Distributed Force, w <sub>B</sub> =<br>Distributed Force, w <sub>BE</sub> = | 43.50 ft<br>418.19 plf<br>528.19 plf  | (Pressures are Based on Entered Wind Pressures) |



#### Shear Wall Loads:

| Wall 1 = | 7.8 k ASD  | x Factor = | 12.9 k LRFD | (Distributed Load x Effective Trib) |
|----------|------------|------------|-------------|-------------------------------------|
| Wall 2 = | 28.1 k ASD | x Factor = | 46.8 k LRFD | (Distributed Load x Effective Trib) |
| Wall 3 = | 7.8 k ASD  | x Factor = | 12.9 k LRFD | (Distributed Load x Effective Trib) |
| Wall 4 = | 28.1 k ASD | x Factor = | 46.8 k LRFD | (Distributed Load x Effective Trib) |



| Project. | Balderston Auto |            | Project No. 20-4 | 67        |
|----------|-----------------|------------|------------------|-----------|
| Calc. By | RJS             | Checked By | Date             | 2/20/2021 |

56.15808 0.255264 0.246461793

| STRUCTURAL | Proje |
|------------|-------|
| ENGINEERS  | Calc. |

| Project Balderston Auto |            | Project No. 20-4 | 467       |  |
|-------------------------|------------|------------------|-----------|--|
| Calc. By RJS            | Checked By | Date             | 2/20/2021 |  |

### Diaphragm Loads:

| Wall 1 = | 35.3 plf ASD  | x Factor = | 58.8 plf LRFD  | (Wall 1 Load*1000/Wall 1 Length) |
|----------|---------------|------------|----------------|----------------------------------|
| Wall 2 = | 484.1 plf ASD | x Factor = | 806.9 plf LRFD | (Wall 2 Load*1000/Wall 2 Length) |
| Wall 3 = | 35.3 plf ASD  | x Factor = | 58.8 plf LRFD  | (Wall 3 Load*1000/Wall 3 Length) |
| Wall 4 = | 484.1 plf ASD | x Factor = | 806.9 plf LRFD | (Wall 4 Load*1000/Wall 4 Length) |

### Deck Design:

| Deck =               | 22 GA Type B Metal Roof deck | (Per Vulcraft Catalog) |
|----------------------|------------------------------|------------------------|
| Weld Pattern =       | 36/7                         | (Per Vulcraft Catalog) |
| Sidelap Fasteners =  | (2) #10 TEK Screws           | (Per Vulcraft Catalog) |
| Allowable Load =     | 328.0 plf ASD                | (Per Vulcraft Catalog) |
| Max Diaphragm Load = | 484.1 plf ASD                |                        |
|                      | N.G.                         |                        |

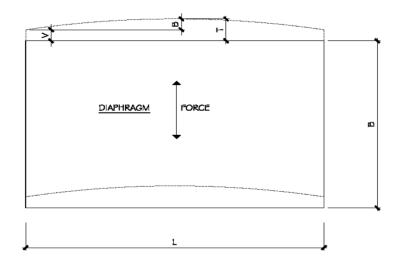
### Chord Loads:

| Chord Force A = | 26.2 k ASD | x Factor = | 43.7 k LRFD | ( M <sub>wind</sub> against A / Wall B Length ) |
|-----------------|------------|------------|-------------|-------------------------------------------------|
| Chord Force B = | 0.5 k ASD  | x Factor = | 0.8 k LRFD  | ( M <sub>wind</sub> against B / Wall A Length ) |

### Chord Design:

| Chord A Design:        |             |                                           |
|------------------------|-------------|-------------------------------------------|
| Angle =                | L3x3x1/2    |                                           |
| Angle Area =           | 2.8 in^2    | (AISC Manual Table 1-7)                   |
| Tensile Capacity, ΦT = | 89.4 k LRFD | (AISC 360 Eq. D2-1Φ⊺ = 0.9*Area *36 ksi ) |
| Comp. Capacity, ФР =   | 39.7 k LRFD | (AISC Manual Table 4-11 )                 |
|                        | N.G.        |                                           |
| Chord B Design:        |             |                                           |
| Angle =                | L3x3x1/4    |                                           |
| Angle Area =           | 2.8 in^2    | (AISC Manual Table 1-7)                   |
| Tensile Capacity, ΦT = | 89.4 k LRFD | (AISC 360 Eq. D2-1ΦT = 0.9*Area *36 ksi ) |
| Comp. Capacity, ΦP =   | 32.6 k LRFD | (AISC Manual Table 4-11)                  |
|                        | ОК          |                                           |




Project Balderston Auto Project No. 20-467
Calc. By RJS Checked By Date 2/20/2021

### **Diaphragm Deflection Calculations : Simply Supported**

| <u>Span</u> | <u>Max Joist</u><br>Spacing (ft) | <u>L (ft)</u> | <u>B (ft)</u> | <u>E (ksi)</u> | <u>Chord Area A</u><br>(in <sup>2</sup> ) |
|-------------|----------------------------------|---------------|---------------|----------------|-------------------------------------------|
| Wall 2 to 4 | 6                                | 220.00        | 58.00         | 29000          | 2.76                                      |
| Wall 1 to 3 | 6                                | 58.00         | 220.00        | 29000          | 2.76                                      |

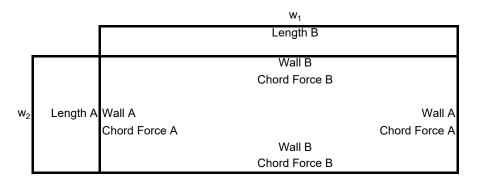
| Values From Vulcraft Deck Catalog |           | Loading   | Deflections     |                |                |                |
|-----------------------------------|-----------|-----------|-----------------|----------------|----------------|----------------|
| <u>K<sub>2</sub></u>              | <u>DB</u> | <u>K₁</u> | <u>q(lb/ft)</u> | <u>∆B (in)</u> | <u>∆V (in)</u> | <u>∆T (in)</u> |
| 870                               | 129       | 0.204     | 250.914         | 0.68           | 0.418225305    | 1.10           |
| 870                               | 129       | 0.204     | 250.914         | 0.00           | 0.007663484    | 0.01           |

- $\Delta B$ = Deflection due to moment in inches
- $\Delta V$ = Deflection due to shear in inches
- ΔT= Total deflection in inches
- q(lb/ft)= distributed load on diaphragm
  - $K_1$ = Factor from steel deck catalog
  - DB= Factor from steel deck catalog
  - $K_2$  = Factor from steel deck catalog
- A(in<sup>2</sup>)= Area of chord member
- E (ksi)= Modulus of elasticity of steel
- B (ft)= Diaphragm Depth
- L (ft)= Diaphragm Span
- I (in<sup>4</sup>)= Moment of Inertia of diaphragm
- G' (k/in) = Effective shear modulus of decking
  - Span = Max Joist Spacing



5qL<sup>4</sup>/384El qL<sup>2</sup>/8BG' ΔB+ΔV

2A(B/2)<sup>2</sup> K<sub>2</sub>/(3.78+(0.38\*DB/Span)+3\*K<sub>1</sub>\*Span)




| Project Balderston Auto |            | Project No. 20- | 467       |
|-------------------------|------------|-----------------|-----------|
| Calc. By_RJS            | Checked By | Date_           | 2/20/2021 |

## Seismic Load Distribution - Single Diaphragm Design

### General Info :

| Seismic Response Coeff. C <sub>s</sub> =<br>Roof Dead Load =                                                       | 0.0475<br>15.00 psf                                         | (from Tedds Seismic Load Calculations)                                                                           |
|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Wall Length A =<br>Wall Weight A =<br>Wall Height A =<br>Parapet Height A =<br>Distributed Force, w <sub>1</sub> = | 183.00 ft<br>12.00 psf<br>16.67 ft<br>1.00 ft<br>148.63 plf | (Roof to FFE)<br>(Top of Parapet to Roof)<br>((Length A*Dead+(0.5*Height B+Parapet)*Weight B) * C <sub>S</sub> ) |
| Wall Length B =<br>Wall Weight B =<br>Wall Height B =<br>Parapet Height B =<br>Distributed Force, w <sub>2</sub> = | 225.00 ft<br>12.00 psf<br>16.00 ft<br>8.00 ft<br>170.95 plf | (Roof to FFE)<br>(Top of Parapet to Roof)<br>((Length B*Dead+(0.5*Height A+Parapet)*Weight A) * C <sub>S</sub> ) |



### Shear Wall Loads from Diaphragm:

|                    | /all A =<br>/all B = |                 | /0.7 =<br>/0.7 = | 16.7 k LRFD<br>15.6 k LRFD     | ( (0.7*w <sub>1</sub> *Length B*0.5)/1000 )<br>( (0.7*w <sub>2</sub> *Length A*0.5)/1000 )                |
|--------------------|----------------------|-----------------|------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------|
| Total Shear        | Wall Loads (         | Includes Wall W | leight):         |                                |                                                                                                           |
|                    | /all A =<br>/all B = |                 | /0.7 =<br>/0.7 = | 18.6 k LRFD<br>18.7 k LRFD     | ( Dia. A+Length A*Weight A*Height A*C <sub>S</sub> ) ( Dia. B+Length B*Weight B*Height B*C <sub>S</sub> ) |
| <u>Diaphragm L</u> | <u>_oads:</u>        |                 |                  |                                |                                                                                                           |
|                    |                      |                 |                  | 91.4 plf LRFD<br>69.5 plf LRFD | (Wall A Load*1000/Wall A Length)<br>(Wall B Load*1000/Wall B Length)                                      |

### Deck Design:

| Project Balderston Auto |            | Project No. 20- | 467       |
|-------------------------|------------|-----------------|-----------|
| Calc. By_ <b>RJS</b>    | Checked By | Date            | 2/20/2021 |

|                 | Deck =<br>Weld Pattern =<br>Sidelap Fasteners =<br>Allowable Load =<br>Max Diaphragm Load =                                                                                                                          | 22 GA Type B Meta<br>36/7<br>(2) #10 TEK Screw<br>328.0 plf ASD<br>64.0 plf ASD<br>OK                                    |                  | k (Per Vulcraft Catalog)<br>(Per Vulcraft Catalog)<br>(Per Vulcraft Catalog)<br>(Per Vulcraft Catalog)                                                                                               |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chord Lo        | bads:                                                                                                                                                                                                                |                                                                                                                          |                  |                                                                                                                                                                                                      |
| <u>Chord De</u> | Chord Force A =<br>Chord Force B =<br>esign:                                                                                                                                                                         | 2.2 k ASD<br>3.6 k ASD                                                                                                   | /0.7 =<br>/0.7 = | 3.2 k LRFD ( M <sub>wind</sub> against A / Wall B Length )<br>5.1 k LRFD ( M <sub>wind</sub> against B / Wall A Length )                                                                             |
|                 | Chord A Design:<br>Angle =<br>Angle Area =<br>Tensile Capacity, $\Phi T$ =<br>Comp. Capacity, $\Phi P$ =<br>Chord B Design:<br>Angle =<br>Angle Area =<br>Tensile Capacity, $\Phi T$ =<br>Comp. Capacity, $\Phi P$ = | L3x3x1/4<br>1.4 in^2<br>46.7 k LRFD<br>20.9 k LRFD k<br>OK<br>L3x3x1/4<br>1.4 in^2<br>46.7 k LRFD<br>32.6 k LRFD k<br>OK |                  | (AISC Manual Table 1-7)<br>(AISC 360 Eq. D2-1ΦT = 0.9*Area *36 ksi )<br>(AISC Manual Table 4-11)<br>(AISC Manual Table 1-7)<br>(AISC 360 Eq. D2-1ΦT = 0.9*Area *36 ksi )<br>(AISC Manual Table 4-11) |



 Project\_\_\_\_\_\_
 Job Ref.
 \_\_\_\_\_\_

 Calc. by <u>RS</u>
 Chk'd by \_\_\_\_\_\_
 Date\_3/1/2021

#### MASONRY WALL PANEL DESIGN TO TMS 402/602-16

#### Using the allowable stress design method

#### Masonry wall panel details

Solid masonry wall without parapet - Reinforced single-wythe wall, the wall is pinned at the top and fixed at the bottom for out of plane loads

| The wall is | fixed at | t the bottom | and free  | at the to | o for in | plane loads |
|-------------|----------|--------------|-----------|-----------|----------|-------------|
| ino wan io  | inkou ui |              | i una noo |           |          | plune loude |

| Panel length | L = <b>58</b> ft |  |
|--------------|------------------|--|
| Panel height | h = <b>21</b> ft |  |
| ◀            |                  |  |



#### **Seismic properties**

| Seismic design category                          | A                                             |  |  |
|--------------------------------------------------|-----------------------------------------------|--|--|
| Seismic importance factor (ASCE7 Table 1.5-2)    | le = 1                                        |  |  |
| Design spectral response acceleration parameter, | short periods (ASCE7 11.4.4)                  |  |  |
|                                                  | S <sub>DS</sub> = 1                           |  |  |
| Seismic wall classification                      | Nonparticipating                              |  |  |
|                                                  | No prescriptive minimum seismic reinforcement |  |  |
| Redundancy factor, on out-of-plane load          | ρε = <b>1.0</b>                               |  |  |
| Construction details                             |                                               |  |  |
| Wall thickness                                   | t = <b>7.625</b> in                           |  |  |
|                                                  |                                               |  |  |

#### Masonry details

Hollow concrete units grouted at 48 in on center in running bond fully bedded with PCL class M mortar

Compressive strength of unit

Density of masonry units

Height of masonry units

f'<sub>cu</sub> = **2800** psi γ<sub>block</sub> = **115** lb/ft<sup>3</sup> h<sub>b</sub> = **7.625** in

Sht. No. <u>1</u> <u>D8</u> of <u>13</u> 4

Tedds calculation version 2.2.04

|                         | Project                          |                                                              | Job Ref                                                                                                                   |  |
|-------------------------|----------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|
| ENGINEERS               | Calc. by <u>RS</u>               | Chk'd by                                                     | Date <u>3/1/2021</u>                                                                                                      |  |
| Length of masonry units | Ib =                             | <b>15.625</b> in                                             |                                                                                                                           |  |
| Number of internal webs | Nwet                             | = 1                                                          |                                                                                                                           |  |
| Number of end webs      | Nend                             | = 2                                                          |                                                                                                                           |  |
| Internal web thickness  | t <sub>bw</sub> = <b>1.25</b> in |                                                              |                                                                                                                           |  |
| Face shell thickness    | t <sub>bf</sub> =                | <b>1.25</b> in                                               |                                                                                                                           |  |
| End web thickness       | t <sub>be</sub> =                | <b>1.25</b> in                                               |                                                                                                                           |  |
| Area of block           | Abloo                            | $_{\rm k}$ = [t $\times$ lb - (lb - Nweb $\times$ tbw - Ne   | $t_{end} \times t_{be}) \times (t - 2 \times t_{bf})] / I_b = 44.76 \text{ in}^2/\text{ft}$                               |  |
| Area of grout           | Agro                             | $t = [0.17 \times (l_b - N_{web} \times t_{bw} - N_{web})$   | $\times$ t <sub>be</sub> ) $\times$ (t - 2 $\times$ t <sub>bf</sub> )] / I <sub>b</sub> = <b>7.95</b> in <sup>2</sup> /ft |  |
| Density of grout        | γgrou                            |                                                              |                                                                                                                           |  |
| Self weight of wall     | Wsw                              | = Ablock $\times \gamma$ block + Agrout $\times \gamma$ grou | ut = <b>43.47</b> psf                                                                                                     |  |
|                         |                                  |                                                              |                                                                                                                           |  |
| , 1, 625"               |                                  |                                                              | ▲1.25 <b>)</b> ▲1.25 <b>)</b> ▲1.25 <b>)</b>                                                                              |  |



# From TMS 602-16 Table 2 - Compressive strength of masonry

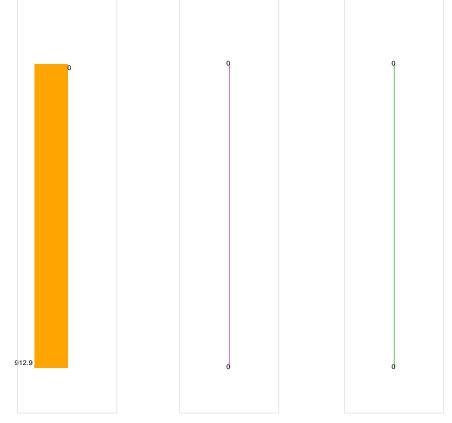
| Net compressive strength of masonry | f'm = <b>2250</b> psi     |
|-------------------------------------|---------------------------|
| Modulus of elasticity for masonry   | $E_m = 900 \times f'_m =$ |

Shear modulus of masonry

= 2024584 psi G<sub>v</sub> = 0.4 × E<sub>m</sub> = **809834** psi

### From TMS 402 -16 Table 8.2.4.2 - Allowable flexural tensile stresses for clay and concrete masonry

| Allowable flexural tensile stress normal to bed   | Ft_norm = <b>38</b> psi                                                            |
|---------------------------------------------------|------------------------------------------------------------------------------------|
| Allowable flexural tensile stress parallel to bed | F <sub>t_para</sub> <b>= 66</b> psi                                                |
| Reinforcement details                             |                                                                                    |
| Yield strength of reinforcement                   | fy = <b>60000</b> psi                                                              |
| Allowable tensile stress in reinforcement         | Fs <b>= 32000</b> psi                                                              |
| Modulus of elasticity for reinforcement           | Es = <b>29000000</b> psi                                                           |
| Vertical reinforcement provided                   | No.5 bars at 48 in centers                                                         |
| Area of vertical reinforcement                    | As = $\pi \times \text{Dia}^2 / (4 \times \text{s}) = 0.08 \text{ in}^2/\text{ft}$ |
| Lateral out-of-plane loads                        |                                                                                    |
| Wind load on panel                                | W = <b>5</b> psf                                                                   |
| Wind load on parapet                              | W <sub>p</sub> = <b>18</b> psf                                                     |
| Seismic load factor (ASCE7 12.11.1)               | $F_p = 0.4 \times S_{DS} \times I_e = 0.4$                                         |
| Seismic load from wall                            | $E_{wall} = max(F_{p}, 0.1) \times w_{SW} = 17.4 \text{ psf}$                      |
| Additional seimic load                            | E <sub>add</sub> = <b>0</b> psf                                                    |
| Seismic lateral load on panel                     | E = E <sub>wall</sub> + E <sub>add</sub> = <b>17.4</b> psf                         |
|                                                   |                                                                                    |




Calc. by <u>RS</u> Chk'd by \_\_\_\_\_ Date\_<u>3/1/2021</u>

\_\_\_\_\_ Job Ref. \_\_\_\_

| Lateral in-plane loads                                                                                                          |                                                                                                                                                                                                               |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Vertical loading detailsVertical seismic load factor applied to dead load $F_{Ev} = 0.2 \times S_{DS} = 0.2$                    |                                                                                                                                                                                                               |  |  |  |  |  |  |
| From ASCE 7-16 cl.2.4 - Combining nominal loads using allowable stress design (Utilization)<br>Load combination no.1 DL (0.059) |                                                                                                                                                                                                               |  |  |  |  |  |  |
| Properties of masonry section                                                                                                   |                                                                                                                                                                                                               |  |  |  |  |  |  |
| Cross-sectional area                                                                                                            | A = [t × l <sub>b</sub> - 0.83 × (l <sub>b</sub> - N <sub>web</sub> × t <sub>bw</sub> - N <sub>end</sub> × t <sub>be</sub> ) × (t - 2 × t <sub>bf</sub> )] / l <sub>b</sub> = <b>52.7</b> in <sup>2</sup> /ft |  |  |  |  |  |  |
| Properties for walls loaded out-of-plane:                                                                                       |                                                                                                                                                                                                               |  |  |  |  |  |  |
| Moment of inertia                                                                                                               | $I = t^{3} / 12 - 0.83 \times (I_{b} - N_{web} \times t_{bw} - N_{end} \times t_{be}) \times (t - 2 \times t_{bf})^{3} / (12 \times I_{b}) = 358.4 \text{ in}^{4}/\text{ft}$                                  |  |  |  |  |  |  |
| Section modulus                                                                                                                 | S = I / c = <b>94</b> in <sup>3</sup> /ft                                                                                                                                                                     |  |  |  |  |  |  |
| Radius of gyration                                                                                                              | r = √[I / A] = <b>2.608</b> in                                                                                                                                                                                |  |  |  |  |  |  |
| Effective height factor                                                                                                         | K = 1                                                                                                                                                                                                         |  |  |  |  |  |  |
| Consider wall at bottom under load combination                                                                                  | Consider wall at bottom under load combination no.1                                                                                                                                                           |  |  |  |  |  |  |

Axial force, out of plane - Combination No.1 - Ibs/ftShear force, out of plane - Combination No.1 - Ibs/ftMoment force, out of plane - Combination No.1 - Ib\_in



P = 913 lb/ft Axial load at bottom of panel Compressive stress due to axial load Slenderness ratio Allowable compressive stress due to axial load

fa = P / A = **17.3** psi (K × h) / r = **96.636** < 99  $F_a = (1 / 4) \times f'_m \times [1 - ((K \times h) / (140 \times r))^2] = 294.4 \text{ psi}$ fa / Fa = **0.059** 



| Project            | Job Ref  |               |
|--------------------|----------|---------------|
| Calc. by <u>RS</u> | Chk'd by | Date_3/1/2021 |

### PASS - Allowable compressive stress exceeds compressive stress due to axial loads

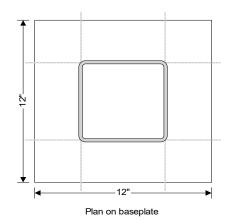
Allowable compressive force

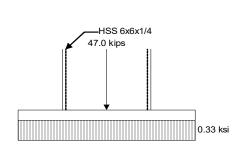
 $P_a = 0.25 \times f'_m \times (A - A_s) \times [1 - ((K \times h) / (140 \times r))^2] = 15496 \text{ lb/ft}$ 

P / Pa = 0.059

PASS - Allowable compressive force exceeds axial load




 Project
 Project No.


 Calc. By <u>RS</u>
 Checked By

Date <u>1/9/2019</u>

### COLUMN BASE PLATE DESIGN







Elevation on baseplate

| Design forces and moments                         |                                                                                              |
|---------------------------------------------------|----------------------------------------------------------------------------------------------|
| Axial force                                       | Pu = <b>47.0</b> kips (Compression)                                                          |
| Bending moment                                    | M <sub>u</sub> = <b>0.0</b> kip_in                                                           |
| Shear force                                       | F <sub>v</sub> = <b>0.0</b> kips                                                             |
| Column details                                    |                                                                                              |
| Column section                                    | HSS 6x6x1/4                                                                                  |
| Depth                                             | d = <b>6.000</b> in                                                                          |
| Breadth                                           | bf = <b>6.000</b> in                                                                         |
| Thickness                                         | t = <b>0.233</b> in                                                                          |
| Baseplate details                                 |                                                                                              |
| Depth                                             | N = <b>12.000</b> in                                                                         |
| Breadth                                           | B = <b>12.000</b> in                                                                         |
| Thickness                                         | t <sub>p</sub> = <b>0.750</b> in                                                             |
| Design strength                                   | F <sub>y</sub> = <b>36.0</b> ksi                                                             |
| Foundation geometry                               |                                                                                              |
| Member thickness                                  | h <sub>a</sub> = <b>34.000</b> in                                                            |
| Dist center of baseplate to left edge foundation  | x <sub>ce1</sub> = <b>48.000</b> in                                                          |
| Dist center of baseplate to right edge foundation | x <sub>ce2</sub> = <b>48.000</b> in                                                          |
| Dist center of baseplate to bot edge foundation   | y <sub>ce1</sub> = <b>48.000</b> in                                                          |
| Dist center of baseplate to top edge foundation   | y <sub>ce2</sub> = <b>48.000</b> in                                                          |
| Minimum tensile strength, base plate              | F <sub>y</sub> = <b>36</b> ksi                                                               |
| Minimum tensile strength, column                  | F <sub>yCol</sub> = <b>50</b> ksi                                                            |
| Compressive strength of concrete                  | f'c <b>= 4</b> ksi                                                                           |
| Strength reduction factors                        |                                                                                              |
| Compression                                       | $\phi_{\rm c} = 0.60$                                                                        |
| Flexure                                           | $\phi_{\rm b} = 0.90$                                                                        |
| Weld shear                                        | $\phi_{\rm V}=0.75$                                                                          |
| Plate cantilever dimensions                       |                                                                                              |
| Area of base plate                                | A <sub>1</sub> = B × N = <b>144.000</b> in <sup>2</sup>                                      |
| Maximum area of supporting surface                | $A_2 = (N + 2 \times I_{min}) \times (B + 2 \times I_{min}) = 9216.000 \text{ in}^2$         |
| Nominal strength of concrete under base plate     | $P_{p}$ = 0.85 $\times$ f'c $\times$ A1 $\times$ min( $\sqrt{(A_{2}$ / A1), 2)} = 979.2 kips |

Tedds calculation version 2.1.01 Flange/base weld - 0.3" Web/base weld - 0.3"



Project\_\_\_\_\_

Project No.\_\_\_\_

Calc. By <u>RS</u> Checked By Date <u>1/9/2019</u>

Bending line cantilever distance m Bending line cantilever distance n Maximum bending line cantilever

#### Plate thickness

Required plate thickness Specified plate thickness

### Design bearing strength (AISC 360-05-J8)

Design bearing strength Factored bearing strength

#### Flange weld

Flange weld leg length Tension capacity of flange Force in tension flange Critical force in flange Flange weld force per in Electrode classification number Design weld stress Design strength of weld per in  $m = (N - 0.95 \times d) / 2 = 3.150 \text{ in}$ n = (B - 0.95 × bf) / 2 = 3.150 in I = max(m, n) = 3.150 in

$$\label{eq:tp,req} \begin{split} t_{p,req} = I \times \sqrt{((2 \times P_u) \: / \: (\varphi_b \times F_y \times B \times N))} = \textbf{0.447} \text{ in} \\ t_p = \textbf{0.750} \text{ in} \end{split}$$

PASS - Thickness of plate exceeds required thickness

 $P_p$  = 979.20 kips  $\phi_c P_p$  = 587.52 kips PASS - Allowable bearing stress exceeds applied bearing stress

$$\begin{split} t_{wf} &= \textbf{0.3126 in} \\ P_{tf} &= b_f \times t \times F_{yCol} = \textbf{69.9 kips} \\ F_{tf} &= M_u / (d - t) - P_u \times (b_f \times t) / A_{col} = \textbf{-12.5 kips} \\ F_f &= \min(P_{tf}, \max(F_{tf}, 0kips)) = \textbf{0.0 kips} \\ R_{wf} &= F_f / b_f = \textbf{0.0 kips/in} \\ F_{EXX} &= \textbf{70.0 ksi} \\ \phi F_w &= \phi_v \times 0.60 \times F_{EXX} \times (1.0 + 0.5 \times (\sin(90deg))^{1.5}) = \textbf{47.250ksi} \\ \phi R_{nf} &= \phi F_w \times t_{wf} / \sqrt{2} = \textbf{10.4 kips/in} \end{split}$$

PASS - Available strength of flange weld exceeds force in flange weld



| Project Balderston A | uto P         | Project No. 20-467 |
|----------------------|---------------|--------------------|
| Calc. By_RS          | Checked By_JB | Date 2/18/2021     |

### <u>Summary</u>

The gravity structure system of the project referenced above consists primarily of steel joists and girders, load-bearing CMU walls and steel columns. The load bearing walls are supported at grade by continuous shallow foundations. Interior steel framing is supported by steel columns. All columns are supported by shallow spread foundations. The locations of all footings are indicated on the structural foundation plans.

The following section of calculations covers the complete design of the foundation system for project referenced above, including the design of retaining walls located on the site. Refer to the "Loads" section of these calculations for the determination of all dead, live, roof live, and snow loads. Refer to the "Roof Framing" and "Tilt Panel" section of these calculations for the design of the sector being supported by the continuous and spread footings.



20-467 **Balderston Auto** Project\_ \_\_ Project No.\_\_

Calc. By RJS Checked By JH Date 03/01/21

### Footing Designation: F1

| Footing Designation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F1                                                                                                                            |                                     |             |                                                |                                                                                    |                                                                                            | P/Pu                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------|------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Footing Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Interior w/ sola                                                                                                              | ar                                  |             |                                                |                                                                                    |                                                                                            | B is into<br>the page M/Mu                                                                                                                                                                                                       |
| General Information:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                               |                                     |             |                                                |                                                                                    |                                                                                            | V                                                                                                                                                                                                                                |
| Footing Length, L =<br>Footing Width, B =<br>Footing Depth, H =<br>Location =<br>Steel Depth, d =<br>Typical Slab Depth =<br>Slab Depth Above Footing =<br>Area of Footing =<br>Soil Bearing Pressure =<br>Allowable or Effective SBC?<br>Concrete Strength =<br>Column Size =<br>Base Plate Size =<br>Critical Section =                                                                                                                                                                                                                                                           | 5<br>5<br>12<br>Interior<br>8.0625<br>5<br>8<br>25<br>2.5<br>Allowable<br>3<br>B Direction<br>8.00 in<br>14.00 in<br>11.00 in |                                     | x<br>x<br>x | L Direction<br>8.00 in<br>14.00 in<br>11.00 in | (B*L)                                                                              | · 1.5*Bar Dia                                                                              | Qmin<br>L<br>Length of Soil Pressure                                                                                                                                                                                             |
| Loading:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                               |                                     |             |                                                |                                                                                    |                                                                                            |                                                                                                                                                                                                                                  |
| Vertical Loads:<br>Applied Dead Load =<br>Slab + Wall +Footing Weight =<br>Applied Live Load =<br>ASD Total Load, P =<br>LRFD Total Load, Pu =<br>ASD Uplift Load =<br>LRFD Uplift Load =                                                                                                                                                                                                                                                                                                                                                                                           | 9.7<br>5.3125<br>10.3<br>25.3125<br>34.495<br>6.7<br>10.72                                                                    | k<br>k<br>k<br>k<br>k<br>k<br>k     |             | LRFD Factors:<br>Dead =<br>Live =<br>Uplift=   |                                                                                    | 1.2<br>1.6<br>1.6                                                                          | ( ASCE 7 Combo )                                                                                                                                                                                                                 |
| Moments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                               |                                     |             | LRFD Factors:                                  |                                                                                    |                                                                                            |                                                                                                                                                                                                                                  |
| Dead Load Moment =<br>Live Load Moment =<br>ASD Total Moment, M =<br>LRFD Total Moment, Mu =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0<br>0<br>0<br>0                                                                                                              | k-ft<br>k-ft<br>k-ft<br>k-ft        |             | Dead =<br>Wind =                               |                                                                                    | 1.2<br>1.6                                                                                 | (ASCE 7 Combo )                                                                                                                                                                                                                  |
| ASD Soil Pressures:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                               |                                     |             |                                                |                                                                                    |                                                                                            |                                                                                                                                                                                                                                  |
| e =<br>Kern =<br>e > = < Kern ?<br>Length of Pressure =<br>Minimum Pressure, Qmin =<br>Maximum Pressure, Qmax =<br>Is Qmax <sbc?< th=""><th>0.000<br/>0.833<br/>Less Than<br/>5.000<br/>1.013<br/>1.013<br/><b>YES</b></th><th>ft<br/>ft<br/>ksf<br/>ksf</th><th></th><th></th><th>("Less Th<br/>("Less Th<br/>"Equal To</th><th>r Than", Len<br/>ian",Qmin =<br/>ian",Qmax =<br/>o", Qmax = (2</th><th>gth = 3*(L/2 -e) ; Otherwise = L )<br/>(P/L*B) - (6*M / B*L^2), Otherwise = 0 )<br/>(P/L*B) + (6*M / B*L^2),<br/>2*P) / (L*B)<br/>x = (4*P) / (3*B*(L - 2*e) )</th></sbc?<> | 0.000<br>0.833<br>Less Than<br>5.000<br>1.013<br>1.013<br><b>YES</b>                                                          | ft<br>ft<br>ksf<br>ksf              |             |                                                | ("Less Th<br>("Less Th<br>"Equal To                                                | r Than", Len<br>ian",Qmin =<br>ian",Qmax =<br>o", Qmax = (2                                | gth = 3*(L/2 -e) ; Otherwise = L )<br>(P/L*B) - (6*M / B*L^2), Otherwise = 0 )<br>(P/L*B) + (6*M / B*L^2),<br>2*P) / (L*B)<br>x = (4*P) / (3*B*(L - 2*e) )                                                                       |
| LRFD Soil Pressures:<br>e =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                         | ft                                  |             |                                                | ( ASD M                                                                            | / Pu )                                                                                     |                                                                                                                                                                                                                                  |
| e –<br>Kern =<br>e > = < Kern ?<br>Length of Pressure =<br>Minimum Pressure, Qmin =<br>Maximum Pressure, Qmax =<br>Qcritical =<br>Critical Length =                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.833<br>Less Than                                                                                                            | ft<br>ft<br>ksf<br>ksf<br>ksf<br>ft |             |                                                | (L/6)<br>("Greate<br>("Less Th<br>("Less Th<br>"Equal To<br>"Greater<br>(Qcritical | r Than", Len<br>han",Qmin =<br>han",Qmax =<br>b", Qmax = (2<br>Than", Qmax<br>= pressure ( | gth = 3*(L/2 -e) ; Otherwise = L )<br>(Pu/L*B) - (6*Mu / B*L^2), Otherwise = 0 )<br>(Pu/L*B) + (6*Mu / B*L^2),<br>2*Pu) / (L*B)<br>x = (4*Pu) / (3*B*(L - 2*e) )<br>@ critical section of footing )<br>- Critical Section/2-d/2) |



| Project_  | Balderston Auto |            | Pro | 20-467<br>Dject No |
|-----------|-----------------|------------|-----|--------------------|
| Calc. By_ | RJS             | Checked By | JH  | Date 03/01/21      |

| One-Way Shear Check:<br>Vu1 =       | 11.77         | k                   |        | ( Qcrit*Crit.L + (Qmax-Qcrit)*Crit L*0.5 )                                    |
|-------------------------------------|---------------|---------------------|--------|-------------------------------------------------------------------------------|
| ΦVn =                               | 39.74         | k                   |        | (ACI 318-08 Equation 11-5, ΦVn = 0.75*2*sqrt(f'c)*B*d / 1000)                 |
| Adequate in One-Way Shear?          | YES           | ĸ                   |        | $(A01310-00 Equation 11-3, \Psi M = 0.73 \times 301(10) \times 1000)$         |
|                                     | •             |                     |        |                                                                               |
| Two-Way Shear Check:                |               |                     |        |                                                                               |
| b1 =                                | 19.06         | in                  |        | ( Critical Section B + d )                                                    |
| b2 =                                | 19.06         | in                  |        | (Column Height L + d)                                                         |
| b0 =                                | 76.25         | in                  |        | (2*b1 + 2*b2 )                                                                |
| Vu2 =                               | 31.01         | k                   |        | (Vu2 = (Qmax+Qmin)/2 * (Ftg Area - b1*b2) )                                   |
| α =                                 | 40            |                     |        | (ACI 318-08 Section 11.11.2.1)                                                |
| β =                                 | 1             |                     |        | (ACI 318-08 Section 11.11.2.1, Larger Ftg Dim / Smaller Ftg Dim )             |
| ΦVn =                               | 151.52        | k                   |        | (ACI 318-08 Eq 11-32, ΦVn = 0.75*sqrt(fc)*bo*d*(2+4/Beta))                    |
| ΦVn =                               | 157.32        | k                   |        | (ACI 318-08 Eq 11-32, ΦVn = 0.75*sqrt(fc)*bo*d*(2+Alpha*d/bo))                |
| ΦVn =                               | 101.02        | k                   |        | (ACI 318-08 Eq 11-33, ΦVn = 0.75*4*sqrt(f'c)*bo*d)                            |
| Adequate in Two-Way Shear?          | YES           |                     |        |                                                                               |
| Column Bearing Check:               |               |                     |        |                                                                               |
| ΦPn =                               | 649.74        | k                   |        | ( ACI 318-08 Section 10.14.1 ΦPn = 0.65*0.85*fc*Plate Area*2) )               |
| Adequate in Bearing?                | YES           | ĸ                   |        | (A01310-000000000000000000000000000000000                                     |
| Adequate in Dealing                 | 120           |                     |        |                                                                               |
| Uplift Check:                       |               |                     |        |                                                                               |
| ASD Combo for Uplift = (            | 0.6D + Uplift |                     |        | (ASCE 7)                                                                      |
| Uplift Force =                      | 6.7           | k                   |        | ( From Above )                                                                |
| Required Dead Load =                | 11.17         | k                   |        | ( Uplift / 0.6 )                                                              |
| Applied Dead Load + Slab + Ftg =    | 15.0125       | k                   |        |                                                                               |
| Additional Slab Used =              | 0             | ft                  |        | ( Length of Additional Slab in Each Direction )                               |
| Wall Weight Over Footing =          | 0             | klf                 |        |                                                                               |
| Length Parallel to Slab Edge =      | 0             | ft                  |        | ( B or L Depending on the Case)                                               |
| Length Perpendicular to Slab Edge = | 0             | ft                  |        | ( B or L Depending on the Case)                                               |
| Area of Cont. Footing =             | 0             | ft <sup>2</sup>     |        |                                                                               |
| Length of Cont. Footing Used =      | 0             | ft                  |        |                                                                               |
| Total Dead Load =                   | 15.0125       | k                   |        | (Applied Dead + Slab + Wall Weight + Add. Slab + Cont. Ftg )                  |
| Adequate for Uplift?                | Footing is A  | dequate to Resist I | Jplift | (Calculation assumes wall is above the cont. ftg.)                            |
| Tan Otaala                          |               |                     |        |                                                                               |
| Top Steel:<br>Mu =                  | 0.62          | k-ft / ft           |        | ( Mu = (Pu/A)*0.5*Crit. L^2 )                                                 |
|                                     | 23.529        | K-II / II           |        | (m = fy/(0.85  fr))                                                           |
| m =<br>Ru =                         | 0.010         | ksi                 |        | $(Ru = Mu/(0.9*12 inches*d^2))$                                               |
|                                     |               | N51                 |        |                                                                               |
| ρ Req'd =                           | 0.0002        |                     |        | $(\rho = (1/m)^{*}(1-\operatorname{sqrt}(1-2^{*}\operatorname{Ru}^{*}m/fy)))$ |
| ρ Min. =                            | 0.0027        |                     |        | (ACI 318-08 Equation 10-3, Smaller of: 3*sqrt(f'c)/fy & 200/fy )              |
| 4/3*Mu ρ Req'd =                    | 0.0002        |                     |        | $(\rho = (1/m)^{*}(1-sqrt(1-2^{*}1.33^{*}Ru^{*}m/fy)))$                       |
| Governing ρ =                       | 0.0002        | . 2.0               |        | ( If ρ Req'd < 4/3*Mu ρ Req'd < ρ Min, Use 4/3*Mu ρ Req'd                     |
| A's Required =                      | 0.022         | in²/ft              |        | ( As = Governing ρ*12 inches*d )                                              |
| Bar # =                             | 4             |                     |        |                                                                               |
| Bar Spacing =                       | 12            | in                  |        |                                                                               |
| As Provided =                       | 0.20          | in²/ft              | =      | 6 Bars in B Direction                                                         |
| Bottom Steel:                       |               |                     | =      | 6 Bars in L Direction                                                         |
| Bottom Steel:<br>Mu =               | 2.01          | k-ft / ft           |        | (Mu= Qcrit*0.5*Lcrit^2 + (Qmax-Qcrit)*0.5*(2/3)*Lcrit^2)                      |
| m =                                 | 23.529        | K-II / II           |        | (m = fy/(0.85 fc))                                                            |
|                                     | 0.034         | ksi                 |        | $(Ru = Mu/(0.9*12 inches*d^2))$                                               |
| ρ Req'd =                           |               | 1/21                |        |                                                                               |
|                                     | 0.0006        |                     |        | $(\rho = (1/m)^{*}(1-\operatorname{sqrt}(1-2^{*}\operatorname{Ru}^{*}m/fy)))$ |
| ρ Min. =                            | 0.0027        |                     |        | (ACI 318-08 Equation 10-3, Smaller of: 3*sqrt(f'c)/fy & 200/fy )              |
| 4/3*Mu ρ Req'd =                    | 0.0008        |                     |        | $(\rho = (1/m)^{*}(1-sqrt(1-2^{*}1.33^{*}Ru^{*}m/fy)))$                       |
| Governing ρ =                       | 0.0008        | 200                 |        | ( If ρ Req'd < 4/3*Mu ρ Req'd < ρ Min, Use 4/3*Mu ρ Req'd                     |
| A's Required =                      | 0.074         | in²/ft              |        | ( As = Governing ρ*12 inches*d )                                              |
| Bar # =                             | 5             |                     |        |                                                                               |
| Bar Spacing =                       | 12            | in                  |        |                                                                               |
| As Provided =                       | 0.31          | in²/ft              | =      | 6 Bars in B Direction                                                         |
|                                     |               |                     | =      | 6 Bars in L Direction                                                         |
|                                     |               |                     |        |                                                                               |



| Balderston Auto |            |    | Project No.   |
|-----------------|------------|----|---------------|
| Calc. By RJS    | Checked By | JH | Date 03/01/21 |

| teel:  |                                       |                                                                                                                                              |
|--------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 0.2592 | in²/ft                                | ( T&S Steel = 0.0018*                                                                                                                        |
| 0.20   | in²/ft                                |                                                                                                                                              |
| 0.31   | in²/ft                                |                                                                                                                                              |
| 0.51   | in²/ft                                |                                                                                                                                              |
| YES    |                                       |                                                                                                                                              |
|        |                                       |                                                                                                                                              |
| 5      | ft                                    |                                                                                                                                              |
| 5      | ft                                    |                                                                                                                                              |
| 12     | in                                    |                                                                                                                                              |
|        | 0.20<br>0.31<br>0.51<br>YES<br>5<br>5 | 0.2592 in <sup>2</sup> /ft<br>0.20 in <sup>2</sup> /ft<br>0.31 in <sup>2</sup> /ft<br>0.51 in <sup>2</sup> /ft<br><b>YES</b><br>5 ft<br>5 ft |

| Top Steel =    | #4 bars | @12 inches O.C. |
|----------------|---------|-----------------|
| Bottom Steel = | #5 bars | @12 inches O.C. |

3\*12 inches\*H)



\_\_\_\_\_ Project No.\_ 20-467 Balderston Auto Project\_

Calc. By\_\_\_\_RJS\_\_\_\_\_Checked By\_\_\_\_JH\_\_\_\_Date\_\_03/01/21

# Footing Designation F2 Footing Location: Interior at Mezzanin

| Footing Designation                                                                                                                                                          | F2                                                 |                                    |        |                         |                      |                              | P/Pu                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------|--------|-------------------------|----------------------|------------------------------|------------------------------------------------------------------------|
| Footing Location:                                                                                                                                                            | Interior at Me                                     | zzanine                            |        |                         |                      |                              | B is into M/Mu                                                         |
| General Information:                                                                                                                                                         |                                                    |                                    |        |                         |                      |                              | ¥                                                                      |
| Footing Length, L =<br>Footing Width, B =<br>Footing Depth, H =<br>Location =<br>Steel Depth, d =<br>Typical Slab Depth =<br>Slab Depth Above Footing =<br>Area of Footing = | 8<br>8<br>12<br>Interior<br>8.0625<br>4<br>8<br>64 | ft<br>ft<br>in<br>in<br>in<br>ft^2 |        |                         | (H - 3 in<br>( B*L ) | - 1.5*Bar Dia.               | Qmin Qmax<br>L<br>Length of Soil Pressure                              |
| Soil Bearing Pressure =<br>Allowable or Effective SBC?<br>Concrete Strength =                                                                                                | 2.5<br>Allowable<br>3                              | ksf<br>ksi                         |        |                         | (02)                 |                              |                                                                        |
|                                                                                                                                                                              | B Direction                                        |                                    |        | L Directior             | ו                    |                              |                                                                        |
| Column Size =                                                                                                                                                                | 6.00 in                                            |                                    | Х      | 6.00 in                 |                      |                              |                                                                        |
| Base Plate Size =<br>Critical Section =                                                                                                                                      | 12.00 in<br>9.00 in                                |                                    | X<br>X | 12.00 in<br>9.00 in     |                      |                              |                                                                        |
|                                                                                                                                                                              | 0100                                               |                                    |        |                         |                      |                              |                                                                        |
| Loading:                                                                                                                                                                     |                                                    |                                    |        |                         |                      |                              |                                                                        |
| Vertical Loads:<br>Applied Dead Load =                                                                                                                                       | 45                                                 | k                                  |        | LRFD Factors:<br>Dead = |                      | 1.2                          | (ASCE 7 Combo)                                                         |
| Slab + Wall +Footing Weight =                                                                                                                                                | 12.8                                               | k                                  |        | Live =                  |                      | 1.6                          |                                                                        |
| Applied Live Load =                                                                                                                                                          | 51                                                 | k                                  |        | Uplift=                 |                      | 1.6                          |                                                                        |
| ASD Total Load, P =                                                                                                                                                          | 108.8                                              | k                                  |        | opint                   |                      |                              |                                                                        |
| LRFD Total Load, Pu =                                                                                                                                                        | 150.96                                             | k                                  |        |                         |                      |                              |                                                                        |
| ASD Uplift Load =                                                                                                                                                            | 0                                                  | k                                  |        |                         |                      |                              |                                                                        |
| LRFD Uplift Load =                                                                                                                                                           | 0                                                  | k                                  |        |                         |                      |                              |                                                                        |
| Moments:                                                                                                                                                                     |                                                    |                                    |        | LRFD Factors:           |                      |                              |                                                                        |
| Dead Load Moment =                                                                                                                                                           | 0                                                  | k-ft                               |        | Dead =                  | -                    | 1.2                          | (ASCE 7 Combo)                                                         |
| Live Load Moment =                                                                                                                                                           | 0                                                  | k-ft                               |        | Wind =                  |                      | 1.6                          |                                                                        |
| ASD Total Moment, M =                                                                                                                                                        | 0                                                  | k-ft                               |        | Villa                   |                      | 1.0                          |                                                                        |
| LRFD Total Moment, Mu =                                                                                                                                                      | 0                                                  | k-ft                               |        |                         |                      |                              |                                                                        |
| ASD Soil Pressures:                                                                                                                                                          |                                                    |                                    |        |                         |                      |                              |                                                                        |
| e =                                                                                                                                                                          | 0.000                                              | ft                                 |        |                         | ( ASD M              | (P)                          |                                                                        |
| Kern =                                                                                                                                                                       | 1.333                                              | ft                                 |        |                         | (L/6)                | ,.,                          |                                                                        |
| e > = < Kern ?                                                                                                                                                               | Less Than                                          |                                    |        |                         | ( )                  |                              |                                                                        |
| Length of Pressure =                                                                                                                                                         | 8.000                                              | ft                                 |        |                         | ( "Greate            | er Than", Leng               | gth = 3*(L/2 -e) ; Otherwise = L )                                     |
| Minimum Pressure, Qmin =                                                                                                                                                     | 1.700                                              | ksf                                |        |                         | •                    | ,                            | P/L*B) - (6*M / B*L^2), Otherwise = 0)                                 |
| Maximum Pressure, Qmax =                                                                                                                                                     | 1.700                                              | ksf                                |        |                         | •                    |                              | (P/L*B) + (6*M / B*L^2),                                               |
| Is Qmax <sbc?< td=""><td>YES</td><td></td><td></td><td></td><td></td><td>o", Qmax = (2<br/>Than", Omax</td><td>/^P) / (L^B)<br/>: = (4*P) / (3*B*(L - 2*e) )</td></sbc?<>    | YES                                                |                                    |        |                         |                      | o", Qmax = (2<br>Than", Omax | /^P) / (L^B)<br>: = (4*P) / (3*B*(L - 2*e) )                           |
|                                                                                                                                                                              |                                                    |                                    |        |                         | Greater              |                              | (- (+ 1)) (3 D (L - 2 e))                                              |
| LRFD Soil Pressures:                                                                                                                                                         |                                                    |                                    |        |                         |                      |                              |                                                                        |
| e =                                                                                                                                                                          | 0.000                                              | ft                                 |        |                         | ( ASD M              | / Pu )                       |                                                                        |
| Kern =                                                                                                                                                                       | 1.333                                              | ft                                 |        |                         | (L/6)                |                              |                                                                        |
| e > = < Kern ?                                                                                                                                                               | Less Than                                          | <i>с</i> і                         |        |                         | (                    |                              |                                                                        |
| Length of Pressure =                                                                                                                                                         | 8.000                                              | ft<br>kof                          |        |                         |                      |                              | $gth = 3^{*}(L/2 - e)$ ; Otherwise = L)                                |
| Minimum Pressure, Qmin =<br>Maximum Pressure, Qmax =                                                                                                                         | 2.359<br>2.359                                     | ksf<br>ksf                         |        |                         |                      |                              | Pu/L*B) - (6*Mu / B*L^2), Otherwise = 0)<br>(Pu/L*B) + (6*Mu / B*L^2), |
| Qcritical =                                                                                                                                                                  | 2.359                                              | ksi                                |        |                         | •                    | o", Qmax = (2                |                                                                        |
| Critical Length =                                                                                                                                                            | 3.289                                              | ft                                 |        |                         | •                    |                              | x = (4*Pu) / (3*B*(L - 2*e) )                                          |
| ontour Longth                                                                                                                                                                | 0.200                                              |                                    |        |                         |                      |                              | (critical section of footing)                                          |
|                                                                                                                                                                              |                                                    |                                    |        |                         | •                    |                              | Critical Section/2-d/2)                                                |
|                                                                                                                                                                              |                                                    |                                    |        |                         |                      |                              |                                                                        |



| Project_  | Balderston Auto |            | Pro | 20-467        |
|-----------|-----------------|------------|-----|---------------|
| Calc. By_ | RJS             | Checked By | JH  | Date 03/01/21 |

| One-Way Shear Check:                |                     |                     |               |                                                                                                                                                                                                                                |
|-------------------------------------|---------------------|---------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vu1 =                               | 62.06               | k                   |               | (Qcrit*Crit.L + (Qmax-Qcrit)*Crit L*0.5)                                                                                                                                                                                       |
| ΦVn =                               | 63.59               | k                   |               | ( ACI 318-08 Equation 11-5, ΦVn = 0.75*2*sqrt(f'c)*B*d / 1000)                                                                                                                                                                 |
| Adequate in One-Way Shear?          | YES                 |                     |               |                                                                                                                                                                                                                                |
| Two-Way Shear Check:                |                     |                     |               |                                                                                                                                                                                                                                |
| b1 =                                | 17.06               | in                  |               | (Critical Section B + d )                                                                                                                                                                                                      |
| b2 =                                | 17.06               | in                  |               | (Column Height L + d )                                                                                                                                                                                                         |
| b0 =                                | 68.25               | in                  |               | (2*b1 + 2*b2)                                                                                                                                                                                                                  |
| Vu2 =                               | 87.71               | k                   |               | (Vu2 = (Qmax+Qmin)/2 * (Ftg Area - b1*b2) )                                                                                                                                                                                    |
| α =                                 | 40                  | N.                  |               | (ACI 318-08 Section 11.11.2.1)                                                                                                                                                                                                 |
| β =                                 | 1                   |                     |               | (ACI 318-08 Section 11.11.2.1, Larger Ftg Dim / Smaller Ftg Dim )                                                                                                                                                              |
| φ-<br>ΦVn =                         | 135.63              | k                   |               | (ACI 318-08 Eq 11-32, ΦVn = 0.75*sqrt(fc)*bo*d*(2+4/Beta))                                                                                                                                                                     |
| ΦVn =                               | 152.02              | k                   |               | $(ACI 318-08 \text{ Eq } 11-32, \Phi Vn = 0.75 \text{ sqrt}(10) \text{ bo } d(2^+4/\text{Deta}))$<br>(ACI 318-08 Eq 11-32, $\Phi Vn = 0.75^{\circ} \text{sqrt}(fc)^{\circ} \text{bo}^{\circ} d^{\circ}(2^+\text{Alpha*d/bo}))$ |
| ΦVn =                               | 90.42               | k k                 |               |                                                                                                                                                                                                                                |
| Φνη –<br>Adequate in Two-Way Shear? | 90.42<br>YES        | К                   |               | (ACI 318-08 Eq 11-33,                                                                                                                                                                                                          |
|                                     | 120                 |                     |               |                                                                                                                                                                                                                                |
| Column Bearing Check:               |                     |                     |               |                                                                                                                                                                                                                                |
| ΦPn =                               | 477.36              | k                   |               | ( ACI 318-08 Section 10.14.1 ΦPn = 0.65*0.85*f'c*Plate Area*2) )                                                                                                                                                               |
| Adequate in Bearing?                | YES                 |                     |               |                                                                                                                                                                                                                                |
| Uplift Check:                       |                     |                     |               |                                                                                                                                                                                                                                |
| ASD Combo for Uplift = (            | 0.6D + I Inlif      | t                   |               | (ASCE 7)                                                                                                                                                                                                                       |
| Uplift Force =                      | 0.00 · Opin<br>0    | k                   |               | (From Above )                                                                                                                                                                                                                  |
| Required Dead Load =                | 0.00                | k                   |               | ( Uplift / 0.6 )                                                                                                                                                                                                               |
| Applied Dead Load + Slab + Ftg =    | 57.8                |                     |               | ( <b>Opin</b> ( 7 0.0 )                                                                                                                                                                                                        |
|                                     | 4                   | k<br>ft             |               | (Longth of Additional Slab in Each Direction )                                                                                                                                                                                 |
| Additional Slab Used =              |                     |                     |               | ( Length of Additional Slab in Each Direction )                                                                                                                                                                                |
| Wall Weight Over Footing =          | 0                   | klf                 |               | ( Dan L Dan and in n and the Orace)                                                                                                                                                                                            |
| Length Parallel to Slab Edge =      | 0                   | ft                  |               | (B or L Depending on the Case)                                                                                                                                                                                                 |
| Length Perpendicular to Slab Edge = | 0                   | ft                  |               | ( B or L Depending on the Case)                                                                                                                                                                                                |
| Area of Cont. Footing =             | 0                   | ft <sup>2</sup>     |               |                                                                                                                                                                                                                                |
| Length of Cont. Footing Used =      | 0                   | ft                  |               |                                                                                                                                                                                                                                |
| Total Dead Load =                   | 67.4                | k                   |               | (Applied Dead + Slab + Wall Weight + Add. Slab + Cont. Ftg )                                                                                                                                                                   |
| Adequate for Uplift?                | Footing is <i>I</i> | Adequate to F       | Resist Uplift | (Calculation assumes wall is above the cont. ftg.)                                                                                                                                                                             |
| Top Steel:                          |                     |                     |               |                                                                                                                                                                                                                                |
| Mu =                                | 0.00                | k-ft / ft           |               | ( Mu = (Pu/A)*0.5*Crit. L^2 )                                                                                                                                                                                                  |
| m =                                 | 23.529              |                     |               | (m = fy/(0.85*f'c))                                                                                                                                                                                                            |
| Ru =                                | 0.000               | ksi                 |               | $(Ru = Mu/(0.9*12 inches*d^2))$                                                                                                                                                                                                |
| ρ Req'd =                           | 0.0000              |                     |               | $(\rho = (1/m)^{*}(1-sqrt(1-2^{*}Ru^{*}m/fy)))$                                                                                                                                                                                |
|                                     | 0.0000              |                     |               | (ACI 318-08 Equation 10-3, Smaller of: 3*sqrt(f'c)/fy & 200/fy )                                                                                                                                                               |
| ρ Min. =<br>4/3*Mu ρ Req'd =        | 0.0027              |                     |               |                                                                                                                                                                                                                                |
|                                     |                     |                     |               | $(\rho = (1/m)^{*}(1-\operatorname{sqrt}(1-2^{*}1.33^{*}\operatorname{Ru}^{*}m/fy)))$                                                                                                                                          |
| Governing ρ =                       | 0.0000              | . 2                 |               | ( lf ρ Req'd < 4/3*Mu ρ Req'd < ρ Min, Use 4/3*Mu ρ Req'd                                                                                                                                                                      |
| A's Required =                      | 0.000               | in²/ft              |               | ( As = Governing ρ*12 inches*d )                                                                                                                                                                                               |
| Bar # =                             | 4                   |                     |               |                                                                                                                                                                                                                                |
| Bar Spacing =                       | 12                  | in                  |               |                                                                                                                                                                                                                                |
| As Provided =                       | 0.20                | in²/ft              | =             | 9 Bars in B Direction                                                                                                                                                                                                          |
|                                     |                     |                     | =             | 9 Bars in L Direction                                                                                                                                                                                                          |
| Bottom Steel:                       | 10 70               |                     |               |                                                                                                                                                                                                                                |
| Mu =                                | 12.76               | k-ft / ft           |               | (Mu= Qcrit*0.5*Lcrit*2 + (Qmax-Qcrit)*0.5*(2/3)*Lcrit*2)                                                                                                                                                                       |
| m =                                 | 23.529              |                     |               | (m = fy/(0.85*f'c))                                                                                                                                                                                                            |
| Ru =                                | 0.218               | ksi                 |               | (Ru = Mu/(0.9*12 inches*d^2))                                                                                                                                                                                                  |
| ρ Req'd =                           | 0.0038              |                     |               | (ρ = (1/m)*(1-sqrt(1-2*Ru*m/fy)))                                                                                                                                                                                              |
| ρ Min. =                            | 0.0027              |                     |               | (ACI 318-08 Equation 10-3, Smaller of: 3*sqrt(f'c)/fy & 200/fy )                                                                                                                                                               |
| 4/3*Mu ρ Req'd =                    | 0.0051              |                     |               | (ρ = (1/m)*(1-sqrt(1-2*1.33*Ru*m/fy)))                                                                                                                                                                                         |
| Governing ρ =                       | 0.0038              |                     |               | (If ρ Req'd < 4/3*Mu ρ Req'd < ρ Min, Use 4/3*Mu ρ Req'd                                                                                                                                                                       |
| A's Required =                      | 0.368               | in²/ft              |               | (As = Governing $\rho^{*12}$ inches*d)                                                                                                                                                                                         |
| Bar # =                             | 5                   |                     |               |                                                                                                                                                                                                                                |
| Bar Spacing =                       | 12                  | in                  |               |                                                                                                                                                                                                                                |
|                                     |                     | in <sup>2</sup> /ft | _             | 0 Pore in P Direction                                                                                                                                                                                                          |
| As Provided =                       | 0.31                | 111 / IL            | =             | •                                                                                                                                                                                                                              |
|                                     |                     |                     | =             | 9 Bars in L Direction                                                                                                                                                                                                          |
|                                     |                     |                     |               |                                                                                                                                                                                                                                |



| Project  | Balderston Auto |              | Project No | 20-467   |
|----------|-----------------|--------------|------------|----------|
| Calc. Bv | RJS             | Checked By J | H Date     | 03/01/21 |

| Temperature & Shrinkage | Steel: |
|-------------------------|--------|
| Minimum Steel -         | 0 2502 |

| Temperature & Shrinkage Si | eer:   |                    |                                    |
|----------------------------|--------|--------------------|------------------------------------|
| Minimum Steel =            | 0.2592 | in²/ft             | ( T&S Steel = 0.0018*12 inches*H ) |
| As Provided Top =          | 0.20   | in²/ft             |                                    |
| As Provided Bott =         | 0.31   | in²/ft             |                                    |
| As Provided Total =        | 0.51   | in²/ft             |                                    |
| T&S Steel Provided?        | YES    |                    |                                    |
| Final Footing Design:      |        |                    |                                    |
| Footing Width, B =         | 8      | ft                 |                                    |
| Footing Length L =         | 8      | ft                 |                                    |
| Footing Depth, H =         | 12     | in                 |                                    |
| Top Steel =                | #4 bar | rs @12 inches O.C. |                                    |

Bottom Steel = #5 bars @12 inches O.C.



Project\_ Balderston Auto

\_\_\_\_\_ Project No.\_\_ 20-467

P/Pu

Calc. By RJS Checked By JH Date 03/01/21

## Footing Designation F3

| Footing Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Interior at Me                                                                                                                                         | zzanine                                                                        |   |               |                                                                                                                                                                                                  |                                                                                                                                                                                                                      | B is into M/Mu the page                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| General Information:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                        |                                                                                |   |               |                                                                                                                                                                                                  |                                                                                                                                                                                                                      | ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| Footing Length, L =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                      | ft                                                                             |   |               |                                                                                                                                                                                                  |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Footing Width, B =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                      | ft                                                                             |   |               |                                                                                                                                                                                                  |                                                                                                                                                                                                                      | Qmin                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| Footing Depth, H =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34                                                                                                                                                     | in                                                                             |   |               |                                                                                                                                                                                                  |                                                                                                                                                                                                                      | Qm                                                                                                                                                                                                                                                                                                                                                                                                                                                | av |
| Location =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Interior                                                                                                                                               | in                                                                             |   |               |                                                                                                                                                                                                  |                                                                                                                                                                                                                      | L                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| Steel Depth, d =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30.0625                                                                                                                                                | in                                                                             |   |               | (H - 3 in -                                                                                                                                                                                      | 1.5*Bar Dia. )                                                                                                                                                                                                       | Length of Soil Pressure                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| Typical Slab Depth =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                      | in                                                                             |   |               |                                                                                                                                                                                                  | ,                                                                                                                                                                                                                    | Lengtror Son Pleasure                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| Slab Depth Above Footing =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8                                                                                                                                                      | in                                                                             |   |               |                                                                                                                                                                                                  |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Area of Footing =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16                                                                                                                                                     | ft^2                                                                           |   |               | (B*L)                                                                                                                                                                                            |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Soil Bearing Pressure =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.5                                                                                                                                                    | ksf                                                                            |   |               |                                                                                                                                                                                                  |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Allowable or Effective SBC?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Allowable                                                                                                                                              |                                                                                |   |               |                                                                                                                                                                                                  |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Concrete Strength =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                      | ksi                                                                            |   |               |                                                                                                                                                                                                  |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B Direction                                                                                                                                            |                                                                                |   | L Direction   |                                                                                                                                                                                                  |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Column Size =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.00 in                                                                                                                                                |                                                                                | Х | 6.00 in       |                                                                                                                                                                                                  |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Base Plate Size =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12.00 in                                                                                                                                               |                                                                                | Х | 12.00 in      |                                                                                                                                                                                                  |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Critical Section =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.00 in                                                                                                                                                |                                                                                | Х | 9.00 in       |                                                                                                                                                                                                  |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Loading:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                        |                                                                                |   |               |                                                                                                                                                                                                  |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Vertical Loads:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                        |                                                                                |   | LRFD Factors: |                                                                                                                                                                                                  |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Applied Dead Load =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.7                                                                                                                                                    | k                                                                              |   | Dead =        |                                                                                                                                                                                                  | 1.2                                                                                                                                                                                                                  | (ASCE 7 Combo)                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| Slab + Wall +Footing Weight =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.8                                                                                                                                                    | k                                                                              |   | Live =        |                                                                                                                                                                                                  | 1.6                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Applied Live Load =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.3                                                                                                                                                   | k                                                                              |   | Uplift=       |                                                                                                                                                                                                  | 1.6                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| ASD Total Load, P =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27.8                                                                                                                                                   | k                                                                              |   | opint         |                                                                                                                                                                                                  |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| LRFD Total Load, Pu =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 37.48                                                                                                                                                  | k                                                                              |   |               |                                                                                                                                                                                                  |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| ASD Uplift Load =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                      | k                                                                              |   |               |                                                                                                                                                                                                  |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| LRFD Uplift Load =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                      | k                                                                              |   |               |                                                                                                                                                                                                  |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                        |                                                                                |   |               |                                                                                                                                                                                                  |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                        |                                                                                |   |               |                                                                                                                                                                                                  |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Moments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                        |                                                                                |   | LRFD Factors: |                                                                                                                                                                                                  |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Dead Load Moment =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                      | k-ft                                                                           |   | Dead =        |                                                                                                                                                                                                  | 1.2                                                                                                                                                                                                                  | (ASCE 7 Combo)                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| Dead Load Moment =<br>Live Load Moment =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                      | k-ft                                                                           |   |               |                                                                                                                                                                                                  | 1.2<br>1.6                                                                                                                                                                                                           | (ASCE 7 Combo)                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| Dead Load Moment =<br>Live Load Moment =<br>ASD Total Moment, M =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <mark>0</mark><br>0                                                                                                                                    | k-ft<br>k-ft                                                                   |   | Dead =        |                                                                                                                                                                                                  |                                                                                                                                                                                                                      | (ASCE 7 Combo)                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| Dead Load Moment =<br>Live Load Moment =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                      | k-ft                                                                           |   | Dead =        |                                                                                                                                                                                                  |                                                                                                                                                                                                                      | (ASCE 7 Combo)                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| Dead Load Moment =<br>Live Load Moment =<br>ASD Total Moment, M =<br>LRFD Total Moment, Mu =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <mark>0</mark><br>0                                                                                                                                    | k-ft<br>k-ft                                                                   |   | Dead =        |                                                                                                                                                                                                  |                                                                                                                                                                                                                      | (ASCE 7 Combo )                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Dead Load Moment =<br>Live Load Moment =<br>ASD Total Moment, M =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <mark>0</mark><br>0                                                                                                                                    | k-ft<br>k-ft                                                                   |   | Dead =        |                                                                                                                                                                                                  | 1.6                                                                                                                                                                                                                  | (ASCE 7 Combo )                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Dead Load Moment =<br>Live Load Moment =<br>ASD Total Moment, M =<br>LRFD Total Moment, Mu =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>0<br>0                                                                                                                                            | k-ft<br>k-ft<br>k-ft                                                           |   | Dead =        |                                                                                                                                                                                                  | 1.6                                                                                                                                                                                                                  | (ASCE 7 Combo )                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Dead Load Moment =<br>Live Load Moment =<br>ASD Total Moment, M =<br>LRFD Total Moment, Mu =<br>ASD Soil Pressures:<br>e =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>0<br>0                                                                                                                                            | k-ft<br>k-ft<br>k-ft<br>ft                                                     |   | Dead =        | (ASD M                                                                                                                                                                                           | 1.6                                                                                                                                                                                                                  | (ASCE 7 Combo )                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Dead Load Moment =<br>Live Load Moment =<br>ASD Total Moment, M =<br>LRFD Total Moment, Mu =<br>ASD Soil Pressures:<br>e =<br>Kern =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0<br>0<br>0.000<br>0.667                                                                                                                               | k-ft<br>k-ft<br>k-ft<br>ft                                                     |   | Dead =        | (ASD M)<br>(L/6)                                                                                                                                                                                 | 1.6<br>/P)                                                                                                                                                                                                           | ( ASCE 7 Combo )<br>th = 3*(L/2 -e) ; Otherwise = L )                                                                                                                                                                                                                                                                                                                                                                                             |    |
| Dead Load Moment =<br>Live Load Moment =<br>ASD Total Moment, M =<br>LRFD Total Moment, Mu =<br>ASD Soil Pressures:<br>e =<br>Kern =<br>e > = < Kern ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0<br>0<br>0<br>0.000<br>0.667<br>Less Than                                                                                                             | k-ft<br>k-ft<br>k-ft<br>ft<br>ft                                               |   | Dead =        | ( ASD M /<br>( L / 6 )<br>( "Greater                                                                                                                                                             | 1.6<br>/ P )<br>r Than", Lengt                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Dead Load Moment =<br>Live Load Moment =<br>ASD Total Moment, M =<br>LRFD Total Moment, Mu =<br><b>ASD Soil Pressures:</b><br>e =<br>Kern =<br>e > = < Kern ?<br>Length of Pressure =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>0<br>0<br>0.000<br>0.667<br>Less Than<br>4.000                                                                                                    | k-ft<br>k-ft<br>k-ft<br>ft<br>ft                                               |   | Dead =        | ( ASD M /<br>( L / 6 )<br>( "Greater<br>("Less Th                                                                                                                                                | 1.6<br>/ P )<br>r Than", Lengt<br>pan",Qmin = (F                                                                                                                                                                     | h = 3*(L/2 -e) ; Otherwise = L )                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| Dead Load Moment =<br>Live Load Moment =<br>ASD Total Moment, M =<br>LRFD Total Moment, Mu =<br><b>ASD Soil Pressures:</b><br>e =<br>Kern =<br>e > = < Kern ?<br>Length of Pressure =<br>Minimum Pressure, Qmin =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0<br>0<br>0<br>0.000<br>0.667<br>Less Than<br>4.000<br>1.738                                                                                           | k-ft<br>k-ft<br>ft<br>ft<br>ft<br>ksf                                          |   | Dead =        | ( ASD M /<br>( L / 6 )<br>( "Greatel<br>("Less Th<br>("Less Th<br>"Equal Tc                                                                                                                      | 1.6<br>/ P )<br>r Than", Lengt<br>aan",Qmin = (F<br>aan",Qmax = (I<br>v", Qmax = (2*                                                                                                                                 | h = 3*(L/2 -e) ; Otherwise = L )<br>?/L*B) - (6*M / B*L^2), Otherwise = 0 )<br>P/L*B) + (6*M / B*L^2),<br>P) / (L*B)                                                                                                                                                                                                                                                                                                                              |    |
| Dead Load Moment =<br>Live Load Moment =<br>ASD Total Moment, M =<br>LRFD Total Moment, Mu =<br><b>ASD Soil Pressures:</b><br>e =<br>Kern =<br>e > = < Kern ?<br>Length of Pressure =<br>Minimum Pressure, Qmin =<br>Maximum Pressure, Qmax =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>0<br>0<br>0.000<br>0.667<br>Less Than<br>4.000<br>1.738<br>1.738                                                                                  | k-ft<br>k-ft<br>ft<br>ft<br>ft<br>ksf                                          |   | Dead =        | ( ASD M /<br>( L / 6 )<br>( "Greatel<br>("Less Th<br>("Less Th<br>"Equal Tc                                                                                                                      | 1.6<br>/ P )<br>r Than", Lengt<br>aan",Qmin = (F<br>aan",Qmax = (I<br>v", Qmax = (2*                                                                                                                                 | h = 3*(L/2 -e) ; Otherwise = L )<br>?/L*B) - (6*M / B*L^2), Otherwise = 0 )<br>P/L*B) + (6*M / B*L^2),                                                                                                                                                                                                                                                                                                                                            |    |
| Dead Load Moment =<br>Live Load Moment =<br>ASD Total Moment, M =<br>LRFD Total Moment, Mu =<br><b>ASD Soil Pressures:</b><br>e =<br>Kern =<br>e > = < Kern ?<br>Length of Pressure =<br>Minimum Pressure, Qmin =<br>Maximum Pressure, Qmax =<br>Is Qmax <sbc?< td=""><td>0<br/>0<br/>0<br/>0.000<br/>0.667<br/>Less Than<br/>4.000<br/>1.738<br/>1.738</td><td>k-ft<br/>k-ft<br/>ft<br/>ft<br/>ft<br/>ksf</td><td></td><td>Dead =</td><td>( ASD M /<br/>( L / 6 )<br/>( "Greatel<br/>("Less Th<br/>("Less Th<br/>"Equal Tc</td><td>1.6<br/>/ P )<br/>r Than", Lengt<br/>aan",Qmin = (F<br/>aan",Qmax = (I<br/>v", Qmax = (2*</td><td>h = 3*(L/2 -e) ; Otherwise = L )<br/>?/L*B) - (6*M / B*L^2), Otherwise = 0 )<br/>P/L*B) + (6*M / B*L^2),<br/>P) / (L*B)</td><td></td></sbc?<>                                                           | 0<br>0<br>0<br>0.000<br>0.667<br>Less Than<br>4.000<br>1.738<br>1.738                                                                                  | k-ft<br>k-ft<br>ft<br>ft<br>ft<br>ksf                                          |   | Dead =        | ( ASD M /<br>( L / 6 )<br>( "Greatel<br>("Less Th<br>("Less Th<br>"Equal Tc                                                                                                                      | 1.6<br>/ P )<br>r Than", Lengt<br>aan",Qmin = (F<br>aan",Qmax = (I<br>v", Qmax = (2*                                                                                                                                 | h = 3*(L/2 -e) ; Otherwise = L )<br>?/L*B) - (6*M / B*L^2), Otherwise = 0 )<br>P/L*B) + (6*M / B*L^2),<br>P) / (L*B)                                                                                                                                                                                                                                                                                                                              |    |
| Dead Load Moment =<br>Live Load Moment =<br>ASD Total Moment, M =<br>LRFD Total Moment, Mu =<br><b>ASD Soil Pressures:</b><br>e =<br>Kern =<br>e > = < Kern ?<br>Length of Pressure =<br>Minimum Pressure, Qmin =<br>Maximum Pressure, Qmax =<br>Is Qmax <sbc?< td=""><td>0<br/>0<br/>0<br/>0.000<br/>0.667<br/>Less Than<br/>4.000<br/>1.738<br/>1.738<br/>YES</td><td>k-ft<br/>k-ft<br/>ft<br/>ft<br/>ksf<br/>ksf</td><td></td><td>Dead =</td><td>( ASD M /<br/>( L / 6 )<br/>( "Greater<br/>("Less Th<br/>("Less Th<br/>("Less Th<br/>"Equal Tc<br/>"Greater</td><td>1.6<br/>/ P )<br/>r Than", Lengt<br/>tan",Qmin = (F<br/>tan",Qmax = (I<br/>", Qmax = (2*<br/>Than", Qmax =</td><td>h = 3*(L/2 -e) ; Otherwise = L )<br/>?/L*B) - (6*M / B*L^2), Otherwise = 0 )<br/>P/L*B) + (6*M / B*L^2),<br/>P) / (L*B)</td><td></td></sbc?<>      | 0<br>0<br>0<br>0.000<br>0.667<br>Less Than<br>4.000<br>1.738<br>1.738<br>YES                                                                           | k-ft<br>k-ft<br>ft<br>ft<br>ksf<br>ksf                                         |   | Dead =        | ( ASD M /<br>( L / 6 )<br>( "Greater<br>("Less Th<br>("Less Th<br>("Less Th<br>"Equal Tc<br>"Greater                                                                                             | 1.6<br>/ P )<br>r Than", Lengt<br>tan",Qmin = (F<br>tan",Qmax = (I<br>", Qmax = (2*<br>Than", Qmax =                                                                                                                 | h = 3*(L/2 -e) ; Otherwise = L )<br>?/L*B) - (6*M / B*L^2), Otherwise = 0 )<br>P/L*B) + (6*M / B*L^2),<br>P) / (L*B)                                                                                                                                                                                                                                                                                                                              |    |
| Dead Load Moment =<br>Live Load Moment =<br>ASD Total Moment, M =<br>LRFD Total Moment, Mu =<br><b>ASD Soil Pressures</b><br>e = < Kern ?<br>Length of Pressure =<br>Minimum Pressure, Qmia =<br>Maximum Pressure, Qmax =<br>Is Qmax <sbc?< td=""><td>0<br/>0<br/>0<br/>0.000<br/>0.667<br/>Less Than<br/>4.000<br/>1.738<br/>1.738<br/>YES<br/>0.000</td><td>k-ft<br/>k-ft<br/>ft<br/>ft<br/>ksf<br/>ksf</td><td></td><td>Dead =</td><td>( ASD M /<br/>( L / 6 )<br/>( "Greatel<br/>("Less Th<br/>("Less Th<br/>("Less Th<br/>"Equal Tc<br/>"Greater"<br/>( ASD M /</td><td>1.6<br/>/ P )<br/>r Than", Lengt<br/>tan",Qmin = (F<br/>tan",Qmax = (I<br/>", Qmax = (2*<br/>Than", Qmax =</td><td>h = 3*(L/2 -e) ; Otherwise = L )<br/>?/L*B) - (6*M / B*L^2), Otherwise = 0 )<br/>P/L*B) + (6*M / B*L^2),<br/>P) / (L*B)</td><td></td></sbc?<> | 0<br>0<br>0<br>0.000<br>0.667<br>Less Than<br>4.000<br>1.738<br>1.738<br>YES<br>0.000                                                                  | k-ft<br>k-ft<br>ft<br>ft<br>ksf<br>ksf                                         |   | Dead =        | ( ASD M /<br>( L / 6 )<br>( "Greatel<br>("Less Th<br>("Less Th<br>("Less Th<br>"Equal Tc<br>"Greater"<br>( ASD M /                                                                               | 1.6<br>/ P )<br>r Than", Lengt<br>tan",Qmin = (F<br>tan",Qmax = (I<br>", Qmax = (2*<br>Than", Qmax =                                                                                                                 | h = 3*(L/2 -e) ; Otherwise = L )<br>?/L*B) - (6*M / B*L^2), Otherwise = 0 )<br>P/L*B) + (6*M / B*L^2),<br>P) / (L*B)                                                                                                                                                                                                                                                                                                                              |    |
| Dead Load Moment =<br>Live Load Moment =<br>ASD Total Moment, M =<br>LRFD Total Moment, Mu =<br><b>ASD Soil Pressures:</b><br>e =<br>Kern =<br>e > = < Kern ?<br>Length of Pressure =<br>Minimum Pressure, Qmin =<br>Maximum Pressure, Qmax =<br>Is Qmax <sbc?<br><b>LRFD Soil Pressures:</b><br/>e =<br/>Kern =</sbc?<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>0<br>0<br>0.000<br>0.667<br>Less Than<br>4.000<br>1.738<br>1.738<br>YES<br>0.000<br>0.667                                                         | k-ft<br>k-ft<br>ft<br>ft<br>ksf<br>ksf                                         |   | Dead =        | ( ASD M /<br>( L / 6 )<br>( "Greater<br>("Less Th<br>("Less Th<br>("Less Th<br>"Equal Tc<br>"Greater                                                                                             | 1.6<br>/ P )<br>r Than", Lengt<br>tan",Qmin = (F<br>tan",Qmax = (I<br>", Qmax = (2*<br>Than", Qmax =                                                                                                                 | h = 3*(L/2 -e) ; Otherwise = L )<br>?/L*B) - (6*M / B*L^2), Otherwise = 0 )<br>P/L*B) + (6*M / B*L^2),<br>P) / (L*B)                                                                                                                                                                                                                                                                                                                              |    |
| Dead Load Moment =<br>Live Load Moment =<br>ASD Total Moment, M =<br>LRFD Total Moment, Mu =<br><b>ASD Soil Pressures:</b><br>e = Kern ?<br>Length of Pressure =<br>Minimum Pressure, Qmin =<br>Maximum Pressure, Qmax =<br>Is Qmax <sbc?<br><b>LRFD Soil Pressures:</b><br/>e =<br/>Kern =<br/>e &gt; = &lt; Kern ?</sbc?<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>0<br>0<br>0.000<br>0.667<br>Less Than<br>4.000<br>1.738<br>1.738<br>YES<br>0.000<br>0.667<br>Less Than                                            | k-ft<br>k-ft<br>ft<br>ft<br>ksf<br>ksf<br>ft<br>ft                             |   | Dead =        | ( ASD M /<br>( L / 6 )<br>( "Greatel<br>("Less Th<br>("Less Th<br>"Equal To<br>"Greater T<br>( ASD M /<br>( L / 6 )                                                                              | 1.6<br>/ P )<br>r Than", Lengt<br>aan",Qmin = (F<br>aan",Qmax = (I<br>o", Qmax = (2*<br>Than", Qmax =<br>/ Pu )                                                                                                      | h = 3*(L/2 -e) ; Otherwise = L )<br>2/L*B) - (6*M / B*L^2), Otherwise = 0 )<br>P/L*B) + (6*M / B*L^2),<br>P) / (L*B)<br>= (4*P) / (3*B*(L - 2*e) )                                                                                                                                                                                                                                                                                                |    |
| Dead Load Moment =<br>Live Load Moment =<br>ASD Total Moment, M =<br>LRFD Total Moment, Mu =<br><b>ASD Soil Pressures:</b><br>e =<br>Kern =<br>e > = < Kern ?<br>Length of Pressure =<br>Minimum Pressure, Qmin =<br>Maximum Pressure, Qmax =<br>Is Qmax <sbc?<br><b>LRFD Soil Pressures:</b><br/>e =<br/>Kern =<br/>e &gt; = &lt; Kern ?<br/>Length of Pressure =</sbc?<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>0<br>0<br>0.000<br>0.667<br>Less Than<br>4.000<br>1.738<br>1.738<br>YES<br>0.000<br>0.667<br>Less Than<br>4.000                                   | k-ft<br>k-ft<br>ft<br>ft<br>ksf<br>ksf<br>ft<br>ft<br>ft                       |   | Dead =        | ( ASD M /<br>( L / 6 )<br>( "Greater<br>("Less Th<br>("Less Th<br>"Equal To<br>"Greater<br>( ASD M /<br>( L / 6 )<br>( "Greater                                                                  | 1.6<br>/ P )<br>r Than", Lengt<br>aan",Qmin = (F<br>aan",Qmax = (I<br>o", Qmax = (2*<br>Than", Qmax =<br>/ Pu )<br>r Than", Lengt                                                                                    | h = 3*(L/2 -e) ; Otherwise = L )<br>P/L*B) - (6*M / B*L^2), Otherwise = 0 )<br>P/L*B) + (6*M / B*L^2),<br>P) / (L*B)<br>= (4*P) / (3*B*(L - 2*e) )<br>h = 3*(L/2 -e) ; Otherwise = L )                                                                                                                                                                                                                                                            |    |
| Dead Load Moment =<br>Live Load Moment =<br>ASD Total Moment, M =<br>LRFD Total Moment, Mu =<br><b>ASD Soil Pressures:</b><br>e =<br>Kern =<br>e > = < Kern ?<br>Length of Pressure =<br>Minimum Pressure, Qmin =<br>Maximum Pressure, Qmax =<br>Is Qmax <sbc?<br><b>LRFD Soil Pressures:</b><br/>e =<br/>Kern =<br/>e &gt; = &lt; Kern ?<br/>Length of Pressure =<br/>Minimum Pressure, Qmin =</sbc?<br>                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>0<br>0<br>0.000<br>0.667<br>Less Than<br>4.000<br>1.738<br>1.738<br>YES<br>0.000<br>0.667<br>Less Than<br>4.000<br>2.343                          | k-ft<br>k-ft<br>ft<br>ft<br>ksf<br>ksf<br>ft<br>ft<br>ft<br>ft<br>ft           |   | Dead =        | ( ASD M /<br>( L / 6 )<br>( "Greater<br>("Less Th<br>("Less Th<br>"Equal To<br>"Greater<br>( ASD M /<br>( L / 6 )<br>( "Greater<br>("Less Th                                                     | 1.6<br>/ P )<br>r Than", Lengt<br>aan",Qmin = (F<br>aan",Qmax = (I<br>", Qmax = (2*<br>Than", Qmax =<br>/ Pu )<br>r Than", Lengt<br>aan",Qmin = (F                                                                   | h = 3*(L/2 -e) ; Otherwise = L )<br>P/L*B) - (6*M / B*L^2), Otherwise = 0 )<br>P/L*B) + (6*M / B*L^2),<br>P) / (L*B)<br>= (4*P) / (3*B*(L - 2*e) )<br>h = 3*(L/2 -e) ; Otherwise = L )<br>Pu/L*B) - (6*Mu / B*L^2), Otherwise = 0 )                                                                                                                                                                                                               |    |
| Dead Load Moment =<br>Live Load Moment =<br>ASD Total Moment, M =<br>LRFD Total Moment, Mu =<br><b>ASD Soil Pressures:</b><br>e =<br>Kern =<br>e > = < Kern ?<br>Length of Pressure =<br>Minimum Pressure, Qmin =<br>Maximum Pressure, Qmax =<br>Is Qmax <sbc?<br><b>LRFD Soil Pressures:</b><br/>e =<br/>Kern =<br/>e &gt; = &lt; Kern ?<br/>Length of Pressure =<br/>Minimum Pressure, Qmin =<br/>Maximum Pressure, Qmax =</sbc?<br>                                                                                                                                                                                                                                                                                                                                                                                                        | 0<br>0<br>0<br>0.000<br>0.667<br>Less Than<br>4.000<br>1.738<br>1.738<br>YES<br>0.000<br>0.667<br>Less Than<br>4.000<br>2.343<br>2.343                 | k-ft<br>k-ft<br>ft<br>ft<br>ft<br>ksf<br>ksf<br>ft<br>ft<br>ksf<br>ksf<br>ksf  |   | Dead =        | ( ASD M /<br>( L / 6 )<br>( "Greate<br>("Less Th<br>("Less Th<br>"Equal Tc<br>"Greater"<br>( ASD M /<br>( L / 6 )<br>( "Greatel<br>("Less Th<br>("Less Th                                        | 1.6<br>/ P )<br>r Than", Lengt<br>nan",Qmin = (F<br>pan",Qmax = (2*<br>Than", Qmax =<br>/ Pu )<br>r Than", Lengt<br>nan",Qmin = (F<br>pan",Qmax = (f                                                                 | th = 3*(L/2 -e) ; Otherwise = L )<br>P/L*B) - (6*M / B*L^2), Otherwise = 0 )<br>P/L*B) + (6*M / B*L^2),<br>P) / (L*B)<br>= (4*P) / (3*B*(L - 2*e) )<br>th = 3*(L/2 -e) ; Otherwise = L )<br>Pu/L*B) - (6*Mu / B*L^2), Otherwise = 0 )<br>Pu/L*B) + (6*Mu / B*L^2),                                                                                                                                                                                |    |
| Dead Load Moment =<br>Live Load Moment =<br>ASD Total Moment, M =<br>LRFD Total Moment, Mu =<br><b>ASD Soil Pressures:</b><br>e =<br>Kern =<br>e > = < Kern ?<br>Length of Pressure =<br>Minimum Pressure, Qmin =<br>Maximum Pressure, Qmax =<br>Is Qmax <sbc?<br><b>LRFD Soil Pressures:</b><br/>e =<br/>Kern =<br/>e &gt; = &lt; Kern ?<br/>Length of Pressure =<br/>Minimum Pressure, Qmin =<br/>Maximum Pressure, Qmin =<br/>Maximum Pressure, Qmax =<br/>Qcritical =</sbc?<br>                                                                                                                                                                                                                                                                                                                                                           | 0<br>0<br>0<br>0.000<br>0.667<br>Less Than<br>4.000<br>1.738<br>1.738<br><b>YES</b><br>0.000<br>0.667<br>Less Than<br>4.000<br>2.343<br>2.343<br>2.343 | k-ft<br>k-ft<br>ft<br>ft<br>ksf<br>ksf<br>ft<br>ft<br>ksf<br>ksf<br>ksf<br>ksf |   | Dead =        | ( ASD M /<br>( L / 6 )<br>( "Greate<br>("Less Th<br>("Less Th<br>"Equal Tc<br>"Greater"<br>( ASD M /<br>( L / 6 )<br>( "Greate<br>("Less Th<br>("Less Th<br>"Equal Tc                            | 1.6<br>/ P )<br>r Than", Lengt<br>nan",Qmin = (F<br>nan",Qmax = (A<br>', Qmax = (2*<br>Than", Qmax = (2*<br>/ Pu )<br>r Than", Lengt<br>nan",Qmin = (F<br>nan",Qmax = (4*)                                           | ch = 3*(L/2 -e) ; Otherwise = L )<br>P/L*B) - (6*M / B*L^2), Otherwise = 0 )<br>P/L*B) + (6*M / B*L^2),<br>P) / (L*B)<br>= (4*P) / (3*B*(L - 2*e) )<br>ch = 3*(L/2 -e) ; Otherwise = L )<br>Pu/L*B) - (6*Mu / B*L^2), Otherwise = 0 )<br>Pu/L*B) + (6*Mu / B*L^2),<br>Pu) / (L*B)                                                                                                                                                                 |    |
| Dead Load Moment =<br>Live Load Moment =<br>ASD Total Moment, M =<br>LRFD Total Moment, Mu =<br><b>ASD Soil Pressures:</b><br>e =<br>Kern =<br>e > = < Kern ?<br>Length of Pressure =<br>Minimum Pressure, Qmin =<br>Maximum Pressure, Qmax =<br>Is Qmax <sbc?<br><b>LRFD Soil Pressures:</b><br/>e =<br/>Kern =<br/>e &gt; = &lt; Kern ?<br/>Length of Pressure =<br/>Minimum Pressure, Qmin =<br/>Maximum Pressure, Qmax =</sbc?<br>                                                                                                                                                                                                                                                                                                                                                                                                        | 0<br>0<br>0<br>0.000<br>0.667<br>Less Than<br>4.000<br>1.738<br>1.738<br>YES<br>0.000<br>0.667<br>Less Than<br>4.000<br>2.343<br>2.343                 | k-ft<br>k-ft<br>ft<br>ft<br>ft<br>ksf<br>ksf<br>ft<br>ft<br>ksf<br>ksf<br>ksf  |   | Dead =        | ( ASD M /<br>( L / 6 )<br>( "Greate<br>("Less Th<br>("Less Th<br>"Equal Tc<br>"Greater"<br>( ASD M /<br>( L / 6 )<br>( "Greater<br>("Less Th<br>("Less Th<br>"Equal Tc<br>"Greater"              | 1.6<br>/ P )<br>r Than", Lengt<br>ian",Qmin = (F<br>ian",Qmax = (I<br>o", Qmax = (2*<br>Than", Qmax = (2*<br>/ Pu )<br>r Than", Qmax = (F<br>ian",Qmin = (F<br>ian",Qmax = (2*<br>Than", Qmax = (2*                  | $\begin{aligned} h &= 3^*(L/2 - e) ; \ Otherwise = L \ ) \\ P/L^*B) &- (6^*M / B^*L^2), \ Otherwise = 0 \ ) \\ P/L^*B) &+ (6^*M / B^*L^2), \\ P) / (L^*B) \\ &= (4^*P) / (3^*B^*(L - 2^*e) \ ) \end{aligned}$ $\begin{aligned} h &= 3^*(L/2 - e) ; \ Otherwise = L \ ) \\ Pu/L^*B) &- (6^*Mu / B^*L^2), \ Otherwise = 0 \ ) \\ Pu/L^*B) &+ (6^*Mu / B^*L^2), \\ Pu/L^*B) &= (4^*Pu) / (L^*B) \\ &= (4^*Pu) / (3^*B^*(L - 2^*e) \ ) \end{aligned}$ |    |
| Dead Load Moment =<br>Live Load Moment =<br>ASD Total Moment, M =<br>LRFD Total Moment, Mu =<br><b>ASD Soil Pressures:</b><br>e =<br>Kern =<br>e > = < Kern ?<br>Length of Pressure =<br>Minimum Pressure, Qmin =<br>Maximum Pressure, Qmax =<br>Is Qmax <sbc?<br><b>LRFD Soil Pressures:</b><br/>e =<br/>Kern =<br/>e &gt; = &lt; Kern ?<br/>Length of Pressure =<br/>Minimum Pressure, Qmin =<br/>Maximum Pressure, Qmin =<br/>Maximum Pressure, Qmax =<br/>Qcritical =</sbc?<br>                                                                                                                                                                                                                                                                                                                                                           | 0<br>0<br>0<br>0.000<br>0.667<br>Less Than<br>4.000<br>1.738<br>1.738<br><b>YES</b><br>0.000<br>0.667<br>Less Than<br>4.000<br>2.343<br>2.343<br>2.343 | k-ft<br>k-ft<br>ft<br>ft<br>ksf<br>ksf<br>ft<br>ft<br>ksf<br>ksf<br>ksf<br>ksf |   | Dead =        | ( ASD M /<br>( L / 6 )<br>( "Greate<br>("Less Th<br>("Less Th<br>"Equal To<br>"Greater"<br>( ASD M /<br>( L / 6 )<br>( "Greate<br>("Less Th<br>("Less Th<br>"Equal To<br>"Greater"<br>(Qcritical | 1.6<br>/ P )<br>r Than", Lengt<br>ian",Qmin = (F<br>ian",Qmax = (1<br>)", Qmax = (2*<br>Than", Qmax = (2*<br>/ Pu )<br>r Than", Qmax = (7<br>ian",Qmin = (F<br>ian",Qmax = (1<br>)", Qmax = (2*<br>Than", Qmax = (2* | ch = 3*(L/2 -e) ; Otherwise = L )<br>P/L*B) - (6*M / B*L^2), Otherwise = 0 )<br>P/L*B) + (6*M / B*L^2),<br>P) / (L*B)<br>= (4*P) / (3*B*(L - 2*e) )<br>ch = 3*(L/2 -e) ; Otherwise = L )<br>Pu/L*B) - (6*Mu / B*L^2), Otherwise = 0 )<br>Pu/L*B) + (6*Mu / B*L^2),<br>Pu) / (L*B)                                                                                                                                                                 |    |



| Project  | Balderston Auto |            |    | Project No | 20-467   |  |
|----------|-----------------|------------|----|------------|----------|--|
| Calc. By | RJS             | Checked By | JH | Date       | 03/01/21 |  |

| One-Way Shear Check:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                       |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vu1 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.49                                                                                                                                                                                                                  | k                                                                                                                          | (Qcrit*Crit.L + (Qmax-Qcrit)*Crit L*0.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ΦVn =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 118.55                                                                                                                                                                                                                | k                                                                                                                          | ( ACI 318-08 Equation 11-5, ΦVn = 0.75*2*sqrt(f'c)*B*d / 1000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Adequate in One-Way Shear?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | YES                                                                                                                                                                                                                   |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                       |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Two-Way Shear Check:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                       |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| b1 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39.06                                                                                                                                                                                                                 | in                                                                                                                         | (Critical Section B + d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| b2 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39.06                                                                                                                                                                                                                 | in                                                                                                                         | (Column Height L + d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| b0 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 156.25                                                                                                                                                                                                                | in                                                                                                                         | (2*b1 + 2*b2 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Vu2 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.66                                                                                                                                                                                                                 | k                                                                                                                          | (Vu2 = (Qmax+Qmin)/2 * (Ftg Area - b1*b2))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| α =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40                                                                                                                                                                                                                    |                                                                                                                            | (ACI 318-08 Section 11.11.2.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| β =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                     |                                                                                                                            | (ACI 318-08 Section 11.11.2.1, Larger Ftg Dim / Smaller Ftg Dim )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ΦVn =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1157.76                                                                                                                                                                                                               | k                                                                                                                          | (ACI 318-08 Eq 11-32, ΦVn = 0.75*sqrt(f'c)*bo*d*(2+4/Beta))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ΦVn =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1870.94                                                                                                                                                                                                               | k                                                                                                                          | (ACI 318-08 Eq 11-32, ΦVn = 0.75*sqrt(f'c)*bo*d*(2+Alpha*d/bo))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ΦVn =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 771.84                                                                                                                                                                                                                | k                                                                                                                          | (ACI 318-08 Eq 11-33, ΦVn = 0.75*4*sqrt(f'c)*bo*d )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Adequate in Two-Way Shear?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | YES                                                                                                                                                                                                                   |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                       |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Column Bearing Check:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                       |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ΦPn =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 477.36                                                                                                                                                                                                                | k                                                                                                                          | ( ACI 318-08 Section 10.14.1 ΦPn = 0.65*0.85*f'c*Plate Area*2) )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Adequate in Bearing?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YES                                                                                                                                                                                                                   |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                       |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Uplift Check:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                       |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ASD Combo for Uplift =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.6D + Uplif                                                                                                                                                                                                          | t                                                                                                                          | (ASCE 7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Uplift Force =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                     | k                                                                                                                          | ( From Above )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Required Dead Load =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                                  | k                                                                                                                          | ( Uplift / 0.6 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Applied Dead Load + Slab + Ftg =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17.5                                                                                                                                                                                                                  | k                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Additional Slab Used =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                                                                     | ft                                                                                                                         | ( Length of Additional Slab in Each Direction )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Wall Weight Over Footing =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                     | klf                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Length Parallel to Slab Edge =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                     | ft                                                                                                                         | ( B or L Depending on the Case)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Length Perpendicular to Slab Edge =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                     | ft                                                                                                                         | (B or L Depending on the Case)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Area of Cont. Footing =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                     | ft <sup>2</sup>                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                     | ft                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Length of Cont Footing Used =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                       |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Length of Cont. Footing Used =<br>Total Dead Load =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                       |                                                                                                                            | (Applied Dead + Slab + Wall Weight + Add_Slab + Cont_Etg.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Total Dead Load =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25.5                                                                                                                                                                                                                  | k                                                                                                                          | (Applied Dead + Slab + Wall Weight + Add. Slab + Cont. Ftg )<br>(Calculation assumes wall is above the cont. ftg.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Total Dead Load =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25.5                                                                                                                                                                                                                  |                                                                                                                            | (Applied Dead + Slab + Wall Weight + Add. Slab + Cont. Ftg )<br>(Calculation assumes wall is above the cont. ftg.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Total Dead Load =<br>Adequate for Uplift?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.5                                                                                                                                                                                                                  | k                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Total Dead Load =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25.5                                                                                                                                                                                                                  | k                                                                                                                          | (Calculation assumes wall is above the cont. ftg.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Total Dead Load =<br>Adequate for Uplift?<br><b>Top Steel:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25.5<br>Footing is <i>I</i>                                                                                                                                                                                           | k<br>Adequate to Resist Uplift                                                                                             | (Calculation assumes wall is above the cont. ftg.)<br>( Mu = (Pu/A)*0.5*Crit. L^2 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total Dead Load =<br>Adequate for Uplift?<br><b>Top Steel:</b><br>Mu =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25.5<br>Footing is <i>J</i><br>0.00                                                                                                                                                                                   | k<br>Adequate to Resist Uplift                                                                                             | (Calculation assumes wall is above the cont. ftg.)<br>( Mu = (Pu/A)*0.5*Crit. L^2 )<br>( m = fy/(0.85*fc) )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Total Dead Load =<br>Adequate for Uplift?<br>Top Steel:<br>Mu =<br>m =<br>Ru =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25.5<br>Footing is A<br>0.00<br>23.529<br>0.000                                                                                                                                                                       | k<br>Adequate to Resist Uplift<br>k-ft / ft                                                                                | (Calculation assumes wall is above the cont. ftg.)<br>( Mu = (Pu/A)*0.5*Crit. L^2 )<br>( m = fy/(0.85*fc) )<br>(Ru = Mu/(0.9*12 inches*d^2))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Total Dead Load =<br>Adequate for Uplift?<br><b>Top Steel:</b><br>Mu =<br>m =<br>Ru =<br>ρ Req'd =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25.5<br>Footing is A<br>0.00<br>23.529<br>0.000<br>0.0000                                                                                                                                                             | k<br>Adequate to Resist Uplift<br>k-ft / ft                                                                                | (Calculation assumes wall is above the cont. ftg.)<br>( Mu = (Pu/A)*0.5*Crit. L^2 )<br>( m = fy/(0.85*fc) )<br>(Ru = Mu/(0.9*12 inches*d^2))<br>(ρ = (1/m)*(1-sqrt(1-2*Ru*m/fy)))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Total Dead Load =<br>Adequate for Uplift?<br><b>Top Steel:</b><br>Mu =<br>m =<br>Ru =<br>ρ Req'd =<br>ρ Min. =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25.5<br>Footing is A<br>0.00<br>23.529<br>0.000<br>0.0000<br>0.0000<br>0.0027                                                                                                                                         | k<br>Adequate to Resist Uplift<br>k-ft / ft                                                                                | (Calculation assumes wall is above the cont. ftg.)<br>( Mu = (Pu/A)*0.5*Crit. L^2 )<br>( m = fy/(0.85*fc) )<br>(Ru = Mu/(0.9*12 inches*d^2))<br>(ρ = (1/m)*(1-sqrt(1-2*Ru*m/fy)))<br>(ACI 318-08 Equation 10-3, Smaller of: 3*sqrt(fc)/fy & 200/fy )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Total Dead Load =<br>Adequate for Uplift?<br><b>Top Steel:</b><br>Mu =<br>m =<br>Ru =<br>ρ Req'd =<br>ρ Min. =<br>4/3*Mu ρ Req'd =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25.5<br>Footing is A<br>0.00<br>23.529<br>0.000<br>0.0000<br>0.0000<br>0.0027<br>0.0000                                                                                                                               | k<br>Adequate to Resist Uplift<br>k-ft / ft                                                                                | (Calculation assumes wall is above the cont. ftg.)<br>( $Mu = (Pu/A)^*0.5^*Crit. L^2 )$<br>( $m = fy/(0.85^*fc) )$<br>( $Ru = Mu/(0.9^*12 \text{ inches}^*d^22)$ )<br>( $\rho = (1/m)^*(1\text{-sqrt}(1-2^*Ru^*m/fy))$ )<br>(ACI 318-08 Equation 10-3, Smaller of: 3*sqrt(fc)/fy & 200/fy )<br>( $\rho = (1/m)^*(1\text{-sqrt}(1-2^*1.33^*Ru^*m/fy))$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Total Dead Load =<br>Adequate for Uplift?<br><b>Top Steel:</b><br>Mu =<br>m =<br>Ru =<br>ρ Req'd =<br>ρ Min. =<br>4/3*Mu ρ Req'd =<br>Governing ρ =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25.5<br>Footing is A<br>0.00<br>23.529<br>0.000<br>0.0000<br>0.0027<br>0.0000<br>0.0000                                                                                                                               | k<br>Adequate to Resist Uplift<br>k-ft / ft<br>ksi                                                                         | (Calculation assumes wall is above the cont. ftg.)<br>( $Mu = (Pu/A)^*0.5^*Crit. L^2 )$<br>( $m = fy/(0.85^*fc) )$<br>( $Ru = Mu/(0.9^*12 \text{ inches}^*d^22)$ )<br>( $\rho = (1/m)^*(1\text{-sqrt}(1-2^*Ru^*m/fy))$ )<br>(ACI 318-08 Equation 10-3, Smaller of: 3*sqrt(f'c)/fy & 200/fy )<br>( $\rho = (1/m)^*(1\text{-sqrt}(1-2^*1.33^*Ru^*m/fy))$ )<br>( If $\rho$ Req'd < 4/3*Mu $\rho$ Req'd < $\rho$ Min, Use 4/3*Mu $\rho$ Req'd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Total Dead Load =<br>Adequate for Uplift?<br>Top Steel:<br>Mu =<br>m =<br>Ru =<br>$\rho$ Req'd =<br>$\rho$ Min. =<br>4/3*Mu $\rho$ Req'd =<br>Governing $\rho$ =<br>A's Required =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25.5<br>Footing is A<br>0.00<br>23.529<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                     | k<br>Adequate to Resist Uplift<br>k-ft / ft                                                                                | (Calculation assumes wall is above the cont. ftg.)<br>( $Mu = (Pu/A)^*0.5^*Crit. L^2 )$<br>( $m = fy/(0.85^*fc) )$<br>( $Ru = Mu/(0.9^*12 \text{ inches}^*d^22)$ )<br>( $\rho = (1/m)^*(1\text{-sqrt}(1-2^*Ru^*m/fy))$ )<br>(ACI 318-08 Equation 10-3, Smaller of: 3*sqrt(fc)/fy & 200/fy )<br>( $\rho = (1/m)^*(1\text{-sqrt}(1-2^*1.33^*Ru^*m/fy))$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Total Dead Load =<br>Adequate for Uplift?<br><b>Top Steel:</b><br>Mu =<br>m =<br>Ru =<br>ρ Req'd =<br>ρ Min. =<br>4/3*Mu ρ Req'd =<br>Governing ρ =<br>A's Required =<br>Bar # =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25.5<br>Footing is A<br>0.00<br>23.529<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>5                                                                                                                          | k<br>Adequate to Resist Uplift<br>k-ft / ft<br>ksi<br>in²/ft                                                               | (Calculation assumes wall is above the cont. ftg.)<br>( $Mu = (Pu/A)^*0.5^*Crit. L^2 )$<br>( $m = fy/(0.85^*fc) )$<br>( $Ru = Mu/(0.9^*12 \text{ inches}^*d^22)$ )<br>( $\rho = (1/m)^*(1\text{-sqrt}(1-2^*Ru^*m/fy))$ )<br>(ACI 318-08 Equation 10-3, Smaller of: 3*sqrt(f'c)/fy & 200/fy )<br>( $\rho = (1/m)^*(1\text{-sqrt}(1-2^*1.33^*Ru^*m/fy))$ )<br>( If $\rho$ Req'd < 4/3*Mu $\rho$ Req'd < $\rho$ Min, Use 4/3*Mu $\rho$ Req'd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Total Dead Load =<br>Adequate for Uplift?<br>Top Steel:<br>Mu =<br>m =<br>Ru =<br>$\rho$ Req'd =<br>$\rho$ Min. =<br>4/3*Mu $\rho$ Req'd =<br>Governing $\rho$ =<br>A's Required =<br>Bar # =<br>Bar Spacing =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25.5<br>Footing is A<br>0.00<br>23.529<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>5<br>10                                                                                                                    | k<br>Adequate to Resist Uplift<br>k-ft / ft<br>ksi<br>in <sup>2</sup> /ft<br>in                                            | (Calculation assumes wall is above the cont. ftg.)<br>( $Mu = (Pu/A)^*0.5^*Crit. L^2 )$<br>( $m = fy/(0.85^*fc)$ )<br>( $Ru = Mu/(0.9^*12 \text{ inches}^*d^22)$ )<br>( $\rho = (1/m)^*(1\text{-sqrt}(1-2^*Ru^*m/fy))$ )<br>(ACI 318-08 Equation 10-3, Smaller of: 3*sqrt(f'c)/fy & 200/fy )<br>( $\rho = (1/m)^*(1\text{-sqrt}(1-2^*1.33^*Ru^*m/fy))$ )<br>( If $\rho$ Req'd < 4/3*Mu $\rho$ Req'd < $\rho$ Min, Use 4/3*Mu $\rho$ Req'd<br>( As = Governing $\rho$ *12 inches*d )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total Dead Load =<br>Adequate for Uplift?<br><b>Top Steel:</b><br>Mu =<br>m =<br>Ru =<br>ρ Req'd =<br>ρ Min. =<br>4/3*Mu ρ Req'd =<br>Governing ρ =<br>A's Required =<br>Bar # =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25.5<br>Footing is A<br>0.00<br>23.529<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>5                                                                                                                          | k<br>Adequate to Resist Uplift<br>k-ft / ft<br>ksi<br>in²/ft<br>in<br>in²/ft                                               | (Calculation assumes wall is above the cont. ftg.)<br>( $Mu = (Pu/A)^*0.5^*Crit. L^2 )$<br>( $m = fy/(0.85^*fc)$ )<br>( $Ru = Mu/(0.9^*12 \text{ inches}^*d^22)$ )<br>( $\rho = (1/m)^*(1\text{-sqrt}(1-2^*Ru^*m/fy))$ )<br>( $ACI 318-08$ Equation 10-3, Smaller of: $3^*\text{sqrt}(fc)/fy \& 200/fy$ )<br>( $\rho = (1/m)^*(1\text{-sqrt}(1-2^*1.33^*Ru^*m/fy))$ )<br>( $If \rho \text{ Req'd} < 4/3^*Mu \rho \text{ Req'd} < \rho \text{ Min, Use } 4/3^*Mu \rho \text{ Req'd}$<br>( $As = \text{Governing } \rho^*12 \text{ inches}^*d$ )<br>= 6 Bars in B Direction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Total Dead Load =<br>Adequate for Uplift?<br>Top Steel:<br>Mu =<br>m =<br>Ru =<br>$\rho \text{ Req'd} =$<br>$\rho \text{ Min.} =$<br>$4/3*Mu \rho \text{ Req'd} =$<br>$\text{Governing } \rho =$<br>A's  Required =<br>Bar # =<br>Bar  Spacing =<br>As  Provided =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25.5<br>Footing is A<br>0.00<br>23.529<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>5<br>10                                                                                                                    | k<br>Adequate to Resist Uplift<br>k-ft / ft<br>ksi<br>in²/ft<br>in<br>in²/ft                                               | (Calculation assumes wall is above the cont. ftg.)<br>( $Mu = (Pu/A)^*0.5^*Crit. L^2 )$<br>( $m = fy/(0.85^*fc)$ )<br>( $Ru = Mu/(0.9^*12 \text{ inches}^*d^22)$ )<br>( $\rho = (1/m)^*(1\text{-sqrt}(1-2^*Ru^*m/fy))$ )<br>(ACI 318-08 Equation 10-3, Smaller of: 3*sqrt(f'c)/fy & 200/fy)<br>( $\rho = (1/m)^*(1\text{-sqrt}(1-2^*1.33^*Ru^*m/fy))$ )<br>( If $\rho$ Req'd < 4/3*Mu $\rho$ Req'd < $\rho$ Min, Use 4/3*Mu $\rho$ Req'd<br>( As = Governing $\rho$ *12 inches*d )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Total Dead Load =<br>Adequate for Uplift?<br>Top Steel:<br>Mu =<br>m =<br>Ru =<br>$\rho \text{ Req'd} =$<br>$\rho \text{ Min.} =$<br>$4/3*Mu \rho \text{ Req'd} =$<br>$Governing \rho =$<br>A's  Required =<br>Bar # =<br>Bar  Spacing =<br>As  Provided =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25.5<br>Footing is A<br>0.00<br>23.529<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>5<br>10<br>0.37                                                                                                            | k<br>Adequate to Resist Uplift<br>k-ft / ft<br>ksi<br>in²/ft<br>in<br>in²/ft                                               | (Calculation assumes wall is above the cont. ftg.)<br>( $Mu = (Pu/A)^*0.5^*Crit. L^2 )$<br>( $m = fy/(0.85^*fc)$ )<br>( $Ru = Mu/(0.9^*12 \text{ inches}^*d^22)$ )<br>( $\rho = (1/m)^*(1-sqrt(1-2^*Ru^*m/fy))$ )<br>( $ACI 318-08$ Equation 10-3, Smaller of: $3^*sqrt(fc)/fy \& 200/fy$ )<br>( $\rho = (1/m)^*(1-sqrt(1-2^*1.33^*Ru^*m/fy))$ )<br>( $If \rho \text{ Req'd} < 4/3^*Mu \rho \text{ Req'd} < \rho \text{ Min, Use } 4/3^*Mu \rho \text{ Req'd}$<br>( $As = \text{Governing } \rho^*12 \text{ inches}^*d$ )<br>= 6 Bars in B Direction<br>= 6 Bars in L Direction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Total Dead Load =<br>Adequate for Uplift?<br>Top Steel:<br>Mu =<br>m =<br>Ru =<br>$\rho$ Req'd =<br>$\rho$ Min. =<br>4/3*Mu $\rho$ Req'd =<br>Governing $\rho$ =<br>A's Required =<br>Bar # =<br>Bar Spacing =<br>As Provided =<br>Mu =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25.5<br>Footing is A<br>0.00<br>23.529<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>5<br>10<br>0.37<br>0.16                                                                                                    | k<br>Adequate to Resist Uplift<br>k-ft / ft<br>ksi<br>in²/ft<br>in<br>in²/ft                                               | (Calculation assumes wall is above the cont. ftg.)<br>( $Mu = (Pu/A)^*0.5^*Crit. L^2 )$<br>( $m = fy/(0.85^*f^c) )$<br>( $Ru = Mu/(0.9^*12 \text{ inches}^*d^22)$ )<br>( $\rho = (1/m)^*(1-\text{sqrt}(1-2^*Ru^*m/fy))$ )<br>( $ACI 318-08$ Equation 10-3, Smaller of: $3^*\text{sqrt}(f^c)/fy \& 200/fy )$<br>( $\rho = (1/m)^*(1-\text{sqrt}(1-2^*1.33^*Ru^*m/fy))$ )<br>( If $\rho$ Req'd < $4/3^*Mu \rho$ Req'd < $\rho$ Min, Use $4/3^*Mu \rho$ Req'd<br>( $As = \text{Governing } \rho^*12 \text{ inches}^*d )$<br>= 6 Bars in B Direction<br>= 6 Bars in L Direction<br>( $Mu= \text{Qcrit}^*0.5^*\text{Lcrit}^2 + (\text{Qmax-Qcrit})^*0.5^*(2/3)^*\text{Lcrit}^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Total Dead Load =<br>Adequate for Uplift?<br>Top Steel:<br>Mu =<br>m =<br>Ru =<br>$\rho \operatorname{Req'd} =$<br>$\rho \operatorname{Min} =$<br>$4/3*Mu \rho \operatorname{Req'd} =$<br>$\operatorname{Governing} \rho =$<br>$A's \operatorname{Required} =$<br>$\operatorname{Bar} \# =$<br>$\operatorname{Bar} \operatorname{Spacing} =$<br>$\operatorname{As} \operatorname{Provided} =$<br>$\operatorname{Bottom Steel:}$<br>Mu =<br>m =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25.5<br>Footing is A<br>0.00<br>23.529<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>5<br>10<br>0.37<br>0.16<br>23.529                                                                                          | k<br>Adequate to Resist Uplift<br>k-ft / ft<br>ksi<br>in²/ft<br>in<br>in²/ft<br>k-ft / ft                                  | (Calculation assumes wall is above the cont. ftg.)<br>( $Mu = (Pu/A)^*0.5^*Crit. L^2 )$<br>( $m = fy/(0.85^*f^c)$ )<br>( $Ru = Mu/(0.9^*12 \text{ inches}^*d^22)$ )<br>( $\rho = (1/m)^*(1-\operatorname{sqrt}(1-2^*Ru^*m/fy))$ )<br>( $ACI 318-08$ Equation 10-3, Smaller of: $3^*\operatorname{sqrt}(f^*c)/fy \& 200/fy$ )<br>( $\rho = (1/m)^*(1-\operatorname{sqrt}(1-2^*1.33^*Ru^*m/fy))$ )<br>( If $\rho$ Req'd < $4/3^*Mu \rho$ Req'd < $\rho$ Min, Use $4/3^*Mu \rho$ Req'd<br>( $As = \text{Governing } \rho^*12 \text{ inches}^*d$ )<br>= 6 Bars in B Direction<br>= 6 Bars in L Direction<br>( $Mu= \operatorname{Qcrit}^*0.5^*L\operatorname{Crit}^2 + (\operatorname{Qmax-Qcrit})^*0.5^*(2/3)^*L\operatorname{Crit}^2)$<br>( $m = fy/(0.85^*f^c)$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Total Dead Load =<br>Adequate for Uplift?<br>Top Steel:<br>Mu =<br>m =<br>Ru =<br>$\rho \operatorname{Req'd} =$<br>$\rho \operatorname{Min} =$<br>$4/3*Mu \rho \operatorname{Req'd} =$<br>$\operatorname{Governing} \rho =$<br>$A's \operatorname{Required} =$<br>$\operatorname{Bar} \# =$<br>$\operatorname{Bar} \operatorname{Spacing} =$<br>$\operatorname{As} \operatorname{Provided} =$<br>Bottom Steel:<br>Mu =<br>m =<br>$\operatorname{Ru} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25.5<br>Footing is A<br>0.00<br>23.529<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>5<br>10<br>0.37<br>0.16<br>23.529<br>0.000                                                                                 | k<br>Adequate to Resist Uplift<br>k-ft / ft<br>ksi<br>in²/ft<br>in<br>in²/ft                                               | (Calculation assumes wall is above the cont. ftg.)<br>( $Mu = (Pu/A)^*0.5^*Crit. L^2 )$<br>( $m = fy/(0.85^*f^c)$ )<br>( $Ru = Mu/(0.9^*12 \text{ inches}^*d^2)$ ))<br>( $\rho = (1/m)^*(1-\operatorname{sqrt}(1-2^*Ru^*m/fy))$ ))<br>( $ACI 318-08 \text{ Equation } 10-3$ , Smaller of: $3^*\operatorname{sqrt}(f^c)/fy \& 200/fy$ )<br>( $\rho = (1/m)^*(1-\operatorname{sqrt}(1-2^*1.33^*Ru^*m/fy))$ ))<br>( If $\rho \operatorname{Req'd} < 4/3^*Mu \ \rho \operatorname{Req'd} < \rho \operatorname{Min}$ , Use $4/3^*Mu \ \rho \operatorname{Req'd}$<br>( $As = \operatorname{Governing} \rho^*12 \text{ inches}^*d$ )<br>= 6 Bars in B Direction<br>= 6 Bars in L Direction<br>( $Mu= \operatorname{Qcrit}^*0.5^*Lcrit^2 + (\operatorname{Qmax-Qcrit})^*0.5^*(2/3)^*Lcrit^2)$<br>( $m = fy/(0.85^*f^c)$ )<br>( $Ru = Mu/(0.9^*12 \text{ inches}^*d^2)$ ))                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25.5<br>Footing is A<br>0.00<br>23.529<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>5<br>10<br>0.37<br>0.16<br>23.529<br>0.000<br>0.0000                                                                                 | k<br>Adequate to Resist Uplift<br>k-ft / ft<br>ksi<br>in²/ft<br>in<br>in²/ft<br>k-ft / ft                                  | (Calculation assumes wall is above the cont. ftg.)<br>( $Mu = (Pu/A)^*0.5^*Crit. L^2 )$<br>( $m = fy/(0.85^*fc)$ )<br>( $Ru = Mu/(0.9^*12 \text{ inches}^*d^22)$ )<br>( $\rho = (1/m)^*(1-\operatorname{sqrt}(1-2^*Ru^*m/fy))$ )<br>( $ACI 318-08 \text{ Equation } 10-3, \text{ Smaller of: } 3^*\operatorname{sqrt}(fc)/fy \& 200/fy $ )<br>( $\rho = (1/m)^*(1-\operatorname{sqrt}(1-2^*1.33^*Ru^*m/fy))$ )<br>( If $\rho \operatorname{Req'd} < 4/3^*Mu \ \rho \operatorname{Req'd} < \rho \operatorname{Min}$ , Use $4/3^*Mu \ \rho \operatorname{Req'd}$<br>( $As = \operatorname{Governing } \rho^*12 \text{ inches}^*d$ )<br>= 6 Bars in B Direction<br>= 6 Bars in L Direction<br>( $Mu= \operatorname{Qcrit}^*0.5^*Lcrit^2 + (\operatorname{Qmax-Qcrit})^*0.5^*(2/3)^*Lcrit^2)$<br>( $m = fy/(0.85^*fc)$ )<br>( $Ru = Mu/(0.9^*12 \text{ inches}^*d^22)$ )<br>( $\rho = (1/m)^*(1-\operatorname{sqrt}(1-2^*Ru^*m/fy))$ )                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25.5<br>Footing is A<br>0.00<br>23.529<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>5<br>10<br>0.37<br>0.16<br>23.529<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                   | k<br>Adequate to Resist Uplift<br>k-ft / ft<br>ksi<br>in²/ft<br>in<br>in²/ft<br>k-ft / ft                                  | (Calculation assumes wall is above the cont. ftg.)<br>( $Mu = (Pu/A)^*0.5^*Crit. L^2 )$<br>( $m = fy/(0.85^*fc)$ )<br>( $Ru = Mu/(0.9^*12 \text{ inches}^*d^22)$ )<br>( $\rho = (1/m)^*(1-\operatorname{sqrt}(1-2^*Ru^*m/fy))$ )<br>( $ACI 318-08 \text{ Equation } 10-3, \text{ Smaller of: } 3^*\operatorname{sqrt}(fc)/fy \& 200/fy )$<br>( $\rho = (1/m)^*(1-\operatorname{sqrt}(1-2^*1.33^*Ru^*m/fy))$ )<br>( If $\rho \operatorname{Req'd} < 4/3^*Mu \rho \operatorname{Req'd} < \rho \operatorname{Min}$ , Use $4/3^*Mu \rho \operatorname{Req'd}$<br>( $As = \operatorname{Governing } \rho^*12 \operatorname{inches}^*d$ )<br>= 6 Bars in B Direction<br>= 6 Bars in L Direction<br>( $Mu=\operatorname{Qcrit}^*0.5^*Lcrit^2 + (\operatorname{Qmax-Qcrit})^*0.5^*(2/3)^*Lcrit^2)$<br>( $m = fy/(0.85^*fc)$ )<br>( $Ru = Mu/(0.9^*12 \operatorname{inches}^*d^22)$ )<br>( $\rho = (1/m)^*(1-\operatorname{sqrt}(1-2^*Ru^*m/fy))$ )<br>( $ACI 318-08 \operatorname{Equation } 10-3, \operatorname{Smaller of: } 3^*\operatorname{sqrt}(fc)/fy \& 200/fy$ )                                                                                                                                                                                                                                                                  |
| Total Dead Load =<br>Adequate for Uplift?<br>Top Steel:<br>$Mu = m =$ $Ru =$ $\rho \operatorname{Req'd} =$ $\rho \operatorname{Min} =$ $4/3^*\operatorname{Mu} \rho \operatorname{Req'd} =$ $\operatorname{Governing} \rho =$ $A's \operatorname{Required} =$ $\operatorname{Bar} \# =$ $\operatorname{Bar} \operatorname{Spacing} =$ $\operatorname{As} \operatorname{Provided} =$ $Bottom \operatorname{Steel:}$ $Mu =$ $m =$ $Ru =$ $\rho \operatorname{Req'd} =$ $\rho \operatorname{Min} =$ $4/3^*\operatorname{Mu} \rho \operatorname{Req'd} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25.5<br>Footing is A<br>0.00<br>23.529<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>5<br>10<br>0.37<br>0.16<br>23.529<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                               | k<br>Adequate to Resist Uplift<br>k-ft / ft<br>ksi<br>in²/ft<br>in<br>in²/ft<br>k-ft / ft                                  | (Calculation assumes wall is above the cont. ftg.)<br>( $Mu = (Pu/A)^*0.5^*Crit. L^2 )$<br>( $m = fy/(0.85^*fc)$ )<br>( $Ru = Mu/(0.9^*12 \text{ inches}^*d^22)$ )<br>( $\rho = (1/m)^*(1-\operatorname{sqrt}(1-2^*Ru^*m/fy))$ )<br>( $ACI 318-08 \text{ Equation } 10-3, \text{ Smaller of: } 3^*\operatorname{sqrt}(fc)/fy \& 200/fy $ )<br>( $\rho = (1/m)^*(1-\operatorname{sqrt}(1-2^*1.33^*Ru^*m/fy))$ )<br>( $If \rho \operatorname{Req'd} < 4/3^*Mu \rho \operatorname{Req'd} < \rho \operatorname{Min}$ , Use $4/3^*Mu \rho \operatorname{Req'd}$<br>( $As = \operatorname{Governing} \rho^*12 \operatorname{inches}^*d$ )<br>= 6 Bars in B Direction<br>= 6 Bars in L Direction<br>( $Mu= \operatorname{Qcrit}^*0.5^*Lcrit^2 + (\operatorname{Qmax-Qcrit})^*0.5^*(2/3)^*Lcrit^2)$<br>( $m = fy/(0.85^*fc)$ )<br>( $Ru = Mu/(0.9^*12 \operatorname{inches}^*d^22)$ )<br>( $\rho = (1/m)^*(1-\operatorname{sqrt}(1-2^*Ru^*m/fy))$ )<br>( $ACI 318-08 \operatorname{Equation } 10-3, \operatorname{Smaller of: } 3^*\operatorname{sqrt}(fc)/fy \& 200/fy$ )<br>( $\rho = (1/m)^*(1-\operatorname{sqrt}(1-2^*1.33^*Ru^*m/fy))$ )                                                                                                                                                                                             |
| $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25.5<br>Footing is A<br>0.00<br>23.529<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>5<br>10<br>0.37<br>0.16<br>23.529<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                   | k<br>Adequate to Resist Uplift<br>k-ft / ft<br>ksi<br>in <sup>2</sup> /ft<br>in<br>in <sup>2</sup> /ft<br>k-ft / ft<br>ksi | (Calculation assumes wall is above the cont. ftg.)<br>( $Mu = (Pu/A)^*0.5^*Crit. L^2 )$<br>( $m = fy/(0.85^*fc)$ )<br>( $Ru = Mu/(0.9^*12 \text{ inches}^*d^22)$ )<br>( $\rho = (1/m)^*(1-\operatorname{sqrt}(1-2^*Ru^*m/fy))$ )<br>( $ACI 318-08 \text{ Equation } 10-3, \text{ Smaller of: } 3^*\operatorname{sqrt}(fc)/fy \& 200/fy )$<br>( $\rho = (1/m)^*(1-\operatorname{sqrt}(1-2^*1.33^*Ru^*m/fy))$ )<br>( If $\rho \operatorname{Req'd} < 4/3^*Mu \rho \operatorname{Req'd} < \rho \operatorname{Min}$ , Use $4/3^*Mu \rho \operatorname{Req'd}$<br>( $As = \operatorname{Governing } \rho^*12 \operatorname{inches}^*d$ )<br>= 6 Bars in B Direction<br>= 6 Bars in L Direction<br>( $Mu=\operatorname{Qcrit}^*0.5^*Lcrit^2 + (\operatorname{Qmax-Qcrit})^*0.5^*(2/3)^*Lcrit^2)$<br>( $m = fy/(0.85^*fc)$ )<br>( $Ru = Mu/(0.9^*12 \operatorname{inches}^*d^22)$ )<br>( $\rho = (1/m)^*(1-\operatorname{sqrt}(1-2^*Ru^*m/fy))$ )<br>( $ACI 318-08 \operatorname{Equation } 10-3, \operatorname{Smaller of: } 3^*\operatorname{sqrt}(fc)/fy \& 200/fy$ )                                                                                                                                                                                                                                                                  |
| Total Dead Load =<br>Adequate for Uplift?<br>Top Steel:<br>$Mu = m =$ $Ru =$ $\rho \operatorname{Req'd} =$ $\rho \operatorname{Min} =$ $4/3^*\operatorname{Mu} \rho \operatorname{Req'd} =$ $\operatorname{Governing} \rho =$ $A's \operatorname{Required} =$ $\operatorname{Bar} \# =$ $\operatorname{Bar} \operatorname{Spacing} =$ $\operatorname{As} \operatorname{Provided} =$ $Bottom \operatorname{Steel:}$ $Mu =$ $m =$ $Ru =$ $\rho \operatorname{Req'd} =$ $\rho \operatorname{Min} =$ $4/3^*\operatorname{Mu} \rho \operatorname{Req'd} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25.5<br>Footing is A<br>0.00<br>23.529<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>5<br>10<br>0.37<br>0.16<br>23.529<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                               | k<br>Adequate to Resist Uplift<br>k-ft / ft<br>ksi<br>in²/ft<br>in<br>in²/ft<br>k-ft / ft                                  | (Calculation assumes wall is above the cont. ftg.)<br>( $Mu = (Pu/A)^*0.5^*Crit. L^2 )$<br>( $m = fy/(0.85^*fc)$ )<br>( $Ru = Mu/(0.9^*12 \text{ inches}^*d^22)$ )<br>( $\rho = (1/m)^*(1-\operatorname{sqrt}(1-2^*Ru^*m/fy))$ )<br>( $ACI 318-08 \text{ Equation } 10-3, \text{ Smaller of: } 3^*\operatorname{sqrt}(fc)/fy \& 200/fy $ )<br>( $\rho = (1/m)^*(1-\operatorname{sqrt}(1-2^*1.33^*Ru^*m/fy))$ )<br>( $If \rho \operatorname{Req'd} < 4/3^*Mu \rho \operatorname{Req'd} < \rho \operatorname{Min}$ , Use $4/3^*Mu \rho \operatorname{Req'd}$<br>( $As = \operatorname{Governing} \rho^*12 \operatorname{inches}^*d$ )<br>= 6 Bars in B Direction<br>= 6 Bars in L Direction<br>( $Mu= \operatorname{Qcrit}^*0.5^*Lcrit^2 + (\operatorname{Qmax-Qcrit})^*0.5^*(2/3)^*Lcrit^2)$<br>( $m = fy/(0.85^*fc)$ )<br>( $Ru = Mu/(0.9^*12 \operatorname{inches}^*d^22)$ )<br>( $\rho = (1/m)^*(1-\operatorname{sqrt}(1-2^*Ru^*m/fy))$ )<br>( $ACI 318-08 \operatorname{Equation } 10-3, \operatorname{Smaller of: } 3^*\operatorname{sqrt}(fc)/fy \& 200/fy$ )<br>( $\rho = (1/m)^*(1-\operatorname{sqrt}(1-2^*1.33^*Ru^*m/fy))$ )                                                                                                                                                                                             |
| Total Dead Load =<br>Adequate for Uplift?<br>Top Steel:<br>$Mu = m = m = Ru = p Req'd = p Min. = 4/3*Mu \rho Req'd = Governing \rho = A's Required = Bar # = Bar Spacing = As Provided = Bar # = Bar Spacing = As Provided = m = Ru = p Req'd = m = Ru = \rho Req'd = p Min. = 4/3*Mu \rho Req'd = Governing \rho = dot red to the second $ | 25.5<br>Footing is A<br>0.00<br>23.529<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>5<br>10<br>0.37<br>0.16<br>23.529<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000           | k<br>Adequate to Resist Uplift<br>k-ft / ft<br>ksi<br>in <sup>2</sup> /ft<br>in<br>in <sup>2</sup> /ft<br>k-ft / ft<br>ksi | (Calculation assumes wall is above the cont. ftg.)<br>( Mu = (Pu/A)*0.5*Crit. L^2 )<br>( m = fy/(0.85*fc) )<br>(Ru = Mu/(0.9*12 inches*d^2))<br>( $\rho = (1/m)*(1-\text{sqrt}(1-2*\text{Ru*m/fy})))$<br>(ACI 318-08 Equation 10-3, Smaller of: 3*sqrt(fc)/fy & 200/fy )<br>( $\rho = (1/m)*(1-\text{sqrt}(1-2*1.33*\text{Ru*m/fy})))$<br>( If $\rho$ Req'd < 4/3*Mu $\rho$ Req'd < $\rho$ Min, Use 4/3*Mu $\rho$ Req'd<br>( As = Governing $\rho$ *12 inches*d )<br>= 6 Bars in B Direction<br>= 6 Bars in L Direction<br>(Mu= Qcrit*0.5*Lcrit^2 + (Qmax-Qcrit)*0.5*(2/3)*Lcrit^2)<br>( m = fy/(0.85*fc) )<br>(Ru = Mu/(0.9*12 inches*d^2))<br>( $\rho = (1/m)*(1-\text{sqrt}(1-2*\text{Ru*m/fy})))$<br>(ACI 318-08 Equation 10-3, Smaller of: 3*sqrt(fc)/fy & 200/fy )<br>( $\rho = (1/m)*(1-\text{sqrt}(1-2*1.33*\text{Ru*m/fy})))$<br>( If $\rho$ Req'd < 4/3*Mu $\rho$ Req'd < $\rho$ Min, Use 4/3*Mu $\rho$ Req'd                                                                                                                                                                                                                                                                                                                                                                                                            |
| Total Dead Load =<br>Adequate for Uplift?<br>Top Steel:<br>$Mu = m = m = Ru = p Req'd = p Min. = 4/3*Mu \rho Req'd = Governing \rho = A's Required = Bar # = Bar Spacing = As Provided = Bar # = Bar Spacing = As Provided = m = Ru = p Req'd = m = Ru = \rho Req'd = p Min. = 4/3*Mu \rho Req'd = Governing \rho = A's Required = 0 Kar Required = K$ | 25.5<br>Footing is A<br>0.00<br>23.529<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>5<br>10<br>0.37<br>0.16<br>23.529<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0002<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | k<br>Adequate to Resist Uplift<br>k-ft / ft<br>ksi<br>in²/ft<br>in in²/ft<br>k-ft / ft<br>ksi<br>in²/ft<br>in²/ft          | (Calculation assumes wall is above the cont. ftg.)<br>( Mu = (Pu/A)*0.5*Crit. L^2 )<br>( m = fy/(0.85*fc) )<br>(Ru = Mu/(0.9*12 inches*d^2))<br>( $\rho = (1/m)*(1-\text{sqrt}(1-2*\text{Ru*m/fy})))$<br>(ACI 318-08 Equation 10-3, Smaller of: 3*sqrt(fc)/fy & 200/fy )<br>( $\rho = (1/m)*(1-\text{sqrt}(1-2*1.33*\text{Ru*m/fy})))$<br>( If $\rho$ Req'd < 4/3*Mu $\rho$ Req'd < $\rho$ Min, Use 4/3*Mu $\rho$ Req'd<br>( As = Governing $\rho$ *12 inches*d )<br>= 6 Bars in B Direction<br>= 6 Bars in L Direction<br>(Mu= Qcrit*0.5*Lcrit^2 + (Qmax-Qcrit)*0.5*(2/3)*Lcrit^2)<br>( m = fy/(0.85*fc) )<br>(Ru = Mu/(0.9*12 inches*d^2))<br>( $\rho = (1/m)*(1-\text{sqrt}(1-2*\text{Ru*m/fy})))$<br>(ACI 318-08 Equation 10-3, Smaller of: 3*sqrt(fc)/fy & 200/fy )<br>( $\rho = (1/m)*(1-\text{sqrt}(1-2*1.33*\text{Ru*m/fy})))$<br>( If $\rho$ Req'd < 4/3*Mu $\rho$ Req'd < $\rho$ Min, Use 4/3*Mu $\rho$ Req'd                                                                                                                                                                                                                                                                                                                                                                                                            |
| Total Dead Load =<br>Adequate for Uplift?<br>Top Steel:<br>$Mu = m =$ $Ru =$ $\rho Req'd =$ $\rho Min. =$ $4/3*Mu \rho Req'd =$ Governing $\rho =$ A's Required =<br>Bar # =<br>Bar Spacing =<br>As Provided =<br>Bottom Steel:<br>$Mu =$ $m =$ $Ru =$ $\rho Req'd =$ $\rho Min. =$ $4/3*Mu \rho Req'd =$ Governing $\rho =$ A's Required =<br>Bar # =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25.5<br>Footing is A<br>0.00<br>23.529<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>5<br>10<br>0.37<br>0.16<br>23.529<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0002<br>0.0000<br>0.0002<br>5                | k<br>Adequate to Resist Uplift<br>k-ft / ft<br>ksi<br>in²/ft<br>in<br>in²/ft<br>k-ft / ft<br>ksi<br>in²/ft<br>in           | (Calculation assumes wall is above the cont. ftg.)<br>( Mu = (Pu/A)*0.5*Crit. L^2 )<br>( m = fy/(0.85*fc) )<br>(Ru = Mu/(0.9*12 inches*d^2))<br>( $\rho = (1/m)*(1-\text{sqrt}(1-2*\text{Ru*m/fy})))$<br>(ACI 318-08 Equation 10-3, Smaller of: 3*sqrt(fc)/fy & 200/fy )<br>( $\rho = (1/m)*(1-\text{sqrt}(1-2*1.33*\text{Ru*m/fy})))$<br>( If $\rho$ Req'd < 4/3*Mu $\rho$ Req'd < $\rho$ Min, Use 4/3*Mu $\rho$ Req'd<br>( As = Governing $\rho$ *12 inches*d )<br>= 6 Bars in B Direction<br>= 6 Bars in L Direction<br>(Mu= Qcrit*0.5*Lcrit^2 + (Qmax-Qcrit)*0.5*(2/3)*Lcrit^2)<br>( m = fy/(0.85*fc) )<br>(Ru = Mu/(0.9*12 inches*d^2))<br>( $\rho = (1/m)*(1-\text{sqrt}(1-2*\text{Ru*m/fy})))$<br>(ACI 318-08 Equation 10-3, Smaller of: 3*sqrt(fc)/fy & 200/fy )<br>( $\rho = (1/m)*(1-\text{sqrt}(1-2*1.33*\text{Ru*m/fy})))$<br>( If $\rho$ Req'd < 4/3*Mu $\rho$ Req'd < $\rho$ Min, Use 4/3*Mu $\rho$ Req'd                                                                                                                                                                                                                                                                                                                                                                                                            |
| Total Dead Load =<br>Adequate for Uplift?<br>Top Steel:<br>$Mu = m = m = Ru = p Req'd = p Min. = 4/3*Mu \rho Req'd = Governing \rho = A's Required = Bar # = Bar Spacing = As Provided = Bottom Steel: Mu = m = m = Ru = p Req'd = p Min. = 4/3*Mu \rho Req'd = p Min. = 4/3*Mu \rho Req'd = Governing \rho = A's Required = Bar # = Bar Spacing = Marcelet = Bar # = Bar Spacing = Marcelet = Bar # = Bar Spacing = Marcelet = Marcelet$    | 25.5<br>Footing is A<br>0.00<br>23.529<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>5<br>10<br>0.37<br>0.16<br>23.529<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0002<br>5<br>10                    | k<br>Adequate to Resist Uplift<br>k-ft / ft<br>ksi<br>in²/ft<br>in²/ft<br>k-ft / ft<br>ksi<br>in²/ft<br>in²/ft             | (Calculation assumes wall is above the cont. ftg.)<br>( $Mu = (Pu/A)^*0.5^*Crit. L^2 )$<br>( $m = fy/(0.85^*fc)$ )<br>( $Ru = Mu/(0.9^*12 \text{ inches}^*d^22)$ )<br>( $\rho = (1/m)^*(1-\operatorname{sqrt}(1-2^*Ru^*m/fy))$ )<br>( $ACI 318-08 \text{ Equation } 10-3, \text{ Smaller of: } 3^*\operatorname{sqrt}(fc)/fy \& 200/fy $ )<br>( $\rho = (1/m)^*(1-\operatorname{sqrt}(1-2^*1.33^*Ru^*m/fy))$ )<br>( $If \rho \operatorname{Req'd} < 4/3^*Mu \rho \operatorname{Req'd} < \rho \operatorname{Min}$ , Use $4/3^*Mu \rho \operatorname{Req'd}$<br>( $As = \operatorname{Governing} \rho^*12 \operatorname{inches}^*d$ )<br>= 6 Bars in B Direction<br>( $Mu= \operatorname{Qcrit}^*0.5^*Lcrit^2 + (\operatorname{Qmax-Qcrit})^*0.5^*(2/3)^*Lcrit^2$ )<br>( $m = fy/(0.85^*fc)$ )<br>( $Ru = Mu/(0.9^*12 \operatorname{inches}^*d^22)$ )<br>( $\rho = (1/m)^*(1-\operatorname{sqrt}(1-2^*Ru^*m/fy))$ )<br>( $ACI 318-08 \operatorname{Equation } 10-3, \operatorname{Smaller of: } 3^*\operatorname{sqrt}(fc)/fy \& 200/fy $ )<br>( $\rho = (1/m)^*(1-\operatorname{sqrt}(1-2^*1.33^*Ru^*m/fy))$ )<br>( $If \rho \operatorname{Req'd} < 4/3^*Mu \rho \operatorname{Req'd} < \rho \operatorname{Min}$ , Use $4/3^*Mu \rho \operatorname{Req'd}$<br>( $As = \operatorname{Governing} \rho^*12 \operatorname{inches}^*d$ ) |



| Project_  | Balderston Auto |            |    | 20-467<br>Project No |
|-----------|-----------------|------------|----|----------------------|
| Calc. By_ | RJS             | Checked By | JH | Date 03/01/21        |

| Temperature & Shrinkage S | teel:  |        |                                    |
|---------------------------|--------|--------|------------------------------------|
| Minimum Steel =           | 0.7344 | in²/ft | ( T&S Steel = 0.0018*12 inches*H ) |
| As Provided Top =         | 0.37   | in²/ft |                                    |
| As Provided Bott =        | 0.37   | in²/ft |                                    |
| As Provided Total =       | 0.74   | in²/ft |                                    |
| T&S Steel Provided?       | YES    |        |                                    |
| Final Footing Design:     |        |        |                                    |
| Footing Width, B =        | 4      | ft     |                                    |
| Footing Length L =        | 4      | ft     |                                    |
| Footing Depth, H =        | 34     | in     |                                    |
|                           |        |        |                                    |

| Top Steel =    | #5 bars | @10 inches O.C. |
|----------------|---------|-----------------|
| Bottom Steel = | #5 bars | @10 inches O.C. |



|                                   | Project   | Balderston Auto |            | F  | 20-467<br>Project No |
|-----------------------------------|-----------|-----------------|------------|----|----------------------|
| <b>BE</b> STRUCTURAL<br>ENGINEERS | Calc. By_ | RJS             | Checked By | JH | Date 03/01/21        |

### Footing Designation F4

| Footing Location:         B is into<br>the page         M/Mu         General Information:         Footing Length, L =       4       ft         Footing Width, B =       4       ft         Footing Depth, H =       12       in         Location =       Interior       in         Location =       Interior       in         Steel Depth, d =       8.0625       in         Typical Slab Depth =       5       in         Slab Depth Above Footing =       8       in         Area of Footing Pressure =       2.5       ksf         Allowable or Effective SBC?       Allowable       Concrete Strength =       3         Column Size =       6.00 in       X       6.00 in         Base Plate Size =       12.00 in       X       9.00 in         Critical Section =       9.00 in       X       9.00 in         Critical Section =       9.01 in       X       12.00 in         Vertical Loads:       LRFD Factors:       Applied Dead Load =       9.7         Applied Dead Load =       9.7       K       Dead =       1.2                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Footing Length, L = 4 ft<br>Footing Width, B = 4 ft<br>Footing Depth, H = 12 in<br>Location = Interior in<br>Steel Depth, d = 8.0625 in (H - 3 in - 1.5*Bar Dia.)<br>Typical Slab Depth = 5 in<br>Slab Depth Above Footing = 8 in<br>Area of Footing = 16 ft^2 (B*L)<br>Soil Bearing Pressure = 2.5 ksf<br>Allowable or Effective SBC? Allowable<br>Concrete Strength = 3 ksi<br>B Direction L Direction<br>Column Size = 6.00 in X 6.00 in<br>Base Plate Size = 12.00 in X 12.00 in<br>Critical Section = 9.00 in X 9.00 in<br>LEADING:<br>Vertical Loads: LRFD Factors:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Footing Width, B = 4 ft<br>Footing Depth, H = 12 in<br>Location = Interior in<br>Steel Depth, d = 8.0625 in (H - 3 in - 1.5*Bar Dia.)<br>Typical Slab Depth = 5 in<br>Slab Depth Above Footing = 8 in<br>Area of Footing = 16 ft*2 (B*L)<br>Soil Bearing Pressure = 2.5 ksf<br>Allowable or Effective SBC? Allowable<br>Concrete Strength = 3 ksi<br>B Direction L Direction<br>Column Size = 6.00 in X 6.00 in<br>Base Plate Size = 12.00 in X 12.00 in<br>Critical Section = 9.00 in X 9.00 in<br>Loading:<br>Vertical Loads: LRFD Factors:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Footing Width, B = 4 ft<br>Footing Depth, H = 12 in<br>Location = Interior in<br>Steel Depth, d = 8.0625 in (H - 3 in - 1.5*Bar Dia.)<br>Typical Slab Depth = 5 in<br>Slab Depth Above Footing = 8 in<br>Area of Footing = 16 ft*2 (B*L)<br>Soil Bearing Pressure = 2.5 ksf<br>Allowable or Effective SBC? Allowable<br>Concrete Strength = 3 ksi<br>B Direction L Direction<br>Column Size = 6.00 in X 6.00 in<br>Base Plate Size = 12.00 in X 12.00 in<br>Critical Section = 9.00 in X 9.00 in<br>Loading:<br>Vertical Loads: LRFD Factors:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Footing Depth, H =       12       in         Location =       Interior       in         Steel Depth, d =       8.0625       in       (H - 3 in - 1.5*Bar Dia.)         Typical Slab Depth =       5       in         Slab Depth Above Footing =       8       in         Area of Footing =       16       ft^2       (B*L)         Soil Bearing Pressure =       2.5       ksf         Allowable or Effective SBC?       Allowable         Concrete Strength =       3       ksi         B Direction       L Direction         Column Size =       6.00 in       X       6.00 in         Base Plate Size =       12.00 in       X       9.00 in         Critical Section =       9.00 in       X       9.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Location = Interior in<br>Steel Depth, d = 8.0625 in (H - 3 in - 1.5*Bar Dia.)<br>Typical Slab Depth = 5 in<br>Slab Depth Above Footing = 8 in<br>Area of Footing = 16 ft^2 (B*L)<br>Soil Bearing Pressure = 2.5 ksf<br>Allowable or Effective SBC? Allowable<br>Concrete Strength = 3 ksi<br>B Direction L Direction<br>Column Size = 6.00 in X 6.00 in<br>Base Plate Size = 12.00 in X 12.00 in<br>Critical Section = 9.00 in X 9.00 in<br>LRFD Factors:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Steel Depth, d = 8.0625 in (H - 3 in - 1.5*Bar Dia.)   Typical Slab Depth = 5 in   Slab Depth Above Footing = 8 in   Area of Footing = 16 ft^2   Soil Bearing Pressure = 2.5 ksf   Allowable or Effective SBC? Allowable   Concrete Strength = 3 ksi   B Direction L Direction   Column Size = 6.00 in   X 6.00 in   Base Plate Size = 12.00 in   Yertical Loads: LRFD Factors:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Typical Slab Depth =       5       in         Slab Depth Above Footing =       8       in         Area of Footing =       16       ft*2       (B*L)         Soil Bearing Pressure =       2.5       ksf         Allowable or Effective SBC?       Allowable         Concrete Strength =       3       ksi         B Direction       L Direction         Column Size =       6.00 in       X       6.00 in         Base Plate Size =       12.00 in       X       12.00 in         Critical Section =       9.00 in       X       9.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Slab Depth Above Footing =       8       in         Area of Footing =       16       ft*2       (B*L)         Soil Bearing Pressure =       2.5       ksf         Allowable or Effective SBC?       Allowable         Concrete Strength =       3       ksi         B Direction       L Direction         Column Size =       6.00 in       X       6.00 in         Base Plate Size =       12.00 in       X       12.00 in         Critical Section =       9.00 in       X       9.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Area of Footing =       16       ft <sup>A</sup> 2       (B*L)         Soil Bearing Pressure =       2.5       ksf         Allowable or Effective SBC?       Allowable         Concrete Strength =       3       ksi         B Direction       L Direction         Column Size =       6.00 in       X       6.00 in         Base Plate Size =       12.00 in       X       12.00 in         Critical Section =       9.00 in       X       9.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Soil Bearing Pressure =       2.5       ksf         Allowable or Effective SBC?       Allowable         Concrete Strength =       3       ksi         B Direction       L Direction         Column Size =       6.00 in       X       6.00 in         Base Plate Size =       12.00 in       X       12.00 in         Critical Section =       9.00 in       X       9.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Allowable or Effective SBC?       Allowable         Concrete Strength =       3       ksi         B Direction       L Direction         Column Size =       6.00 in       X       6.00 in         Base Plate Size =       12.00 in       X       12.00 in         Critical Section =       9.00 in       X       9.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Concrete Strength =       3       ksi         B Direction       L Direction         Column Size =       6.00 in       X       6.00 in         Base Plate Size =       12.00 in       X       12.00 in         Critical Section =       9.00 in       X       9.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| B Direction         L Direction           Column Size =         6.00 in         X         6.00 in           Base Plate Size =         12.00 in         X         12.00 in           Critical Section =         9.00 in         X         9.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Column Size =         6.00 in         X         6.00 in           Base Plate Size =         12.00 in         X         12.00 in           Critical Section =         9.00 in         X         9.00 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Base Plate Size =       12.00 in       X       12.00 in         Critical Section =       9.00 in       X       9.00 in         Loading:       Vertical Loads:       LRFD Factors:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Critical Section = 9.00 in X 9.00 in Loading: Vertical Loads: LRFD Factors:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Loading:<br>Vertical Loads: LRFD Factors:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Vertical Loads: LRFD Factors:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Applied Dead Load = $9.7$ k Dead = $1.2$ (ASCE 7 Combo)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Slab + Wall +Footing Weight = 3.4 k Live = 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Applied Live Load = 10.3 k Uplift= 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ASD Total Load, P = 23.4 k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| LRFD Total Load, Pu = 32.2 k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ASD Uplift Load = 0 k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LRFD Uplift Load = 0 k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Moments: LRFD Factors:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Dead Load Moment = 0 k-ft Dead = 1.2 (ASCE 7 Combo)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Live Load Moment = 0 k-ft Wind = 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ASU LOTAL MOMENT M = 10 K-TT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ASD Total Moment, M = 0 k-ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| LRFD Total Moment, $Mu = 0$ k-ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| LRFD Total Moment, Mu =         0         k-ft           ASD Soil Pressures:         e =         0.000         ft         (ASD M / P )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| LRFD Total Moment, Mu = 0 k-ft ASD Soil Pressures:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| LRFD Total Moment, Mu =         0         k-ft           ASD Soil Pressures:         e =         0.000         ft         (ASD M / P )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| LRFD Total Moment, Mu = 0 k-ft<br>ASD Soil Pressures:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LRFD Total Moment, Mu = 0 k-ft<br>ASD Soil Pressures:<br>e = 0.000 ft (ASD M / P)<br>Kern = 0.667 ft (L / 6)<br>e > = < Kern ? Less Than<br>Length of Pressure = 4.000 ft ("Greater Than", Length = 3*(L/2 -e); Otherwise = L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| LRFD Total Moment, Mu = 0 k-ft<br>ASD Soil Pressures:<br>e = 0.000 ft (ASD M / P)<br>Kern = 0.667 ft (L / 6)<br>e > = < Kern ? Less Than<br>Length of Pressure = 4.000 ft ("Greater Than", Length = 3*(L/2 -e); Otherwise = L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| LRFD Total Moment, Mu =0k-ftASD Soil Pressures:(ASD M / P) $e =$ 0.000ftKern =0.667ft $e > = < Kern$ ?Less ThanLength of Pressure =4.000ftMinimum Pressure, Qmin =1.463ksfMaximum Pressure, Qmax =1.463ksf("Less Than", Qmax = (P/L*B) - (6*M / B*L^2), Otherwise = 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| LRFD Total Moment, Mu =0k-ftASD Soil Pressures:(ASD M / P) $e =$ 0.000ftKern =0.667ft $e > = < Kern$ ?Less ThanLength of Pressure =4.000ftMinimum Pressure, Qmin =1.463ksfMaximum Pressure, Qmax =1.463ksf("Less Than", Qmax = (P/L*B) - (6*M / B*L^2),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| LRFD Total Moment, Mu =0k-ftASD Soil Pressures: $e = 0.000$ ft $(ASD M / P)$ Kern =0.667ft $(L/6)$ $e > = < Kern ?Less Than(U/6)Length of Pressure =4.000ft("Greater Than", Length = 3*(L/2 - e); Otherwise = L)Minimum Pressure, Qmin =1.463ksf("Less Than", Qmin = (P/L*B) - (6*M / B*L^2), Otherwise = 0)Maximum Pressure, Qmax =1.463ksf("Less Than", Qmax = (P/L*B) + (6*M / B*L^2), Otherwise = 0)Is QmaxYES"Equal To", Qmax = (2*P) / (L*B)"Greater Than", Qmax = (4*P) / (3*B*(L - 2*e))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| LRFD Total Moment, Mu =       0       k-ft         ASD Soil Pressures: <ul> <li>e =</li> <li>0.000</li> <li>ft</li> <li>(L76)</li> <li>e &gt; = &lt; Kern ?</li> <li>Less Than</li> <li>Length of Pressure =</li> <li>4.000</li> <li>ft</li> <li>("Greater Than", Length = 3*(L/2 -e); Otherwise = L)</li> <li>("Less Than", Qmin = (P/L*B) - (6*M / B*L^2), Otherwise = 0)</li> <li>Maximum Pressure, Qmax =</li> <li>1.463</li> <li>ksf</li> <li>("Less Than", Qmax = (P/L*B) + (6*M / B*L^2), Otherwise = 0)</li> <li>("Less Than", Qmax = (2*P) / (L*B)</li> <li>"Greater Than", Qmax = (2*P) / (3*B*(L - 2*e))</li> </ul> LRFD Soil Pressures:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| LRFD Total Moment, $Mu = 0$ k-ft<br>ASD Soil Pressures:<br>e = 0.000 ft (ASD M / P)<br>Kern = 0.667 ft (L / 6)<br>e > = < Kern? Less Than<br>Length of Pressure = 4.000 ft ("Greater Than", Length = 3*(L/2 - e); Otherwise = L)<br>Minimum Pressure, Qmin = 1.463 ksf ("Less Than", Qmin = (P/L*B) - (6*M / B*L^2), Otherwise = 0)<br>Maximum Pressure, Qmax = 1.463 ksf ("Less Than", Qmax = (P/L*B) + (6*M / B*L^2), Otherwise = 0)<br>Maximum Pressure, Qmax = 1.463 ksf ("Less Than", Qmax = (2*P) / (L*B)<br>Is Qmax < SBC? YES "Equal To", Qmax = (2*P) / (3*B*(L - 2*e))<br>LRFD Soil Pressures:<br>e = 0.000 ft (ASD M / Pu)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LRFD Total Moment, $Mu = 0$ k-ft<br>ASD Soil Pressures:<br>e = 0.000 ft (ASD M / P)<br>Kern = 0.667 ft (L / 6)<br>e > = < Kern? Less Than<br>Length of Pressure = 4.000 ft ("Greater Than", Length = 3*(L/2 - e); Otherwise = L)<br>Minimum Pressure, Qmin = 1.463 ksf ("Less Than", Qmin = (P/L*B) - (6*M / B*L^2), Otherwise = 0)<br>Maximum Pressure, Qmax = 1.463 ksf ("Less Than", Qmax = (P/L*B) + (6*M / B*L^2),<br>Is Qmax <sbc? "equal="" (l*b)<br="" qmax="(2*P)" to",="" yes="">"Greater Than", Qmax = (4*P) / (3*B*(L - 2*e))<br/>LRFD Soil Pressures:<br/>e = 0.000 ft (ASD M / Pu)<br/>Kern = 0.667 ft (L / 6)</sbc?>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| LRFD Total Moment, $Mu = 0$ k-ft<br>ASD Soil Pressures:<br>e = 0.000 ft (ASD M / P)<br>Kern = 0.667 ft (L / 6)<br>e > = < Kern? Less Than<br>Length of Pressure = 4.000 ft ("Greater Than", Length = 3*(L/2 - e); Otherwise = L)<br>Minimum Pressure, Qmin = 1.463 ksf ("Less Than", Qmin = (P/L*B) - (6*M / B*L^2), Otherwise = 0)<br>Maximum Pressure, Qmax = 1.463 ksf ("Less Than", Qmax = (P/L*B) + (6*M / B*L^2),<br>Is Qmax <sbc? "equal="" (l*b)<br="" qmax="(2*P)" to",="" yes="">"Greater Than", Qmax = (4*P) / (3*B*(L - 2*e))<br/>LRFD Soil Pressures:<br/>e = 0.000 ft (ASD M / Pu)<br/>Kern = 0.667 ft (L / 6)</sbc?>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| LRFD Total Moment, $Mu = 0$ k-ft<br>ASD Soil Pressures:<br>e = 0.000 ft (ASD M / P)<br>Kern = 0.667 ft (L / 6)<br>e > = < Kern? Less Than<br>Length of Pressure = 4.000 ft ("Greater Than", Length = 3*(L/2 - e); Otherwise = L)<br>Minimum Pressure, Qmin = 1.463 ksf ("Less Than", Qmin = (P/L*B) - (6*M / B*L^2), Otherwise = 0)<br>Maximum Pressure, Qmax = 1.463 ksf ("Less Than", Qmax = (P/L*B) - (6*M / B*L^2), Otherwise = 0)<br>Maximum Pressure, Qmax = 1.463 ksf ("Less Than", Qmax = (P/L*B) + (6*M / B*L^2), Otherwise = 0)<br>Maximum Pressure, Qmax = 1.463 ksf ("Less Than", Qmax = (P/L*B) + (6*M / B*L^2), Is Qmax < SBC? YES "Equal To", Qmax = (2*P) / (L*B)<br>Is Qmax < SBC? YES "Equal To", Qmax = (2*P) / (L*B)<br>"Greater Than", Qmax = (4*P) / (3*B*(L - 2*e))<br>LRFD Soil Pressures:<br>e = 0.000 ft (ASD M / Pu)<br>Kern = 0.667 ft (L / 6)<br>e > = < Kern ? Less Than<br>Length of Pressure = 4.000 ft ("Greater Than", Length = 3*(L/2 - e); Otherwise = L)                                                                                                                                                                                                                                                                                                                                                                        |
| LRFD Total Moment, $Mu = 0$ k-ft<br>ASD Soil Pressures:<br>e = 0.000 ft (ASD M / P)<br>Kern = 0.667 ft (L / 6)<br>e > = < Kern? Less Than<br>Length of Pressure = 4.000 ft ("Greater Than", Length = 3*(L/2 - e); Otherwise = L)<br>Minimum Pressure, Qmin = 1.463 ksf ("Less Than", Qmin = (P/L*B) - (6*M / B*L^2), Otherwise = 0)<br>Maximum Pressure, Qmax = 1.463 ksf ("Less Than", Qmax = (P/L*B) + (6*M / B*L^2),<br>Is Qmax < SBC? YES "Equal To", Qmax = (2*P) / (L*B)<br>"Greater Than", Qmax = (4*P) / (3*B*(L - 2*e))<br>LRFD Soil Pressures:<br>e = 0.000 ft (ASD M / Pu)<br>Kern = 0.667 ft (L / 6)<br>e > = < Kern? Less Than<br>Length of Pressure = 4.000 ft ("Greater Than", Length = 3*(L/2 - e); Otherwise = L)<br>("Less Than", Qmin = (Pu/L*B) - (6*M / B*L^2), Otherwise = 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| LRFD Total Moment, Mu =0k-ftASD Soil Pressures: $e = 0.000$ ft<br>(L/6)(ASD M / P)<br>(L/6) $e = -6.67$ ft<br>$e > = < Kern ?$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| LRFD Total Moment, $Mu = 0$ k-ft<br>ASD Soil Pressures:<br>e = 0.000 ft (ASD M / P)<br>Kern = 0.667 ft (L / 6)<br>e > = < Kern? Less Than<br>Length of Pressure = 4.000 ft ("Greater Than", Length = 3*(L/2 - e); Otherwise = L)<br>Minimum Pressure, Qmin = 1.463 ksf ("Less Than", Qmax = (P/L*B) - (6*M / B*L^2), Otherwise = 0)<br>Maximum Pressure, Qmax = 1.463 ksf ("Less Than", Qmax = (P/L*B) + (6*M / B*L^2),<br>Is Qmax <sbc? "equal="" (l*b)<br="" qmax="(2*P)" to",="" yes="">"Greater Than", Qmax = (4*P) / (3*B*(L - 2*e))<br/>LRFD Soil Pressures:<br/>e = 0.000 ft (ASD M / Pu)<br/>Kern = 0.667 ft (L / 6)<br/>e &gt; = &lt; Kern? Less Than<br/>Length of Pressure = 4.000 ft ("Greater Than", Length = 3*(L/2 - e); Otherwise = L)<br/>Minimum Pressure, Qmin = 2.013 ksf ("Less Than", Qmax = (Pu/L*B) - (6*Mu / B*L^2), Otherwise = 0)<br/>Maximum Pressure, Qmax = 2.013 ksf ("Less Than", Qmax = (Pu/L*B) + (6*Mu / B*L^2), Otherwise = 0)<br/>Maximum Pressure, Qmax = 2.013 ksf ("Less Than", Qmax = (Pu/L*B) + (6*Mu / B*L^2), Otherwise = 0)<br/>Maximum Pressure, Qmax = 2.013 ksf ("Less Than", Qmax = (Pu/L*B) + (6*Mu / B*L^2), Otherwise = 0)<br/>Maximum Pressure, Qmax = 2.013 ksf ("Less Than", Qmax = (Pu/L*B) + (6*Mu / B*L^2), Otherwise = 0)<br/>Maximum Pressure, Qmax = 2.013 ksf "Equal To", Qmax = (2*Pu) / (L*B)</sbc?> |
| LRFD Total Moment, $\dot{M}u = 0$ k-ft<br>ASD Soil Pressures:<br>e = 0.000 ft (ASD M / P)<br>Kern = 0.667 ft (L / 6)<br>e > = < Kern? Less Than<br>Length of Pressure = 4.000 ft ("Greater Than", Length = 3*(L/2 - e); Otherwise = L)<br>Minimum Pressure, Qmin = 1.463 ksf ("Less Than", Qmin = (P/L*B) - (6*M / B*L^2), Otherwise = 0)<br>Maximum Pressure, Qmax = 1.463 ksf ("Less Than", Qmin = (P/L*B) - (6*M / B*L^2), Utherwise = 0)<br>Maximum Pressure, Qmax = 1.463 ksf ("Less Than", Qmin = (P/L*B) + (6*M / B*L^2),<br>Is Qmax <sbc? <b="">YES "Equal To", Qmax = (2*P) / (L*B)<br/>"Greater Than", Qmax = (4*P) / (3*B*(L - 2*e))<br/><b>LRFD Soil Pressures:</b><br/>e = 0.000 ft (ASD M / Pu)<br/>Kern = 0.667 ft (L / 6)<br/>e &gt; = &lt; Kern? Less Than<br/>Length of Pressure = 4.000 ft ("Greater Than", Length = 3*(L/2 - e); Otherwise = L)<br/>Minimum Pressure, Qmin = 2.013 ksf ("Less Than", Qmin = (PuL*B) - (6*M / B*L^2), Otherwise = 0)<br/>Maximum Pressure, Qmax = 2.013 ksf ("Less Than", Qmin = (PuL*B) - (6*M / B*L^2), Otherwise = 0)<br/>Qeritical = 2.013 ksf ("Less Than", Qmin = (PuL*B) - (6*M / B*L^2), Otherwise = 0)<br/>Critical Length = 1.289 ft "Greater Than", Qmax = (4*Pu) / (3*B*(L - 2*e))</sbc?>                                                                                                             |
| LRFD Total Moment, $Mu = 0$ k-ft<br>ASD Soil Pressures:<br>e = 0.000 ft (ASD M / P)<br>Kern = 0.667 ft (L / 6)<br>e > = < Kern? Less Than<br>Length of Pressure = 4.000 ft ("Greater Than", Length = 3*(L/2 - e); Otherwise = L)<br>Minimum Pressure, Qmin = 1.463 ksf ("Less Than", Qmax = (P/L*B) - (6*M / B*L^2), Otherwise = 0)<br>Maximum Pressure, Qmax = 1.463 ksf ("Less Than", Qmax = (P/L*B) + (6*M / B*L^2),<br>Is Qmax <sbc? "equal="" (l*b)<br="" qmax="(2*P)" to",="" yes="">"Greater Than", Qmax = (4*P) / (3*B*(L - 2*e))<br/>LRFD Soil Pressures:<br/>e = 0.000 ft (ASD M / Pu)<br/>Kern = 0.667 ft (L / 6)<br/>e &gt; = &lt; Kern? Less Than<br/>Length of Pressure = 4.000 ft ("Greater Than", Length = 3*(L/2 - e); Otherwise = L)<br/>Minimum Pressure, Qmin = 2.013 ksf ("Less Than", Qmax = (Pu/L*B) - (6*Mu / B*L^2), Otherwise = 0)<br/>Maximum Pressure, Qmax = 2.013 ksf ("Less Than", Qmax = (Pu/L*B) + (6*Mu / B*L^2), Otherwise = 0)<br/>Maximum Pressure, Qmax = 2.013 ksf ("Less Than", Qmax = (Pu/L*B) + (6*Mu / B*L^2), Otherwise = 0)<br/>Maximum Pressure, Qmax = 2.013 ksf ("Less Than", Qmax = (Pu/L*B) + (6*Mu / B*L^2), Otherwise = 0)<br/>Maximum Pressure, Qmax = 2.013 ksf ("Less Than", Qmax = (Pu/L*B) + (6*Mu / B*L^2), Otherwise = 0)<br/>Maximum Pressure, Qmax = 2.013 ksf "Equal To", Qmax = (2*Pu) / (L*B)</sbc?> |

P/Pu



| Project   | Balderston Auto |            | Pro | 20-467<br>Dject No |  |
|-----------|-----------------|------------|-----|--------------------|--|
| Calc. By_ | RJS             | Checked By | JH  | Date 03/01/21      |  |

| One-Way Shear Check:<br>$Vu1 = 10.38 k \qquad (Qcrit*CritL + (Qmax-Qcrit*CritL*0.5)  dvn = 31.80 k \qquad (Qcrit*CritL + (Qmax-Qcrit*CritL*0.5)  Adequate in One-Way Shear? YES  Two-Way Shear Check: b1 = 17.06 in \qquad (Critical Section B + d)  b2 = 17.06 in \qquad (Column Height L + d)  b2 = 17.06 in \qquad (Column Height L + d)  b2 = 17.06 in \qquad (Column Height L + d)  b2 = 17.06 in \qquad (Column Height L + d)  b2 = 17.06 in \qquad (Column Height L + d)  b2 = 17.06 in \qquad (Column Height L + d)  b2 = 17.06 in \qquad (Column Height L + d)  b2 = 17.06 in \qquad (Column Height L + d)  b2 = 1 \qquad (ACI 318-08 Section 11.11.2.1)  a = 40 \qquad (ACI 318-08 Section 11.11.2.1, Larger Fig Dim / Smaller Fig  dvn = 135.63 k \qquad (ACI 318-08 Section 11.11.2.1, Larger Fig Dim / Smaller Fig  dvn = 152.02 k \qquad (ACI 318-08 Section 11.11.2.1, Larger Fig Dim / Smaller Fig  dvn = 152.02 k \qquad (ACI 318-08 Section 11.11.2.1, Larger Fig Dim / Smaller Fig  dvn = 152.02 k \qquad (ACI 318-08 Section 11.11.2.1, Larger Fig Dim / Smaller Fig  dvn = 152.02 k \qquad (ACI 318-08 Section 10.14.1 dvn = 0.65^{\circ}0.85^{\circ}tc^{\circ}Plate Arc  Adequate in Two-Way Shear? YES  Uplift Check: ASD Combo for Uplift = 0.6D + Uplift (ASCE 7)  dvitt = 0.6D k \qquad (Uplift - 0.6)  Additional Slab Used = 4 ft (Length of Additional Slab in Each Direction )  Wall Weight Over Footing = 0 ktif (B or L Depending on the Case)  Length Perpendicular to Slab Edge = 0 ft (B or L Depending on the Case)  Area of Cont. Footing = 0 ktif (B or L Depending on the Case)  Area of Cont. Footing = 0 ft2  Length Perpendicular to Slab Edge = 0 ft (B or L Depending on the Case)  Area of Cont. Footing = 0 ft2  Adequate for Uplift? Footing is Adequate to Resist Uplift (Calculation assumes wall is above the cont. ftg.)  Top Steel: \frac{Mu = 0.000 ktif / ft}{Mu = (Pu/A)^{\circ}0.5^{\circ}Crit.L^{\circ}2) (m = 4y(0.85^{\circ}Cr))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | g Dim )<br>))<br>id/bo)) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| $ \begin{array}{c} \operatorname{dv} n = 31.80  k & (ACI 318-08 Equation 11-5, \ensuremath{\Phi Vn} = 0.75^{+2} \operatorname{sqrt}(fc)^{+}B^{+}d / 10^{+} (ACI 318-08 Equation 11-5, \ensuremath{\Phi Vn} = 0.75^{+2} \operatorname{sqrt}(fc)^{+}B^{+}d / 10^{+} (ACI 318-08 Equation 11-5, \ensuremath{\Phi Vn} = 0.75^{+2} \operatorname{sqrt}(fc)^{+}B^{+}d / 10^{+} (ACI 318-08 Equation 11-12, \ensuremath{\Phi Vn} = 0.75^{+2} \operatorname{sqrt}(fc)^{+}B^{+}d / 10^{+} (ACI 318-08 Equation 11-12, \ensuremath{\Phi Vn} = 0.75^{+2} \operatorname{sqrt}(fc)^{+}B^{+}d / 10^{+} (ACI 318-08 Equation 11-12, \ensuremath{\Phi Vn} = 0.75^{+2} \operatorname{sqrt}(fc)^{+}D^{+}d / 10^{+} (ACI 318-08 Equation 11-12, \ensuremath{\Phi Vn} = 0.75^{+} \operatorname{sqrt}(fc)^{+}D^{+}d / 10^{+} (ACI 318-08 Equation 11-11, 2, \ensuremath{\Phi Vn} = 0.75^{+} \operatorname{sqrt}(fc)^{+}D^{+}d / 10^{+} (ACI 318-08 Equation 11-11, 2, \ensuremath{\Phi Vn} = 0.75^{+} \operatorname{sqrt}(fc)^{+}D^{+}d / 10^{+} (ACI 318-08 Eq 11-32, \ensuremath{\Phi Vn} = 0.75^{+} \operatorname{sqrt}(fc)^{+}D^{+}d / 10^{+} (ACI 318-08 Eq 11-32, \ensuremath{\Phi Vn} = 0.75^{+} \operatorname{sqrt}(fc)^{+}D^{+}d / 10^{+} (ACI 318-08 Eq 11-32, \ensuremath{\Phi Vn} = 0.75^{+} \operatorname{sqrt}(fc)^{+}D^{+}d / 10^{+} (ACI 318-08 Eq 11-32, \ensuremath{\Phi Vn} = 0.75^{+} \operatorname{sqrt}(fc)^{+}D^{+}d / 10^{+} (ACI 318-08 Eq 11-32, \ensuremath{\Phi Vn} = 0.75^{+} \operatorname{sqrt}(fc)^{+}D^{+}d / 10^{+} (ACI 318-08 Eq 11-32, \ensuremath{\Phi Vn} = 0.75^{+} \operatorname{sqrt}(fc)^{+}D^{+}d / 10^{+} (ACI 318-08 Eq 11-32, \ensuremath{\Phi Vn} = 0.75^{+} \operatorname{sqrt}(fc)^{+}D^{+}d / 10^{+} (ACI 318-08 Eq 11-32, \ensuremath{\Phi Vn} = 0.75^{+} \operatorname{sqrt}(fc)^{+}D^{+}d / 10^{+} (ACI 318-08 Eq 11-32, \ensuremath{\Phi Vn} = 0.75^{+} \operatorname{sqrt}(fc)^{+}D^{+}d / 10^{+} (ACI 318-08 Eq 11-32, \ensuremath{\Phi Vn} = 0.75^{+} \operatorname{sqrt}(fc)^{+}D^{+}d / 10^{+} (ACI 318-08 Eq 11-32, \ensuremath{\Phi Vn} = 0.75^{+} \operatorname{sqrt}(fc)^{+}D^{+}d / 10^{+} (ACI 318-08 Eq 11-32, \ensuremath{\Phi Vn} = 0.75^{+} \operatorname{sqrt}(fc)^{+}D^{+}d / 10^{+} (ACI 318-08 Eq 11-32, \ensuremath{\Phi Vn} = 0.75^{+} \operatorname{sqrt}(fc)^{+}D^{+}d / 10^{+} (ACI 318-08 Eq 11-32, \ensuremath{\Phi Vn} = 0.75^{+} \operatorname{sqrt}(fc)^{+}D^{+}d / 10^{+} (ACI 318-08 Eq 11-32, \ensuremath{\Phi Vn} = 0.65^{+} \operatorname{sqrt}(fc)^{+}D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | g Dim )<br>))<br>id/bo)) |
| Adequate in One-Way Shear? YES<br>Two-Way Shear Check:<br>b1 = 17.06 in (Critical Section B + d)<br>b2 = 17.06 in (Column Height L + d)<br>(Column Height Check:<br>(ACI 318-08 Eq 11-32, $\Phi$ Vn = 0.75*sqtt(fc)*bo*d)<br>Adequate in Height G + Uplift<br>(ACI 318-08 Section 10.14.1 $\Phi$ Pn = 0.65*0.85*fc*Plate Are<br>Adequate in Bearing? YES<br>Uplift Check:<br>ASD Combo for Uplift = 0.6D + Uplift<br>(ASCE 7)<br>(Uplift / 0.6)<br>Applied Dead Load = 0.00 k<br>(Uplift / 0.6)<br>Applied Dead Load = 0.00 k ((Uplift / 0.6)<br>Applied Dead Load + Slab + Ftg = 13.1 k<br>(Length of Additional Slab Used = 4 ft<br>(Length of Additional Slab in Each Direction )<br>Wall Weight Over Footing = 0 ktif<br>Length Parallel to Slab Edge = 0 ft<br>(H = (Depending on the Case)<br>Area of Cont. Footing = 0 ft <sup>4</sup><br>Length of Cont. Footing Used = 0 ft<br>(Length of Cont. Footing Used = 0 ft<br>(Length of Cont. Footing Used = 0 ft<br>(Length of Cont. Footing Used = 0 ft<br>(Calculation assumes wall is above the cont. ftg.)<br>Top Steel:<br>Mu = 0.00 k-ft / ft<br>(Mu = (PulA)^0.5*Crit. L^2)<br>(m = fy(0.85*fc))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | g Dim )<br>))<br>id/bo)) |
| b) = 17.06 in (Critical Section B + d)<br>b) = 17.06 in (Column Height L + d)<br>b) = 68.25 in (2'b'1 + 2'b2)<br>Vu2 = 28.13 k (Vu2 = (Qmax+Qmin)/2 * (Fig Area - b'tb2))<br>a = 40 (ACI 318-08 Section 11.11.2.1)<br>b) = 1 (ACI 318-08 Section 11.11.2.1)<br>c) a = 40 (ACI 318-08 Section 11.11.2.1)<br>c) a = 1 (ACI 318-08 Section 11.11.2.1)<br>c) a = 0.02 k (ACI 318-08 Section 10.11.11.2)<br>c) a = 0.05°0.85°fc*Plate Area<br>a dequate in Bearing Pteck:<br>a Adequate in Bearing ? YES<br>Column Bearing Check:<br>a Adequate in Bearing ? YES<br>Column Height A = 0.00 k (Uplit / 0.6)<br>A pieled Dead Load = 0.00 k (Uplit / 0.6)<br>A pieled Dead Load = 0.00 k (If (Length of Additional Slab in Each Direction )<br>Wall Weight Over Footing = 0 kIf<br>Length Parallel to Slab Edge = 0 ft (B or L Depending on the Case)<br>Length Parallel to Slab Edge = 0 ft<br>Adequate for Uplit? Footing is Adequate to Resist Uplit!<br>Total Dead Load = 21.1 k (Applied Dead + Slab + Wall Weight + Add. Slab + Cont. Ft<br>(Caculation assumes wall is above the cont. ftg.)<br>m = 23.529 (m = fy(0.85°c))<br>(m = fy(0.85°c))<br>(m = fy(0.85°c))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ))<br>d/bo))             |
| b) = 17.06 in (Critical Section B + d)<br>b) = 17.06 in (Column Height L + d)<br>b) = 68.25 in (2'b'1 + 2'b2)<br>Vu2 = 28.13 k (Vu2 = (Qmax+Qmin)/2 * (Fig Area - b'tb2))<br>a = 40 (ACI 318-08 Section 11.11.2.1)<br>b) = 1 (ACI 318-08 Section 11.11.2.1)<br>c) a = 40 (ACI 318-08 Section 11.11.2.1)<br>c) b) = 1 (ACI 318-08 Section 10.11.11.2)<br>c) b) = 1 (ACI 318-08 Section 10.11.1.1 (D'Pn = 0.65*0.85*fc*Plate Area<br>c) Adequate in Bearing (P ES)<br>Column Bearing Check:<br>c) b) = 477.36 k (ACI 318-08 Section 10.11.1 (D'Pn = 0.65*0.85*fc*Plate Area<br>c) Adequate in Bearing (P ES)<br>Column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ))<br>d/bo))             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ))<br>d/bo))             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ))<br>d/bo))             |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ))<br>d/bo))             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ))<br>d/bo))             |
| $ \begin{array}{c} \beta = 1 \\ (ACI 318-08 Section 11.11.2.1, Larger Ftg Dim / Smaller Ftg \\ \Phi Vn = 135.63 k \\ (ACI 318-08 Eq 11-32, \Phi Vn = 0.75*sqrt(fc)*bo*d*(2+A)Beta \\ \Phi Vn = 90.42 k \\ (ACI 318-08 Eq 11-32, \Phi Vn = 0.75*sqrt(fc)*bo*d*(2+A)Beta \\ \Phi Vn = 90.42 k \\ (ACI 318-08 Eq 11-32, \Phi Vn = 0.75*sqrt(fc)*bo*d*(2+A)Beta \\ \Phi Vn = 90.42 k \\ (ACI 318-08 Eq 11-32, \Phi Vn = 0.75*sqrt(fc)*bo*d*(2+A)Beta \\ \Phi Vn = 90.42 k \\ (ACI 318-08 Section 10.14.1 \Phi Pn = 0.65*0.85*fc*Plate Are Adequate in Bearing? YES \\ \hline Uplift Check: \\ Abequate in Bearing? YES \\ \hline Uplift Check: \\ AsD Combo for Uplift = 0.6D + Uplift \\ Additional Slab Used = 0 k \\ Additional Slab Used = 4 ft \\ Additional Slab Used = 4 ft \\ Additional Slab Used = 4 ft \\ Length Parallel to Slab Edge = 0 ft \\ Length Parallel to Slab Edge = 0 ft \\ B or L Depending on the Case) \\ Length of Cont. Footing = 0 ft^2 \\ Length of Cont. Footing is Adequate to Resist Uplift \\ Total Dead Load = 21.1 k \\ Adequate for Uplift? Footing is Adequate to Resist Uplift \\ Total Dead Load = 21.1 k \\ Mu = 0.00 k \cdot ft / ft \\ Mu = 0.00 k \cdot ft / ft \\ Mu = 0.00 k \cdot ft / ft \\ Mu = (Pu/A)*0.5*Crit. L^2) \\ m = 23.529 \\ (m = fy/(0.85*fc)) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ))<br>d/bo))             |
| $ \begin{array}{c} \Phi Vn = 135.63  k & (ACI 318-08 Eq 11-32, \Phi Vn = 0.75^* sqrt(fc)^* bo^* d^*(2+4)Beta \\ \Phi Vn = 152.02  k & (ACI 318-08 Eq 11-32, \Phi Vn = 0.75^* sqrt(fc)^* bo^* d^*(2+4)Beta \\ (ACI 318-08 Eq 11-32, \Phi Vn = 0.75^* sqrt(fc)^* bo^* d^*(2+4)Beta \\ (ACI 318-08 Eq 11-32, \Phi Vn = 0.75^* sqrt(fc)^* bo^* d^*(2+4)Beta \\ (ACI 318-08 Eq 11-32, \Phi Vn = 0.75^* sqrt(fc)^* bo^* d^*(2+4)Beta \\ (ACI 318-08 Eq 11-32, \Phi Vn = 0.75^* sqrt(fc)^* bo^* d^*(2+4)Beta \\ (ACI 318-08 Eq 11-32, \Phi Vn = 0.75^* sqrt(fc)^* bo^* d^*(2+4)Beta \\ (ACI 318-08 Eq 11-32, \Phi Vn = 0.75^* sqrt(fc)^* bo^* d^*(2+4)Beta \\ (ACI 318-08 Eq 11-32, \Phi Vn = 0.75^* sqrt(fc)^* bo^* d^*(2+4)Beta \\ (ACI 318-08 Eq 11-32, \Phi Vn = 0.75^* sqrt(fc)^* bo^* d^*(2+4)Beta \\ (ACI 318-08 Eq 11-32, \Phi Vn = 0.75^* sqrt(fc)^* bo^* d^*(2+4)Beta \\ (ACI 318-08 Eq 11-32, \Phi Vn = 0.75^* sqrt(fc)^* bo^* d^*(2+4)Beta \\ (ACI 318-08 Eq 11-32, \Phi Vn = 0.75^* sqrt(fc)^* bo^* d^*(2+4)Beta \\ (ACI 318-08 Eq 11-32, \Phi Vn = 0.75^* sqrt(fc)^* bo^* d^*(2+4)Beta \\ (ACI 318-08 Eq 11-32, \Phi Vn = 0.75^* sqrt(fc)^* bo^* d^*(2+4)Beta \\ (ACI 318-08 Eq 11-32, \Phi Vn = 0.75^* sqrt(fc)^* bo^* d^*(2+4)Beta \\ (ACI 318-08 Eq 11-32, \Phi Vn = 0.75^* sqrt(fc)^* bo^* d^*(2+4)Beta \\ (ACI 318-08 Eq 11-32, \Phi Vn = 0.75^* sqrt(fc)^* bo^* d^*(2+4)Beta \\ (ACI 318-08 Eq 11-32, \Phi Vn = 0.75^* sqrt(fc)^* bo^* d^*(2+4)Beta \\ (ACI 318-08 Eq 11-32, \Phi Vn = 0.75^* sqrt(fc)^* bo^* d^*(2+4)Beta \\ (ACI 318-08 Eq 11-32, \Phi Vn = 0.75^* sqrt(fc)^* bo^* d^*(2+4)Beta \\ (ACI 318-08 Eq 11-32, \Phi Vn = 0.75^* sqrt(fc)^* bo^* d^*(2+4)Beta \\ (ASCE 7) & (Upiff 10-6) \\ (ASC$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ))<br>d/bo))             |
| $\begin{array}{c} \Phi Vn = & 152.02 & k \\ \Phi Vn = & 90.42 & k \end{array} \qquad (ACI 318-08 Eq 11-32, \Phi Vn = 0.75^* sqrt(fc)^*bo^*d^*(2^+Alpha^* \\ (ACI 318-08 Eq 11-33, \Phi Vn = 0.75^* sqrt(fc)^*bo^*d^*(2^+Alpha^* \\ (ACI 318-08 Eq 11-33, \Phi Vn = 0.75^* sqrt(fc)^*bo^*d^*(2^+Alpha^* \\ (ACI 318-08 Eq 11-33, \Phi Vn = 0.75^* sqrt(fc)^*bo^*d^*(2^+Alpha^* \\ (ACI 318-08 Eq 11-33, \Phi Vn = 0.75^* sqrt(fc)^*bo^*d^*(2^+Alpha^* \\ (ACI 318-08 Eq 11-33, \Phi Vn = 0.75^* sqrt(fc)^*bo^*d^*(2^+Alpha^* \\ (ACI 318-08 Eq 11-33, \Phi Vn = 0.75^* sqrt(fc)^*bo^*d^*(2^+Alpha^* \\ (ACI 318-08 Eq 11-33, \Phi Vn = 0.75^* sqrt(fc)^*bo^*d^*(2^+Alpha^* \\ (ACI 318-08 Eq 11-33, \Phi Vn = 0.75^* sqrt(fc)^*bo^*d^*(2^+Alpha^* \\ (ACI 318-08 Eq 11-33, \Phi Vn = 0.75^* sqrt(fc)^*bo^*d^*(2^+Alpha^* \\ (ACI 318-08 Eq 11-33, \Phi Vn = 0.75^* sqrt(fc)^*bo^*d^*(2^+Alpha^* \\ (ACI 318-08 Eq 11-33, \Phi Vn = 0.75^* sqrt(fc)^*bo^*d^*(2^+Alpha^* \\ (ACI 318-08 Eq 11-33, \Phi Vn = 0.75^* sqrt(fc)^*bo^*d^*(2^+Alpha^* \\ (ACI 318-08 Eq 11-33, \Phi Vn = 0.75^* sqrt(fc)^*bo^*d^*(2^+Alpha^* \\ (ACI 318-08 Eq 11-33, \Phi Vn = 0.75^* sqrt(fc)^*bo^*d^*(2^+Alpha^* \\ (ACI 318-08 Eq 11-33, \Phi Vn = 0.75^* sqrt(fc)^*bo^*d^*(2^+Alpha^* \\ (ACI 318-08 Eq 11-33, \Phi Vn = 0.75^* sqrt(fc)^*bo^*d^*(2^+Alpha^* \\ (ACI 318-08 Eq 11-33, \Phi Vn = 0.75^* sqrt(fc)^*bo^*d^*(2^+Alpha^* \\ (ACI 318-08 Eq 11-33, \Phi Vn = 0.75^* sqrt(fc)^*bo^*d^*(2^+Alpha^* \\ (ACI 318-08 Eq 11-33, \Phi Vn = 0.75^* sqrt(fc)^*bo^*d^*(2^+Alpha^* \\ (ACI 318-08 Eq 11-33, \Phi Vn = 0.75^* sqrt(fc)^*bo^*d^*(2^+Alpha^* \\ (ASCE 7) \\ (Vn = 0.00 & k (f + f f f f f f f f f f f f f f f f f $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d/bo))                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
| Adequate in Two-Way Shear? YES<br>Column Bearing Check:<br>$\Phi Pn = 477.36$ k (ACI 318-08 Section 10.14.1 $\Phi Pn = 0.65^{\circ}0.85^{\circ}fc^{\circ}Plate Are Adequate in Bearing? YES Uplift Check: Adequate in Bearing? YES Uplift Check: ASD Combo for Uplift = 0.6D + Uplift (ASCE 7) Uplift Force = 0 k (From Above) Required Dead Load = 0.00 k (Uplift / 0.6) Applied Dead Load + Slab + Ftg = 13.1 k Additional Slab used = 4 ft (Length of Additional Slab in Each Direction ) Wall Weight Over Footing = 0 klf Length Parallel to Slab Edge = 0 ft (B or L Depending on the Case) Length Perpendicular to Slab Edge = 0 ft (B or L Depending on the Case) Area of Cont. Footing Used = 0 ft (Applied Dead + Slab + Wall Weight + Add. Slab + Cont. Ft Adequate for Uplift? Footing is Adequate to Resist Uplift Total Dead Load = 21.1 k (Applied Dead + Slab + Wall Weight + Add. Slab + Cont. Ft (Calculation assumes wall is above the cont. ftg.) Top Steel: Mu = 0.00 \ k-ft / ft (Mu = (Pu/A)^{\circ}0.5^{\circ}Crit. L^{2}) (m = fy/(0.85^{\circ}fc))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ea*2) )                  |
| $\begin{array}{c} \Phi Pn = & 477.36  k \\ Adequate in Bearing?  \textbf{YES} \end{array} \qquad (ACI 318-08 \ Section 10.14.1 \ \Phi Pn = 0.65^{\circ}0.85^{\circ}fc^{\circ}Plate \ Area \ Adequate in Bearing?  \textbf{YES} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ea*2))                   |
| $\begin{array}{c} \Phi Pn = & 477.36  k \\ Adequate in Bearing?  \textbf{YES} \end{array} \qquad (ACI 318-08 \ Section 10.14.1 \ \Phi Pn = 0.65^{\circ}0.85^{\circ}fc^{\circ}Plate \ Area \ Adequate in Bearing?  \textbf{YES} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ea*2))                   |
| Adequate in Bearing?YESUplift Check:<br>ASD Combo for Uplift = $0.6D + Uplift$ (ASCE 7)<br>(Pplift Force = $0$ kRequired Dead Load = $0.00$ k(From Above)<br>(Uplift / $0.6$ )Applied Dead Load + Slab + Ftg = 13.1 k(Length of Additional Slab in Each Direction )Additional Slab Used = $4$ ft(Length of Additional Slab in Each Direction )Wall Weight Over Footing = $0$ klf(B or L Depending on the Case)Length Parallel to Slab Edge = $0$ ft(B or L Depending on the Case)Area of Cont. Footing = $0$ ft²(B or L Depending on the Case)Area of Cont. Footing = $0$ ft²(Applied Dead + Slab + Wall Weight + Add. Slab + Cont. Ft<br>(Calculation assumes wall is above the cont. ftg.)Top Steel:Mu = $0.00$ k-ft / ft(Mu = (Pu/A)*0.5*Crit. L^2 )<br>(m = fy/(0.85*fc))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | a~2))                    |
| Uplift Check:<br>ASD Combo for Uplift = 0.6D + Uplift(ASCE 7)<br>Uplift Force = 0 kRequired Dead Load = 0.00 k(From Above)<br>Required Dead Load = 0.00 k(Uplift / 0.6)Applied Dead Load + Slab + Ftg = 13.1 k(Length of Additional Slab in Each Direction )Mall Weight Over Footing = 0 klf<br>Length Parallel to Slab Edge = 0 ft(B or L Depending on the Case)Length Perpendicular to Slab Edge = 0 ft(B or L Depending on the Case)Area of Cont. Footing = 0 ft <sup>2</sup><br>Length of Cont. Footing Used = 0 ft(Applied Dead + Slab + Wall Weight + Add. Slab + Cont. Ft<br>(Calculation assumes wall is above the cont. ftg.)Top Steel:Mu = 0.00 k-ft / ft<br>m = 23.529Mu = (Pu/A)*0.5*Crit. L^2)<br>(m = fy/(0.85*fc))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |
| ASD Combo for Uplift = $0.6D + Uplift$ (ASCE 7)<br>Uplift Force = 0 k (From Above)<br>Required Dead Load = 0.00 k (Uplift / 0.6)<br>Applied Dead Load + Slab + Ftg = 13.1 k<br>Additional Slab Used = 4 ft (Length of Additional Slab in Each Direction)<br>Wall Weight Over Footing = 0 klf<br>Length Parallel to Slab Edge = 0 ft (B or L Depending on the Case)<br>Length Perpendicular to Slab Edge = 0 ft (B or L Depending on the Case)<br>Area of Cont. Footing = 0 ft <sup>2</sup><br>Length of Cont. Footing used = 0 ft<br>Total Dead Load = 21.1 k (Applied Dead + Slab + Wall Weight + Add. Slab + Cont. Ft<br>Adequate for Uplift? Footing is Adequate to Resist Uplift<br>Top Steel:<br>$Mu = 0.00 	k-ft / ft (Mu = (Pu/A)*0.5*Crit. L^2) 	m = 23.529 	(m = fy/(0.85*fc))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |
| Uplift Force =0k(From Above)Required Dead Load =0.00k(Uplift / 0.6)Applied Dead Load + Slab + Ftg =13.1kAdditional Slab Used =4ft(Length of Additional Slab in Each Direction)Wall Weight Over Footing =0klfLength Parallel to Slab Edge =0ft(B or L Depending on the Case)Length Perpendicular to Slab Edge =0ft(B or L Depending on the Case)Area of Cont. Footing =0ft²(B or L Depending on the Case)Length of Cont. Footing Used =0ft²(Applied Dead + Slab + Wall Weight + Add. Slab + Cont. Ft<br>(Calculation assumes wall is above the cont. ftg.)Top Steel:Mu =0.00k-ft / ft(Mu = (Pu/A)*0.5*Crit. L^2 )<br>(m = fy/(0.85*fc))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |
| Required Dead Load =0.00k(Uplift / 0.6)Applied Dead Load + Slab + Ftg =13.1kAdditional Slab Used =4ft(Length of Additional Slab in Each Direction )Wall Weight Over Footing =0klfLength Parallel to Slab Edge =0ft(B or L Depending on the Case)Length Perpendicular to Slab Edge =0ft(B or L Depending on the Case)Area of Cont. Footing =0ft²(B or L Depending on the Case)Length of Cont. Footing Used =0ft(Applied Dead + Slab + Wall Weight + Add. Slab + Cont. FtAdequate for Uplift?Footing is Adequate to Resist Uplift(Calculation assumes wall is above the cont. ftg.)Top Steel:Mu =0.00k-ft / ft(Mu = (Pu/A)*0.5*Crit. L^2 )m =23.529(m = fy/(0.85*fc))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |
| Applied Dead Load + Slab + Ftg =13.1kAdditional Slab Used =4ft(Length of Additional Slab in Each Direction )Wall Weight Over Footing =0klf(B or L Depending on the Case)Length Parallel to Slab Edge =0ft(B or L Depending on the Case)Length Perpendicular to Slab Edge =0ft(B or L Depending on the Case)Area of Cont. Footing =0ft²(B or L Depending on the Case)Length of Cont. Footing Used =0ft(Applied Dead + Slab + Wall Weight + Add. Slab + Cont. FtAdequate for Uplift?Footing is Adequate to Resist Uplift(Calculation assumes wall is above the cont. ftg.)Top Steel:Mu =0.00k-ft / ft(Mu = (Pu/A)*0.5*Crit. L^2 )m =23.529(m = fy/(0.85*fc))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |
| Additional Slab Used =4ft( Length of Additional Slab in Each Direction )Wall Weight Over Footing =0klf(B or L Depending on the Case)Length Parallel to Slab Edge =0ft(B or L Depending on the Case)Length Perpendicular to Slab Edge =0ft(B or L Depending on the Case)Area of Cont. Footing =0ft²Length of Cont. Footing Used =0ftTotal Dead Load =21.1kAdequate for Uplift?Footing is Adequate to Resist UpliftTop Steel:Mu =0.00k-ft / ftMu =0.00K-ft / ft(Mu = (Pu/A)*0.5*Crit. L^2 )Mu =0.00K-ft / ft(Mu = fy/(0.85*fc) )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |
| Wall Weight Over Footing =0klfLength Parallel to Slab Edge =0ft(B or L Depending on the Case)Length Perpendicular to Slab Edge =0ft(B or L Depending on the Case)Area of Cont. Footing =0ft²(B or L Depending on the Case)Length of Cont. Footing Used =0ft(Applied Dead + Slab + Wall Weight + Add. Slab + Cont. FtAdequate for Uplift?Footing is Adequate to Resist Uplift(Calculation assumes wall is above the cont. ftg.)Top Steel:Mu =0.00k-ft / ft(Mu = (Pu/A)*0.5*Crit. L^2 )m =23.529(m = fy/(0.85*fc))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |
| Length Parallel to Slab Edge =0ft(B or L Depending on the Case)Length Perpendicular to Slab Edge =0ft(B or L Depending on the Case)Area of Cont. Footing =0ft²Length of Cont. Footing Used =0ftTotal Dead Load =21.1kAdequate for Uplift?Footing is Adequate to Resist Uplift(Applied Dead + Slab + Wall Weight + Add. Slab + Cont. FtTop Steel:Mu =0.00k-ft / ft(Mu = (Pu/A)*0.5*Crit. L^2 )m =23.529(m = fy/(0.85*fc) )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |
| Length Perpendicular to Slab Edge = 0 ft (B or L Depending on the Case)<br>Area of Cont. Footing = 0 ft <sup>2</sup><br>Length of Cont. Footing Used = 0 ft<br>Total Dead Load = 21.1 k (Applied Dead + Slab + Wall Weight + Add. Slab + Cont. Ft<br>Adequate for Uplift? Footing is Adequate to Resist Uplift (Calculation assumes wall is above the cont. ftg.)<br>Top Steel:<br>$Mu = 0.00 	k-ft / ft (Mu = (Pu/A)*0.5*Crit. L^2) (m = fy/(0.85*fc))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |
| Length Perpendicular to Slab Edge = 0 ft (B or L Depending on the Case)<br>Area of Cont. Footing = 0 ft <sup>2</sup><br>Length of Cont. Footing Used = 0 ft<br>Total Dead Load = 21.1 k (Applied Dead + Slab + Wall Weight + Add. Slab + Cont. Ft<br>Adequate for Uplift? Footing is Adequate to Resist Uplift (Calculation assumes wall is above the cont. ftg.)<br>Top Steel:<br>$Mu = 0.00 	k-ft / ft (Mu = (Pu/A)*0.5*Crit. L^2) (m = fy/(0.85*fc))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |
| Area of Cont. Footing =0 $ft^2$ Length of Cont. Footing Used =0ftTotal Dead Load =21.1kAdequate for Uplift?Footing is Adequate to Resist Uplift(Applied Dead + Slab + Wall Weight + Add. Slab + Cont. FtTop Steel:(Au =Mu =0.00k-ft / ftMu =0.00k-ft / ftm =23.529(Mu = (Pu/A)*0.5*Crit. L^2 )m =(m = fy/(0.85*fc) )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
| Length of Cont. Footing Used = 0 ft<br>Total Dead Load = 21.1 k (Applied Dead + Slab + Wall Weight + Add. Slab + Cont. Ft<br>Adequate for Uplift? Footing is Adequate to Resist Uplift (Calculation assumes wall is above the cont. ftg.)<br>Top Steel:<br>Mu = 0.00 k-ft / ft (Mu = (Pu/A)*0.5*Crit. L^2)<br>m = 23.529 (m = fy/(0.85*fc))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |
| Total Dead Load = $21.1$ k(Applied Dead + Slab + Wall Weight + Add. Slab + Cont. FtAdequate for Uplift?Footing is Adequate to Resist Uplift(Calculation assumes wall is above the cont. ftg.)Top Steel: $Mu = 0.00$ k-ft / ft( $Mu = (Pu/A)^*0.5^*Crit. L^2$ )m = $23.529$ (m = fy/(0.85^*fc))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
| Adequate for Uplift? Footing is Adequate to Resist Uplift(Calculation assumes wall is above the cont. ftg.)Top Steel: $Mu = 0.00 	ext{ k-ft / ft}$ $(Mu = (Pu/A)^*0.5^*Crit. L^2)$ m = 23.529 $(m = fy/(0.85^*fc))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a)                       |
| Top Steel:<br>Mu = 0.00 k-ft / ft (Mu = (Pu/A)*0.5*Crit. L^2)<br>m = 23.529 (m = fy/(0.85*fc))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9/                       |
| Mu =0.00k-ft / ft( Mu = (Pu/A)*0.5*Crit. L^2 )m =23.529( m = fy/(0.85*fc) )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |
| m = 23.529 ( $m = fy/(0.85*fc)$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |
| $Ru = 0.000$ ksi $(Ru = Mu/(0.9^{-1}2 \text{ inches}^{-1}2))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |
| $\rho \operatorname{Req'd} = 0.0000$ ( $\rho = (1/m)^*(1-\operatorname{sqrt}(1-2^*\operatorname{Ru}^*m/\operatorname{fy}))$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |
| ρ Min. = 0.0027 (ACI 318-08 Equation 10-3, Smaller of: 3*sqrt(f'c)/fy & 200/f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | у)                       |
| $4/3^{*}$ Mu $\rho$ Req'd = 0.0000 ( $\rho = (1/m)^{*}(1-sqrt(1-2^{*}1.33^{*}Ru^{*}m/fy)))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |
| Governing $\rho$ = 0.0000 (If $\rho$ Req'd < 4/3*Mu $\rho$ Req'd < $\rho$ Min, Use 4/3*Mu $\rho$ Req'd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |
| A's Required = 0.000 $in^2/ft$ (As = Governing $\rho^*12$ inches*d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |
| Bar # = 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |
| Bar Spacing = <mark>12</mark> in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |
| As Provided = 0.20 in <sup>2</sup> /ft = 5 Bars in B Direction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
| = 5 Bars in L Direction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |
| Bottom Steel:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |
| Mu = 1.67 k-ft / ft (Mu= Qcrit*0.5*Lcrit*2 + (Qmax-Qcrit)*0.5*(2/3)*Lcrit*2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |
| m = 23.529 ( $m = fy/(0.85*fc)$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |
| $Ru = 0.029$ ksi $(Ru = Mu/(0.9*12 inches*d^2))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |
| $\rho \text{ Reg'd} = 0.0005$ ( $\rho = (1/m)^*(1-\operatorname{sqrt}(1-2^*\operatorname{Ru}^*m/fy))$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |
| ρ Min. = 0.0027 (ACI 318-08 Equation 10-3, Smaller of: 3*sqrt(f'c)/fy & 200/f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | y)                       |
| 4/3*Mu $\rho$ Req'd = 0.0006 ( $\rho = (1/m)^*(1-\text{sqrt}(1-2^*1.33^*\text{Ru}^*m/\text{fy}))$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |
| $Governing \rho = 0.0006 		 (If \rho \text{ Reg'd} < 4/3*\text{Mu} \rho \text{ Reg'd} < 2/3*\text{Mu} \rho \text{ Reg'd} < 4/3*\text{Mu} $ |                          |
| A's Required = $0.062 \text{ in}^2/\text{ft}$ (As = Governing p*12 inches*d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |
| Bar # = 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |
| Bar Spacing = 12 in $i^{2/4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |
| As Provided = $0.31$ in <sup>2</sup> /ft = 5 Bars in B Direction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |
| = 5 Bars in L Direction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |



| Project  | Balderston Auto |            |    | Project No | 20-467   |  |
|----------|-----------------|------------|----|------------|----------|--|
| Calc. Bv | RJS             | Checked By | JH | Date       | 03/01/21 |  |

| Temperature & | Shrinkage | Steel: |
|---------------|-----------|--------|
|               |           |        |

| Minimum Steel =       | 0.2592 | in²/ft            | ( T&S Steel = 0.0018*12 inches*H ) |
|-----------------------|--------|-------------------|------------------------------------|
| As Provided Top =     | 0.20   | in²/ft            |                                    |
| As Provided Bott =    | 0.31   | in²/ft            |                                    |
| As Provided Total =   | 0.51   | in²/ft            |                                    |
| T&S Steel Provided?   | YES    |                   |                                    |
| Final Footing Design: |        |                   |                                    |
| Footing Width, B =    | 4      | ft                |                                    |
| Footing Length L =    | 4      | ft                |                                    |
| Footing Depth, H =    | 12     | in                |                                    |
| Top Steel =           | #4 bar | s @12 inches O.C. |                                    |

Bottom Steel = **#5 bars** @12 inches O.C.



| Project  | <b>Balderston Auto</b> |            | Pro | oject No | 20-467   |  |
|----------|------------------------|------------|-----|----------|----------|--|
| Calc. By | RJS                    | Checked By | JH  | Date_    | 03/01/21 |  |

| Grade Beam Location:        | Thickened Sla | ab NLB 8        | ' CMU                                                                                                 |
|-----------------------------|---------------|-----------------|-------------------------------------------------------------------------------------------------------|
|                             |               |                 |                                                                                                       |
| General Information:        |               |                 | WIDTH                                                                                                 |
| Footing Width, B =          | 18            | in              | TOP STEEL                                                                                             |
| Footing Depth, H =          | 12            | in              | 4                                                                                                     |
| Steel Depth, d =            | 8.0625        | in              | (H - 3 in - 1.5*Bar Dia. )                                                                            |
| Wall Width =                | 8.625         | in              | <b>T</b>                                                                                              |
| Soil Bearing Pressure =     | 2.5           | ksf             |                                                                                                       |
| Allowable or Effective SBC? | Allowable     |                 | le a al BOTTOW STEEL                                                                                  |
| Concrete Strength =         | 3             | ksi             |                                                                                                       |
|                             |               |                 | В                                                                                                     |
| Loading:                    |               |                 |                                                                                                       |
| Vertical Loads:             |               |                 | LRFD Factors: (ASCE 7 Combo)                                                                          |
| Applied Dead Load =         | 0.9           | klf             |                                                                                                       |
| Wall Weight =               | 56            | psf             | Dead = 1.2                                                                                            |
| Wall Height =               | 22            | ft              | Live = 1.6                                                                                            |
| Total Wall Weight =         | 1.232         | klf             |                                                                                                       |
| Footing Weight =            | 0.225         | klf             |                                                                                                       |
| Applied Live Load =         | 0.10          | klf             |                                                                                                       |
| ASD Total Load, W =         | 2.457         | klf             |                                                                                                       |
| LRFD Total Load, Wu =       | 2.9884        | klf             |                                                                                                       |
|                             |               |                 |                                                                                                       |
| ASD Soil Pressures:         |               |                 |                                                                                                       |
| Required Footing Width =    | 0.9828        | ft              | (Footing Width = W / Soil Bearing Pressure)                                                           |
| Chosen Footing Width =      | 1.5           | ft              |                                                                                                       |
| Assumed Footing Span =      | 6             | ft              |                                                                                                       |
| Is Footing Width Adequate?  | YES           |                 |                                                                                                       |
| One-Way Shear Check:        |               |                 |                                                                                                       |
| Vu1 =                       | 8.97          | klf             | (Wu*Assumed Footing Span / 2)                                                                         |
| ΦVn =                       | 11.92         | klf             | (ACI 318-08 Equation 11-5, ΦVn = 0.75*2*sqrt(f'c)*B*d / 1000 )                                        |
| Adequate in One-Way Shear?  | YES           | i di            | (710101000 Equation 110, \$111 0.70 E oqu(10) B u 71000 )                                             |
| Are Stirrups Reg'd?         | YES           |                 | ( ACI 318-08 Section 11.4.6.1 If                                                                      |
|                             | Calculate Sti | rrups           | (Provide minimum stirrups to support steel)                                                           |
| Wall Bearing Check:         |               |                 |                                                                                                       |
| ΦPn =                       | 28.591875     | klf             | ( ACI 318-08 Section 10.14.1 ΦPn = 0.65*0.85*fc*Wall Width*1'*2)                                      |
| Adequate in Bearing?        | YES           |                 |                                                                                                       |
| Bottom Steel:               |               |                 |                                                                                                       |
| Mu =                        | 13.45         | k-ft            | (Wu*Assumed Footing Span^2 / 8)                                                                       |
| m =                         | 23.529        |                 | (m = fy/(0.85 * fc))                                                                                  |
| Ru =                        | 0.153         | ksi             | $(Ru = Mu/(0.9*B*d^2))$                                                                               |
| ρ Req'd =                   | 0.0026        |                 | $(\rho = (1/m)^{(1.5 \text{ J} + 1/2)})$                                                              |
| ρ Min. =                    | 0.0020        |                 | (ACI 318-08 Equation 10-3, Smaller of: 3*sqrt(f'c)/fy & 200/fy )                                      |
| 4/3*MuρReg'd =              | 0.0027        |                 | $(\rho = (1/m)^{(1-sqrt(1-2^{*}1.33^{*}Ru^{*}m/fy)))$                                                 |
|                             |               |                 | (μ – (1/11) (1-sqr((1-2 1.33 Ku 11/19)))<br>( If ρ Req'd < 4/3*Mu ρ Req'd < ρ Min, Use 4/3*Mu ρ Req'd |
| Governing p =               | 0.0027        | in <sup>2</sup> |                                                                                                       |
| A's Required =              | 0.397         | in <sup>2</sup> | ( As = Governing ρ*B*d )                                                                              |
| Bar # =                     | 5             | her-            |                                                                                                       |
| Number of Bars =            | 3             | bars            |                                                                                                       |
| As Provided =               | 0.93          | in <sup>2</sup> |                                                                                                       |
| Is Steel Adequate ?         | YES           |                 |                                                                                                       |
|                             |               |                 |                                                                                                       |
| Top Steel:                  |               |                 |                                                                                                       |
| Top Steel:<br>Bar # =       | 5             |                 |                                                                                                       |
| -                           | 5<br>2        | bars<br>in²     |                                                                                                       |



| Project  | Balderston Auto |            |    | Project No | 20-467   |
|----------|-----------------|------------|----|------------|----------|
| Calc. By | RJS             | Checked By | JH | Date_      | 03/01/21 |

### Temperature & Shrinkage Steel:

| Minimum Steel =<br>As Provided Top =<br>As Provided Bott =<br>As Provided Total =<br>T&S Steel Provided? | 0.3888<br>0.62<br>0.93<br>1.55<br><b>YES</b> | in <sup>2</sup> /ft<br>in <sup>2</sup> /ft<br>in <sup>2</sup> /ft<br>in <sup>2</sup> /ft | ( T&S Steel = 0.0018*B*H ) |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------|----------------------------|
| Final Footing Design:<br>Footing Width, B =<br>Footing Depth, H =                                        | 18<br>12                                     | in<br>in<br>5) #5 bars                                                                   |                            |

| Top Steel =         | (5) #5 bars |
|---------------------|-------------|
| Bottom Steel =      | (3) #5 bars |
| Stirrups = Calculat | e Stirrups  |



| Project  | Balderston Auto |            |    | Project No | 20-467   |
|----------|-----------------|------------|----|------------|----------|
| Calc. By | RJS             | Checked By | JH | Date       | 03/01/21 |

| Footing Design                                    |               |                 |                                                                     |
|---------------------------------------------------|---------------|-----------------|---------------------------------------------------------------------|
| Grade Beam Design                                 |               |                 | w/wu<br>I                                                           |
| Grade Beam Location:                              | NLB w/ 12" C  | MU              |                                                                     |
| General Information:                              |               |                 | WALL                                                                |
| Footing Width, B =                                | 30            | in              | TOP STEEL                                                           |
| Footing Depth, H =                                | 34            | in              |                                                                     |
| Steel Depth, d =                                  | 30.0625       | in              | (H - 3 in - 1.5*Bar Dia.)                                           |
| Wall Width =                                      | 11.625        | in              |                                                                     |
| Soil Bearing Pressure =                           | 2.5           | ksf             |                                                                     |
| Allowable or Effective SBC?                       | Allowable     | NOI             | BOTTOM STEEL                                                        |
| Concrete Strength =                               | 3             | ksi             | - 40 <sup>d</sup>                                                   |
|                                                   | 5             | 151             | В                                                                   |
| Loading:                                          |               |                 |                                                                     |
| Vertical Loads:                                   |               |                 | LRFD Factors: (ASCE 7 Combo)                                        |
| Applied Dead Load =                               | 0.05          | klf             |                                                                     |
| Wall Weight =                                     | 83            | psf             | Dead = 1.2                                                          |
| Wall Height =                                     | 27            | ft              | Live = 1.6                                                          |
| Total Wall Weight =                               | 2.241         | klf             |                                                                     |
| Footing Weight =                                  | 1.0625        | klf             |                                                                     |
| Applied Live Load =                               | 0.13          | klf             |                                                                     |
| ASD Total Load, W =                               | 3.48575       | klf             |                                                                     |
| LRFD Total Load, Wu =                             | 4.2358        | klf             |                                                                     |
| ASD Soil Pressures:                               |               |                 |                                                                     |
| Required Footing Width =                          | 1.3943        | ft              | (Footing Width = W / Soil Bearing Pressure)                         |
| Chosen Footing Width =                            | 2.5           | ft              | (·······                                                            |
| Assumed Footing Span =                            | 6             | ft              |                                                                     |
| Is Footing Width Adequate?                        | YES           |                 |                                                                     |
| One-Way Shear Check:                              |               |                 |                                                                     |
| Vu1 =                                             | 12.71         | klf             | (Wu*Assumed Footing Span / 2)                                       |
| ΦVn =                                             | 74.10         | klf             |                                                                     |
|                                                   | YES           | KII             | ( ACI 318-08 Equation 11-5, ΦVn = 0.75*2*sqrt(fc)*B*d / 1000 )      |
| Adequate in One-Way Shear?<br>Are Stirrups Req'd? | NO            |                 | ( ACI 318-08 Section 11.4.6.1 If ΦVn/2 >Vu1 "No", Otherwise "Yes")  |
|                                                   | Use #3 Stirru | ips at 1        |                                                                     |
| Wall Bearing Check:                               |               |                 |                                                                     |
| ΦPn =                                             | 38.536875     | klf             | ( ACI 318-08 Section 10.14.1 ΦPn = 0.65*0.85*f'c*Wall Width*1'*2) ) |
| Adequate in Bearing?                              | YES           |                 |                                                                     |
| Bottom Steel:                                     |               |                 |                                                                     |
| Mu =                                              | 19.06         | k-ft            | (Wu*Assumed Footing Span^2 / 8 )                                    |
| m =                                               |               |                 | (m = fy/(0.85*fc))                                                  |
| Ru =                                              | 0.009         | ksi             | $(Ru = Mu/(0.9*B*d^2))$                                             |
| ρ Req'd =                                         | 0.0002        |                 | $(\rho = (1/m)^{*}(1-sqrt(1-2^{*}Ru^{*}m/fy)))$                     |
| ρ Min. =                                          | 0.0027        |                 | (ACI 318-08 Equation 10-3, Smaller of: 3*sqrt(f'c)/fy & 200/fy )    |
| 4/3*Mu ρ Req'd =                                  | 0.0002        |                 | $(\rho = (1/m)^{*}(1-sqrt(1-2^{*}1.33^{*}Ru^{*}m/fy)))$             |
| Governing $\rho$ =                                | 0.0002        |                 | ( If ρ Req'd < 4/3*Mu ρ Req'd < ρ Min, Use 4/3*Mu ρ Req'd           |
| A's Required =                                    | 0.188         | in <sup>2</sup> | (As = Governing $\rho^*B^*d$ )                                      |
| Bar # =                                           | 5             |                 | (··································                                 |
| Number of Bars =                                  | 3             | bars            |                                                                     |
| As Provided =                                     | 0.93          | in <sup>2</sup> |                                                                     |
| Is Steel Adequate ?                               | 0.93<br>YES   |                 |                                                                     |
| Top Steel:                                        |               |                 |                                                                     |
| Bar # =                                           | 5             |                 |                                                                     |
| Number of Bars =                                  | 3             | bars            |                                                                     |
| As Provided =                                     | 0.93          | in <sup>2</sup> |                                                                     |
| As Hovided =                                      | 0.00          |                 |                                                                     |



| Project  | Balderston Auto |            |    | Project No | 20-467   |
|----------|-----------------|------------|----|------------|----------|
| Calc. By | RJS             | Checked By | JH | Date_      | 03/01/21 |

| Footing Design                |       |                          |                            |
|-------------------------------|-------|--------------------------|----------------------------|
| Temperature & Shrinkage St    | teel: |                          |                            |
| Minimum Steel =               | 1.836 | in²/ft                   | ( T&S Steel = 0.0018*B*H ) |
| As Provided Top =             | 0.93  | in²/ft                   |                            |
| As Provided Bott =            | 0.93  | in²/ft                   |                            |
| As Provided Total =           | 1.86  | in²/ft                   |                            |
| T&S Steel Provided?           | YES   |                          |                            |
| Final Footing Design:         |       |                          |                            |
| Footing Width, B =            | 30    | in                       |                            |
| Footing Depth, H =            | 34    | in                       |                            |
| Top Steel =<br>Bottom Steel = | •     | 3) #5 bars<br>3) #5 bars |                            |

Stirrups = #3 Stirrups at 18 in. O.C.



As Provided =

1.55

in<sup>2</sup>

| Project  | Balderston Auto |            |    | Project No | 20-467   |
|----------|-----------------|------------|----|------------|----------|
| Calc. By | RJS             | Checked By | JH | Date       | 03/01/21 |

#### Footing Design W/Wu Grade Beam Design Grade Beam Location: Mezzanine WALL WIDTH **General Information:** TOP STEEL Footing Width, B = 42 in Footing Depth, H = 34 in Steel Depth, d = 30.0625 in (H - 3 in - 1.5\*Bar Dia.) STIRRUPS Wall Width = 11.625 in Soil Bearing Pressure = 2.5 ksf BOTTOM STEEL Allowable or Effective SBC? Allowable Concrete Strength = 3 ksi в Loading: LRFD Factors: (ASCE 7 Combo) Vertical Loads: Applied Dead Load = 1.4 klf Wall Weight = Dead = 1.2 83 psf Wall Height = 24 ft Live = 1.6 Total Wall Weight = 1.992 klf Footing Weight = 1.4875 klf Applied Live Load = 1.50 klf ASD Total Load, W = 6.3795 klf LRFD Total Load, Wu = 8.2554 klf **ASD Soil Pressures:** Required Footing Width = 2.5518 ft (Footing Width = W / Soil Bearing Pressure) Chosen Footing Width = 3.5 ft Assumed Footing Span = 6 ft Is Footing Width Adequate? YES **One-Way Shear Check:** Vu1 = 24.77 klf (Wu\*Assumed Footing Span / 2) ΦVn = 103.74 (ACI 318-08 Equation 11-5, ΦVn = 0.75\*2\*sqrt(fc)\*B\*d / 1000) klf Adequate in One-Way Shear? YES (ACI 318-08 Section 11.4.6.1 If ΦVn/2 >Vu1 "No", Otherwise "Yes") Are Stirrups Req'd? NO Use #3 Stirrups at 18 in. O.C. (Provide minimum stirrups to support steel) Wall Bearing Check: ΦPn = 38.536875 klf (ACI 318-08 Section 10.14.1 ΦPn = 0.65\*0.85\*f'c\*Wall Width\*1'\*2)) Adequate in Bearing? YES **Bottom Steel:** Mu = 37.15 k-ft (Wu\*Assumed Footing Span^2 / 8) ( m = fy/(0.85\*f'c) ) m = 23.529 0.013 $(Ru = Mu/(0.9*B*d^2))$ Ru = ksi $\rho$ Req'd = 0.0002 $(\rho = (1/m)^{*}(1-sqrt(1-2^{*}Ru^{*}m/fy)))$ ρ Min. = 0.0027 (ACI 318-08 Equation 10-3, Smaller of: 3\*sqrt(f'c)/fy & 200/fy ) 4/3\*Mu ρ Req'd = 0.0003 $(\rho = (1/m)^*(1-sqrt(1-2^*1.33^*Ru^*m/fy)))$ Governing $\rho$ = 0.0003 ( If $\rho \text{Req'd} < 4/3^*\text{Mu} \rho \text{Req'd} < \rho \text{Min}$ , Use $4/3^*\text{Mu} \rho \text{Req'd}$ in<sup>2</sup> A's Required = 0.366 (As = Governing $\rho^*B^*d$ ) Bar # = 5 5 Number of Bars = bars in<sup>2</sup> As Provided = 1.55 Is Steel Adequate ? YES Top Steel: 5 Bar # = Number of Bars = 5 bars

SHT. NO.



| Project  | Balderston Auto |            |    | Project No | 20-467   |
|----------|-----------------|------------|----|------------|----------|
| Calc. By | RJS             | Checked By | JH | Date_      | 03/01/21 |

| Footing Design            |            |                |                            |
|---------------------------|------------|----------------|----------------------------|
| Temperature & Shrinkage S | teel:      |                |                            |
| Minimum Steel =           | 2.5704     | in²/ft         | ( T&S Steel = 0.0018*B*H ) |
| As Provided Top =         | 1.55       | in²/ft         |                            |
| As Provided Bott =        | 1.55       | in²/ft         |                            |
| As Provided Total =       | 3.10       | in²/ft         |                            |
| T&S Steel Provided?       | YES        |                |                            |
| Final Footing Design:     |            |                |                            |
| Footing Width, B =        | 42         | in             |                            |
| Footing Depth, H =        | 34         | in             |                            |
| Top Steel =               | (!         | 5) #5 bars     |                            |
| Bottom Steel =            | •          | 5) #5 bars     |                            |
| Stirrups = #              | 3 Stirrups | at 18 in. O.C. |                            |



| Project  | Balderston Auto |            |    | Project No | 20-467   |
|----------|-----------------|------------|----|------------|----------|
| Calc. By | RJS             | Checked By | JH | Date       | 03/01/21 |

| Footing Design              |               |                 |                                                                    |
|-----------------------------|---------------|-----------------|--------------------------------------------------------------------|
| Grade Beam Design           |               |                 | w/wu<br>I                                                          |
| Grade Beam Location:        | 12" CMU       |                 |                                                                    |
| General Information:        |               |                 | WIDTH                                                              |
| Footing Width, B =          | 24            | in              | TOP STEEL                                                          |
| Footing Depth, H =          | 34            | in              |                                                                    |
| Steel Depth, d =            | 30.0625       | in              | (H - 3 in - 1.5*Bar Dia. )                                         |
| Wall Width =                | 11.625        | in              | <b>T</b>                                                           |
| Soil Bearing Pressure =     | 2.5           | ksf             |                                                                    |
| Allowable or Effective SBC? | Allowable     |                 | BOTTOM STEEL                                                       |
| Concrete Strength =         | 3             | ksi             |                                                                    |
| Loading:                    |               |                 | <b>B</b>                                                           |
| Vertical Loads:             |               |                 | LRFD Factors: (ASCE 7 Combo)                                       |
| Applied Dead Load =         | 0.24          | klf             |                                                                    |
| Wall Weight =               | 83            | psf             | $Dead = \frac{1.2}{2}$                                             |
| Wall Height =               | 27            | ft              | Live = 1.6                                                         |
| Total Wall Weight =         | 2.241         | klf             |                                                                    |
| Footing Weight =            | 0.85          | klf             |                                                                    |
| Applied Live Load =         | 0.40          | klf             |                                                                    |
| ASD Total Load, W =         | 3.731         | klf             |                                                                    |
| LRFD Total Load, Wu =       | 4.6372        | klf             |                                                                    |
| ASD Soil Pressures:         |               |                 |                                                                    |
| Required Footing Width =    | 1.4924        | ft              | (Footing Width = W / Soil Bearing Pressure)                        |
| Chosen Footing Width =      | 2             | ft              |                                                                    |
| Assumed Footing Span =      | 6             | ft              |                                                                    |
| Is Footing Width Adequate?  | YES           |                 |                                                                    |
| One-Way Shear Check:        |               |                 |                                                                    |
| Vu1 =                       | 13.91         | klf             | ( Wu*Assumed Footing Span / 2 )                                    |
| ΦVn =                       | 59.28         | klf             | (ACI 318-08 Equation 11-5, ΦVn = 0.75*2*sqrt(fc)*B*d / 1000 )      |
| Adequate in One-Way Shear?  | YES           |                 |                                                                    |
| Are Stirrups Req'd?         | NO            |                 | ( ACI 318-08 Section 11.4.6.1 If ΦVn/2 >Vu1 "No", Otherwise "Yes") |
|                             | Use #3 Stirru | ups at 1        | 8 in. O.C. (Provide minimum stirrups to support steel)             |
| Wall Bearing Check:         |               |                 |                                                                    |
| ΦPn =                       | 38.536875     | klf             | ( ACI 318-08 Section 10.14.1 ΦPn = 0.65*0.85*fc*Wall Width*1'*2) ) |
| Adequate in Bearing?        | YES           |                 |                                                                    |
| Bottom Steel:               |               |                 |                                                                    |
| Mu =                        | 20.87         | k-ft            | (Wu*Assumed Footing Span^2 / 8 )                                   |
| m =                         | 23.529        |                 | ( m = fy/(0.85*fc) )                                               |
| Ru =                        | 0.013         | ksi             | (Ru = Mu/(0.9*B*d^2))                                              |
| ρ Req'd =                   | 0.0002        |                 | $(\rho = (1/m)^{*}(1-sqrt(1-2^{*}Ru^{*}m/fy)))$                    |
| ρ Min. =                    | 0.0027        |                 | (ACI 318-08 Equation 10-3, Smaller of: 3*sqrt(f'c)/fy & 200/fy )   |
| 4/3*Mu ρ Req'd =            | 0.0003        |                 | (ρ = (1/m)*(1-sqrt(1-2*1.33*Ru*m/fy)))                             |
| Governing ρ =               | 0.0003        |                 | ( If ρ Req'd < 4/3*Μu ρ Req'd < ρ Min, Use 4/3*Μu ρ Req'd          |
| A's Required =              | 0.206         | in <sup>2</sup> | (As = Governing $\rho^*B^*d$ )                                     |
| Bar # =                     | 5             |                 | (                                                                  |
| Number of Bars =            | 3             | bars            |                                                                    |
| As Provided =               | 0.93          | in <sup>2</sup> |                                                                    |
| Is Steel Adequate ?         | YES           |                 |                                                                    |
| Top Steel:                  |               |                 |                                                                    |
| •<br>Bar # =                | 5             |                 |                                                                    |
| Number of Bars =            | 3             | bars            |                                                                    |
| As Provided =               | 0.93          | in <sup>2</sup> |                                                                    |
|                             |               |                 |                                                                    |



| Project  | Balderston Auto |            |    | Project No | 20-467   |
|----------|-----------------|------------|----|------------|----------|
| Calc. By | RJS             | Checked By | JH | Date_      | 03/01/21 |

| Lesting Design                |        |                          |                            |
|-------------------------------|--------|--------------------------|----------------------------|
| Footing Design                |        |                          |                            |
| Temperature & Shrinkage St    | teel:  |                          |                            |
| Minimum Steel =               | 1.4688 | in²/ft                   | ( T&S Steel = 0.0018*B*H ) |
| As Provided Top =             | 0.93   | in²/ft                   |                            |
| As Provided Bott =            | 0.93   | in²/ft                   |                            |
| As Provided Total =           | 1.86   | in²/ft                   |                            |
| T&S Steel Provided?           | YES    |                          |                            |
| Final Footing Design:         |        |                          |                            |
| Footing Width, B =            | 24     | in                       |                            |
| Footing Depth, H =            | 34     | in                       |                            |
| Top Steel =<br>Bottom Steel = | •      | 3) #5 bars<br>3) #5 bars |                            |

Stirrups = **#3 Stirrups at 18 in. O.C.**