

12/14/2020

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

Re: 2542170 Summit/9 Woodside

The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Builders FirstSource (Valley Center).

Pages or sheets covered by this seal: I43813071 thru I43813133

My license renewal date for the state of Missouri is December 31, 2021.

Missouri COA: Engineering 001193

December 2,2020

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

,Engineer

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses saft truss systems, see **ANSUTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

MiTek

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=174, 11=174.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH1</u> Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

December 2.2020

E

F	3-3-8 6-7-8 9-8-12 10-1-12 13	3-8-0 16-0-0	24-0-0	30-4-4	36-8-	8 40-0-0			
Dioto Offecto (X V)	<u>3-3-8</u> <u>3-4-0</u> <u>3-1-4</u> <u>0-5-0</u> <u>3</u>	3-6-4 2-4-0			<u> </u>	3-3-8			
Plate Olisets (X, Y)	[2:0-3-15,0-2-1], [12:0-3-15,0-2-1], [14:0	-8-0,Edgej, [15:0-3-8,0-2-	0], [24:0-3-8,0-2-0], [2	6:0-2-0,0-0-0 <u>]</u> , [27:0	J-8-0,Edgej				
LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.92 BC 0.82 WB 0.50 Matrix-AS	DEFL. Vert(LL) -0.3 Vert(CT) -0.7 Horz(CT) 0.4	in (loc) l/defl 33 16-18 >999 75 16-18 >637 42 12 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 219 lb	GRIP 197/144 148/108 FT = 20%		
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF 2-27,1: 17-20: WEBS 2x4 SF 3-27,1 REACTIONS. (siz Max H Max U Max O	PF No.2 PF No.2 *Except* 2-14: 2x8 SP 2400F 2.0E, 20-27,14-17: 2 2x6 SPF No.2 PF No.2 *Except* 1-14: 2x6 SPF No.2 e) 2=0-3-8, 12=0-3-8 orz 2=-132(LC 17) plift 2=-178(LC 12), 12=-178(LC 13) rw 2=2270(LC 1), 12=-270(LC 13)	2x6 SPF 2100F 1.8E	BRACING- TOP CHORD BOT CHORD WEBS JOINTS	Structural wood 2-0-0 oc purlins Rigid ceiling dir 1 Row at midpt 1 Brace at Jt(s):	sheathing dire (3-1-15 max.) ectly applied. 9- 24	ectly applied, except : 6-8. 16, 11-15, 5-18, 3-24			
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-7599/623, 3-5=-4615/353, 5-6=-3476/279, 6-7=-2979/282, 7-8=-2980/282, 8-9=-3479/277, 9-11=-4674/318, 11-12=-7654/495 BOT CHORD 2-27=-649/6907, 26-27=-625/6424, 24-26=-620/6291, 23-24=-297/3928, 19-23=-297/3928, 18-19=-302/4062, 16-18=-78/3094, 15-16=-152/4117, 14-15=-391/6466, 12-14=-396/6959 WEBS 3-27=-58/1457, 6-18=-27/1060, 8-16=-35/1055, 9-16=-1334/220, 9-15=0/661, 11-15=-2378/254, 11-14=-5/1472, 5-18=-1278/235, 5-24=0/618, 3-24=-2392/326, 7-18=-432/126, 7-16=-431/127									
 11-15=-2378/254, 11-14=-5/1472, 5-18=-1278/235, 5-24=0/618, 3-24=-2392/326, 7-18=-432/126, 7-16=-431/127 NOTES- Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 16-0-0, Exterior(2R) 16-0-0 to 20-0, Interior(1) 20-0-0 to 24-0-0, Exterior(2R) 24-0-0 to 28-2-15, Interior(1) 28-2-15 to 40-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. All plates are MT20 plates unless otherwise indicated. This truss has been designed for a 10.0 ps bottom chord live load nonconcurrent with any other live loads. Bearing at joint(s) 2, 12 considers parallel to grain value using ANSI/TP1 1 angle to grain formula. Building designer should verify capacity of bearing surface. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=178, 12=178. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. This truss is design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. (a) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 									

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

1	6-10-3	12-8-0	1 3-8- 0	20-0-0	26-0-0	31-4-4	36-8-8	40-0-0	
	6-10-3	5-9-13	1-0-0	6-4-0	6-0-0	5-4-4	5-4-4	3-3-8	
Plate Offsets (X,Y) [2:0-1-3,0-2-10], [2	:0-4-9,0-2-1], [2:0-	0-3,0-0-0],	[6:0-6-0,0-0-15], [8	3:0-6-0,0-0-15], [12:0-3-15	5,0-2-1], [14:0-8-0,Ec	lge], [15:0-3-8,0-2-0)], [19:0-4-0,0-	3-0],
	[22:0-3-8,0-3-0]								

LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.86 BC 0.85 WB 0.84 Matrix-AS	DEFL. in Vert(LL) -0.30 Vert(CT) -0.67 Horz(CT) 0.30	(loc) l/defl 18 >999 18-19 >720 12 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 205 lb	GRIP 197/144 148/108 FT = 20%				
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP 5-21: 2: 14-17: 3 WEBS 2x4 SP WEDGE Left: 2x6 SPF No.2	F No.2 F 1650F 1.5E *Except* x4 SPF No.2, 17-19: 2x6 SPF No.2, 12- 2x6 SPF 2100F 1.8E F No.2	14: 2x8 SP 2400F 2.0E	BRACING- TOP CHORD BOT CHORD WEBS	Structural wood 2-0-0 oc purlins Rigid ceiling dire 10-0-0 oc bracin 1 Row at midpt	sheathing direct (2-2-0 max.): 6-4 cctly applied. Ex g: 19-21 11-1	ly applied, except 3. ccept: 5					
REACTIONS. (size) 2=(0-3-8 + bearing block) (req. 0-3-10), 12=0-3-8 Max Horz 2=116(LC 12) Max Uplift 2=-171(LC 12), 12=-176(LC 13) Max Grav 2=2294(LC 1), 12=2286(LC 1)											
FORCES. (lb) - Max. TOP CHORD 2-3=- 8-9=- 8-9=- BOT CHORD 2-22= MEBS 3-22= 7-18= 11-15	ORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. OP CHORD 2-3=-3957/277, 3-5=-4021/289, 5-6=-3855/328, 6-7=-3701/288, 7-8=-3701/288, 8-9=-3798/276, 9-11=-4912/326, 11-12=-7576/490 OT CHORD 2-22=-269/3408, 21-22=-18/271, 18-19=-137/3286, 16-18=-56/3295, 15-16=-158/4342, 14-15=-382/6506, 12-14=-391/6875 VEBS 3-22=-572/117, 19-22=-255/3194, 3-19=-42/281, 6-19=-94/884, 6-18=-113/748, 7-18=-656/170, 8-18=-110/749, 8-16=-38/762, 9-16=-1244/183, 9-15=0/705, 11-15=-2198/227, 11-14=-18/1387										
 NOTES- 1) 2x4 SPF 1650F 1.5E bearing block 12" long at jt. 2 attached to front face with 2 rows of 10d (0.131"x3") nails spaced 3" o.c. 8 Total fasteners. Bearing is assumed to be SPF 1650F 1.5E. 2) Unbalanced roof live loads have been considered for this design. 3) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-0-10-8 to 2-1-8, Interior(1) 2-1-8 to 14-0-0, Exterior(2R) 14-0-0 to 18-2-15, Interior(1) 30-2-15 to 40-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 4) Provide adequate drainage to prevent water ponding. 5) All plates are MT20 plates unless otherwise indicated. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) Bearing at joint(s) 12 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 3) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=171, 12=176. b) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and December 2,2020 											
WARNING - Verify of Design valid for use or a truss system. Before building design. Braci is always required for s fabrication, storage, de Safety Information	lesign parameters and READ NOTES ON THIS AND aly with MiTek® connectors. This design is based o use, the building designer must verify the applicat g indicated is to prevent buckling of individual trus stability and to prevent collapse with possible perso livery, erection and bracing of trusses and truss sy vailable from Truss Plate Institute, 2670 Crain High	INCLUDED MITEK REFERENC nly upon parameters shown, an ility of design parameters and p s web and/or chord members or nal injury and property damage stems, see ANS/TPH way, Suite 203 Waldorf, MD 20	E PAGE MII-7473 rev. 5/19/2021 d is for an individual building cc roperty incorporate this design i nly. Additional temporary and p . For general guidance regardii Quality Criteria, DSB-89 and 601	D BEFORE USE. imponent, not into the overall ermanent bracing g the BCSI Building Comp	onent	hesterfield, M	y Ridge Rd IO 63017				

Job	Truss	Truss Type	Qty	Ply	Summit/9 Woodside	
						143813075
2542170	A5	Hip	1	1		
					Job Reference (optional)	
Builders FirstSource (Valley	Center), Valley Center, K	S - 67147,		8.240 s Ma	r 9 2020 MiTek Industries, Inc. Tue Dec 1 11:31:38 2020	Page 2
		ID:cl	ow4Ylqf7i	ox0?ly?5B	Ccz33zm-FsN3AsLpGC6g K5 n9OJ004ieKeTgLgaX19AZn	vDLc3

NOTES-

10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Summit/9 Woodside	
					14381	3076
2542170	A6	Hip	1	1		
					Job Reference (optional)	
Builders FirstSource (Valley	Center), Valley Center, K	S - 67147,	8	3.240 s Ma	r 9 2020 MiTek Industries, Inc. Tue Dec 1 11:31:44 2020 Page	2
		ID:	clow4Ylqf7	iox0?ly?5	BCcz33zm-40kLQwQas2sziFY88PVjFHKlmkiUE6wSwzcUlRyDLt	ΣC

NOTES-

10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Summit/9 Woodside	
2542170	۵۵	Hin Girder	1	1		43813079
2542170					Job Reference (optional)	
Duildens FirstOsumes (Vallau)	Oanstan) Vallass Oanstan K	0 07447		040 - 14-	a 0.0000 MiTab la duatrias, Jac. Tue Das 4.44/04/50 0000	0

Builders FirstSource (Valley Center), Valley Center, KS - 67147,

8.240 s Mar 9 2020 MiTek Industries, Inc. Tue Dec 1 11:31:56 2020 Page 2 ID:clow4YIgf7iox0?ly?5BCcz33zm-jKSty0Z51kNG85TSrxjXkpqmmalO2UvDgqW7BkyDLbn

NOTES-

10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 143 lb down and 107 lb up at 12-0-12, 143 lb down and 107 lb up at 14-0-12, 143 lb down and 107 lb up at 16-0-12, 143 lb down and 107 lb up at 18-0-12, 143 lb down and 107 lb up at 21-11-4, 143 lb down and 107 lb up at 23-11-4, 143 lb down and 107 lb up at 23-11-4, 143 lb down and 107 lb up at 23-11-4, 143 lb down and 107 lb up at 23-11-4, 143 lb down and 107 lb up at 23-11-4, 143 lb down and 107 lb up at 23-11-4, 143 lb down and 107 lb up at 23-11-4, 143 lb down and 107 lb up at 23-11-4, 143 lb down and 107 lb up at 23-11-4, 143 lb down and 107 lb up at 23-11-4, 143 lb down and 107 lb up at 23-11-4, 143 lb down and 107 lb up at 23-11-4, 143 lb down and 107 lb up at 23-11-4, 143 lb down and 107 lb up at 23-11-4, 143 lb down and 107 lb up at 23-11-4, 143 lb down and 107 lb up at 23-11-4, 143 lb down and 23 lb up at 33-11-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-90, 3-4=-90, 4-11=-90, 11-12=-90, 12-14=-90, 26-27=-20, 3-24=-20, 18-23=-20, 12-17=-20, 15-30=-20

Concentrated Loads (lb)

Vert: 4=-123(B) 7=-143(B) 5=-143(B) 21=-67(B) 18=-67(B) 10=-143(B) 25=-796(B) 22=-67(B) 24=-67(B) 6=-143(B) 9=-143(B) 19=-67(B) 16=-796(B) 11=-123(B) 33=-123(B) 34=-123(B) 34=-123(B) 35=-143(B) 36=-143(B) 37=-143(B) 38=-143(B) 39=-143(B) 40=-123(B) 41=-89(B) 42=-89(B) 43=-67(B) 44=-67(B) 45=-67(B) 46=-67(B) 47=-67(B) 48=-89(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

balling value for day only which the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

a truss system and to use the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WEBS

1 Row at midpt

Left: 2x4 SPF No.2

Right 2x4 SPF No.2 2-0-0 SLIDER

REACTIONS. (size) 2=0-3-8, 17=(0-3-8 + bearing block) (reg. 0-3-12), 12=Mechanical Max Horz 2=142(LC 12) Max Uplift 2=-136(LC 12), 17=-82(LC 12), 12=-165(LC 13) Max Grav 2=1103(LC 25), 17=2409(LC 1), 12=979(LC 26)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1627/205, 3-5=-1480/248, 5-6=-543/193, 6-7=0/359, 7-8=-271/281, 8-10=-466/263, 10-12=-1284/295

BOT CHORD 2-22=-253/1372, 5-20=-2/474, 19-20=-224/1299, 17-19=-28/347, 7-17=-1358/119, 15-16=-271/40, 13-15=-172/1115, 12-13=-172/1115 WEBS 20-22=-224/1305, 5-19=-1096/228, 6-19=-37/664, 6-17=-1172/130, 8-15=-392/41, 10-15=-995/204, 10-13=0/328, 7-15=-69/1143

NOTES-

- 1) 2x4 SPF No.2 bearing block 12" long at jt. 17 attached to front face with 2 rows of 10d (0.131"x3") nails spaced 3" o.c. 8 Total fasteners. Bearing is assumed to be SPF No.2.
- 2) Unbalanced roof live loads have been considered for this design.

3) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 16-0-0, Exterior(2R) 16-0-0 to 20-5-12, Interior(1) 20-5-12 to 24-0-0, Exterior(2R) 24-0-0 to 28-2-15, Interior(1) 28-2-15 to 39-8-8 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 4) Provide adequate drainage to prevent water ponding.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 136 lb uplift at joint 2, 82 lb uplift at joint 17 and 165 lb uplift at joint 12.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 11) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

👠 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH1</u> Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

5-19, 6-17, 8-15, 10-15

4-5	-12 4-5-7 5-0-14	6-3-8	0-0-8 5-8-0	6-8-8	. 7-0-0	•
Plate Offsets (X,Y)	[2:0-0-3,0-5-0], [2:0-0-1,0-0-3], [11:0-5-1	,Edge]				
LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.65 BC 0.46 WB 0.82 Matrix-AS	DEFL. in Vert(LL) -0.05 Vert(CT) -0.12 Horz(CT) 0.03	(loc) l/defl L/c 18-19 >999 240 18-19 >999 180 16 n/a n/a	H PLATES MT20 Weight: 179 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF WEDGE Left: 2x4 SPF No.2 SLIDER Right 2	2F No.2 2F No.2 2F No.2 2F No.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheat 2-0-0 oc purlins (6-0-0 Rigid ceiling directly a 1 Row at midpt	hing directly applied, except) max.): 6-8. pplied. Except: 7-16	
REACTIONS. (siz Max H Max U Max G	e) 11=Mechanical, 2=0-3-8, 16=(0-3-8 lorz 2=126(LC 12) plift 11=-154(LC 13), 2=-142(LC 12), 16 rav 11=987(LC 26), 2=1126(LC 25), 16	+ bearing block) (req. 0-3- =-79(LC 12) =2364(LC 1)	.11)			
FORCES. (lb) - Max. TOP CHORD 2-3=: 8-9=: 8-9=: BOT CHORD 2-21: 11-12 11-12 WEBS 3-21: 8-13: 8-13:	Comp./Max. Ten All forces 250 (lb) or -1680/218, 3-5=-1614/270, 5-6=-849/203 -686/250, 9-11=-1343/275 =-252/1423, 5-19=-22/437, 18-19=-227/1 2=-164/1178 =-280/111, 19-21=-244/1351, 5-18=-894/ =-276/48, 9-13=-811/173, 9-12=0/268	less except when shown. , 6-7=-678/217, 7-8=-495/2 394, 7-16=-2248/150, 12-1 189, 7-18=-127/1196, 7-13	265, 3=-164/1178, 3=-66/1062,			
NOTES- 1) 2x4 SPF No.2 beari fasteners. Bearing is 2) Unbalanced roof live 3) Wind: ASCE 7-16; V MWFRS (envelope) Interior(1) 18-2-15 tr vertical left and right 4) Provide adequate di 5) This truss has been 6) Refer to girder(s) for 7) Provide mechanical joint 2 and 79 lb upil 8) This truss is designer referenced standard 9) This truss design re sheetrock be applieu 10) Graphical purlin re 11) Gap between insid	ng block 12" long at jt. 16 attached to fro s assumed to be SPF No.2. e loads have been considered for this de /ult=115mph (3-second gust) Vasd=91m gable end zone and C-C Exterior(2E) -0 o 26-0-0, Exterior(2R) 26-0-0 to 30-2-15, exposed;C-C for members and forces & rainage to prevent water ponding. designed for a 10.0 psf bottom chord live t truss to truss connections. connection (by others) of truss to bearin ff at joint 16. ad in accordance with the 2018 Internation I ANSI/TPI 1. quires that a minimum of 7/16" structural d directly to the bottom chord. presentation does not depict the size or the e of top chord bearing and first diaoonal	nt face with 2 rows of 10d sign. bh; TCDL=6.0psf; BCDL=6 10-8 to 2-1-8, Interior(1) 2: Interior(1) 30-2-15 to 39-8- MWFRS for reactions sho be load nonconcurrent with a g plate capable of withstand nal Residential Code section wood sheathing be applied the orientation of the purlin or vertical web shall not ex	(0.131"x3") nails space .0psf; h=15ft; Cat. II; E: -1-8 to 14-0-0, Exteriori 8 zone; cantilever left a wn; Lumber DOL=1.60 any other live loads. ding 154 lb uplift at join ons R502.11.1 and R80 d directly to the top cho along the top and/or bo ceed 0.500in.	d 3" o.c. 8 Total xp C; Enclosed; 2R) 14-0-0 to 18-2-15, ind right exposed ; end plate grip DOL=1.60 t 11, 142 lb uplift at 02.10.2 and rd and 1/2" gypsum ottom chord.	STATE OF SCO SE NUT PE-200 NUT PE-200 NUT PE-200 NUT	MISSOLP TT M. VIER DI018807

December 2,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

L	3-11-6	6-11-6	12-0-0	20-3-8	20-4-0 28	-0-0	33-8	3-8	39-8-8	
	3-11-6	3-0-0	5-0-10	8-3-8	0-0-8 7	·8-0	5-8-	-8	6-0-0	
Plate Offsets (X,Y)	[2:0-3-8,Edge], [2:	0-0-3,0-5-0], [2:0-0-1,0	0-0-3], [8:1-6-4,0-2-0], [1 ⁻	1:0-5-1,Edge], [19	.0-5-12,0-2-12],	, [21:0-3-8,0- ⁻	1-8]		
LOADING (ps TCLL 25. TCDL 20. BCLL 0 BCDL 10.	sf) .0 .0 .0	SPACING- Plate Grip I Lumber DO Rep Stress Code IRC2	2-0-0 DOL 1.15 JL 1.15 Incr YES 018/TPI2014	CSI. TC 0.88 BC 0.74 WB 0.93 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.12 16-18 -0.23 16-18 0.05 16	l/defl L >999 24 >999 18 n/a r	./d 40 80 //a	PLATES MT20 MT18HS Weight: 173 lb	GRIP 197/144 197/144 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS WEDGE Left: 2x4 SPF SLIDER	2x4 SP 2x4 SP 2x4 SP 2x4 SP No.2 Right 2	F No.2 F No.2 F No.2 x4 SPF No.2 2-0-0)		BRACING TOP CHOP BOT CHOP	₹D Structu 2-0-0 o ≹D Rigid c	iral wood she oc purlins (5-3 eiling directly	athing direct 3-13 max.): 5- applied.	ly applied, except -8.	
REACTIONS.	(size Max Ho Max Up Max G	 11=Mechanica 2=110(LC 12) blift 11=-140(LC 13) rav 11=964(LC 26) 	al, 2=0-3-8, 16=(0-3-8 3), 2=-138(LC 12), 16: 5), 2=1108(LC 25), 16=	+ bearing block)(req. 0- =-118(LC 9) =2400(LC 1)	-3-12)					
FORCES. (IIE TOP CHORD BOT CHORD WEBS	o) - Max. 2-3=- 8-9=- 2-21= 13-15 4-18= 9-13=	Comp./Max. Ten 1634/209, 3-4=-19 862/230, 9-11=-12 -232/1383, 4-19=- =-274/38, 12-13=- -942/211, 6-18=-3 -590/141, 3-21=-4	- All forces 250 (lb) or 110/300, 4-5=-1107/20 326/249 37/436, 18-19=-278/1 151/1171, 11-12=-151 7/731, 6-16=-1164/17 71/120, 19-21=-224/1	less except when shown 1, 5-6=-901/212, 6-7=0/3 731, 16-18=-68/434, 7-1 1/1171 1, 7-13=-80/1184, 8-13= 338, 3-19=-34/326	350, 7-8=-691/246 6=-1348/190, -259/93,	,				
 NOTES- 1) 2x4 SPF Not fasteners. E 2) Unbalanced 3) Wind: ASCC MWFRS (er Interior(1) 1 vertical left i 4) Provide ade 5) All plates ar 6) This truss h 7) Refer to gird 8) Provide merioint 2 and 4 9) This truss is referenced is referenced in this truss is sheetrock 11) Graphical 12) Gap between 	b.2 bearing is 3earing is 4 roof live E 7-16; V nvelope) 6-2-0 to 2 and right equate dr: re MT20 p ias been der(s) for chanical 418 lb upl s designe standard design re be applie purlin rep een inside	ig block 12" long a assumed to be SI loads have been ult=115mph (3-sec gable end zone ar 28-0-0, Exterior(2F exposed;C-C for r ainage to prevent oblates unless other designed for a 10. truss to truss com- connection (by oth lift at joint 16. d in accordance w ANSI/TPI 1. equires that a minin d directly to the bo- presentation does i a of top chord bear	tt jt. 16 attached to from PF No.2. considered for this descond gust) Vasd=91m d C-C Exterior(2E) -0 R) 28-0-0 to 32-2-15, In nembers and forces & water ponding. twise indicated. 0 psf bottom chord live actions. ters) of truss to bearing with the 2018 Internation mum of 7/16" structure ottom chord. not depict the size or t ring and first diagonal	nt face with 2 rows of 10 sign. -10-8 to 2-1-8, Interior(1) nterior(1) 32-2-15 to 39-8 MWFRS for reactions si e load nonconcurrent with g plate capable of withsta nal Residential Code sec al wood sheathing be app he orientation of the purl or vertical web shall not	ed (0.131"x3") nails =6.0psf; h=15ft; C 2-1-8 to 12-0-0, E -8 zone; cantileve hown; Lumber DC h any other live los anding 140 lb uplif ctions R502.11.1 a blied directly to the in along the top an exceed 0.500in.	at. II; Exp C; En Exterior(2R) 12-i r left and right e L=1.60 plate gr ads. t at joint 11, 134 and R802.10.2 a top chord and hd/or bottom ch	. 8 Total nclosed; 0-0 to 16-2-0 exposed ; enc ip DOL=1.60 8 lb uplift at and 1/2" gypsum ord.	, t	THE OF STATE OF SEV SEV DE-200 DE-200 DE-200 DE-200 DE-200	MISSOLA TIM. VIER 1018807
WARNIN Design vali a truss syst	NG - Verify o id for use or tem. Before	lesign parameters and F Ily with MiTek® connec use, the building desig	READ NOTES ON THIS AND tors. This design is based o ner must verify the applicab	INCLUDED MITEK REFERENC nly upon parameters shown, an ility of design parameters and p	CE PAGE MII-7473 rev. ad is for an individual b	5/19/2020 BEFORE uilding component, r	USE. not erall			

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

a truss system and to use the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOAD CASE(S) Standard

Continued on page 2

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH1</u> Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

December 2,2020

Job	Truss	Truss Type	Qty	Ply	Summit/9 Woodside	
					4	43813088
2542170	B9	Half Hip Girder	1	1		
					Job Reference (optional)	
Builders FirstSource (Valley	Center), Valley Center, K	S - 67147,	6	3.240 s Ma	r 9 2020 MiTek Industries, Inc. Tue Dec 1 11:32:32 2020 P	age 2

8.240 s Mar 9 2020 MiTek Industries, Inc. Tue Dec 1 11:32:32 2020 Page 2 ID:clow4Ylgf7iox0?ly?5BCcz33zm-gFeUVK?hYov9SeDNyVMzCPJ?s54JUr2WyRE0SfyDLbD

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-90, 4-6=-90, 10-11=-20, 8-10=-20, 7-8=-20

Concentrated Loads (lb)

Vert: 4=-204(F) 8=-9 9=-527(F) 14=-204(F) 15=-202(F) 16=-189(F) 17=-6(F) 18=-30

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Summit/9 Woodside	
2542170	C1	Roof Special Girder	1			l43813089
2012110	01			2	Job Reference (optional)	
Builders FirstSource (Vallev	Center). Vallev Center, K	S - 67147.	8	3.240 s Ma	r 9 2020 MiTek Industries, Inc. Tue Dec 1 11:32:37 2020	Page 2

8.240 s Mar 9 2020 MiTek Industries, Inc. Tue Dec 1 11:32:37 2020 Page 2 ID:clow4YIgf7iox0?ly?5BCcz33zm-0CRNY23pNLYSZP5Kk2y8vS0mt6m394FG6ixn7syDLb8

NOTES-

- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 25=736, 9=803.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) Use Simpson Strong-Tie HUS26 (14-16d Girder, 6-16d Truss) or equivalent at 4-0-12 from the left end to connect truss(es) to back face of bottom chord.
- 13) Use Simpson Strong-Tie LUS26 (4-SD9112 Girder, 4-SD9212 Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 6-0-12 from the left end to 8-0-12 to connect truss(es) to back face of bottom chord.
- 14) Use Simpson Strong-Tie LUS26 (4-10d Girder, 4-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 10-0-12 from the left end to 18-0-12 to connect truss(es) to back face of bottom chord.
- 15) Fill all nail holes where hanger is in contact with lumber.
- 16) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 79 lb down and 2 lb up at 0-0-12, and 825 lb down and 103 lb up at 20-0-12 on top chord, and 128 lb down and 52 lb up at 2-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (plf) Vert: 3-24=-90, 3-4=-90, 4-8=-90, 24-26=-160, 7-8=-160, 25-33=-160, 22-33=-110, 10-22=-20, 10-40=-110, 9-40=-160
 - Concentrated Loads (lb) Vert: 16=-892(B) 13=-927(B) 8=-825(B) 24=-133(B) 27=-2253(B) 28=-1024(B) 29=-1024(B) 30=-904(B) 31=-919(B) 32=-864(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH1</u> Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Summit/9 Woodside
					143813091
2542170	C3	Hip Girder	1	1	
					Job Reference (optional)
Builders FirstSource (Valle	y Center), Valley Center, K	S - 67147,		3.240 s Ma	r 9 2020 MiTek Industries, Inc. Tue Dec 1 11:32:46 2020 Page 2

8.240 s Mar 9 2020 MiTek Industries, Inc. Tue Dec 1 11:32:46 2020 Page 2 ID:clow4Ylgf7iox0?ly?5BCcz33zm-GxUnR7ATF6gA8nH3mRdFmMuNlkwHmEdaAcdmyryDLb?

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-90, 4-6=-90, 6-9=-90, 16-19=-20

Concentrated Loads (lb)

Vert: 4=-114(F) 6=-114(F) 13=-929(F) 12=-119(F) 5=-114(F) 11=-929(F) 22=-114(F) 23=-114(F) 24=-119(F) 25=-119(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Design valid for use only with MiTeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses and truss systems, see **ANS/ITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

MiTek

Design valid for use only with MiTeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses and truss systems, see **ANS/ITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

MiTek

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Summit/9 Woodside	
						l43813094
2542170	CJ3	Diagonal Hip Girder	2	1		
					Job Reference (optional)	
Builders FirstSource (Valley	Center), Valley Center, K	S - 67147,		3.240 s Ma	r 9 2020 MiTek Industries, Inc. Tue Dec 1 11:32:56 2020	Page 2

ID:clow4Ylgf7iox0?ly?5BCcz33zm-zs5ZYXHkvAxlKK2_MXobATJ9wmHE6jA3TA2lHGyDLar

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 12=-168(F=-84, B=-84) 13=-404(F=-202, B=-202)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MITEK° 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Summit/9 Woodside	
						143813095
2542170	CJ4	Diagonal Hip Girder	2	1		
					Job Reference (optional)	
Builders FirstSource (Valley Center), Valley Center, KS - 67147,				3.240 s Ma	r 9 2020 MiTek Industries, Inc. Tue Dec 1 11:32:59 2020	Page 2

ID:clow4YIgf7iox0?ly?5BCcz33zm-NRmhAZKcC5JKCnnZ1fLlo5xhuzHdJ6jV97GyubyDLao

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 12=-87(F=-41, B=-46) 13=-344(F=-165, B=-179)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (pst)	SPACING-	2-0-0	CSI.		DEFL.	ın	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL 25.0	Plate Grip DOL	1.15	TC	0.48	Vert(LL)	0.05	6-9	>999	240	MT20	197/144	
TCDL 20.0	Lumber DOL	1.15	BC	0.41	Vert(CT)	-0.09	6-9	>642	180			
BCLL 0.0	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.02	2	n/a	n/a			
BCDL 10.0	Code IRC2018/TP	12014	Matrix	-MP						Weight: 17 lb	FT = 20%	
LUMBER- TOP CHORD 2x4 SPF No.2				BRACING- TOP CHORD Structural wood sheathing div				rectly applied or 5-1-13 oc purlins,				
BOT CHORD 2x4 SPE No 2							except end verticals					

 TOP CHORD
 2x4 SPF No.2
 TOP CHORD
 Structural wood sheathing directly applied or 5-1-13 oc except end verticals.

 BOT CHORD
 2x4 SPF No.2
 BOT CHORD
 BOT CHORD
 Rigid ceiling directly applied or 10-0 oc bracing.

 WEBS
 2x4 SPF No.2
 BOT CHORD
 Rigid ceiling directly applied or 10-0 oc bracing.

 WEDGE
 WEDGE
 BOT CHORD
 Rigid ceiling directly applied or 10-0 oc bracing.

Left: 2x4 SPF No.2

REACTIONS. (size) 6=Mechanical, 2=0-3-8

Max Horz 6=88(LC 7) Max Uplift 6=-68(LC 8), 2=-103(LC 4) Max Grav 6=299(LC 1), 2=422(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6 except (jt=lb) 2=103.
- 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 6) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-90, 3-4=-40, 5-7=-20 Concentrated Loads (lb)

Vert: 10=-57(F=-29, B=-29)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid bit de only with with with exercising to be deturns. This design is based only door particulars and prover interaction and the second sec
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

E

December 2,2020

December 2,2020

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Summit/9 Woodside	
					1438130	3099
2542170	D3	Hip Girder	1	1		
					Job Reference (optional)	
Builders FirstSource (Valley	Center), Valley Center, K	S - 67147,		3.240 s Ma	r 9 2020 MiTek Industries, Inc. Tue Dec 1 11:33:16 2020 Page 2	2

8.240 s Mar 9 2020 MiTek Industries, Inc. Tue Dec 1 11:33:16 2020 Page 2 ID:clow4Ylgf7iox0?ly?5BCcz33zm-NjI7kNXHBKSwkOaqXk9H_g8VMqBkoqh?4HuL?6yDLaX

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-90, 3-5=-90, 5-7=-90, 14-17=-20

Concentrated Loads (lb)

Vert: 3=-143(F) 5=-143(F) 12=-761(F) 4=-143(F) 10=-67(F) 9=-761(F) 20=-143(F) 21=-143(F) 22=-67(F) 23=-67(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 ____

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-9-8, Exterior(2R) 3-9-8 to 6-11-11, Interior(1) 6-11-11 to 8-5-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 25.0	Plate Grip DOL 1.15	TC 0.59	Vert(LL) 0.07 4-7 >956 240	MT20 197/144
TCDL 20.0	Lumber DOL 1.15	BC 0.44	Vert(CT) -0.16 4-7 >454 180	
BCLL 0.0	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.03 2 n/a n/a	
BCDL 10.0	Code IRC2018/TPI2014	Matrix-AS		Weight: 16 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEDGE Left: 2x4 SPF No.2 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied. Rigid ceiling directly applied.

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=123(LC 12) Max Uplift 3=-82(LC 12), 2=-23(LC 12) Max Grav 3=233(LC 1), 2=411(LC 1), 4=116(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 5-11-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) Refer to girder(s) for truss to truss connections.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.73 BC 0.60 WB 0.00 Matrix-AS	DEFL. in (loc) l/defl L/d Vert(LL) 0.11 3-5 >645 240 Vert(CT) -0.21 3-5 >333 180 Horz(CT) 0.15 5 n/a n/a	PLATES GRIP MT20 197/144 Weight: 18 lb FT = 20%
			DD A OINIO	

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEDGE Left: 2x4 SPF No.2 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied. Rigid ceiling directly applied.

REACTIONS. (size) 4=Mechanical, 2=0-3-8, 5=Mechanical Max Horz 2=123(LC 12)

Max Holz 2=125(LC 12) Max Uplift 4=-68(LC 12), 2=-22(LC 12), 5=-1(LC 12) Max Grav 4=213(LC 1), 2=413(LC 1), 5=118(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-0-5, Interior(1) 2-0-5 to 5-11-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) Refer to girder(s) for truss to truss connections.

- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2, 5.
- 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Plate Offsets (X,Y)	[2:0-0-1,0-0-3], [2:0-0-3,0-5-0],	::0-3-8,Edge], [3:0-3-0,0-2-7]						T	
_OADING (psf)	SPACING- 2-0-	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL 25.0	Plate Grip DOL 1.1	TC 0.30	Vert(LL)	-0.02	8	>999	240	MT20	197/144
TCDL 20.0	Lumber DOL 1.1	BC 0.20	Vert(CT)	-0.03	8	>999	180		
BCLL 0.0	Rep Stress Incr YE	WB 0.00	Horz(CT)	0.03	7	n/a	n/a		
BCDL 10.0	Code IRC2018/TPI2014	Matrix-MR						Weight: 14 lb	FT = 20%
LUMBER-			BRACING-						
TOP CHORD 2x4	SPF No.2		TOP CHOR	D	Structu	ural wood	sheathing di	rectly applied or 3-10-	15 oc purlins,

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

 TOP CHORD
 2x4 SPF No.2

 BOT CHORD
 2x4 SPF No.2

 WEBS
 2x4 SPF No.2

 WEDGE
 Left: 2x4 SPF No.2

REACTIONS. (size) 7=Mechanical, 2=0-3-8

Max Horz 2=67(LC 9) Max Uplift 7=-39(LC 12), 2=-25(LC 12) Max Grav 7=209(LC 1), 2=289(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-0-5, Interior(1) 2-0-5 to 3-10-15 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) Refer to girder(s) for truss to truss connections.

- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 2.
- 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

	[2.0-0-1,0-0-3], [2.0-0-3,0-3-0], [2.0-3-0	,Lugej			
LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.07 BC 0.04 WB 0.00 Matrix-MP	DEFL. in (loc) Vert(LL) -0.00 9 Vert(CT) -0.00 9 Horz(CT) 0.00 2	l/defl L/d >999 240 >999 180 n/a n/a	PLATES GRIP MT20 197/144 Weight: 8 lb FT = 20%
LUMBER- TOP CHORD 2x4 S	PF No.2		BRACING- TOP CHORD Structur	ral wood sheathing dire	ectly applied or 1-10-15 oc purlins,

JI CHORD WEBS 2x4 SPF No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEDGE

Left: 2x4 SPF No.2

REACTIONS. (size) 2=0-3-8, 5=Mechanical

Max Horz 2=48(LC 11) Max Uplift 2=-24(LC 12), 5=-16(LC 12) Max Grav 2=200(LC 1), 5=75(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) Refer to girder(s) for truss to truss connections.

- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 5.
- 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOADING	i (psf)	SPACING- 2-0-0	CSI.	DEFL. i	n (loc) l/defl L/d	PLATES GRIP	
TCLL	25.0	Plate Grip DOL 1.15	TC 0.07	Vert(LL) -0.0	0 9 >999 240	MT20 197/144	
TCDL	20.0	Lumber DOL 1.15	BC 0.04	Vert(CT) -0.0	0 9 >999 180		
BCLL	0.0	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.0) 2 n/a n/a		
BCDL	10.0	Code IRC2018/TPI2014	Matrix-MP			Weight: 9 lb FT = 20%	
LUMBER				BRACING-			
TOP CHO	RD 2x4 SPI	F No.2		TOP CHORD	Structural wood sheathing di	rectly applied or 2-3-11 oc purlins,	
BOT CHO	RD 2x4 SPI	F No.2			except end verticals.		
WEBS	2x4 SPI	F No.2		BOT CHORD	Rigid ceiling directly applied	or 10-0-0 oc bracing.	

WEDGE Left: 2x4 SPF No.2

REACTIONS. (size) 6=Mechanical, 2=0-3-8

Max Horz 2=55(LC 11) Max Uplift 6=-22(LC 12), 2=-23(LC 12) Max Grav 6=112(LC 1), 2=207(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) Refer to girder(s) for truss to truss connections.

- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2.
- 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Left: 2x4 SPF No.2

REACTIONS. (size) 6=Mechanical, 2=0-3-8

Max Horz 2=93(LC 11) Max Uplift 6=-41(LC 12), 2=-29(LC 12) Max Grav 6=230(LC 1), 2=309(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 4-3-11 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) Refer to girder(s) for truss to truss connections.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2.
- 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

BOT CHORD

Rigid ceiling directly applied.

 TOP CHORD
 2x4 SPF No.2

 BOT CHORD
 2x4 SPF No.2

 WEBS
 2x4 SPF No.2

 WEDGE
 Left: 2x4 SPF No.2

REACTIONS. (size) 4=Mechanical, 2=0-3-8, 5=Mechanical Max Horz 2=128(LC 12) Max Uplift 4=-54(LC 12), 2=-24(LC 12), 5=-15(LC 12) Max Grav 4=204(LC 1), 2=433(LC 1), 5=139(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 6-4-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) Refer to girder(s) for truss to truss connections.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2, 5.
- 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LUMBER-TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 WEDGE

 BRACING

 TOP CHORD
 Structural wood sheathing directly applied or 3-10-15 oc purlins, except end verticals.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

Left: 2x4 SPF No.2

REACTIONS. (size) 6=Mechanical, 2=0-3-8

Max Horz 2=85(LC 11) Max Uplift 6=-37(LC 12), 2=-28(LC 12) Max Grav 6=208(LC 1), 2=288(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-10-15 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) Refer to girder(s) for truss to truss connections.

- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2.
- 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

ID:clow4YIgf7iox0?Iy?5BCcz33zm-Sq6wnmiB50jZwmZrPrJufEGp8PMSHXO3LdRKuYyDLSZ

Scale = 1:10.7

2x4 || ⁴

6

						1-7-7 1-7-7						
LOADING (ps	osf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 25	5.0	Plate Grip DOL	1.15	TC	0.03	Vert(LL)	-0.00	6	>999	240	MT20	197/144
TCDL 20	0.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	-0.00	6	>999	180		
BCLL 0	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.00	4	n/a	n/a		
BCDL 10	0.0	Code IRC2018/TF	PI2014	Matri	x-MR						Weight: 5 lb	FT = 20%

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 1-7-7 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 4=Mechanical, 6=Mechanical Max Horz 6=42(LC 9) Max Uplift 4=-15(LC 12), 6=-2(LC 12)

Max Grav 4=69(LC 1), 6=79(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Refer to girder(s) for truss to truss connections.

- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 6.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

2x4 SPF No.2 TOP CHORD BOT CHORD 2x4 SPF No.2

WEBS 2x4 SPF No.2

REACTIONS. 5=Mechanical, 6=Mechanical (size) Max Horz 6=80(LC 9) Max Uplift 5=-36(LC 12), 6=-6(LC 12)

Max Grav 5=193(LC 1), 6=175(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) Refer to girder(s) for truss to truss connections.

- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 6.
- 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 3-7-7 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing

except end verticals.

Plate Off	cote (X V)	[2.0-0-1 0-0-3] [2.0-0-3 (-5-01 [2.0-3-8	Edgel								
	sets (X, I)	[2.0-0-1,0-0-3], [2.0-0-3,	-5-0 <u>]</u> , [2.0-5-0	,Lugej		-						
	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	25.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	-0.00	7	>999	240	MT20	197/144
TCDL	20.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	-0.00	7	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code IRC2018/TI	PI2014	Matri	x-MP						Weight: 7 lb	FT = 20%
)_					BRACING						

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEDGE Left: 2x4 SPF No.2

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 1-10-15 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=49(LC 12) Max Uplift 3=-23(LC 12), 2=-18(LC 12) Max Grav 3=60(LC 1), 2=201(LC 1), 4=35(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) Refer to girder(s) for truss to truss connections.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.

LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 BCDL 10.0		SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TF	2-0-0 1.15 1.15 YES Pl2014	CSI. TC BC WB Matri	0.22 0.20 0.00 x-MP	DEFL. Vert(LL) Vert(CT) Horz(CT)	0.02 -0.03 0.01	(loc) 5-8 5-8 1	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 12 lb	GRIP 197/144 FT = 20%	
LUMBER- TOP CHORD 2 BOT CHORD 2	2x4 SPF	No.2				BRACING- TOP CHOF	D	Structu	ral wood	sheathing dir	ectly applied or 3-10-	15 oc purlins,	

 TOP CHORD
 2x4 SPF No.2
 TOP CHORD
 Structural wood sheathing directly applied or 3-10-15 oc prescript end verticals.

 BOT CHORD
 2x4 SPF No.2
 BOT CHORD
 BOT CHORD
 Structural wood sheathing directly applied or 3-10-15 oc prescript end verticals.

 WEBS
 2x4 SPF No.2
 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

 WEDGE
 WEDGE
 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

Left: 2x4 SPF No.2

REACTIONS. (size) 5=Mechanical, 1=0-3-8

Max Horz 1=78(LC 11) Max Uplift 5=-39(LC 12), 1=-9(LC 12) Max Grav 5=217(LC 1), 1=200(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 3-10-15 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) Refer to girder(s) for truss to truss connections.

- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 1.
- 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Plate Off	sets (X,Y)	[2:0-0-1,0-0-3], [2:0-0-3,0-5-0], [2:0	-3-8,Edge]	
LOADIN	G (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d PLATES GRIP
TCLL	25.0	Plate Grip DOL 1.15	TC 0.21	Vert(LL) -0.01 4-7 >999 240 MT20 197/144
TCDL	20.0	Lumber DOL 1.15	BC 0.17	Vert(CT) -0.02 4-7 >999 180
BCLL	0.0	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.01 2 n/a n/a
BCDL	10.0	Code IRC2018/TPI2014	Matrix-MP	Weight: 11 lb FT = 20%
	_			

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEDGE Left: 2x4 SPF No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-8-12 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=81(LC 12) Max Uplift 3=-48(LC 12), 2=-20(LC 12) Max Grav 3=135(LC 1), 2=290(LC 1), 4=73(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-8-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) Refer to girder(s) for truss to truss connections.

- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

2x4 ||

Rigid ceiling directly applied or 10-0-0 oc bracing.

1-7-11
1-7-11

BOT CHORD

ate Offsets (X,Y)	[2:0-0-1,0-0-3], [2:0-0-3,0-5-0], [2:0-3-8	,Edge]		
OADING (psf) CLL 25.0 CDL 20.0 SCLL 0.0 SCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. TC 0.07 BC 0.03 WB 0.00 Matrix-MP	DEFL. in (loc) l/defl L/d PLATES Vert(LL) -0.00 9 >999 240 MT20 Vert(CT) -0.00 9 >999 180 MT20 Horz(CT) 0.00 2 n/a n/a Weight: 7 I	GRIP 197/144 DFT = 20%
L UMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S	SPF No.2 SPF No.2		BRACING- TOP CHORD Structural wood sheathing directly applied or 1- except end verticals.	7-11 oc purlins,

3x8 Ш

BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 WEDGE

Left: 2x4 SPF No.2

REACTIONS. (size) 2=0-3-8, 5=Mechanical

Max Horz 2=43(LC 11) Max Uplift 2=-24(LC 12), 5=-13(LC 12) Max Grav 2=188(LC 1), 5=57(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) Refer to girder(s) for truss to truss connections.

- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 5.
- 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

	[2:0 0 1,0 0 0], [2:0 0 0,0 0 0], [2:0 0 0,	Edgoj		
LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr VES	CSI. TC 0.07 BC 0.03 WB 0.00	DEFL. in (loc) l/defl L/d Vert(LL) -0.00 9 >999 240 Vert(CT) -0.00 9 >999 180 Horz(CT) -0.00 2 n/a	PLATES GRIP MT20 197/144
BCDL 10.0	Code IRC2018/TPI2014	Matrix-MP		Weight: 7 lb FT = 20%
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S	SPF No.2	1	BRACING- TOP CHORD Structural wood sheathing except end verticals	directly applied or 1-7-11 oc purlins,

WEBS 2x4 SPF No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing WEDGE

Left: 2x4 SPF No.2

REACTIONS. (size) 2=0-3-8, 5=Mechanical

Max Horz 5=43(LC 11) Max Uplift 2=-24(LC 12), 5=-13(LC 12) Max Grav 2=188(LC 1), 5=57(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) Refer to girder(s) for truss to truss connections.

- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 5.
- 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

3) Refer to girder(s) for truss to truss connections.

4) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d PLATES GRIP Vert(LL) 0.16 6 >444 240 MT20 197/144
TCLL 25.0	Plate Grip DOL 1.15	TC 0.88	
TCDL 20.0 BCLL 0.0	Lumber DOL 1.15	BC 0.30	Vert(CT) -0.30 6 >235 180
	Rep Stress Incr YES	WB 0.05	Horz(CT) 0.09 5 n/a n/a
BCDL 10.0		Matrix-AS	Weight: 19 lb F I = 20%

LUMBER-

 TOP CHORD
 2x4 SPF No.2

 BOT CHORD
 2x4 SPF No.2 *Except*

 2-6: 2x6 SPF No.2

 WEBS
 2x4 SPF No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied. Rigid ceiling directly applied.

REACTIONS. (size) 4=Mechanical, 2=0-3-8, 5=Mechanical Max Horz 2=123(LC 12) Max Uplift 4=-86(LC 12), 2=-23(LC 12) Max Grav 4=292(LC 1), 2=411(LC 1), 5=58(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 5-11-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) Refer to girder(s) for truss to truss connections.
- 4) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Fovide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.
 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

			F		3-3-8	I		2-8-	8			
Plate Off	fsets (X,Y)	[2:0-2-9,0-1-8]										
LOADIN	G (psf)	SPACING- 2	-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	25.0	Plate Grip DOL	1.15	TC	0.87	Vert(Ll	.) 0.15	6	>464	240	MT20	197/144
TCDL	20.0	Lumber DOL	1.15	BC	0.31	Vert(C	Г) -0.29	6	>245	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.05	Horz(C	Ť) 0.09	5	n/a	n/a		
BCDL	10.0	Code IRC2018/TPI20)14	Matriz	x-AS						Weight: 19 lb	FT = 20%

LUMBER-

 TOP CHORD
 2x4 SPF No.2

 BOT CHORD
 2x4 SPF No.2 *Except*

 2-6: 2x6 SPF No.2

 WEBS
 2x4 SPF No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied. Rigid ceiling directly applied.

 REACTIONS.
 (size)
 4=Mechanical, 2=0-3-8, 5=Mechanical

 Max Horz
 2=123(LC 12)
 123(LC 12)

 Max Uplift
 4=-85(LC 12), 2=-23(LC 12)
 123(LC 12)

Max Grav 4=294(LC 1), 2=411(LC 1), 5=53(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 5-11-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) Refer to girder(s) for truss to truss connections.
- 4) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.
 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

			3-3-8			0-7	-7		
LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.21 BC 0.14 WB 0.02 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (lo -0.01 -0.01 6 0.00	oc) 6 6-9 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 14 lb	GRIP 197/144 FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

 TOP CHORD
 2x4 SPF No.2

 BOT CHORD
 2x4 SPF No.2 *Except*

 2-6: 2x6 SPF No.2

 WEBS
 2x4 SPF No.2

REACTIONS. (size) 4=Mechanical, 2=0-3-8, 5=Mechanical

Max Horz 2=84(LC 12) Max Uplift 4=-49(LC 12), 2=-20(LC 12)

Max Grav 4=197(LC 1), 2=299(LC 1), 5=11(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-10-3 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 3) Refer to girder(s) for truss to truss connections.
- 4) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 3-10-15 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Plate Offsets (X,Y)-- [2:0-1-15,0-0-0], [2:0-2-7,0-3-0], [5:0-0-13,0-1-10]

LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code. IRC2018/TPI2014	CSI. TC 0.09 BC 0.03 WB 0.00 Matrix-MR	DEFL. in (loc) l/defl L/d PLATES GRI Vert(LL) -0.00 5 >999 240 MT20 197 Vert(CT) -0.00 5 >999 180 Morz(CT) -0.00 3 n/a n/a	P /144 FT = 20%
LUMBER- TOP CHORD 2x4 S	PF No.2		BRACING- TOP CHORD Structural wood sheathing directly applied or 1-10-15 c	oc purlins,

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF No.2

S 2x4 SPF No.2

BOT CHORD Si ex BOT CHORD R

except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 4=Mechanical, 5=0-3-8

Max Horz 5=43(LC 12) Max Uplift 3=-26(LC 12), 5=-20(LC 12)

Max Grav 3=57(LC 1), 4=31(LC 3), 5=215(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) Refer to girder(s) for truss to truss connections.
- 4) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 5.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-3-15 to 3-3-15, Interior(1) 3-3-15 to 5-11-4, Exterior(2R) 5-11-4 to 9-10-15, Interior(1) 9-10-15 to 21-10-10, Exterior(2R) 21-10-10 to 25-10-15, Interior(1) 25-10-15 to 27-5-15 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60
- 3) Provide adequate drainage to prevent water ponding
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 15, 22, 23, 24, 25, 26, 21, 20, 19 except (jt=lb) 27=128, 28=115, 17=127, 16=115.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

19-9-14 19-9-14

Plate Offsets (X,Y)	[19:0-2-8,0-3-0]						
LOADING (psf) TCLL 25.0 TCDL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Strass Ionr VES	CSI. TC 0.08 BC 0.05 WB 0.14	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.02	n (loc) l/defl a - n/a a - n/a	L/d 999 999 p/a	PLATES MT20	GRIP 197/144
BCDL 10.0	Code IRC2018/TPI2014	Matrix-S		11 1/4	174	Weight: 112 lb	FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP	F No.2 F No.2		BRACING- TOP CHORD BOT CHORD	Structural woo Rigid ceiling di	d sheathing di rectly applied	rectly applied or 6-0-0 c or 10-0-0 oc bracing.	oc purlins.

WEBS

1 Row at midpt

6-16, 5-17, 7-15

OTHERS 2x4 SPF No.2

REACTIONS. All bearings 19-9-14.

Max Horz 1=-260(LC 8) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 11 except 1=-113(LC 10), 17=-115(LC 12), 18=-120(LC 12), 19=-119(LC 12), 20=-118(LC 12), 15=-112(LC 13), 14=-124(LC 13), 13=-116(LC 13), 12=-116(LC 13) Max Grav All reactions 250 lb or less at joint(s) 11, 16, 18, 19, 20, 14, 13, 12 except 1=270(LC 12), 17=254(LC 19), 15=251(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-374/238, 2-3=-259/194, 10-11=-333/231

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-3-15 to 3-3-15, Interior(1) 3-3-15 to 9-10-15, Exterior(2R) 9-10-15 to 12-10-15, Interior(1) 12-10-15 to 19-5-15 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are 2x4 MT20 unless otherwise indicated.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11 except (jt=lb) 1=113, 17=115, 18=120, 19=119, 20=118, 15=112, 14=121, 13=116, 12=116.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

December 2,2020

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=267(LC 19), 6=267(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. 2-8=-256/157, 4-6=-256/157 WEBS

NOTES-

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-3-15 to 3-3-15, Interior(1) 3-3-15 to 3-10-15, Exterior(2R) 3-10-15 to 6-10-15, Interior(1) 6-10-15 to 7-5-15 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=133. 6=133.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

¹⁾ Unbalanced roof live loads have been considered for this design.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-8=-256/157, 4-6=-256/157

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-3-15 to 3-3-15, Interior(1) 3-3-15 to 3-10-15, Exterior(2R) 3-10-15 to 6-10-15, Interior(1) 6-10-15 to 7-5-15 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=133, 6=133.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

STATE OF MISSOUR SCOTT M. SEVIER NUMBER PE-2001018807

December 2,2020

LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.27 BC 0.11 WB 0.05 Matrix-P	DEFL. in (I Vert(LL) n/a Vert(CT) n/a Horz(CT) -0.00	loc) l/defl - n/a - n/a 4 n/a	L/d 999 999 n/a	PLATES GRIP MT20 197/144 Weight: 23 lb FT = 20%
LUMBER-			BRACING-			

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 2x4 SPF No.2 WEBS OTHERS 2x4 SPF No.2

REACTIONS. (size) 1=7-9-12, 4=7-9-12, 5=7-9-12

Max Horz 1=133(LC 9) Max Uplift 4=-19(LC 9), 5=-89(LC 12)

Max Grav 1=129(LC 20), 4=166(LC 1), 5=489(LC 1)

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-7-9 to 3-10-4, Interior(1) 3-10-4 to 7-8-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.
- 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

December 2,2020

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-5=-400/232 WEBS

OADING	(psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	25.0	Plate Grip DOL 1.15	TC 0.64	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	20.0	Lumber DOL 1.15	BC 0.27	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr YES	WB 0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code IRC2018/TPI2014	Matrix-P						Weight: 16 lb	FT = 20%

LUMBER-

2x4 SPF No.2 TOP CHORD 2x4 SPF No.2 BOT CHORD WEBS 2x4 SPF No.2

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 5-10-4 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. 1=5-9-12, 3=5-9-12 (size) Max Horz 1=95(LC 9) Max Uplift 1=-20(LC 12), 3=-44(LC 12)

Max Grav 1=279(LC 1), 3=279(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed;

MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-7-9 to 3-7-9, Interior(1) 3-7-9 to 5-8-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate

grip DOL=1.60 2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.22 BC 0.09 WB 0.00 Matrix-P	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 10 lb	GRIP 197/144 FT = 20%
LUMBER-	-		BRACING-					

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SPF No.2

BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 2x4 SPF No.2

 WEBS
 2x4 SPF No.2

 REACTIONS.
 (size)
 1=3-9-12, 3=3-9-12

Max Horz 1=58(LC 9) Max Uplift 1=-12(LC 12), 3=-27(LC 12)

Max Grav 1=169(LC 1), 3=169(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

December 2,2020

Structural wood sheathing directly applied or 3-10-4 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

2x4 💋

2x4 📚

Rigid ceiling directly applied or 10-0-0 oc bracing.

Plate Offsets (X,Y) [2:0	-3-0,Edge]		4-3-9	1
-OADING (psf) FCLL 25.0 FCDL 20.0 BCLL 0.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYES	CSI. TC 0.05 BC 0.10 WB 0.00	DEFL. in (loc) I/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 3 n/a n/a	PLATES GRIP MT20 197/144
3CDL 10.0	Code IRC2018/TPI2014	Matrix-P		Weight: 9 lb FT = 20%

BOT CHORD

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2

REACTIONS. (size) 1=4-3-1, 3=4-3-1 Max Horz 1=-12(LC 13) Max Uplift 1=-12(LC 12), 3=-12(LC 13) Max Grav 1=169(LC 1), 3=169(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed;

- MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right
- exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

