

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

Re: 2599350 Summit/20 Woodside ridge/MO

The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Builders FirstSource (Valley Center).

Pages or sheets covered by this seal: I44600062 thru I44600149

My license renewal date for the state of Missouri is December 31, 2021.

Missouri COA: Engineering 001193

February 1,2021

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Design valid for use only with MITeK connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Summit/20 Woodside ridge/MO	
						144600062
2599350	A1	Half Hip Girder	1	2		
				_	Job Reference (optional)	
Builders FirstSource (Valley	Center), Valley Center, K	S - 67147,		8.240 s M	ar 9 2020 MiTek Industries, Inc. Fri Jan 29 14:35:54 2021	Page 2

ID:VPVqvFnP0P0b1j2tZrlOqezdKbx-UeJyqz7nCsmdwVWNJRIUd3UaZrkJvmQVarfGEszqTFJ

NOTES-

- 1) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent spaced at 2-3-4 oc max. starting at 0-1-12 from the left end to 24-5-0 to connect truss(es) to front face of bottom chord.
- 13) Use Simpson Strong-Tie HUS26 (14-10d Girder, 4-10d Truss) or equivalent at 26-5-0 from the left end to connect truss(es) to front face of bottom chord.
- 14) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)

Vert: 1-6=-90, 6-9=-90, 17-18=-20 Concentrated Loads (Ib)

Vert: 17=-687(F) 12=-680(F) 11=-670(F) 21=-680(F) 22=-680(F) 23=-680(F) 24=-680(F) 25=-680(F) 26=-680(F) 27=-680(F) 28=-680(F) 29=-670(F) 30=-670(F) 31=-1146(F)

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

February 1,2021

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

February 1,2021

- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

	1 2-5	5-8 _I	8-9-8	1	11-5-8	14-6-0	16-0-8 17-6-8		22-4-8		22-8-8	27-10-8	3 28-10-8	31-2-0
	2-5	5-8 [']	6-4-0	1	2-8-0	3-0-8	1-6-8 1-6-0		4-10-0		0-4-0	5-2-0	1-0-0	2-3-8
Plate Offsets ()	X,Y)	[5:0-4-	0,0-1-15], [12:0-5-4	,Edge]										
•			· • •											
LOADING (psi	f)		SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d		PLATES	GRIP
TCLL 25.	ó		Plate Grip DOL	1.15	тс	0.62	Vert(LL)	-0.22	14-16	>999	240		MT20	197/144
TCDI 20	0		Lumber DOI	1 15	BC	0.97	Vert(CT)	-0.44	12-13	>842	180			
BCLL 0	0 *		Ren Stress Incr	YES	WB	0.82	Horz(CT)	0.26	10	n/a	n/a			
BCDI 10	ů N		Code IRC2018/TR	12014	Matri	V-AS	11012(01)	0.20	10	n, a	n/a		Weight: 165 lb	FT - 20%
BODE 10.	0			12014	Iviati I	x-70							Weight. 105 lb	11 = 2078
							PRACING							
	0.4 0.0						TOD OUOF		O 1		d a b a a thing		and Real accordent	and contracts and
TOP CHORD	2X4 SPI	F NO.2					TOP CHOR	D	Structur	rai woo	d sneathing	g airectly	applied, except	end verticals, and
BOT CHORD	2x4 SP	F N0.2	^Except^					_	2-0-0 00	c purlin	is (3-0-6 ma	ax.): 3-5,	7-9.	
	12-15:2	2x4 SP	'F 1650F 1.5E				BOT CHOR	RD .	Rigid ce	eiling d	irectly appli	ed.		
WEBS	2x4 SP	F No.2					WEBS		1 Row a	at midp	t	7-13, 6	6-14	
REACTIONS.	EACTIONS. (size) 10=0-3-8, 19=0-5-8 Max Horz 19=-175(LC 8) Max Uplift 10=-117(LC 13), 19=-63(LC 12) Max Grav 10=1755(LC 2), 19=1765(LC 2)													
FORCES (Ih) - Max (Comp	Max Ten - All for	ces 250 (lb) or	less excent	when shown								
TOP CHORD	1-2	1163/1	51 2-3=-1980/220	3-4=-1666/23	39 4-5=-206	4/252 5-62	2432/250							
	6-7	3520/2	65 7-8=-3398/192	8-9=-3076/20)3 9-10=-16	21/128 1-10-	-1711/148							
	2-17-	1082/	101 16-17-1/2/1	, 0 0= 0070/20 123 14-161	27/10/0 13	-11223/311	2 12-13-306/50	20						
WERS	2-17-	- 64/70	5 2 16_0/499 7 1	723, 14-101	7 10- 0120/	224 - 223/311	2, 12-13330/302	23						
WEBS	2-10=	Z-10=-04//U5, 3-10=U486, /-13=-1940/211, /-1Z=-Z132/224, 9-1Z=-Z40/3357,												
	1-1/=	-114/1	509, 5-14=0/040, C	-13=0/577, 0-	14=-1192/20	14, 4-10=-000	/100,							
	4-14=	-68/30	1											
NOTES-														
1) Unbalanced	roof live	loade	have been conside	rod for this do	cian									

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-1-12 to 3-3-2, Interior(1) 3-3-2 to 8-9-8, Exterior(2R) 8-9-8 to 11-10-14, Interior(1) 11-10-14 to 16-0-8, Exterior(2R) 16-0-8 to 19-1-14, Interior(1) 19-1-14 to 31-0-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 117 lb uplift at joint 10 and 63 lb uplift at joint 19.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Scale = 1:55.8

2-5-8	6-9-8	11-5-8	3 12-5-0	17-6-8	18-0-8	22-4-8	3	23-5-8	27-1-11	28-10-8 29	-10-8 31-2-0
Plate Offsets (X Y)	[7:0-4-0 Edge] [9:0-7-8 0-0	4-8-0	0-11-8	5-1-6	0-6-0	4-4-0		1-1-0	3-8-3	1-0-13	-0-0 1-3-8
	[7:0 + 0,Edge], [5:0 7 0,0 0	<u>5 0], [5.0 0 0,0</u>	[דו די	1							
LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d		PLATES	GRIP
TCLL 25.0	Plate Grip DOL	1.15	TC 0.83	Vert(LL)	-0.16	12-13	>999	240		MT20	197/144
ICDL 20.0	Lumber DOL	1.15	BC 0.76	Vert(CT	-0.36	12-13	>999	180			
BCLL 0.0 "	Rep Stress Incr	YES	VVB 0.54	Horz(C1) 0.22	10	n/a	n/a		Woight: 102 lb	ET _ 200/
BCDL 10.0	Code IRC2016/1FI	2014	Matrix-AS							weight. 192 lb	FT = 20%
LUMBER- TOP CHORD 2x4 SF 7-10: 2 BOT CHORD 2x4 SF 9-15: 2 WEBS 2x4 SF OTHERS 2x8 SF LBR SCAB 7-10 2:	PF No.2 *Except* tx8 SP 2400F 2.0E PF No.2 *Except* tx4 SPF 1650F 1.5E PF No.2 2400F 2.0E x8 SP 2400F 2.0E one side	4		BRACIN TOP CH BOT CH	G- ORD ORD	Structu 2-0-0 o Rigid c	ral wood c purlins eiling dire	sheathing c (3-4-12 ma: ectly applied	lirectly a k.): 3-5. l.	applied, except e	end verticals, and
REACTIONS. (siz Max H Max U Max G	e) 20=0-5-8, 10=0-3-8 lorz 20=-167(LC 10) plift 20=-43(LC 12), 10=-96 irav 20=1699(LC 1), 10=17	6(LC 13) 706(LC 1)									
FORCES. (Ib) - Max	Comp./Max. Ten - All force	es 250 (lb) or l	ess except when shown	L.							
TOP CHORD 1-2=	·1117/127. 2-3=-1811/197.	3-4=-2250/248	3. 4-5=-2250/248. 5-6=-2	2600/251.							
6-8=-	-3359/256, 8-9=-4536/313,	9-10=-762/72,	1-20=-1658/116	,							
BOT CHORD 2-18	-1052/163, 17-18=-55/996	, 16-17=-47/1	562, 14-16=-48/2236, 13	8-14=-115/2966	,						
WEBS 2-17:	=-257/4321, 9-12=-257/43 =-87/749, 3-17=-381/118, 1	-18=-74/1462,	5-14=-37/691, 3-16=-10	08/1039,							
4-16=	=-602/159, 6-13=0/450, 6-1	4=-928/153, 8	-13=-1395/186								
NOTES- 1) Attached 6-11-10 sc at 0-0-0 from end at 2) Unbalanced roof live 3) Wind: ASCE 7-16; \ MWFRS (envelope) Interior(1) 9-10-14 tc vertical left and right 4) Provide adequate dt 5) All plates are 2x4 M 6) This truss has been 7) * This truss has been 7) * This truss has been 8) Bearing at joint(s) 11 capacity of bearing 9 9) Provide mechanical joint 10. 10) This truss is design referenced standal Continued on page 2	ab 7 to 10, front face(s) 2xi joint 7, nail 2 row(s) at 3" o loads have been consider (ult=115mph (3-second gus gable end zone and C-C E to 18-0-8, Exterior(2R) 18-0- exposed;C-C for members rainage to prevent water po T20 unless otherwise indica designed for a 10.0 psf bot n designed for a live load o vottom chord and any other 0 considers parallel to grain surface. connection (by others) of tr ned in accordance with the rd ANSI/TPI 1.	8 SP 2400F 2. b.c. for 5-10-9. red for this dess st) Vasd=91mp ixterior(2E) 0-1 -8 to 21-1-14, i s and forces & onding. ated. ttom chord live f 20.0psf on the members. to value using A russ to bearing 2018 Internation	0E with 2 row(s) of 10d ign. h; TCDL=6.0psf; BCDL- 1-12 to 3-3-2, Interior(1) Interior(1) 21-1-14 to 31- MWFRS for reactions si load nonconcurrent with the bottom chord in all area INSI/TPI 1 angle to grain g plate capable of withsta- onal Residential Code so	(0.131"x3") nail =6.0psf; h=15ft; 3-3-2 to 6-9-8, I -0-5 zone; canti hown; Lumber I h any other live eas where a rec n formula. Build anding 43 lb upl ections R502.11	s spaced Cat. II; E Exterior(2 lever left a ODL=1.60 loads. tangle 3-6 ling desig ift at joint I.1 and Ra	9" o.c.ex xp C; En R) 6-9-8 and right plate gr S-0 tall by ner shou 20 and 9 802.10.2	acept : sta iclosed; to 9-10- exposec ip DOL= y 2-0-0 w ild verify 26 lb uplit : and	arting 14, 1; end 1.60 ride ft at		STATE OF SEV SEV PE-200 Febru	MISSOLUTI MISSOLUTI MIRE MIRE MIRE MISSOLUTI M
Continued on page 2											

Job	Truss	Truss Type	Qty	Ply	Summit/20 Woodside ridge/MO		
						I44600070	
2599350	A9	Roof Special	1	1			
					Job Reference (optional)		
Builders FirstSource (Valley	Center), Valley Center, K	S - 67147,		8.240 s M	ar 9 2020 MiTek Industries, Inc. Fri Jan 29 14:36:09 2021	Page 2	
		ID:V	ID:VPVqvFnP0P0b1j2tZrlOqezdKbx-YXjd_5lBgTfVDpAGh53?kDc6Our0wepi0gnZG∖				

NOTES-

11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Design valid for use only with MITeK connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Summit/20 Woodside ridge/MO	
						I44600071
2599350	A10	Hip Girder	1	2		
				_	Job Reference (optional)	
Builders FirstSource (Valley	Center), Valley Center, K	S - 67147,		8.240 s M	lar 9 2020 MiTek Industries, Inc. Fri Jan 29 14:35:56 2021	Page 2

ID:VPVqvFnP0P0b1j2tZrlOqezdKbx-R1RiFf82kT0LApgmRsKyjUZu5fLMNkdo198NJlzqTFH

NOTES-

- 1) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss) or equivalent spaced at 4-0-0 oc max. starting at 0-1-12 from the left end to 14-5-0 to connect truss(es) to back face of bottom chord.
- 13) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent spaced at 12-0-0 oc max. starting at 4-5-0 from the left end to 24-5-0 to connect truss(es) to back face of bottom chord.
- 14) Use Simpson Strong-Tie LUS26 (4-10d Girder, 4-10d Truss) or equivalent at 26-5-0 from the left end to connect truss(es) to back face of bottom chord.
- 15) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)
- Vert: 1-2=-90, 2-5=-90, 5-8=-90, 16-17=-20
- Concentrated Loads (lb)
 - Vert: 16=-601(B) 21=-593(B) 22=-558(B) 23=-595(B) 24=-595(B) 25=-595(B) 26=-595(B) 27=-595(B) 28=-595(B) 29=-595(B) 30=-558(B) 31=-585(B) 32=-585(B) 33=-1046(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

February 1,2021

	7-4-5	14-8-4	17-3-12	24-7-11	32-0-0					
Plate Offsets (X,Y)	[2:0-3-8.Edge]. [2:0-0-3.0-5-0]. [2:0-0	7-3-15 -1.0-0-3], [6:0-4-0.0-1-15], [7:	2-7-8 :0-2-0.Edge]. [9:0-	7-3-15 -0-1.0-0-3], [9:0-0-3.0-5-0], [9:0	-3-8.Edge]					
LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.81 BC 0.81 WB 0.27 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl L/d -0.14 13-14 >999 240 -0.35 13-14 >999 180 0.13 9 n/a n/a	PLATES GRI MT20 197/ Weight: 132 lb FT	P 144 ⁻ = 20%				
LUMBER- TOP CHORD 2x4 BOT CHORD 2x4 WEBS 2x4 WEDGE Left: 2x4 SPF No.2, REACTIONS. (s Max Max	JMBER- BRACING- DP CHORD 2x4 SPF No.2 TOP CHORD 2x4 SPF No.2 OT CHORD 2x4 SPF No.2 TOP CHORD Structural wood sheathing directly applied, except 2-0-0 oc purlins (3-9-7 max.): 5-6. 'EBS 2x4 SPF No.2 BOT CHORD Rigid ceiling directly applied. 'EDGE WEBS 1 Row at midpt 3-13, 8-11 ift: 2x4 SPF No.2, Right: 2x4 SPF No.2 WEBS 1 Row at midpt 3-13, 8-11 EACTIONS. (size) 2=0-3-8, 9=0-3-8 Max Horz 2=129(LC 16) Max Uplift 2=-142(LC 12), 9=-125(LC 13) Max Grav 2=1840(LC 1), 9=1759(LC 1)									
FORCES. (lb) - Ma TOP CHORD 2-3 BOT CHORD 2-3 WEBS 3-3	Max Uplift 2=-142(LC 12), 9=-125(LC 13) Max Grav 2=1840(LC 1), 9=1759(LC 1) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-3047/219, 3-5=-2262/221, 5-6=-1881/235, 6-8=-2263/223, 8-9=-3053/221 BOT CHORD 2-14=-228/2602, 13-14=-228/2602, 11-13=-53/1879, 10-11=-116/2609, 9-10=-116/2609 WEBS 3-14=0/275, 3-13=-841/199, 5-13=-35/506, 6-11=-40/512, 8-11=-847/201, 8-10=0/275									
NOTES- 1) Unbalanced roof 2) Wind: ASCE 7-16 MWFRS (envelop Exterior(2R) 17-3 exposed;C-C for 3) Provide adequate 4) This truss has be 5) * This truss has b will fit between th	Items 3-14=0/2/5, 3-13=-841/199, 5-13=-35/506, 6-11=-40/512, 8-11=-84//201, 8-10=0/2/5 OTES- Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 14-8-4, Exterior(2E) 14-8-4 to 17-3-12, Exterior(2R) 17-3-12 to 21-6-11, Interior(1) 21-6-11 to 32-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.									

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 142 lb uplift at joint 2 and 125 lb uplift at joint 9.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

February 1,2021

16023 Swingley Ridge Rd Chesterfield, MO 63017

	5-4-5 5-4-5	10-8-4 5-3-15	<u> </u>	21- 5-	- <u>3-12</u> 3-12	<u>26-7-11</u> 5-3-15	32-0	-0 5	
Plate Offsets (X,Y)	[2:0-3-8,Edge], [2:0-0-3,0	0-5-0], [2:0-0-1,0-	-0-3], [4:0-4-0,0-1-15], [6:0-4-0,0-1-15], [8:0·	0-1,0-0-3], [8:	0-0-3,0-5-0], [8:0-3-8	,Edge]		
LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TI	2-0-0 1.15 1.15 YES PI2014	CSI. TC 0.61 BC 0.78 WB 0.60 Matrix-AS	DEFL. Vert(LL) - Vert(CT) - Horz(CT)	in (loc) 0.15 12 0.32 10-12 0.13 8	l/defl L/d >999 240 >999 180 n/a n/a	PLATES MT20 Weight: 133 lb	GRIP 197/144 FT = 20%	
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S 11-13 WEBS 2x4 S WEDGE Left: 2x4 SPF No.2, R	SPF No.2 SPF 1650F 1.5E *Except* 3: 2x4 SPF No.2 SPF No.2 Right: 2x4 SPF No.2			BRACING- TOP CHORD BOT CHORD	Structur 2-0-0 oc Rigid ce	ral wood sheathing di c purlins (3-6-3 max.): eiling directly applied.	rectly applied, except : 4-6.		
REACTIONS. (si Max Max Max	ze) 2=0-3-8, 8=0-3-8 Horz 2=96(LC 12) Uplift 2=-149(LC 12), 8=-1 Grav 2=1840(LC 1), 8=17	31(LC 13) 59(LC 1)							
FORCES. (lb) - Max TOP CHORD 2-3- 7-8= BOT CHORD 2-11 8-9= WEBS 3-14 7-11	 Comp./Max. Ten All for -3075/236, 3-4=-2654/224 -3085/239 5=-231/2646, 14-15=-231/2 =-151/2657 4=-423/130, 4-14=-11/659, 0=-433/132 	rces 250 (lb) or le 4, 4-5=-2282/231 2646, 12-14=-89/ 5-14=-582/97, 5	ess except when shown , 5-6=-2283/230, 6-7=- 2593, 10-12=-89/2593, -10=-580/97, 6-10=-10/	2657/227, 9-10=-151/2657, /661,					
 WEBS 3-14=-4_2/31:30, 4-14=-11/bS9, 5-14=-582/9/, 5-10=-580/9/, 6-10=-10/661, 7-10=-433/132 NOTES- Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable nd zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 10-8-4, Exterior(2R) 10-8-4 to 14-11-3, Interior(1) 14-11-3 to 21-3-12, t25-6-11, Interior(1) 25-6-11 to 32-0-0 zone; candiductive relation dright exposed; c-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. This truss has been designed for a 10.0 psf bottom chord in ebottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 149 lb uplift at joint 2 and 131 lb uplift at joint 8. This truss designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP 1. This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 									

		8-8-4	14-3-4	19-10-4	21-7-0	25-10-15	32-0-0	
Plate Offsets	s (X,Y)	[2:0-0-1,0-0-3], [2:0-0-3,0-5-0], [2:0-3-8,	Edge], [10:Edge,0-2-12]	5-7-0	1-0-12	4-3-15	0-1-1	
LOADING (TCLL 2 TCDL 2 BCLL BCDL 1	(psf) 25.0 20.0 0.0 * 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.68 BC 0.91 WB 0.75 Matrix-AS	DEFL. ir Vert(LL) -0.19 Vert(CT) -0.44 Horz(CT) 0.13	n (loc) l/defl 12-21 >999 12-21 >865 10 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 131 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORI BOT CHORI WEBS WEDGE Left: 2x4 SP SLIDER	D 2x4 SP D 2x4 SP 2x4 SP PF No.2 Right 2	F No.2 F No.2 F No.2 x4 SPF No.2 3-0-0		BRACING- TOP CHORD BOT CHORD	Structural wood 2-0-0 oc purlins Rigid ceiling dir	d sheathing dire s (2-7-4 max.): / rectly applied.	ectly applied, except 4-6.	
REACTION	S. (size Max H Max U Max G	e) 2=0-3-8, 10=0-3-8 orz 2=90(LC 12) plift 2=-185(LC 12), 10=-98(LC 13) rav 2=1830(LC 1), 10=1844(LC 1)						
FORCES. TOP CHORI BOT CHORI WEBS	(lb) - Max. D 2-3=- 7-8=- D 2-15= 4-15= 6-12=	Comp./Max. Ten All forces 250 (lb) or 3067/335, 3-4=-2788/292, 4-5=-3122/3 2623/220, 8-10=-2923/258 315/2638, 14-15=-215/2454, 12-14=-1 -0/307, 4-14=-107/859, 5-14=-616/159, 1743/259, 8-12=-410/173	less except when shown. 17, 5-6=-3122/337, 6-7=-2 88/2875, 10-12=-160/2557 6-14=-89/437, 7-12=-148/	577/247, 7 1956,				
NOTES- 1) Unbalanc 2) Wind: AS MWFRS Interior(1) vertical le 3) Provide a 4) This truss 5) * This truss will fit bet 6) Provide n joint 10. 7) This truss reference 8) This truss sheetrock 9) Graphical	ced roof live SCE 7-16; V (envelope)) 11-8-4 to 2 fft and right adequate dr s has been ss has been tween the b nechanical s is design ed standard s design rec k be appliec I purlin repr	e loads have been considered for this de ult=115mph (3-second gust) Vasd=91m gable end zone and C-C Exterior(2E) - 21-7-0, Exterior(2R) 21-7-0 to 24-7-0, In exposed;C-C for members and forces & ainage to prevent water ponding. designed for a 10.0 psf bottom chord liv n designed for a live load of 20.0psf on 1 ottom chord and any other members. connection (by others) of truss to bearir and in accordance with the 2018 Internation ANSI/TPI 1. quires that a minimum of 7/16" structura d directly to the bottom chord. resentation does not depict the size or the	sign. ph; TCDL=6.0psf; BCDL= +10-8 to 2-1-8, Interior(1) ; terior(1) 24-7-0 to 32-10-8 & MWFRS for reactions sh e load nonconcurrent with he bottom chord in all area g plate capable of withstar onal Residential Code sect wood sheathing be applie te orientation of the purlin	6.0psf; h=15ft; Cat. II; E 2-1-8 to 8-8-4, Exterior(zone; cantilever left an own; Lumber DOL=1.6(any other live loads. as where a rectangle 3- nding 185 lb uplift at join tions R502.11.1 and R8 ad directly to the top cho along the top and/or bo	Exp C; Enclosed; 2R) 8-8-4 to 11-6 d right exposed ; 0 plate grip DOL= 6-0 tall by 2-0-0 v nt 2 and 98 lb upl 02.10.2 and ord and 1/2" gyps ttom chord.	9-4, end e1.60 wide ift at	SCOTTE OF SCOTTE	MISSOL TT M. HER 1018807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 February 1,2021

16023 Swingley Ridge Rd Chesterfield, MO 63017

L	6-8-4	12-3-4	1	17-10-4	19-10-4	23-3-12		27-7-11	32-	0-0	
1	6-8-4	5-7-0	I	5-7-0	2-0-0	3-5-8	1	4-3-15	4-4	-5	
Plate Offsets (X,Y)	[2:0-0-3,0-0-0], [2:0-4-9,0	-2-1], [2:0-0-15,0-2	-10], [10:Edge,0-2-8	8]							
LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TP	2-0-0 1.15 1.15 YES 212014	CSI. TC 0.74 BC 0.98 WB 0.59 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.23 1 -0.57 1 0.15	(loc) l/defl 3-15 >999 3-15 >672 10 n/a	L/d 240 180 n/a	P M W	' LATES 1T20 Veight: 131 lb	GRIP 197/144 FT = 20%	_
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF OTHERS 2x4 SF WEDGE Left: 2x6 SPF No.2 SLIDER Right 2	2F No.2 2F No.2 2F No.2 2F No.2 2X4 SPF No.2 2-0-0			BRACING TOP CHO BOT CHO	RD S 2 RD F	Structural wo 2-0-0 oc purlin Rigid ceiling o	od sheathin ns (2-2-0 ma lirectly appl	g directly app ax.): 3-5, 6-7 ied.	olied, except		
REACTIONS. (siz Max H Max U Max G	e) 2=0-3-8, 10=0-3-8 lorz 2=-75(LC 17) Jplift 2=-178(LC 12), 10=-8 Grav 2=1830(LC 1), 10=18	31(LC 13) 344(LC 1)									
FORCES. (lb) - Max. TOP CHORD 2-3=: 7-8=: 7-8=: BOT CHORD 2-16: WEBS 3-15: 7-12: 7-12:	Comp./Max. Ten All for -3059/287, 3-4=-3845/357 -2745/270, 8-10=-2945/29 =-237/2624, 15-16=-240/2 =-146/1450, 4-15=-629/16 =-25/758	ces 250 (lb) or less , 4-5=-3845/357, 5 1 620, 13-15=-258/3 5, 5-13=-1984/262	except when show -6=-3334/330, 6-7= 851, 12-13=-150/28 , 6-13=-171/1877, 6	/n. 2401/277, 376, 10-12=-195/25 5-12=-853/107,	37						
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-16; \ MWFRS (envelope) Interior(1) 9-8-4 to 1 Interior(1) 26-3-12 tt & MWFRS for react 3) Provide adequate d 4) This truss has been 5) * This truss has been will fit between the t 6) Provide mechanical joint 10. 7) This truss is designer referenced standard 8) This truss design re sheetrock be applie 9) Graphical purlin rep	e loads have been conside /ult=115mph (3-second gu gable end zone and C-C 9-10-4, Exterior(2R) 19-1(o 32-10-8 zone; cantilever rainage to prevent water p designed for a 10.0 psf bo on designed for a live load pottom chord and any othe connection (by others) of ed in accordance with the 2 d ANSI/TPI 1. quires that a minimum of 7 d directly to the bottom chor resentation does not depice	ered for this design ist) Vasd=91mph; Exterior(2E) -0-10- 0-4 to 22-10-4, Intel left and right expo =1.60 plate grip DC ionding. Dttom chord live loa of 20.0psf on the b r members. truss to bearing pla 2018 International 7/16" structural woo ord. ct the size or the or	TCDL=6.0psf; BCDI 8 to 2-1-8, Interior(1 rior(1) 22-10-4 to 2 sed ; end vertical le L=1.60 Id nonconcurrent wi ottom chord in all a ate capable of withs Residential Code se ad sheathing be app ientation of the purli	L=6.0psf; h=15ft; C 1) 2-1-8 to 6-8-4, E 3-3-12, Exterior(2R ft and right expose ith any other live lo reas where a recta standing 178 lb upli ections R502.11.1 blied directly to the in along the top an	at. II; Exp (terior(2R) 23-3-12 d;C-C for ads. ngle 3-6-(ft at joint 2 and R802 top chord d/or botto	 C; Enclosed 6-8-4 to 9-8 to 26-3-12, members an 1 tall by 2-0-0 2 and 81 lb u 2.10.2 and 1 and 1/2" gypm m chord. 	l; 3-4, d forces wide plift at	Concernent of the second	PE-200 Februi	MISSOLUE T.M. HER 1018807	D

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek° 16023 Swingley Ridge Rd Chesterfield, MO 63017

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Summit/20 Woodside ridge/MO	
2599350	B7	ROOF SPECIAL GIRDER	1	1		144600078
					Job Reference (optional)	
Builders FirstSource (Valley	Center), Valley Center, K	S - 67147,		8.240 s M	ar 9 2020 MiTek Industries, Inc. Fri Jan 29 14:36:19 2021	Page 2

ID:VPVqvFnP0P0b1j2tZrlOqezdKbx-GSKP4WQTJXv4QLxBHBEL8K0nDwCdG3SBKEC5cvzqTEw

NOTES-

- 10) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent at 11-1-4 from the left end to connect truss(es) to back face of bottom chord.
- 11) Fill all nail holes where hanger is in contact with lumber.
- 12) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
 13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 196 lb down and 113 lb up at 17-10-4, 173 lb down and 113 lb up at 19-7-0, 173 lb down and 113 lb up at 21-7-0, and 173 lb down and 113 lb up at 23-7-0, and 196 lb down and 113 lb up at 25-3-12 on top chord, and 381 lb down and 71 Ib up at 4-8-4, and 689 lb down and 98 lb up at 17-10-4, and 689 lb down and 98 lb up at 25-3-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)
 - Vert: 1-3=-90, 3-6=-90, 6-7=-90, 7-9=-90, 9-12=-90, 23-26=-20

Concentrated Loads (lb)

Vert: 3=-87(B) 7=-173(B) 9=-173(B) 20=-49(B) 22=-381(B) 17=-689(B) 8=-173(B) 16=-76(B) 14=-689(B) 29=-87(B) 30=-87(B) 31=-87(B) 32=-173(B) 33=-173(B) 34=-49(B) 35=-49(B) 35=-49

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 52 lb uplift at joint 2 and 53 lb uplift at joint 7.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

NITEK 16023 Swingley Ridge Rd Chesterfield, MO 63017

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

16023 Swingley Ridge Rd Chesterfield, MO 63017

4) Refer to girder(s) for truss to truss connections.

5) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 54 lb uplift at joint 8 and 51 lb uplift at joint 2.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

16023 Swingley Ridge Rd Chesterfield, MO 63017

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

16023 Swingley Ridge Rd Chesterfield, MO 63017

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-12, Interior(1) 2-1-12 to 10-8-4, Exterior(2E) 10-8-4 to 12-7-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 87 lb uplift at joint 7 and 74 lb uplift at joint 2.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 67 lb uplift at joint 6 and 80 lb uplift at joint 2.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

	2-3-0		0-0-4				11-4-0	,	12-3	-0
	2-3-8	1	4-4-12	1			4-7-12	2	1-5-	0 1
Plate Offsets (X,Y)	[2:0-0-10,Edge], [3:0-4-8,Ed	dge], [4:0-3-4,0-3-4]								
LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 C 1.15 T 1.15 B YES W	SI. C 0.97 C 0.78 /B 0.24	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.33 0.21	(loc) 3-10 3-10 6	l/defl >999 >459 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCDL 10.0	Code IRC2018/TPI2	2014 M	latrix-AS	()					Weight: 53 lb	FT = 20%
LUMBER- TOP CHORD 2x6 SI	PF No.2 *Except*		1	BRACING- TOP CHOR	RD	Structu	ral wood	sheathing dir	ectly applied, excep	t end verticals, and

4-5: 2x4 SPF No.22-0-0 oc purlins (5-2-9 max.): 4-5.BOT CHORD2x4 SPF No.2BOT CHORDRigid ceiling directly applied.WEBS2x4 SPF No.22x4 SPF No.2Rigid ceiling directly applied.

REACTIONS. (size) 6=Mechanical, 2=0-3-8 Max Horz 2=137(LC 11) Max Uplift 6=-73(LC 9), 2=-83(LC 12) Max Grav 6=690(LC 1), 2=775(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 3-13=-389/72, 3-4=-1087/160, 4-5=-985/197, 6-8=-667/126, 5-8=-639/150

BOT CHORD 3-10=-278/1001

WEBS 4-10=-267/152, 5-10=-239/984

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-12, Interior(1) 2-1-12 to 6-8-4, Exterior(2R) 6-8-4 to 10-11-3, Interior(1) 10-11-3 to 12-7-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 73 lb uplift at joint 6 and 83 lb uplift at joint 2.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Continued on page 2

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MITeK connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

February 1,2021

Job	Truss	Truss Type	Qty	Ply	Summit/20 Woodside ridge/MO	
						144600086
2599350	C8	Half Hip Girder	1	1		
					Job Reference (optional)	
Builders FirstSource (Valley Center), Valley Center, KS - 67147,		S - 67147,		8.240 s M	ar 9 2020 MiTek Industries, Inc. Fri Jan 29 14:36:28 2021	Page 2

ID:VPVqvFnP0P0b1j2tZrlOqezdKbx-VBNozbX6Bl2p?k7vJavS0EuKrYKfsGEVO7u3QuzqTEn

LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-90, 3-4=-90, 4-7=-90, 13-14=-20, 3-10=-20, 8-9=-20

Concentrated Loads (lb)

Vert: 4=-67(F) 12=-425(F) 17=-67(F) 18=-67(F) 19=-67(F) 20=-71(F) 21=-71(F) 22=-71(F)

February 1,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

February 1,2021

Mitek° 16023 Swingley Ridge Rd Chesterfield, MO 63017

		<u>4-2-3</u> 4-2-3		7-2-9 3-0-6	I
Plate Offsets (X,Y) [2:0-3-10,0-1-1]				
LOADING (psf)SPACINTCLL 25.0Plate GTCDL 20.0LumberBCLL 0.0 *Rep StrBCDL 10.0Code II	NG- 2-0-0 rip DOL 1.15 DOL 1.15 ess Incr NO RC2018/TPI2014	CSI. TC 0.23 BC 0.33 WB 0.21 Matrix-MP	DEFL. ir Vert(LL) -0.03 Vert(CT) -0.05 Horz(CT) 0.02	n (loc) l/defl L/d 3 8 >999 240 5 8 >999 180 2 7 n/a n/a	PLATES GRIP MT20 197/144 Weight: 27 lb FT = 20%

LUMBER-		BRACING-	
TOP CHORD	2x4 SPF No.2	TOP CHORD	Structural wood sheathing directly applied or 4-9-7 oc purlins,
BOT CHORD	2x4 SPF No.2 *Except*		except end verticals.
	2-8: 2x6 SPF No.2	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
WEBS	2x4 SPF No.2		

REACTIONS. (size) 2=0-3-7, 7=Mechanical Max Horz 2=99(LC 5) Max Uplift 2=-128(LC 4), 7=-127(LC 8) Max Grav 2=600(LC 1), 7=536(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1427/360

BOT CHORD 2-8=-371/1329, 7-8=-329/1187

WEBS 3-8=-167/602, 3-7=-1246/362

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 128 lb uplift at joint 2 and 127 lb uplift at joint 7.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-4=-90, 4-5=-40, 8-9=-20, 6-8=-20 Concentrated Loads (lb)
 - Vert: 8=-244(F=-122, B=-122)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Mitek 16023 Swingley Ridge Rd Chesterfield, MO 63017

LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCode IRC2018/TPI2014	CSI. TC 0.48 BC 0.36 WB 0.00 Matrix-MP	DEFL. in (loc) l/defl L/d PLATES GRIP Vert(LL) -0.04 6-9 >999 240 MT20 197/144 Vert(CT) -0.09 6-9 >705 180 MT20 197/144 Horz(CT) 0.02 2 n/a n/a Weight: 17 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP	F No.2		BRACING- TOP CHORD Structural wood sheathing directly applied or 5-3-15 oc purlins,

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 WEDGE Left: 2x4 SPF No.2

(size) 6=Mechanical, 2=0-4-9

REACTIONS.

Max Horz 2=90(LC 7) Max Uplift 6=-45(LC 8), 2=-79(LC 4) Max Grav 6=285(LC 1), 2=406(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 45 lb uplift at joint 6 and 79 lb uplift at ioint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-90, 3-4=-40, 5-7=-20 Concentrated Loads (lb) Vert: 11=-7(F=-5, B=-1)

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEDGE BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 5-3-15 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

Left: 2x4 SPF No.2

REACTIONS. (size) 3=Mechanical, 4=Mechanical, 2=0-3-8

Max Horz 3=90(LC 4) Max Uplift 3=-28(LC 8), 2=-110(LC 4) Max Grav 3=198(LC 1), 4=104(LC 3), 2=419(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 3 and 110 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)
 - Vert: 1-3=-90, 4-5=-20 Concentrated Loads (lb)
 - Vert: 9=-11(F=-5, B=-5)

2 MiTek* Component 16023 Swingley Ridge Rd Chesterfield, MO 63017

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Summit/20 Woodside ridge/MO	
						144600095
2599350	CJ9	Diagonal Hip Girder	2	1		
					Job Reference (optional)	
Builders FirstSource (Valley Center), Valley Center, KS - 67147,				8.240 s M	ar 9 2020 MiTek Industries, Inc. Fri Jan 29 14:36:36 2021	Page 2

Builders FirstSource (Valley Center),

8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Jan 29 14:36:36 2021 Page 2 ID:VPVqvFnP0P0b1j2tZrlOqezdKbx-GjsqfKd7Jm2gzzkSnG2KKwDpnm7skvphENqUiQzqTEf

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 13=-93(F=-46, B=-46) 15=-19(F=-10, B=-10) 16=-80(F=-40, B=-40)

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Summit/20 Woodside ridge/MO	
						144600096
2599350	D1	Half Hip Girder	1	1		
					Job Reference (optional)	
Builders FirstSource (Valley Center), Valley Center, KS - 67147,			8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Jan 29 14:36:38 2021 Page 2			

Builders FirstSource (Valley Center),

8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Jan 29 14:36:38 2021 Page 2 ID:VPVqvFnP0P0b1j2tZrlOqezdKbx-C6_a30fOrNIOCGuqug4oQLJ9UalTCo__hhJbnJzqTEd

LOAD CASE(S) Standard

Uniform Loads (plf)

Vert: 1-3=-90, 3-5=-90, 6-9=-20

Concentrated Loads (lb)

Vert: 3=-87(B) 8=-381(B) 12=-87(B) 13=-87(B) 14=-87(B) 15=-49(B) 16=-49(B) 17=-49(B)

16023 Swingley Ridge Rd Chesterfield, MO 63017

16023 Swingley Ridge Rd Chesterfield, MO 63017

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

16023 Swingley Ridge Rd Chesterfield, MO 63017

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

0.08

8

n/a

Rigid ceiling directly applied.

n/a

Structural wood sheathing directly applied.

FORCES.	(lb) - Max.	Comp./Max.	Ten.	 All forces 	s 250 (lb)) or less	except v	vhen showr
---------	-------------	------------	------	--------------------------------	------------	-----------	----------	------------

TOP CHORD 2-4=-1785/417, 4-5=-1741/493, 5-6=-1645/443, 6-8=-1727/379

Rep Stress Incr

Code IRC2018/TPI2014

Left 2x4 SPF No.2 2-8-1, Right 2x4 SPF No.2 2-5-5

BOT CHORD 2-10=-350/1656, 9-10=-141/801, 8-9=-292/1566

(size) 8=Mechanical, 2=0-3-8

Max Uplift 8=-40(LC 13), 2=-60(LC 12) Max Grav 8=613(LC 1), 2=698(LC 1)

Max Horz 2=62(LC 12)

WEBS 5-10=-268/959, 5-9=-228/849

2x4 SPF No.2

2x4 SPF No.2

NOTES-

BCLL

BCDL

WEBS

SLIDER

LUMBER-

BOT CHORD

REACTIONS.

0.0

TOP CHORD 2x4 SPF No.2

10.0

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 1-10-3, Interior(1) 1-10-3 to 5-9-0, Exterior(2R) 5-9-0 to 8-9-0, Interior(1) 8-9-0 to 11-2-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WB

Matrix-AS

0.24

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

YES

- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 40 lb uplift at joint 8 and 60 lb uplift at joint 2.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

FT = 20%

Weight: 43 lb

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 1-10-3, Interior(1) 1-10-3 to 5-9-0, Exterior(2R) 5-9-0 to 8-9-0, Interior(1) 8-9-0 to 11-6-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 4) will fit between the bottom chord and any other members.

5) Bearing at joint(s) 8, 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 43 lb uplift at joint 8 and 60 lb uplift at joint 2.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Summit/20 Woodside ridge/MO	
						I44600103
2599350	E3	Hip Girder	1	1		
					Job Reference (optional)	
Builders FirstSource (Valley	Center), Valley Center, K	S - 67147,		8.240 s M	ar 9 2020 MiTek Industries, Inc. Fri Jan 29 14:36:45 2021	Page 2

8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Jan 29 14:36:45 2021 Page 2 ID:VPVqvFnP0P0b1j2tZrlOqezdKbx-VSvEYPknBXBOYLwBoeiRCp5JfP54Lzz0IHVTWPzqTEW

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-5=-90, 5-6=-90, 6-9=-90, 13-18=-20, 10-13=-20, 10-14=-20 Concentrated Loads (lb)

Vert: 6=-164(F) 12=-508(F) 5=-164(F) 11=-527(F)

 	4-2-0	7-7-2	11-0-4	14-8-0	16-8-0 18-8-0	21-8-13	24-10-0		
Plate Offsets (X,Y)	[5:0-3-6,Edge], [9:0-1-11,	0-2-0]	3-3-2	5-7-12	2-0-0 2-0-0	3-0-13	5-1-5		
LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TF	2-0-0 1.15 1.15 NO Pl2014	CSI. TC 0.78 BC 0.38 WB 0.92 Matrix-MS	DEFL. in Vert(LL) -0.05 Vert(CT) -0.11 Horz(CT) 0.02	i (loc) l/defi L/d 11-12 >999 240 11-12 >999 180 9 n/a n/a	PLATES MT20 Weight: 119	GRIP 197/144 lb FT = 20%		
LUMBER- TOP CHORD 2x4 SI 3-5: 2: BOT CHORD 2x6 SI 9-14: : WEBS 2x4 SI	PF No.2 *Except* x4 SPF 1650F 1.5E PF No.2 *Except* 2x6 SP 2400F 2.0E PF No.2			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing except 2-0-0 oc purlins (5-1-2 max Rigid ceiling directly applied 6-0-0 oc bracing: 13-15.	directly applied or 4-0- .): 3-5, 6-7. d or 10-0-0 oc bracing	15 oc purlins, , Except:		
REACTIONS. (size) 2=0-3-8, 13=0-3-8, 9=0-3-8 Max Horz 2=55(LC 12) Max Uplift 2=-118(LC 8), 13=-328(LC 8), 9=-125(LC 9) Max Grav 2=770(LC 21), 13=2810(LC 1), 9=1167(LC 1)									
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1048/174, 4-5=-141/1278, 5-6=-1560/176, 6-7=-1324/159, 7-8=-1880/254, 8-9=-1923/196 BOT CHORD 2-16=-148/876, 15-16=-148/851, 13-15=-363/73, 12-13=-80/1012, 11-12=-65/1252, 9-11=-123/1657 WEBS 3-16=-1/378, 3-15=-807/149, 4-15=-27/751, 4-13=-1587/300, 5-13=-2681/295, 5-12=-35/604, 6-12=-65/540, 7-11=-108/596									
 NOTES- 1) Unbalanced roof liv 2) Wind: ASCE 7-16; MWFRS (envelope) grip DOL=1.60 3) Provide adequate 0 4) This truss has beer 5) * This truss has beer will fit between the 1 6) Provide mechanica joint 13 and 125 lb 7) This truss is design referenced standard 8) Graphical purlin rep 9) "NAILED" indicates 10) Hanger(s) or othe 4-2-0, and 565 lb of such connection 11) In the LOAD CAS 	e loads have been conside Vult=115mph (3-second gu) gable end zone; cantileve trainage to prevent water p o designed for a 10.0 psf bo en designed for a live load bottom chord and any other l connection (by others) of uplift at joint 9. ed in accordance with the d d ANSI/TPI 1. oresentation does not depic 3-10d (0.148"x3") or 3-122 r connection device(s) shal down and 100 lb up at 16- n device(s) is the responsit E(S) section, loads applied	ered for this designst) Vasd=91mpt er left and right ex- bonding. otom chord live l of 20.0psf on the er members. truss to bearing 2018 Internation: ct the size or the d (0.148"x3.25") II be provided suit 8-0, and 565 lb of bility of others.	gn. h; TCDL=6.0psf; BCDL= kposed ; end vertical lef oad nonconcurrent with bottom chord in all are plate capable of withsta al Residential Code sec orientation of the purlin toe-nails per NDS guidli fficient to support conce fown and 100 lb up at ~	6.0psf; h=15ft; Cat. II; E t and right exposed; Lun any other live loads. as where a rectangle 3-6 nding 118 lb uplift at joir tions R502.11.1 and R8 along the top and/or bot ines. untrated load(s) 327 lb do 18-7-4 on bottom chord. nt (F) or back (B).	xp C; Enclosed; nber DOL=1.60 plate 6-0 tall by 2-0-0 wide nt 2, 328 lb uplift at 02.10.2 and ttom chord. bwn and 69 lb up at The design/selection	STATE O	F MISSOL		

LOAD CASE(S) Standard

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

February 1,2021

Job	Truss	Truss Type	Qty	Ply	Summit/20 Woodside ridge/MO	
						I44600104
2599350	F1	Roof Special Girder	1	1		
					Job Reference (optional)	
Builders FirstSource (Valley Center), Valley Center, KS - 67147,				8.240 s M	ar 9 2020 MiTek Industries, Inc. Fri Jan 29 14:36:47 2021	Page 2

8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Jan 29 14:36:47 2021 Page 2 ID:VPVqvFnP0P0b1j2tZrlOqezdKbx-Rr0_y5m1j8R6nf4Zw3lvHEAbZCvppkKImb_ZbIzqTEU

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-90, 3-5=-90, 5-6=-90, 6-7=-90, 7-10=-90, 17-20=-20

Concentrated Loads (lb) Vert: 3=-65(F) 16=-327(F) 12=-565(F) 23=-65(F) 24=-65(F) 25=-65(F) 26=-42(F) 27=-42(F) 28=-42(F) 29=-565(F) 26=-42(F) 26=-

	6-2-0		<u>11-0-4</u> 4-10-4		<u> </u>)				<u>24-10-0</u> 8-2-0	
Plate Offsets (X,Y)	[2:0-0-1,0-0-3], [2:0-0-3,	0-5-0], [2:0-3-8,	Edge], [7:0-0-1,0-0-	-3], [7:	0-0-3,0-5-0], [7:0-3	- 8-8,Edg	je]			020	
LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/T	2-0-0 1.15 1.15 YES PI2014	CSI. TC 0.61 BC 0.48 WB 0.41 Matrix-AS		DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.20 0.01	(loc) 9-18 9-18 2	l/defl >999 >820 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 91 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD BRACING- TOP CHORD SOT CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 WEDGE Left: 2x4 SPF No.2, Right:											
REACTIONS. (size) 2=0-3-8, 10=0-3-8, 7=0-3-8 Max Horz 2=-64(LC 13) Max Uplift 2=-87(LC 12), 10=-120(LC 12), 7=-98(LC 13) Max Grav 2=693(LC 1), 10=1365(LC 1), 7=831(LC 1)											
FORCES. (lb) - Max. TOP CHORD 2-3=- BOT CHORD 2-12= WEBS 3-10=	Comp./Max. Ten All fo 756/129, 4-5=-823/159, 69/584, 10-12=-71/578 656/78, 4-10=-951/153	rces 250 (lb) or 5-6=-848/160, 6 , 7-9=-38/734 , 4-9=-41/836, 5	less except when s -7=-944/145 -9=-564/125, 6-9=-	shown. •42/38(0						
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-16; V MWFRS (envelope) Interior(1) 9-2-0 to 1' vertical left and right 3) Provide adequate dr 4) This truss has been will fit between the b 6) Provide mechanical 10 and 98 lb uplift at 7) This truss is designer referenced standard 8) This truss design rec sheetrock be appliec 9) Graphical purlin repr	e loads have been consid (ult=115mph (3-second g gable end zone and C-C 7-8-0, Exterior(2R) 17-8- exposed;C-C for membric ainage to prevent water designed for a 10.0 psf b n designed for a 10.0 psf b n designed for a live load ottom chord and any oth connection (by others) o joint 7. ed in accordance with the ANSI/TPI 1. quires that a minimum of d directly to the bottom cl resentation does not dep	lered for this de just) Vasd=91m Exterior(2E) - C 0 to 20-8-0, Inter ers and forces & ponding. bottom chord liv d of 20.0psf on t er members. f truss to bearin 2018 Internatio 7/16" structural bord. ict the size or th	sign. ph; TCDL=6.0psf; E -10-8 to 2-1-8, Inte prior(1) 20-8-0 to 25 MWFRS for reacti e load nonconcurre he bottom chord in g plate capable of w onal Residential Co- wood sheathing be e orientation of the	3CDL= rior(1) 5-8-8 z ons sh nt with all are withsta de sec e applie purlin	=6.0psf; h=15ft; Ca 2-1-8 to 6-2-0, Ext cone; cantilever left nown; Lumber DOI n any other live loa pas where a rectan anding 87 lb uplift a ctions R502.11.1 a ted directly to the to a along the top and	t. II; Ex erior(2 and rig =1.60 ds. gle 3-6 it joint : nd R80 op choi for bott	xp C; En R) 6-2-0 ght expo plate gri -0 tall by 2, 120 lb 02.10.2 a rd and 1, com chor	closed; to 9-2-0, sed; enc p DOL=1 / 2-0-0 wi o uplift at j and /2" gypsu rd.	.60 de oint m	STATE OF	MISSOUR VIER

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Summit/20 Woodside ridge/MO	
						I44600106
2599350	F3	Half Hip Girder	1	2		
				_	Job Reference (optional)	
Builders FirstSource (Valley	Center), Valley Center, K	S - 67147,		8.240 s M	ar 9 2020 MiTek Industries, Inc. Fri Jan 29 14:36:49 2021	Page 2

8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Jan 29 14:36:49 2021 Page 2 ID:VPVqvFnP0P0b1j2tZrlOqezdKbx-ND8lNmnHFlhq1yEy1UnNMfG2r0a6HjGbDuTgfAzqTES

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-90, 3-4=-90, 5-8=-20

Concentrated Loads (lb)

Vert: 11=-1670(B) 12=-1662(B) 13=-1662(B) 14=-1662(B) 15=-1662(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-11-0, Exterior(2R) 3-11-0 to 6-11-0, Interior(1) 6-11-0 to 8-8-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 47 lb uplift at joint 2 and 47 lb uplift at joint 4.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

1 1010 01	10010 (71,17)		L.0 0 0,Edgoj		
LOADIN	G (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d P	LATES GRIP
TCLL	25.0	Plate Grip DOL 1.15	5 TC 0.74	Vert(LL) 0.11 4-7 >753 240 M	T20 197/144
TCDL	20.0	Lumber DOL 1.15	BC 0.54	Vert(CT) -0.24 4-7 >333 180	
BCLL	0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.04 2 n/a n/a	
BCDL	10.0	Code IRC2018/TPI2014	Matrix-AS	N N	/eight: 18 lb FT = 20%
LUMBE	R-			BRACING-	

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEDGE Left: 2x4 SPF No.2

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical Max Horz 2=132(LC 12)

Max Uplift 3=-83(LC 12), 2=-26(LC 12) Max Grav 3=263(LC 1), 2=448(LC 1), 4=129(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 6-7-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 83 lb uplift at joint 3 and 26 lb uplift at ioint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

	2.0-0-1,0-0-3], [2.0-0-3,0-5-0], [2.0-3-6	,Eugej						
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. ir	(loc)	l/defl	L/d	PLATES	GRIP
TCDL 20.0	Lumber DOL 1.15	BC 0.25	Vert(CT) -0.05	4-7	>999 >997	240 180	WIT20	197/144
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2018/TPI2014	WB 0.00 Matrix-AS	Horz(CT) 0.01	2	n/a	n/a	Weight: 13 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEDGE Left: 2x4 SPF No.2

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanic

 (size) 3=Mechanical, 2=0-3-8, 4=Mechanical Max Horz 2=97(LC 12) Max Uplift 3=-61(LC 12), 2=-21(LC 12) Max Grav 3=174(LC 1), 2=336(LC 1), 4=89(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 4-6-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 61 lb uplift at joint 3 and 21 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

16023 Swingley Ridge Rd Chesterfield, MO 63017

	[2.0-0-1;0-0-0], [2.0-0-0;0-0-0], [2.0-0-0			
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 25.0	Plate Grip DOL 1.15	TC 0.08	Vert(LL) -0.00 7 >999 240	MT20 197/144
TCDL 20.0	Lumber DOL 1.15	BC 0.07	Vert(CT) -0.00 4-7 >999 180	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00 3 n/a n/a	
BCDL 10.0	Code IRC2018/TPI2014	Matrix-MP		Weight: 8 lb $FT = 20\%$
LUMBER-			BRACING-	

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEDGE Left: 2x4 SPF No.2

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=60(LC 12) Max Uplift 3=-32(LC 12), 2=-18(LC 12) Max Grav 3=88(LC 1), 2=232(LC 1), 4=49(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 2-6-7 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 32 lb uplift at joint 3 and 18 lb uplift at ioint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Structural wood sheathing directly applied or 2-7-3 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

4-7-3

2 6.00 12 2-10-14 0-7-4

Scale = 1:17.4

FT = 20%

Weight: 12 lb

4-7-3 4-7-3 Plate Offsets (X,Y)--[1:0-0-1,0-0-3], [1:0-0-3,0-5-0] SPACING-PLATES GRIP LOADING (psf) 2-0-0 CSI. DEFL in (loc) l/defl L/d 25.0 Plate Grip DOL 1.15 тс 0.34 Vert(LL) 0.03 3-6 >999 240 197/144 MT20 20.0 Lumber DOL 1.15 BC 0.28 Vert(CT) -0.06 3-6 >915 180

0.01

1

n/a

Rigid ceiling directly applied.

n/a

Structural wood sheathing directly applied.

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TCLL

TCDL

BCLL

BCDL

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEDGE

0.0

10.0

Left: 2x4 SPF No.2

REACTIONS. (size) 2=Mechanical, 3=Mechanical, 1=Mechanical Max Horz 1=83(LC 12) Max Uplift 2=-62(LC 12), 1=-2(LC 12)

Rep Stress Incr

Code IRC2018/TPI2014

Max Grav 2=177(LC 1), 3=91(LC 3), 1=250(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 4-6-7 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WB

Matrix-AS

0.00

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

YES

- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 62 lb uplift at joint 2 and 2 lb uplift at ioint 1.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

4x6 ||

2-7-3 2-7-? Plate Offsets (X,Y)-- [1:0-0-1,0-0-3], [1:0-0-3,0-5-0]

LOADING(psf)TCLL25.0TCDL20.0BCLL0.0BCDL10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.09 BC 0.10 WB 0.00 Matrix-MP	DEFL. in (loc) l/defl L/d Vert(LL) -0.00 6 >999 240 Vert(CT) -0.01 3-6 >999 180 Horz(CT) 0.00 1 n/a n/a	PLATES GRIP MT20 197/144 Weight: 7 lb FT = 20%
LUMBER-			BRACING-	

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEDGE Left: 2x4 SPF No.2

REACTIONS. (size) 2=Mechanical, 3=Mechanical, 1=Mechanical Max Horz 1=46(LC 12)

Max Uplift 2=-33(LC 12) Max Grav 2=94(LC 1), 3=52(LC 3), 1=140(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 3) will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 33 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 2-7-3 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCode IRC2018/TPI2014	CSI. TC 0.53 BC 0.71 WB 0.00 Matrix-MP	DEFL. in (loc) l/defl L/d PLATES GRIP Vert(LL) -0.05 6-9 >969 240 MT20 197/144 Vert(CT) -0.12 6-9 >443 180 MT20 197/144 Horz(CT) 0.02 2 n/a n/a Weight: 16 lb FT = 20%
LUMBER- TOP CHORD 2x4 SF	PF No.2		BRACING- TOP CHORD Structural wood sheathing directly applied or 4-8-4 oc purlins,

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 WEDGE Left: 2x4 SPF No.2

(size) 6=Mechanical, 2=0-3-8

REACTIONS.

Max Horz 2=100(LC 7) Max Uplift 6=-50(LC 8), 2=-19(LC 8) Max Grav 6=412(LC 1), 2=521(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 50 lb uplift at joint 6 and 19 lb uplift at ioint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent at 2-9-0 from the left end to connect truss(es) to back face of bottom chord.
- 8) Fill all nail holes where hanger is in contact with lumber.
- 9) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-90, 3-4=-40, 5-7=-20 Concentrated Loads (lb) Vert: 9=-122(B) 10=-230(B)

Plate Offsets (X,Y)	[2:0-0-1,0-0-3], [2:0-0-3,0-5-0], [2:0-3-8,	Edge]					
LOADING(psf)TCLL25.0TCDL20.0BCLL0.0BCDL10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.34 BC 0.26 WB 0.00 Matrix-AS	DEFL. in Vert(LL) 0.03 Vert(CT) -0.06 Horz(CT) 0.01	(loc) l/defl 4-7 >999 4-7 >942 2 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 13 lb	GRIP 197/144 FT = 20%
LUMBER-			BRACING-				

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEDGE Left: 2x4 SPF No.2

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=98(LC 12) Max Uplift 3=-62(LC 12), 2=-21(LC 12) Max Grav 3=177(LC 1), 2=341(LC 1), 4=91(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 4-7-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 62 lb uplift at joint 3 and 21 lb uplift at ioint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Plate Off	sets (X,Y)	[2:0-0-1,0-0-3], [2:0-0-3,0	-5-0], [2:0-3-8	3,Edge], [3:0-4-	4,0-2-12]							
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	25.0	Plate Grip DOL	1.15	TC	0.48	Vert(LL)	0.05	6	>999	240	MT20	197/144
TCDL	20.0	Lumber DOL	1.15	BC	0.35	Vert(CT)	-0.09	6	>609	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.07	5	n/a	n/a		
BCDL	10.0	Code IRC2018/TF	PI2014	Matrix-	AS						Weight: 15 lb	FT = 20%
											1	

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEDGE Left: 2x4 SPF No.2

REACTIONS. (size) 4=Mechanical, 2=0-3-8, 5=Mechanical

Max Horz 2=98(LC 12) Max Uplift 4=-49(LC 12), 2=-20(LC 12), 5=-5(LC 12) Max Grav 4=157(LC 1), 2=342(LC 1), 5=93(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-0-5, Interior(1) 2-0-5 to 4-7-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 49 lb uplift at joint 4, 20 lb uplift at joint 2 and 5 lb uplift at joint 5.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	25.0	Plate Grip DOL	1.15	тс	0.10	Vert(LL)	-0.00	9	>999	240	MT20	197/144
TCDL	20.0	Lumber DOL	1.15	BC	0.07	Vert(CT)	-0.01	6	>999	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	5	n/a	n/a		
BCDL	10.0	Code IRC2018/TPI	2014	Matri	x-MR						Weight: 10 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEDGE Left: 2x4 SPF No.2 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 2-7-3 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 4=Mechanical, 2=0-3-8, 5=Mechanical Max Horz 2=60(LC 12) Max Uplift 4=-19(LC 12), 2=-18(LC 12), 5=-10(LC 12)

Max Grav 4=72(LC 1), 2=232(LC 1), 5=56(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-0-5, Interior(1) 2-0-5 to 2-6-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 19 lb uplift at joint 4, 18 lb uplift at joint 2 and 10 lb uplift at joint 5.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Plate Offsets (X,Y)	[2:0-0-1,0-0-3], [2:0-0-3,0-5-0], [2:0-3-8	3,Edgej		
LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.26 BC 0.21 WB 0.00 Matrix-AS	DEFL. in (loc) l/defl L/d Vert(LL) 0.02 4-7 >999 240 MT20 197/144 Vert(CT) -0.04 4-7 >999 180 MT20 197/144 Horz(CT) 0.01 2 n/a n/a Weight: 12 lb FT = 2	20%
LUMBER-	-	-	BRACING-	

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEDGE Left: 2x4 SPF No.2

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=89(LC 12) Max Uplift 3=-55(LC 12), 2=-20(LC 12) Max Grav 3=155(LC 1), 2=313(LC 1), 4=80(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 4-1-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 55 lb uplift at joint 3 and 20 lb uplift at ioint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

			L	2-	0-15					
			I	2-	0-15		1			
Plate Offsets (X,Y)	[2:0-0-1,0-0-3], [2:0-0-3,	0-5-0], [2:0-3-8,	Edge]							
LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP	
TOL		4 4 5	TO 0.07	1/ // 1)	-	~~~	0.40	NATOO	407/444	

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 25.0	Plate Grip DOL 1.15	TC 0.07	Vert(LL) -0.00 7 >999 240	MT20 197/144
TCDL 20.0	Lumber DOL 1.15	BC 0.04	Vert(CT) -0.00 7 >999 180	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00 3 n/a n/a	
BCDL 10.0	Code IRC2018/TPI2014	Matrix-MP		Weight: 7 lb $FT = 20\%$
			BRACING-	

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEDGE Left: 2x4 SPF No.2

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 2-0-15 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical Max Horz 2=51(LC 12)

Max Uplift 3=-24(LC 12), 2=-18(LC 12) Max Grav 3=65(LC 1), 2=207(LC 1), 4=37(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 3) will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 24 lb uplift at joint 3 and 18 lb uplift at joint 2.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

0.02

2

n/a

Rigid ceiling directly applied.

n/a

Structural wood sheathing directly applied.

Lent. 2x4 OF I	0.2	
REACTIONS.	(size) 3=Mechanical, 2=0-3-8, 4=Mechanical	
	Max Horz 3=-461(LC 1), 2=461(LC 1)	

YES

Max Uplift 2=-111(LC 12) Max Grav 2=673(LC 1), 4=112(LC 3)

Rep Stress Incr

Code IRC2018/TPI2014

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-633/273

NOTES-

BCLL

BCDL

LUMBER-

WEDGE

0.0

TOP CHORD 2x4 SPF No.2

BOT CHORD 2x4 SPF No.2

10.0

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 6-1-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WB

Matrix-AS

0.00

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 111 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

FT = 20%

Weight: 17 lb

Plate Offsets (X,Y)	[2:0-0-1,0-0-3], [2:0-0-3,0-5-0], [2:0-3-8,	,Edge]					
LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 * BCDL 10.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.25 BC 0.20 WB 0.00 Matrix-AS	DEFL.inVert(LL)0.02Vert(CT)-0.03Horz(CT)0.01	(loc) l/defl 4-7 >999 4-7 >999 2 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 12 lb	GRIP 197/144 FT = 20%

BRACING-

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEDGE

Left: 2x4 SPF No.2

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=87(LC 12) Max Uplift 3=-54(LC 12), 2=-20(LC 12) Max Grav 3=152(LC 1), 2=308(LC 1), 4=79(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 4-0-3 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 54 lb uplift at joint 3 and 20 lb uplift at ioint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Jan 29 14:36:56 2021 Page 1 ID:VPVqvFnP0P0b1j2tZrlOqezdKbx-gZ3OrAtgbvaqM1GIxSP0872Hmq0nQ1vdqUgYPGzqTEL 3-8-7

Scale: 3/4"=1'

3-8-7 3-8-7 LOADING (psf) SPACING-2-0-0 CSI. DEFL. l/defl L/d PLATES GRIP in (loc) 25.0 Plate Grip DOL 1.15 Vert(LL) -0.01 240 197/144 TCLL TC 0.24 3-4 >999 MT20 TCDL 20.0 Lumber DOL 1.15 BC 0.13 Vert(CT) -0.02 3-4 >999 180 BCLL 0.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.01 2 n/a n/a Code IRC2018/TPI2014 BCDL 10.0 Matrix-MR Weight: 9 lb FT = 20%

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF No.2

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 3-8-7 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 4=0-3-8, 2=Mechanical, 3=Mechanical Max Horz 4=57(LC 12) Max Uplift 2=-55(LC 12)

Max Grav 4=192(LC 1), 2=144(LC 1), 3=71(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 3-7-11 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 55 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

	IMDED	
LU		

TOP CHORD 2x4 SPF No 2 2x4 SPF No.2 BOT CHORD WEBS 2x4 SPF No.2

BRACING-TOP CHORD

Structural wood sheathing directly applied or 1-8-7 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. 4=0-3-8, 2=Mechanical, 3=Mechanical (size) Max Horz 4=28(LC 9)

Max Uplift 2=-27(LC 12) Max Grav 4=85(LC 1), 2=65(LC 1), 3=31(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 3) will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 27 lb uplift at joint 2.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	3-0-8		2-1-	-12		
LOADING (psf) SPACING- 2-0- TCLL 25.0 Plate Grip DOL 1.1 TCDL 20.0 Lumber DOL 1.1 BCLL 0.0 * Rep Stress Incr YE BCDL 10.0 Code IRC2018/TPI2014 10.1	CSI. TC 0.61 BC 0.25 WB 0.04 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.08 6 -0.15 6 0.05 5	l/defl L/d >751 240 >423 180 n/a n/a	PLATES MT20 Weight: 17 lb	GRIP 197/144 FT = 20%

BRACING-

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

LUMBER-

 TOP CHORD
 2x4 SPF No.2

 BOT CHORD
 2x4 SPF No.2 *Except*

 2-6: 2x6 SPF No.2

 WEBS
 2x4 SPF No.2

REACTIONS. (size) 4=Mechanical, 2=0-3-8, 5=Mechanical

Max Horz 2=108(LC 12) Max Uplift 4=-73(LC 12), 2=-22(LC 12)

Max Grav 4=254(LC 1), 2=367(LC 1), 5=42(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 5-1-8 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 73 lb uplift at joint 4 and 22 lb uplift at joint 2.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y)	[3:0-0-14,0-1-12], [4:0-11-6,2-9-0], [4:0-	0-10,0-1-12]	
LOADING(psf)TCLL25.0TCDL20.0BCLL0.0BCDL10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. TC 0.08 BC 0.08 WB 0.02 Matrix-MP	DEFL. in (loc) l/defl L/d Vert(LL) -0.00 7 >999 240 Vert(CT) -0.00 7 >999 180 Horz(CT) 0.00 2 n/a n/a Weight: 12 lb FT = 20%
LUMBER-			BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x6 SPF No.2 WEBS 2x4 SPF No.2

REACTIONS. (size) 2=0-3-8, 3=Mechanical

Max Horz 2=70(LC 12) Max Uplift 2=-17(LC 12), 3=-42(LC 12)

Max Grav 2=254(LC 1), 3=150(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-1-3 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3Ì * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 17 lb uplift at joint 2 and 42 lb uplift at joint 3.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

Structural wood sheathing directly applied or 3-1-3 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

], [
LOADIN TCLL TCDI	I G (psf) 25.0 20.0	SPACING- 2-0 Plate Grip DOL 1.1	-0 CSI. 15 TC 15 BC	0.09	DEFL. Vert(LL) Vert(CT)	in -0.00 -0.00	(loc) 6 3-6	l/defl >999	L/d 240 180	PLATES MT20	GRIP 197/144	
BCLL BCDL	0.0 * 10.0	Rep Stress Incr YE Code IRC2018/TPI2014	ES WB 4 Matri	0.02 x-MP	Horz(CT)	0.00	1	n/a	n/a	Weight: 11 lb	FT = 20%	
LUMBE	R-				BRACING-							

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x6 SPF No.2 WEBS 2x4 SPF No.2

REACTIONS. (size) 1=0-3-8, 2=Mechanical

Max Horz 1=56(LC 12) Max Uplift 2=-44(LC 12)

Max Grav 1=164(LC 1), 2=162(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Bearing at joint(s) 1 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 44 lb uplift at joint 2.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

Structural wood sheathing directly applied or 3-1-3 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y)	[2:0-0-1,0-0-3], [2:0-0-3,0-5-0], [2:0-3-8	3,Edge]	
LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.23 BC 0.18 WB 0.00	DEFL. in (loc) l/defl L/d Vert(LL) 0.02 4-7 >999 240 Vert(CT) -0.03 4-7 >999 180 Horz(CT) 0.01 2 n/a n/a
BCDL 10.0		IVIAUIX-IVIP	Weight. 1110 F1 = 20%

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEDGE Left: 2x4 SPF No.2 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-10-4 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=83(LC 12) Max Uplift 3=-50(LC 12), 2=-20(LC 12) Max Grav 3=141(LC 1), 2=296(LC 1), 4=75(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-9-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 50 lb uplift at joint 3 and 20 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	í (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl L/d	PLATES GRI	P
TCLL	25.0	Plate Grip DOL 1.15	TC 0.07	Vert(LL) -C	0.00 7	>999 240	MT20 197/	/144
TCDL	20.0	Lumber DOL 1.15	BC 0.02	Vert(CT) -0	0.00 7	>999 180		
BCLL	0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) C	0.00 3	n/a n/a		
BCDL	10.0	Code IRC2018/TPI2014	Matrix-MP				Weight: 6 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=46(LC 12)

Max Uplift 3=-23(LC 12), 2=-20(LC 12)

Max Grav 3=59(LC 1), 2=195(LC 1), 4=31(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 23 lb uplift at joint 3 and 20 lb uplift at joint 2.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 1-9-3 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		 	<u>1-9-3</u> 1-9-3					
Plate Offsets (X,Y) [2:0-0-1,0-0-3], [2:0-0-3,0-5-0], [2:0-3-8,Edge]								
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP				
TCLL 25.0	Plate Grip DOL 1.15	TC 0.07	Vert(LL) -0.00 7 >999 240	MT20 197/144				
TCDL 20.0	Lumber DOL 1.15	BC 0.03	Vert(CT) -0.00 7 >999 180					
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00 3 n/a n/a					
BCDL 10.0	Code IRC2018/TPI2014	Matrix-MP		Weight: 6 lb FT = 20%				

3x8 ||

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEDGE BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 1-9-3 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

Left: 2x4 SPF No.2

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=46(LC 12) Max Uplift 3=-21(LC 12), 2=-18(LC 12) Max Grav 3=54(LC 1), 2=195(LC 1), 4=31(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 21 lb uplift at joint 3 and 18 lb uplift at joint 2.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		H	<u>1-9-3</u> 1-9-3						
Plate Offsets (X,Y) [2:0-0-1,0-0-3], [2:0-0-3,0-5-0], [2:0-3-8,Edge]									
LOADING (psf) TCLL 25.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.07	DEFL. in (loc) l/defl L/d Vert(LL) -0.00 7 >999 240	PLATES GRIP MT20 197/144					

LUMBER-			BRACING-	
BCDL 10.0	Code IRC2018/TPI2014	Matrix-MP		Weight: 6 lb FT = 20%
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.00 4 n/a n/a	
TCDL 20.0	Lumber DOL 1.15	BC 0.02	Vert(CT) -0.00 7 >999 180	
TCLL 25.0	Plate Grip DOL 1.15	TC 0.07	Vert(LL) -0.00 7 >999 240	MT20 197/144

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEDGE Left: 2x4 SPF No.2

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 1-9-3 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 3=46(LC 12) Max Uplift 2=-49(LC 12)

Max Grav 3=54(LC 1), 2=195(LC 1), 4=31(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 3Ì will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 49 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-3-15 to 3-3-15, Interior(1) 3-3-15 to 5-10-15, Exterior(2E) 5-10-15 to 8-7-10, Interior(1) 8-7-10 to 9-9-15 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 10, 9 except (jt=lb) 1=107, 11=123, 12=116.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LUMBER-

TOP CHORD 2x4 SPF No.2 2x4 SPF No.2 BOT CHORD OTHERS 2x4 SPF No.2

TOP CHORD BOT CHORD WEBS

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. 1 Row at midpt 4-12

REACTIONS. All bearings 13-3-14.

(lb) -Max Horz 1=-202(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 8, 1 except 14=-212(LC 13), 13=-130(LC 12), 15=-155(LC 12), 11=-117(LC 13), 10=-118(LC 13), 9=-125(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 8, 14, 12, 15, 10 except 1=265(LC 12), 13=258(LC 19), 11=253(LC 20), 9=261(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

BOT CHORD 1-15=-209/289, 14-15=-212/304

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-4-11 to 3-1-15, Interior(1) 3-1-15 to 5-1-15, Exterior(2R) 5-1-15 to 8-1-15 , Interior(1) 8-1-15 to 12-11-15 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 1 except (jt=lb) 14=212, 13=130, 15=155, 11=117, 10=118, 9=125.
- 8) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 15.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

3x4 1/		6 3x4 1/ 5	8	B	10
	-Q-4			13 13	3x4 = 12 3.42 12

15 14

3x4 //

Plate Offsets (X,Y)	[11:Edge,0-1-8]		
LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr. YES	CSI. TC 0.09 BC 0.04 WB 0.22	DEFL. in (loc) l/defl L/d PLATES GRIP Vert(LL) n/a - n/a 999 MT20 197/144 Vert(CT) n/a - n/a 999 MT20 197/144
BCDL 10.0	Code IRC2018/TPI2014	MB 0.22 Matrix-S	Weight: 105 lb FT = 20%

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF No.2

TOP CHORD BOT CHORD WEBS

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. 1 Row at midpt 8-14, 7-16

4-0

REACTIONS. All bearings 16-8-10.

(lb) -Max Horz 1=323(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 11, 20 except 1=-153(LC 10), 15=-139(LC 13), 16=-115(LC 12), 17=-121(LC 12), 18=-115(LC 12), 19=-120(LC 12), 13=-116(LC 13), 12=-112(LC 13) Max Grav All reactions 250 lb or less at joint(s) 11, 15, 14, 17, 18, 19, 20, 12 except 1=365(LC 12), 16=252(LC 19), 13=258(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-491/353, 2-3=-398/281, 3-5=-272/177

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-3-15 to 3-2-11, Interior(1) 3-2-11 to 11-2-11, Exterior(2R) 11-2-11 to 14-2-11, Interior(1) 14-2-11 to 16-6-4 zone; cantilever left and right exposed ; end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are 2x4 MT20 unless otherwise indicated.

Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11, 20 except (jt=lb) 1=153, 15=139, 16=115, 17=121, 18=115, 19=120, 13=116, 12=112.

8) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 11, 14, 13, 12.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-127(LC 12), 6=-127(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=252(LC 19), 6=252(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-3-15 to 3-3-15, Interior(1) 3-3-15 to 3-7-11, Exterior(2R) 3-7-11 to 6-7-11

, Interior(1) 6-7-11 to 6-11-7 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=127, 6=127.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD 6-7=-295/304, 5-6=-295/304, 4-5=-295/304 2-6=-250/153

WFBS

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-1-12 to 4-4-11, Interior(1) 4-4-11 to 5-8-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 4) will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 4 except (jt=lb) 6=123, 5=120.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 4 except (jt=lb) 5=145.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

(i) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 6 except (jt=lb) 5=114.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-1-12 to 1-1-8, Exterior(2R) 1-1-8 to 4-1-8, Interior(1) 4-1-8 to 5-7-3 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

- MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3, 4.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=334(LC 1), 6=431(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-7=-264/133, 3-6=-361/170

NOTES-

 Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-7-9 to 2-11-8, Exterior(2R) 2-11-8 to 7-2-7, Interior(1) 7-2-7 to 8-2-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions

shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 7, 6. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and

referenced standard ANSI/TPI 1.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

February 1,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

February 1,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems. see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2x4 ⋍

2x4 📚

Rigid ceiling directly applied or 10-0-0 oc bracing.

			4-0-9 4-0-9	$\frac{4}{0}\frac{1}{0}\frac{1}{2}$
Plate Offsets (X,Y)	[2:0-2-0,Edge]		1	
LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.04 BC 0.09 WB 0.00 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 3 n/a n/a	PLATES GRIP MT20 197/144 Weight: 8 lb FT = 20%
LUMBER- TOP CHORD 2x4 SF	PF No.2		BRACING- TOP CHORD Structural wood sheathing di	rectly applied or 4-1-1 oc purlins.

BOT CHORD

TOP CHORD 2x4 SPF No.2

BOT CHORD 2x4 SPF No.2

REACTIONS. (size) 1=4-0-1, 3=4-0-1 Max Horz 1=11(LC 16) Max Uplift 1=-11(LC 12), 3=-11(LC 13) Max Grav 1=155(LC 1), 3=155(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed;

- MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right
- exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-7-7 to 3-7-7, Interior(1) 3-7-7 to 6-10-8, Exterior(2E) 6-10-8 to 8-2-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 6 except (jt=lb) 7=100.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

