

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

Re: 400675 Lot 19 HT

The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Wheeler - Waverly.

Pages or sheets covered by this seal: I44812243 thru I44812245

My license renewal date for the state of Missouri is December 31, 2021.

Missouri COA: Engineering 001193

February 16,2021

Sevier, Scott

,Engineer

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

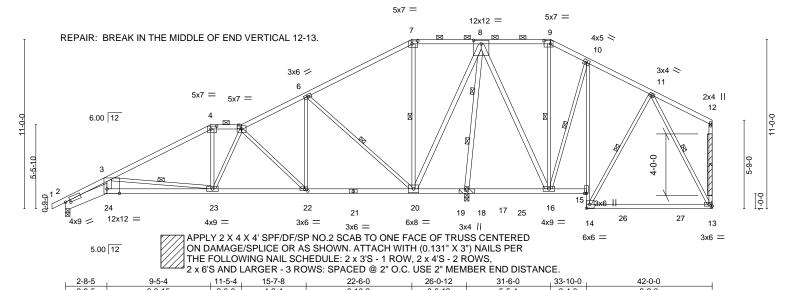
Job Truss Truss Type Qty Lot 19 HT Units: 1.0 144812243 Eng: TH PIGGYBACK BASE 400675 B6 1 Job Reference (optional)

Wheeler Lumber, Waverly, KS - 66871, 8.430 s Nov 30 2020 MiTek Industries, Inc. Mon Feb 15 11:08:44 2021 Page 1

Structural wood sheathing directly applied or 2-2-0 oc purlins,

8-18

Rigid ceiling directly applied or 6-0-0 oc bracing.


1 Row at midpt

2 Rows at 1/3 pts

except end verticals, and 2-0-0 oc purlins (4-11-8 max.): 4-5, 7-9.

ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-0cl4y1dS29zPFv0g5Podglwp4RjjrKhQLHmzlSzkvhX 37-11-15 33-10-0 -0-10₇8 2-8-5 0-10-8 2-8-5 27-0-0 31-6-0 42-0-0 6-8-15 2-0-0 4-2-4 6-10-8 4-6-0 4-6-0 2-4-0 4-1-15 4-0-1

Scale = 1:74.8

2-8-5 6-8-15 2-0-0 4-2-4 6-10-8 3-6-12 2-4-0 8-2-0 Plate Offsets (X,Y)-[2:0-3-12,0-1-7], [4:0-4-8,0-2-4], [7:0-4-8,0-2-4], [8:0-6-0,0-2-12], [9:0-5-0,0-2-8], [22:0-2-8,0-1-8], [24:0-9-11, Edge] DEFI PI ATES GRIP LOADING (psf) SPACING-2-0-0 CSL in (loc) I/defl I/d TCLL 25.0 Plate Grip DOL 1.15 TC 0.77 Vert(LL) -0.24 13-14 >805 360 MT20 197/144 TCDI 10.0 Lumber DOL 1 15 BC 0.67 Vert(CT) -0.40 23-24 >779 240 **BCLL** 0.0 Rep Stress Incr YES WB 0.92 Horz(CT) 0.14 18 n/a n/a **BCDL** 10.0 Code IRC2018/TPI2014 Matrix-S Wind(LL) 0.12 23-24 >999 240 Weight: 220 lb FT = 10%

BOT CHORD

WEBS

LUMBER-BRACING-TOP CHORD 2x4 SPF No.2 TOP CHORD

2x4 SPF No.2 *Except* BOT CHORD

2-24: 2x8 SP DSS, 21-24,13-14: 2x4 SPF 2100F 1.8E

10-14: 2x3 SPF No.2

WFBS 2x3 SPF No.2 *Except*

3-24,8-20,8-18,8-16: 2x4 SPF No.2

REACTIONS. (size) 2=0-3-8, 18=(0-3-8 + bearing block) (req. 0-4-5), 13=Mechanical

Max Horz 2=240(LC 7)

Max Uplift 2=-41(LC 8), 18=-28(LC 5), 13=-66(LC 4) Max Grav 2=1020(LC 21), 18=2744(LC 2), 13=482(LC 22)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-3703/292, 3-4=-1469/84, 4-5=-1249/104, 5-6=-758/82, 6-7=-77/402, 7-8=-25/284,

8-9=-46/271 9-10=-66/314

BOT CHORD 2-24=-371/3348, 23-24=-339/2881, 22-23=-77/1185, 20-22=-22/663, 18-20=-857/101,

16-18=-622/97, 14-15=-19/327, 10-15=-19/385

WEBS 3-24=-58/1336, 3-23=-1673/256, 4-23=0/304, 5-22=-736/77, 6-22=0/788,

6-20=-1144/129, 7-20=-498/84, 8-20=-66/1487, 8-18=-2545/74, 8-16=-19/984,

9-16=-314/52, 10-16=-532/75, 11-13=-308/184

NOTES-

- 1) 2x4 SPF No.2 bearing block 12" long at jt. 18 attached to front face with 2 rows of 10d (0.131"x3") nails spaced 3" o.c. 8 Total fasteners. Bearing is assumed to be SPF No.2.
- 2) Unbalanced roof live loads have been considered for this design.
- 3) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 18, 13.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

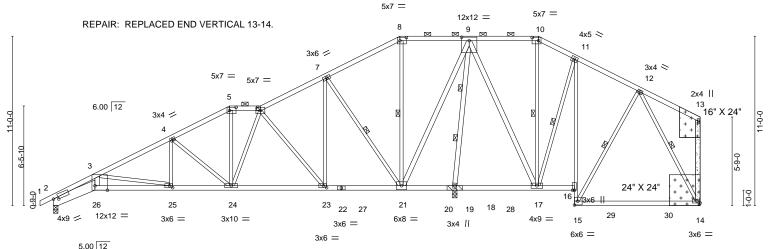
3-23, 6-20, 7-20, 9-16, 10-16, 11-14, 11-13

February 16,2021

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


16023 Swingley Ridge Rd Chesterfield, MO 63017

Job Truss Truss Type Qty Lot 19 HT Units: 1.0 144812244 Eng: TH 400675 **B7** PIGGYBACK BASE Job Reference (optional)

Wheeler Lumber, Waverly, KS - 66871, 8.430 s Nov 30 2020 MiTek Industries, Inc. Mon Feb 15 11:08:46 2021 Page 1

ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-y?PrNieiamD7UDA2Dqr5lj?CYFMhJGejoaF4NKzkvhV 37-11-15 -0-10₇8 2-8-5 0-10-8 2-8-5 27-0-0 31-6-0 33-10-0 42-0-0 4-11-4 3-9-11 2-0-0 4-2-5 4-10-7 4-6-0 4-6-0 2-4-0 4-1-15 4-0-1

Scale = 1:74.8

INSTALL 2 X 4 SPF/DF/SP NO.2 CUT TO FIT TIGHT.

ATTACH 7/16" OSB GUSSET (7/16" RATED SHEATHING 24/16 EXP 1) TO EACH FACE OF TRUSS WITH (0.131" X 2.5" MIN.) NAILS PER THE FOLLOWING NAIL SCHEDULE: 2 X 3'S - 2 ROWS, 2 X 4'S - 3 ROWS, 2 X 6'S AND LARGER - 4 ROWS: SPACED @ 4" O.C. NAILS TO BE DRIVEN FROM BOTH FACES. STAGGER SPACING FROM FRONT TO BACK FACE FOR A NET 2" O.C. SPACING IN EACH COVERED TRUSS MEMBER. USE 2" MEMBER END DISTANCE.

1 Row at midpt

2 Rows at 1/3 pts

2	8-5 7-0-12	11-5-4	17-11-1	ו	22-6-0	26-0-12	1 3	1-6-0	₁ 33-10-0 ₁	42-0-0	
2	8-5 4-4-8	4-4-8	6-6-6		4-6-6	3-6-12	5	5-5-4	2-4-0	8-2-0	1
Plate Offsets (X,Y) [2:0-3-12,0-1-7], [5:0-5-0,0-2-8], [8:0-5-0,0-2-8], [9:0-6-0,0-2-12], [10:0-5-0,0-2-8], [23:0-2-8,0-1-8], [25:0-2-8,0-1-8], [26:0-9-11,Edge]											
LOADING (psf	SPA	CING- 2	-0-0	SI.	DEFL	. i	n (loc)	I/defl	L/d	PLATES	GRIP
TCLL 25.0	Plate	Grip DOL	1.15	C 0.58	Vert(L	L) -0.2	4 14-15	>808	360	MT20	197/144
TCDL 10.0	Lum	er DOL	1.15 E	C 0.89	Vert(C	Ť) -0.3	8 14-15	>495	240		
BCLL 0.0) * Rep	Stress Incr	YES V	/B 0.83	Horz(CT) 0.13	3 19	n/a	n/a		
BCDL 10.0	Code	IRC2018/TPI20)14 N	latrix-S	Wind(LL) 0.10	0 25-26	>999	240	Weight: 227 lb	FT = 10%

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-TOP CHORD 2x4 SPF No.2 2x4 SPF No.2 *Except* **BOT CHORD**

2-26: 2x8 SP DSS, 11-15: 2x3 SPF No.2, 14-15: 2x4 SPF 2100F 1.8E

2x3 SPF No.2 *Except*

WEBS

3-26,9-21,9-19,9-17: 2x4 SPF No.2

(size) 2=0-3-8, 19=(0-3-8 + bearing block) (req. 0-4-4), 14=Mechanical

Max Horz 2=240(LC 7)

Max Uplift 2=-43(LC 8), 19=-26(LC 5), 14=-66(LC 4) Max Grav 2=1022(LC 21), 19=2719(LC 2), 14=490(LC 22) PLYWOOD MAY BE APPLIED OVER TRUSS HANGER. MAXIMUM GAP BETWEEN TRUSS AND HANGER NOT TO EXCEED 1/16" ON EACH SIDE.

Rigid ceiling directly applied or 6-0-0 oc bracing.

Structural wood sheathing directly applied or 2-10-12 oc purlins,

except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 5-6, 8-10.

7-21, 8-21, 10-17, 11-17, 12-15, 12-14

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-3541/265, 3-4=-1686/106, 4-5=-1144/99, 5-6=-973/102, 6-7=-497/90, 7-8=-63/367,

8-9=-25/281, 9-10=-49/260, 10-11=-70/298

BOT CHORD 2-26=-339/3168, 25-26=-302/2724, 24-25=-125/1480, 23-24=-54/884, 21-23=-11/404,

19-21=-835/98, 17-19=-602/94, 15-16=-18/319, 11-16=-17/376

3-26=-70/1264, 3-25=-1271/179, 4-25=0/371, 4-24=-689/94, 5-24=-1/349, 6-24=-29/308, WEBS

6-23=-761/95, 7-23=-2/841, 7-21=-1041/115, 8-21=-413/67, 9-21=-66/1427, 9-19=-2489/81, 9-17=-18/962, 10-17=-303/51, 11-17=-525/74, 12-14=-314/172

NOTES-

REACTIONS.

- 1) 2x4 SPF No.2 bearing block 12" long at jt. 19 attached to front face with 2 rows of 10d (0.131"x3") nails spaced 3" o.c. 8 Total fasteners. Bearing is assumed to be SPF No.2.
- 2) Unbalanced roof live loads have been considered for this design.
- 3) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members, with BCDL = 10.0psf. 7) Refer to girder(s) for truss to truss connections.
- 8) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 19, 14.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

February 16,2021

Job Truss Truss Type Qty Lot 19 HT 144812245 Units: 1.0 400675 C7 Piggyback Base Eng: TH Job Reference (optional) Waverly, KS - 66871, 8.430 s Nov 30 2020 MiTek Industries, Inc. Mon Feb 15 11:08:47 2021 Page 1 Wheeler Lumber, ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-QBzDa2fKL4L_6NkFmXMKIxYMZelS2lOs1E_evnzkvhU

19-0-0

4-6-0

7-0-12

Scale = 1:71.0 5x7 = REPAIR: REPLACED SECTION OF VERTICAL 7-11. 4x5 = 12x12 = 6 3x4 ≥ 24" X 24" 4x5 = 6x8 = 6.00 12 3x4 < 2 2x4 || 10-0-0 5x7 9-6-9 3-9-0 **⊠** 18 9 20 22 15 17 16 13 3x4 = 2x4 || 3x6 = 2x4 || 3x10 =4x9 =10

INSTALL 2 X 4 SPF/DF/SP NO.2 CUT TO FIT TIGHT.

ATTACH 7/16" OSB GUSSET (7/16" RATED SHEATHING 24/16 EXP 1) TO EACH FACE OF TRUSS WITH (0.131" X 2.5" MIN.) NAILS PER THE FOLLOWING NAIL SCHEDULE: 2 X 3'S - 2 ROWS, 2 X 4'S - 3 ROWS, 2 X 6'S AND LARGER - 4 ROWS: SPACED @ 4" O.C. NAILS TO BE DRIVEN FROM BOTH FACES. STAGGER SPACING FROM FRONT TO BACK FACE FOR A NET 2" O.C. SPACING IN EACH COVERED TRUSS MEMBER. USE 2" MEMBER END DISTANCE.

8x8 =

6-0-0 oc bracing: 14-16,13-14.

ON SPLICE. ATTACH WITH (0.131" X 3") NAILS PER THE FOLLOWING NAIL

SCHEDULE: 2 x 3'S - 1 ROW, 2 x 4'S - 2 ROWS, 2 x 6'S AND LARGER - 3 ROWS:

FOR A NET 2" O.C SPACING IN THE TRUSS. USE 2" MEMBER END DISTANCE.

APPLY 2 X 4 X 4' SPF/DF/SP NO.2 SCAB(S) TO EACH FACE OF TRUSS CENTERED

SPACED @ 4" O.C. STAGGER NAIL SPACING FROM FRONT FACE AND BACK FACE

1 Row at midpt

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 2-3, 4-6.

3-16, 4-16, 5-14, 6-13, 7-13, 8-10

25-10-0

2-4-0

29-11-15

4-1-15

34-0-0

4-0-1

3x6 =

23-6-0

4-6-0

	5-5-4 7-	5-4 1 14-6-0	18-0-12	23-6-0	25-10-0	34-0-0	
	5-5-4 2-	0-0 7-0-12	3-6-12	5-5-4	2-4-0	8-2-0	
Plate Offsets (X,Y)	[1:0-2-0,0-1-8], [2:0-2-12,0	-2-4], [4:0-4-8,0-2-4], [6	:0-2-8,0-2-4], [11:Edge	,0-3-8]			
LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TPI:	2-0-0 CS 1.15 TC 1.15 BC YES WE 2014 Ma	0.69 0.66 3 0.67	DEFL. in (loc Vert(LL) -0.23 10-11 Vert(CT) -0.38 16-17 Horz(CT) 0.06 10 Wind(LL) -0.03 10-11	7 >844 7 >564 0 n/a	360 M 240 n/a	LATES GRIP T20 197/144 eight: 187 lb FT = 10%

BRACING-TOP CHORD

BOT CHORD

WEBS

4x9 =

LUMBER-TOP CHORD 2x4 SPF No.2

BOT CHORD

2x4 SPF No.2 *Except* 7-11: 2x3 SPF No.2, 10-11: 2x4 SPF 2100F 1.8E

WEBS 2x3 SPF No.2 *Except*

5-16,5-14,5-13: 2x4 SPF No.2

(size) 18=0-5-8, 14=0-3-8, 10=Mechanical

Max Horz 18=270(LC 7)

Max Uplift 18=-151(LC 8), 14=-206(LC 5), 10=-54(LC 4)

Max Grav 18=841(LC 23), 14=1762(LC 2), 10=743(LC 16)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 1-2=-704/131, 2-3=-572/160, 3-4=-381/172, 4-5=-257/208, 5-6=-274/167, 6-7=-343/177,

7-8=-444/154, 1-18=-790/168

BOT CHORD 17-18=-251/202, 16-17=-116/608, 12-13=-8/297, 10-11=-69/255

WEBS 3-16=-478/171, 4-16=-336/123, 5-16=-107/890, 5-14=-1628/238, 5-13=-123/585,

7-13=-258/157, 1-17=-80/660, 8-10=-529/71

NOTES-

REACTIONS.

TOP CHORD

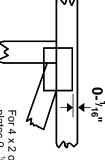
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate arip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10 except (jt=lb) 18=151, 14=206.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

February 16,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

AMSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.
Dimensions are in ft-in-sixteenths.
Apply plates to both sides of truss and fully embed teeth.

For 4 x 2 orientation, locate plates 0- ¹/16" from outside edge of truss.

This symbol indicates the required direction of slots in connector plates.

* Plate location details available in MiTek 20/20 software or upon request.

PLATE SIZE

4 × 4

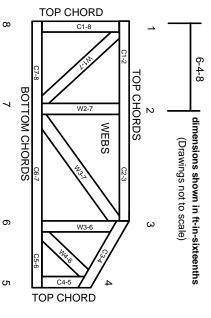
The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number where bearings occur.


Min size shown is for crushing only

Industry Standards:

National Design Specification for Metal Plate Connected Wood Truss Construction. Design Standard for Bracing.
Building Component Safety Information, Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses.

ANSI/TPI1: DSB-89:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2012 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473 rev. 5/19/2020

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.

ω

- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other.

Ģ

- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.