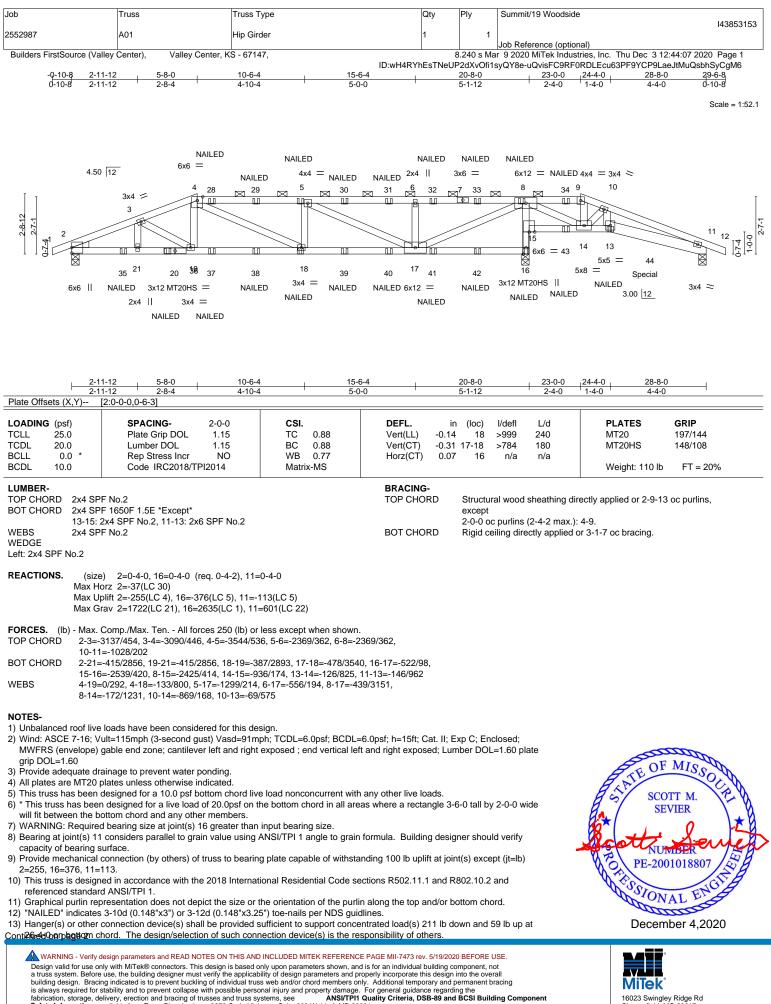


MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

Re: 2552987 Summit/19 Woodside

The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Builders FirstSource (Valley Center).

Pages or sheets covered by this seal: I43853153 thru I43853246


My license renewal date for the state of Missouri is December 31, 2021.

Missouri COA: Engineering 001193

December 4,2020

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Qu Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

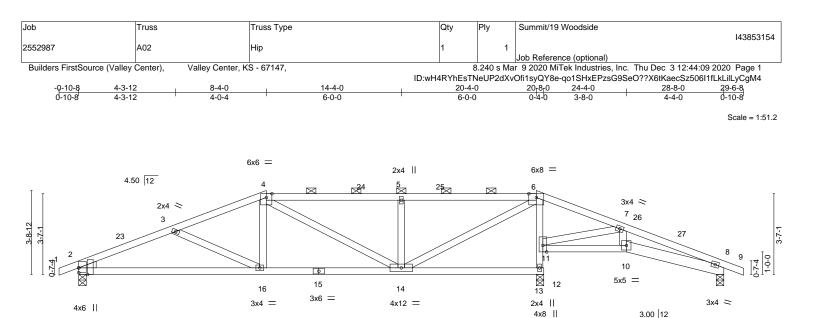
16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Summit/19 Woodside
					143853153
2552987	A01	Hip Girder	1	1	
					Job Reference (optional)
Builders FirstSource (Valley Center), Valley Center, KS - 67147,			8.240 s Mar 9 2020 MiTek Industries, Inc. Thu Dec 3 12:44:07 2020 Page 2		

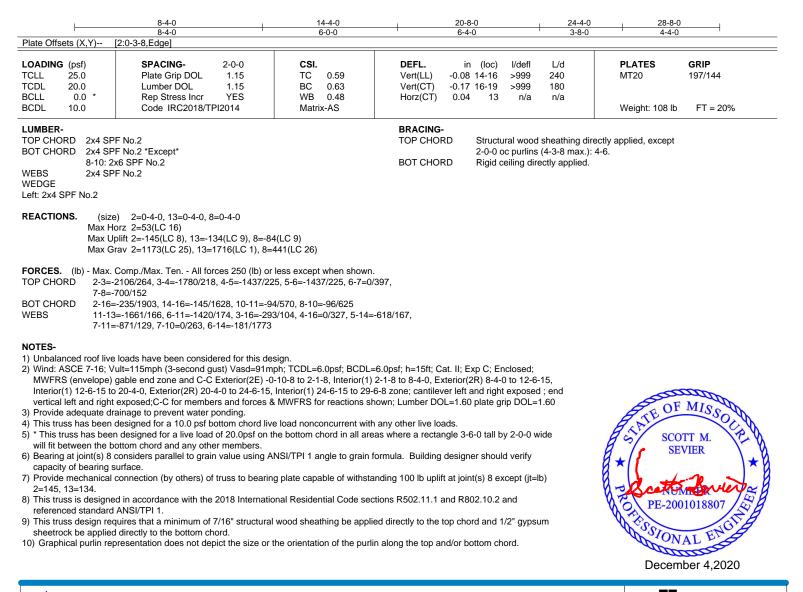
ID:wH4RYhEsTNeUP2dXvOfi1syQY8e-uQvisFC9RF0RDLEcu63PF9YCP9LaeJtMuQsbhSyCgM6

NOTES-

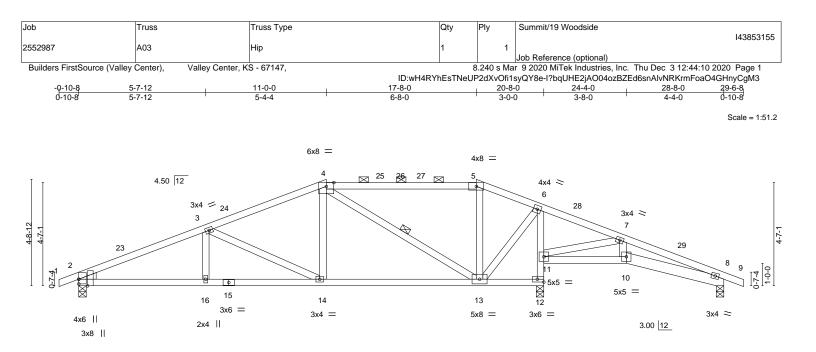
14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).


LOAD CASE(S) Standard

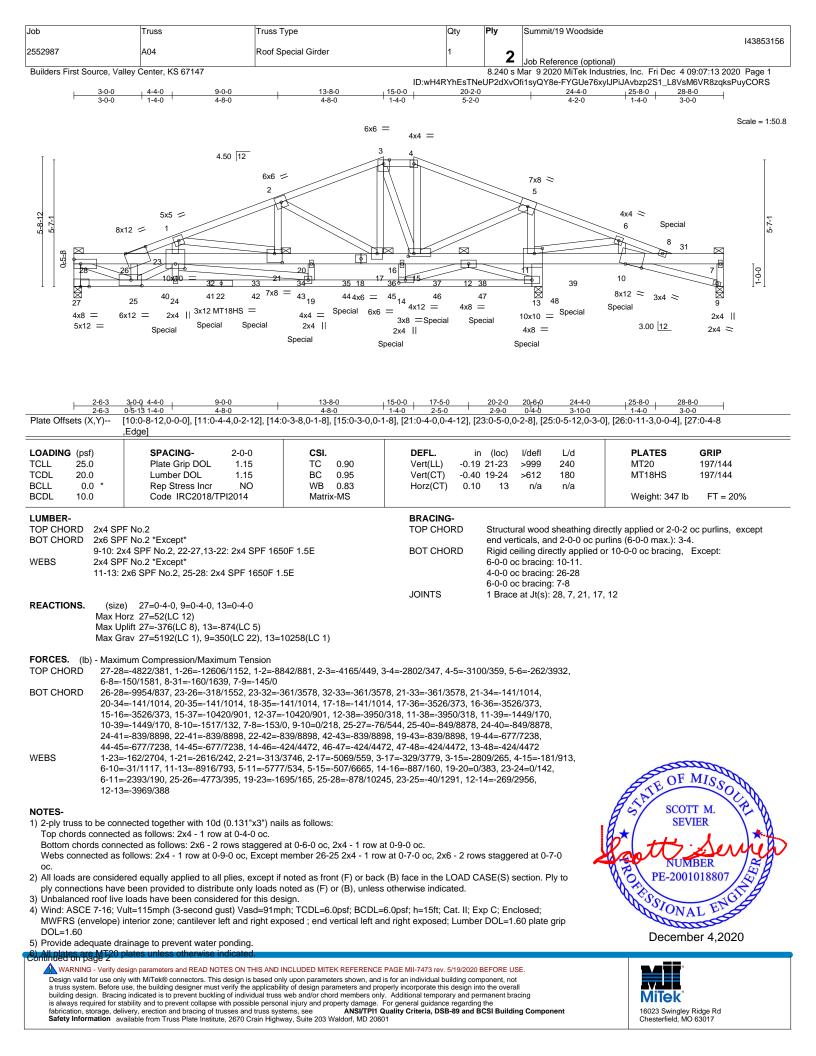
- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)
- Vert: 1-4=-90, 4-9=-90, 9-12=-90, 16-22=-20, 13-15=-20, 13-25=-20


Concentrated Loads (lb)

Vert: 16=-38(F) 8=-60(F) 13=-171(F) 18=-38(F) 5=-60(F) 28=-60(F) 29=-60(F) 30=-60(F) 31=-60(F) 32=-60(F) 33=-60(F) 34=-27(F) 35=-189(F) 36=-183(F) 37=-38(F) 38=-38(F) 39=-38(F) 40=-38(F) 41=-38(F) 42=-38(F) 43=-75(F) 44=-211(F)



3x8 ||



1	5-7-12 11-0-) _	17-8-0	20-8-0	24-4-0	28-8-0			
	5-7-12 5-4-4		6-8-0	3-0-0	3-8-0	4-4-0			
Plate Offsets (X,Y)	[2:0-3-8,Edge], [12:Edge,0-1-8]								
LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.73 BC 0.56 WB 0.35 Matrix-AS	Vert(LL) -0.07	n (loc) l/defl 7 14-16 >999 5 14-16 >999 5 12 n/a	L/d 240 180 n/a	PLATES GRIP MT20 197/144 Weight: 113 lb FT = 20%			
			BRACING- TOP CHORD BOT CHORD WEBS		(5-5-7 max.): 4- ectly applied.				
Max H Max U	e) 2=0-4-0, 12=0-4-0, 8=0-4-0 lorz 2=69(LC 16) plift 2=-141(LC 8), 12=-107(LC 9), 8=- rav 2=1171(LC 25), 12=1711(LC 1), 8								
TOP CHORD 2-3=- BOT CHORD 2-16= 10-17 WEBS 3-14=	FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2070/230, 3-4=-1463/200, 4-5=-523/150, 5-6=-569/139, 6-7=0/364, 7-8=-702/170 BOT CHORD 2-16=-219/1861, 14-16=-219/1861, 13-14=-104/1292, 11-12=-1734/111, 6-11=-1460/99, 10-11=-111/581, 8-10=-113/627								
 2) Wind: ASCE 7-16; WMWFRS (envelope) Interior(1) 15-2-15 tt end vertical left and DOL=1.60 3) Provide adequate di 4) This truss has been b) * This truss has been will fit between the b 6) Bearing at joint(s) 8 capacity of bearing s 7) Provide mechanical 2=141, 12=107. 8) This truss is designed referenced standard 9) This truss design re- sheetrock be applied 	connection (by others) of truss to bear ed in accordance with the 2018 Internat	nph; TCDL=6.0psf; BCDL 0-10-8 to 2-1-8, Interior(1) 5, Interior(1) 21-10-15 to rces & MWFRS for reaction we load nonconcurrent with the bottom chord in all are ANSI/TPI 1 angle to grain ing plate capable of withsta ional Residential Code se al wood sheathing be appl) 2-1-8 to 11-0-0, Exterio 29-6-8 zone; cantilever le ins shown; Lumber DOL- h any other live loads. eas where a rectangle 3- formula. Building desigr anding 100 lb uplift at join ctions R502.11.1 and R8 ied directly to the top cho	r(2R) 11-0-0 to 15 eft and right expos =1.60 plate grip 6-0 tall by 2-0-0 v her should verify nt(s) 8 except (jt= 802.10.2 and ord and 1/2" gyps	sed ; [^] vide lb)	SCOTT M. SEVIER NUMBER PE-2001018807 December 4,2020			
WARNING - Verify	design parameters and READ NOTES ON THIS A		CE PAGE MII-7473 rev. 5/19/202	20 BEFORE USE.					

Job	Truss	Truss Type	Qty	Ply	Summit/19 Woodside	
					143853156	
2552987	A04	Roof Special Girder	1	2		
				–	Job Reference (optional)	
Builders First Source, Valley Center, KS 67147			8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Dec 4 09:07:13 2020 Page 2			

8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Dec 4 09:07:13 2020 Page 2 ID:wH4RYhEsTNeUP2dXvOfi1syQY8e-FYGUe76xyIJPiJAvbzp2S1_L8VsM6VR8zqksPuyCORS

NOTES-

- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members
- 9) Bearing at joint(s) 27, 9, 13 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 376 lb uplift at joint 27 and 874 lb uplift at joint 13.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 699 lb down and 68 lb up at 26-0-12 on top chord, and 1099 lb down and 148 lb up at 4-0-12, 1099 lb down and 147 lb up at 6-0-12, 1099 lb down and 145 lb up at 8-0-12, 1099 lb down and 142 lb up at 10-0-12, 1099 lb down and 139 lb up at 12-0-12, 1141 lb down and 138 lb up at 14-0-12, 1141 lb down and 138 lb up at 16-0-12, 1141 lb down and 138 lb up at 18-0-12, 1141 lb down and 138 lb up at 20-0-12, and 665 lb down and 117 lb up at 22-0-12, and 689 lb down and 118 lb up at 24-2-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S)

nued on page 3

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 3-26=-90, 3-4=-90, 4-8=-90, 26-28=-160, 10-11=-20, 7-8=-20, 9-10=-111, 25-27=-160, 13-25=-20 Concentrated Loads (lb) Vert: 10=-643(B) 11=-1099(B) 23=-1099(B) 31=-666(B) 32=-1099(B) 33=-1099(B) 34=-1099(B) 35=-1099(B) 36=-1099(B) 37=-1099(B) 38=-1099(B) 38 2) Dead + 0.75 Roof Live (balanced) + 0.75 Uninhab. Attic Storage: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 3-26=-78, 3-4=-78, 4-8=-77, 26-28=-135, 10-11=-20, 7-8=-20, 9-10=-99, 25-27=-135, 13-25=-20 Concentrated Loads (lb) Vert: 10=-672(B) 11=-1141(B) 23=-967(B) 31=-591(B) 32=-967(B) 33=-967(B) 34=-967(B) 35=-967(B) 36=-1141(B) 37=-1141(B) 38=-1141(B) 39=-583(B) 3) Dead + Uninhabitable Attic Without Storage: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90 Uniform Loads (plf) Vert: 3-26=-40, 3-4=-40, 4-8=-40, 26-28=-60, 10-11=-20, 7-8=-20, 9-10=-61, 25-27=-60, 13-25=-20 Concentrated Loads (lb) Vert: 10=-468(B) 11=-783(B) 23=-783(B) 31=-501(B) 32=-783(B) 33=-783(B) 34=-783(B) 35=-783(B) 36=-783(B) 37=-783(B) 38=-783(B) 39=-468(B) 4) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 3-26=22, 3-4=25, 4-8=13, 26-28=-13, 10-11=-12, 7-8=-12, 9-10=-19, 25-27=-13, 13-25=-12 Horz: 27-28=11, 3-26=-34, 4-8=25, 7-9=16, 9-10=5 Concentrated Loads (lb) Vert: 10=77(B) 11=102(B) 23=112(B) 31=40(B) 32=111(B) 33=109(B) 34=106(B) 35=103(B) 36=102(B) 37=102(B) 38=102(B) 39=81(B) 5) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 3-26=13, 3-4=25, 4-8=22, 26-28=-13, 10-11=-12, 7-8=-12, 9-10=-19, 25-27=-13, 13-25=-12 Horz: 27-28=-16, 3-26=-25, 4-8=34, 7-9=-11, 9-10=5 Concentrated Loads (lb) Vert: 10=77(B) 11=102(B) 23=112(B) 31=34(B) 32=111(B) 33=109(B) 34=106(B) 35=103(B) 36=102(B) 37=102(B) 38=102(B) 39=81(B) 30=102(B) 30=100(B) 30= 6) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 3-26--16, 3-4=-14, 4-8=-25, 26-28=-71, 10-11=-20, 7-8=-20, 9-10=-67, 25-27=-71, 13-25=-20 Horz: 27-28=22, 3-26=-24, 4-8=15, 7-9=6, 9-10=-5 Concentrated Loads (lb) Vert: 10=118(B) 11=138(B) 23=148(B) 31=65(B) 32=147(B) 33=145(B) 34=142(B) 35=139(B) 36=138(B) 37=138(B) 38=138(B) 39=117(B) 7) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 3-26=-25, 3-4=-14, 4-8=-16, 26-28=-71, 10-11=-20, 7-8=-20, 9-10=-67, 25-27=-71, 13-25=-20 Horz: 27-28=-6, 3-26=-15, 4-8=24, 7-9=-22, 9-10=-5 Concentrated Loads (lb) Vert: 10=118(B) 11=138(B) 23=148(B) 31=59(B) 32=147(B) 33=145(B) 34=142(B) 35=139(B) 36=138(B) 37=138(B) 38=138(B) 39=117(B) 8) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 3-26=25, 3-4=9, 4-8=9, 26-28=-13, 10-11=-12, 7-8=-12, 9-10=-19, 25-27=-13, 13-25=-12 Horz: 27-28=6, 3-26=-37, 4-8=21, 7-9=14, 9-10=5 Concentrated Loads (lb) Vert: 10=77(B) 11=102(B) 23=112(B) 31=43(B) 32=111(B) 33=109(B) 34=106(B) 35=103(B) 36=102(B) 37=102(B) 38=102(B) 36=102(B) 36=100(B) 36 39=81(B) 9) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 3-26=9, 3-4=9, 4-8=25, 26-28=-13, 10-11=-12, 7-8=-12, 9-10=-19, 25-27=-13, 13-25=-12 Horz: 27-28=-14, 3-26=-21, 4-8=37, 7-9=-6, 9-10=5 Concentrated Loads (lb) Vert: 10=77(B) 11=102(B) 23=112(B) 31=32(B) 32=111(B) 33=109(B) 34=106(B) 35=103(B) 36=102(B) 37=102(B) 38=102(B) 39=81(B) 10) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 3-26=14, 3-4=4, 4-8=4, 26-28=-13, 10-11=-12, 7-8=-12, 9-10=-19, 25-27=-13, 13-25=-12 Horz: 27-28=6, 3-26=-26, 4-8=16, 7-9=14, 9-10=5 Concentrated Loads (lb) Vert: 10=77(B) 11=102(B) 23=112(B) 31=46(B) 32=111(B) 33=109(B) 34=106(B) 35=103(B) 36=102(B) 37=102(B) 38=102(B) 39=81(B) 11) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60

Note Add Add Society Grant Society Control Society Contro Society Control <th< th=""><th>Job</th><th>Truss</th><th>Truss Type</th><th>Qty</th><th>Ply</th><th>Summit/19 Woodside</th><th></th></th<>	Job	Truss	Truss Type	Qty	Ply	Summit/19 Woodside	
Advances for a factoring. Under the Control of Control	2552087	404	Roof Special Girder	1			143853156
b c c c c c c c c c c c c c c c c c c c				1			
Low Constraints Unification of the second s	Builders First Source, Vall	ley Center, KS 67147		ID:wH4RYbEsTN			
Unitable Lases (p) Wet 53-41, 34-4, 44, 44, 28, 28, 73-40, 45, 10, 41-12, 74-12, 91-0-13, 25-27-13, 13-25-12 Wet 51-767(8) 11-1028, 52-128, 33-40(8) 32-11(8) 33-100(8) 34-100(8) 35-100				ID.WHATTEOTT			
Ver. 32-bit., 32-bit., 42-bit., 42-bit., 42-bit., 42-bit., 42-bit., 11-bit. Construct 20:20:11, 20:20:11, 42:20:11, 42:11, 72:80:10, 11-bit., 72:80:10, 10:80:10:10(8), 35-100(8), 35-1							
Concentrated Loads (b) Weit 10.776 [11-10.028 [3.2-11.028 [3.2-11.028 [3.2-10.028 [3.	u /	4, 3-4=4, 4-8=14, 26-2	28=-13, 10-11=-12, 7-8=-12, 9-10=-19, 25-2	7=-13, 13-25=-12			
Ver. 1(ar/16) 11-10(28) 22-11(28) 13-10(8) 32-11(18) 33-10(8) 33-10(8) 33-10(8) 32-10(28) 32-10(28) 33-10(26, 7-9=-6, 9-10=5				
 [12] Dead + 0.5 MVRFS Wind (Nog. Internal) for Parallel: Lumber Increases 1.00. Public PC 202: 71, 13:25-20. Public PC 202: 71, 14:21, 72, 72-13:25-12. Public PC 202: 72, 72-13:		()	2(B) 31=40(B) 32=111(B) 33=109(B) 34=10	6(B) 35=103(B) 36=102	P(B) 37=1	02(B) 38=102(B) 39=81(B)	
 Vert. 328-14.3, 43-40, 44-30, 282.877, 10-11-20, 74-20, 9-10-67, 25.27-71, 13-25-20 Metter 237, 417, 328-26, 44-01, 74-3, 110-75 Metter 248, 44-01, 74-3, 110-75 Metter 248, 44-01, 74-3, 110-75 Metter 248, 74-75 Metter 248, 74-76 Metter 248, 74-76<td></td><td></td><td></td><td></td><td>L(D) 01 - 1</td><td>02(0) 00=102(0) 00=01(0)</td><td></td>					L(D) 01 - 1	02(0) 00=102(0) 00=01(0)	
 Hot: 27:24-17, 258-25, 258-26, 44-50, 74-28, 3-51-56 Concentrated Loads (b) Jose + 05.MVFR3 Vind (Nog. Internal) 2nd Paneliet: Lunder Increase-1.50, Plate Increase-1.50, Vent 5: 258-30, 44-30, 458-14, 25:238-27, 10-11-20, 74-20, 9-10-57, 25:278-71, 13:258-20 Vent 5: 258-30, 24-30, 458-14, 25:238-71, 10-11-20, 74-20, 9-10-57, 25:278-71, 13:258-30 Vent 5: 10-1100 (J) Vent 5: 10-1100 (J) Seet 4: 10-1100 (J) See		14 2 4 20 4 9 20	26 29 71 10 11 20 7 9 20 0 10 67	25 27 71 12 25 20			
Concentrated Loads (b) Wet 10-108(1) 11-108(0) 23-140(0) 31-60(0) 32-147(0) 33-142(0) 34-142(0) 34-130(0) 36-130(0) 38-130(0) 38-130(0) 38-117(0) Wet 32-26-30, 3430, 4442, 44-14, 262-87-17, 11-120, 7-8-20, 9-10-67, 25-27-71, 13-25-20 Hot: 27-28-3, 3330, 4430, 4442, 262-87-17, 11-120, 7-8-20, 9-10-67, 25-27-71, 13-25-20 Hot: 27-28-3, 3330, 4430, 4820, 27-87, 31-46(0) 34-142(0) 34-130(0) 34-130(0) 38-138(0) 37-138(0) 38-138(0) 38-138(0) 38-137(0) 38-137(0) 38-137(0) 38-137(0) 38-138(0) 38-138(0) 38-137(25-27=-71, 15-25=-20			
 13) Dead + 0.5 MWFRS Wind (Neg. Initianal) 2:rd Parallel: Lumber Increases-1.60 Vett. 3: 2:rd - 3:rd - 4:rd -	Concentrated Loads	s (lb)					
 Lundom Lacks (p) Vert. 32–33, 34–30, 44–34, 28 28–71, 10-11=20, 7-8–20, 9-10–67, 25-27–71, 13-25–20 Huz, 27, 728–3, 33–70, 44–35, 73–71, 9-10–5 Vert. 10-1189, 11-1280, 125–1489, 13-536, 323–547, 93, 35–140, 48–35, 73–71, 93–71, 93–71, 93, 95–10, 94–73, 93, 91–71, 93, 91–71, 93 Jead + Uninhababie Attric Storage: Lumber Increase=0.90, Plate In					38(B) 37=	138(B) 38=138(B) 39=117(B)	
 Horz: 77:28-3. 32:82-10. 44-82.6, 79-877, 9-10-5 Concentrated Loads (to) Vert: 10-415(8): 11-132(8): 22-414(8): 31-63(8): 32-4142(8): 33-143(8): 36-130(8): 38-138(8): 38-138(8): 38-138(8): 38-138(8): 39-137(8) Vert: 32:82-40, 34-40, 48-640, 22:82-80, 10.11-20, 78-20, 9-10-61, 25:27-80, 13:25-20 Concentrated Loads (to) Vert: 32:82-40, 34-40, 48-640, 22:827(8): 31-63(8): 33-572(8): 33-572(8): 35-672(8): 35-63(8): 39-634(8): 3	,	, wind (rog. mornal)		1010000-1.00			
Concentrated Loads (N) Vert: 014(8) 11-133(8) 23-148(8) 31-65(8) 32-147(8) 33-145(8) 34-142(8) 35-138(8) 33-138(8) 33-138(8) 38-137(8) 38-137(8) 38-138(8) 38-117(8) Vert: 04-8-0, 75-8-0, 94-0, 45-8-0, 95-8-0, 91-11-20, 7-8-20, 91-0-61, 32-52-20 Concentrated Loads (N) Vert: 0-477(8) 11-0404(8) 23-572(8) 31-368(8) 32-572(8) 33-572(8				25-27=-71, 13-25=-20			
 Vert: 10-118(9) 11-138(9) 31-58(9) 31-58(9) 32-47(9) 33-47(9) 33-47(8) 34-57(2) 35-51(9) 36-138(9) 35-138(9) 35-137(9) 35-38(9) 35-137(9) Deat - 10.76 10/10 11-90.04, 43-40, 26-28-60, 10-11-20, 74-20, 9-10-61, 25-27-60, 13-25-20 Wert: 10-477(9) 11-90.04(9) 23-572(8) 31-578(9) 33-572(9) 33-572(9) 33-572(9) 35-670(9) 37-604(9) 37-604(9) 38-604(9) 39-306(9) Uniform Loads (bf) Vert: 10-477(9) 11-90.04(9) 23-572(8) 31-578(9) 33-572(9) 33-572(9) 35-670(9) 34-572(9) 35-670(9) 37-604(9) 37-604(9) 38-604(9) 39-306(9) Uniform Loads (bf) Vert: 32-60, 34-68, 45-60, 26-28-43, 10-11-20, 75-20, 9-10-103, 25-27-43, 13-25-20 Horz: 27.28-15, 32-61, 34-511, 73-44, 9-10-4 Concentrated Loads (b) Uniform Loads (b) Vert: 32-66, 34-69, 43-66, 10-22-62, 9-10-103, 25-57(9) 38-55(9) 39-53(9) 39-53(9) Deat + 0.75 Root Live (bal) - 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60 Uniform Loads (b) Vert: 32-66, 34-58, 43-66, 10-22-82-443, 10-11-20, 75-20, 9-10-103, 25-27-443, 13-258-20 Horz: 27.28-13, 32-68, 10-04 Concentrated Loads (b) Vert: 32-66, 34-58, 43-66, 10-34-10, 72-82-44, 10-11-20, 75-20, 9-10-103, 25-27-443, 13-258-20 Horz: 27.28-13, 32-60, 10-46, 10-14-60, 75-82, 10-140, 75-82, 10-140, 25-27-443, 13-258-20 Horz: 27.28-13, 32-60, 10-46, 10-140, 10-120, 75-82, 10-140, 25-27-44, 13-258-20 Horz: 27.28-13, 32-60, 4-8-8, 79-2, 9-10-4 Concentrated Loads (b) Vert: 10-44(9) 11-450, 12-84(9) 13-16(9) 33-60(8) 34-65(8) 35-56(9) 36-55(8) 37-55(8) 38-55(8) 39-55(8) 39-63(8) Horz: 27.28-13, 32-60, 4-8-4, 79-24, 25-20, 9-10-4 Concentrated Loads (b) Vert: 10-44(9) 11-55(9) 23-63(9) 31-16(9) 32-62(9) 33-60(8) 34-55(8) 35-55(8) 33-55(8) 33-55(8) 33-55(8) 33-55(8) 33-55(8) 33-55(8) 33-55(8) 33-55(8) 33-55(8) 33-55(8			5, 7-9=-17, 9-10=-5				
Uniform Loads (p)	Vert: 10=11	18(B) 11=138(B) 23=1			88(B) 37=	138(B) 38=138(B) 39=117(B)	
Vert: 3-26=-0, 3-40, 4-8=-0, 26:26:26:0, 10-11=20, 7:8=-20, 9:10=6-1, 25:27=-00, 12:25=-20 Vert: 10=-477(18) 11=-604(8) 22=-672(8) 31=-368(8) 32=-572(8) 33=-672(8) 36=-572(8) 33=-572(8) 33=-504(8) 37=-904(8) 37=-904(8) 37=-904(8) 37=-904(8) 37=-904(8) 37=-904(8) 37=-904(8) 37=-904(8) 37=-904(8) 37=-904(8) 37=-904(8) 37=-904(8) 37=-904(8) 37=-904(8) 37=-904(8) 37=-904(8) 37=-904(8) 37=-904(8) 33=-55(8)		le Attic Storage: Lumb	per Increase=0.90, Plate Increase=0.90 Plt.	metal=0.90			
 Vert. 10:-477(B) 11:=040(B) 23:-572(B) 31:-308(B) 32:-572(B) 33:-572(B) 33:-572(B) 33:-572(B) 33:-604(B) 33:-804(B) 33:		-40, 3-4=-40, 4-8=-40,	26-28=-60, 10-11=-20, 7-8=-20, 9-10=-61,	25-27=-60, 13-25=-20			
 15) Dead + 0.75 Root Live (bal) + 0.75(0.6 MWFRS Wind (Neg. In) Left): Lumber Increase=1.60, Plate Increase=1.60 Vert: 3-28-e6), 3-4-e8, 4-8-e6, 2-28-e143, 10-11-20, 7-8-20, 9-10-e143, 25-27-e143, 15-25-e20 Hotz: 27, 728-18, 3-28-e1, 4-8-e1, 7-48-, 9-10-e4 Consentated Loads (b) Vert: 3-28-e6, 3-4-e5, 4-8-e6, 2-26-24, 10, 101-Right): Lumber Increase=1.60 Uniform Loads (p) Vert: 3-28-e6, 3-4-e5, 4-8-e6, 2-26-28-e143, 10-11-e-20, 7-8-e20, 9-10-e103, 25-27-e143, 13-25-e20 Hotz: 27, 28-e4, 3-4-e5, 4-8-e60, 25-28-e143, 10-11-e-20, 7-8-e20, 9-10-e103, 25-27-e143, 13-25-e20 Hotz: 27, 728-e1, 3-26-e11, 1-48-18, 7-6=16, 9-10-4 Concentrated Loads (b) Vert: 10-e6(B) 11-65(B) 23-e30(B) 31-f2(B) 32-e6(B) 33-e6(B) 36-56(B) 37-85(B) 38-e5(B) 38-e53(B) 39-e53(B) Vert: 10-e7(B) 11-55(D) 23-e30(B) 31-f2(B) 32-e62(B) 33-e60(B) 34-56(B) 37-85(B) 38-e53(B) 39-e53(B) Vert: 10-e7(B) 11-55(D) 23-e30(B) 31-f2(B) 32-e62(B) 33-e60(B) 34-e56(B) 37-e55(B) 37-e55(B) 38-e53(B) 39-e53(B) Vert: 3-28-e8, 3-4-e70, 4-8-e70, 26-28-143, 10-11-e20, 7-8-e20, 9-10-e103, 25-27-143, 13-25-e20 Hotz: 27, 728-13, 3-28-e2, 4-84, 7-94-2, 9-10-e4 Concentrated Loads (b) Vert: 3-28-e2, 3-36-e4, 4-20, 7-9-13, 9-10-e103, 25-27-143, 13-25-e20 Hotz: 2-27, 28-14, 3-28-e3, 4-84, 7-94-2, 9-10-e4 Concentrated Loads (b) Vert: 3-28-e10, 3-48-e3, 7-94-e3, 9-10-e4 Concentrated Loads (b) Vert: 3-28-e10, 4-48, 7, 9-48, 9-10, 26-26(B) 33-e56(B) 37-e56(B) 38-e55(B) 37-e56(B) 38-e53(B) 39-e53(B) Hotz: 2-27, 28-14, 3-28-e13, 4-10-12, 7-8-e12, 9-10-e14, 25-27-e143, 13-25-e20 Vert: 3-28-e15, 3-48-e14, 4-8-e12, 26-28-e44, 10-11-e12, 7-8-e12, 9-10-e14, 25-27-e12, 13-e12-e14, 13-e26-e16 Uniform Loads (p) Vert: 3-28-e15, 3-4-e14, 4-8-e12, 26-28-e4, 10-11							
 Uniform Loads (pf) Vert. 328-60, 34-65, 43-66, 25-28-143, 10-11-20, 7-8-20, 9-10-103, 25-27=-143, 13-25=-20 Horz. 27:28-16, 326-18, 48-61, 7.9-66, 9-10-4 Concentrated Loads (b) Vert. 10-46(B) 11-85(B) 23-85(B) 31-6(B) 32-62(B) 33-60(B) 34-68(B) 35-66(B) 38-65(B) 37-65(B) 39-63(B) 39-63(B) Vert. 329-66, 34-65, 43-66, 0, 25-28-143, 10-11-20, 7-8-20, 9-10-103, 25-27=-143, 13-25=-20 Horz. 27:28-4, 326-63, 34-65, 14, 46-61, 79-61, 69-10-4 Concentrated Loads (b) Vert. 329-66, 34-65, 34-65, 49-86, 9, 25-28-143, 10-11-20, 7-8-20, 9-10-103, 25-27=-143, 13-25=-20 Horz. 27:28-4, 326-50, 43-67, 9-28, 41-43, 10-11-20, 7-8-20, 9-10-103, 25-27=-143, 13-25=-20 Horz. 27:28-13, 326-20, 43-80, 79-31, 21(8) 33-60(B) 34-58(B) 35-56(B) 38-55(B) 37-55(B) 38-55(B) 39-63(B) Vert. 320-563, 54-870, 4-8-87, 9-28, 9-10-4 Vert. 320-563, 74-87, 9-28, 9-10-4 Vert. 320-563, 74-87, 9-28, 9-10-4 Vert. 10-46(B) 11-55(B) 23-438(B) 31-16(B) 32-62(B) 34-66(B) 34-56(B) 37-56(B) 36-55(B) 37-56(B) 38-63(B) 10-100-10245 (pl) Vert. 10-46(B) 11-55(B) 23-438(B) 31-16(B) 32-62(B) 34-66(B) 35-66(B) 37-56(B) 35-56(B) 38-63(B) 10-100-10245 (pl) Vert. 10-46(B) 11-45(B) 41-48(B) 41-10(B) 32-62(B) 33-66(B) 35-56(B) 37-56(B) 38-55(B) 37-56(B) 38-63(B) 10-100-10245 (pl) Vert. 10-46(B) 11-45(B) 41-48(B) 32-62(B) 33-60(B) 34-56(B) 35-56(B) 37-55(B) 38-55(B) 39-63(B) 10-100-10245 (pl) Vert. 10-48(B) 11-100(B) 32-26(2B) 33-60(B) 34-56(B) 36-56(B) 37-56(B) 38-55(B) 39-55(B) 39-55(B) 39-55(B) 39-55(B) 37-55(B) 37-55(B)						(B) 37=-804(B) 38=-804(B) 39=-336	3(B)
 Hor: 27:28-16, 3:26:-18, 4:8-811, 7:94, 9:10-4 Concentrate Loads (b) Vert. 10-64(B) 11-55(B) 23-63(B) 31-16(B) 32-62(B) 33-60(B) 34-56(B) 35-55(B) 35-55(B) 38-55(B) 39-63(B) Uniom Loads (p) Vert. 3:28-66, 3:4-58, 4:8-60, 26:28:-143, 10:11=:20, 7:8=-20, 9:10=:103, 25:27=-143, 13:25=-20 Hor: 27:28-4, 3:26=-11, 4:8-18, 7:9=-16, 9:10=-4 Concentrated Loads (b) Vert. 10-64(B) 11-55(B) 22-63(B) 31-12(B) 32-62(B) 33-60(B) 34-55(B) 35-55(B) 38-55(B) 38-55(B) 38-55(B) 38-55(B) 39-63(B) Didolo 11:27:27=163, 3:26=-20, 4:8-8, 7:9-2, 9:10=-4 Concentrated Loads (b) Vert. 10-64(B) 11-55(B) 22-63(B) 31-11(B) 32-62(B) 33-60(B) 34-58(B) 35-56(B) 36-55(B) 37-55(B) 38-55(B) 39-63(B) Dead + 0.75, Roof Live (bal) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (p) Vert. 3:28=-70, 3:4=-70, 4:8=-68, 26:-28=-143, 10:11=-20, 7:8=-20, 9:10=-103, 25:27=-143, 13:25=-20 Hor: 3:28=-70, 3:4=-70, 4:8=-68, 26:-28=-143, 10:11=-20, 7:8=-20, 9:10=-103, 25:27=-143, 13:25=-20 Hor: 3:28=-70, 3:4=-70, 4:8=-68, 26:-28=-143, 10:11=-20, 7:8=-20, 9:10=-103, 25:27=-143, 13:25=-20 Hor: 3:28=-70, 3:4=-70, 4:8=-68, 26:-28=-143, 10:11=-20, 7:8=-20, 9:10=-103, 25:27=-143, 13:25=-20 Hor: 3:28=-70, 3:4=-70, 4:8=-68, 26:-28=-143, 10:11=-20, 7:8=-20, 9:10=-103, 25:27=-143, 13:25=-20 Hor: 3:28=-70, 3:4=-70, 4:8=-68, 26:-28=-143, 10:11=-20, 7:8=-20, 9:10=-61, 3:2=55(B) 38=55(B) 38=55(B) 38=55(B) 39=63(B) Uniform Loads (p) Vert. 10:45(B) 11:4:21, 2:4:24, 2:4:4:24, 2:4:24, 2:4:24, 2:4:24, 2:4:24, 2:4:24, 2:4:24, 2:4:24,	,				-1.00		
Concentrated Loads (b) Wert: 10=64(8) 11=55(8) 22=62(8) 31=16(8) 32=62(8) 33=60(8) 34=58(8) 35=56(8) 36=55(8) 37=55(8) 38=55(8) 38=63(8) Wert 3: 28=66, 34=56, 34=56, 43=60, 28=28=143, 10=11=20, 78=20, 9=10=103, 25=27=143, 13=25=20 Hor: 27:28=4, 32=66, 34=56, 34=56, 73=16, 9=10=4 Concentrated Loads (b) Wert 3: 28=66, 34=7, 14, 4=81, 7>=20;(2):32=62(8) 33=62(8) 34=58(8) 35=56(8) 36=55(8) 37=55(8) 38=55(8) 39=63(8) 17) Deat + 07. Root Liv() Ba(1) + 0.75(0.6 MWFRS Wind (Neg. In) 15 Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (p) Wert 3: 28=69, 34=70, 48=70, 26=25, 143, 10=11=20, 78=20, 9=10=103, 25=27=143, 13=25=-20 Hor: 27:28=43, 32=50, 44=70, 48=70, 26=25, 143, 10=11=20, 78=20, 9=10=103, 25=27=143, 13=25=-20 Hor: 27:28=13, 3=26=20, 48=8, 74=2, 9=10= Wert 1:0=64(8) 11=55(8) 23=63(8) (31=16(8) 32=62(8) 33=60(8) 34=56(8) 36=55(8) 37=55(8) 38=55(8) 39=63(8) Wert 1:0=64(8) 11=55(8) 23=63(3) (1=116(8) 32=62(8) 33=60(8) 34=56(8) 36=55(8) 37=55(8) 38=55(8) 39=63(8) Wert 1:0=64(8) 11=56(8) 23=63(3) (1=116(8) 23=68(8) 33=60(8) 34=56(8) 36=55(8) 37=55(8) 38=55(8) 39=63(8) Uniform Loads (p) Wert 3:28=70, 34=70, 48=58, 26=28=143, 10=11=20, 78=20, 9=10=103, 25=27=143, 13=25=20 Hor: 27:28=16, 32=42, 10=11=12, 78=20, 9=10=-103, 25=27=143, 13=25=20 Hor: 27:28=16, 32=42, 10=11=12, 78=20, 9=10==103, 25=27=24, 13=25=20 Hor: 27:28=16, 32=42, 10=11=12, 78=12, 9=10=24, 25=27=24, 13=25=12 Hor: 27:28=16, 32=42, 10=11=12, 78=12, 9=10=24, 25=27=24, 13=25=12 Hor: 32:6=71, 34=12, 48=12, 26=28=24, 10=11=12, 78=12, 9=10=24, 25=27=24, 13=25=12 Hor: 32:6=71, 34=12, 48=12, 28=28=24, 10=11=12, 78=12, 9=10=24, 25=27=24, 13=25=12 Hor: 32:6=71, 34=12, 48=-15, 28=28=24, 10=11=12, 78==12, 9=10=24, 25=27=24, 13=25=12 Hor: 32:6=03, 34=00, 48=40, 62:8=160, 10=11=20, 78=20, 9=10=61, 5=27==26, 13=25=20 Concentrated Loads (b) Wert 10=45(8) 11=47(8) 23=57(18) 31=24(8) 33=55(8) 33=55(8) 33=-1099(8) 38=-1099(8) 38=-1099(8) 38=-1099(8) 38=-1099(8) 38=-1099(8) 38=-1099(8) 38=-1099(8) 38=-1099(8) 38=-1099(8) 38=-1099				3, 25-27=-143, 13-25=-	20		
 Ver. 1: 10-64(8) 11-55(8) 23-63(8) 31-16(8) 32-62(8) 33-60(8) 34-56(8) 36-55(8) 36-55(8) 38-55(8)		,, -, -	1, 7-9=4, 9-10=-4				
 Uniform Loads (pi) Vert. 3/28-63, 3/4-58, 4/8-8-60, 26-28-143, 10-11=-20, 7/8-20, 9-10e-103, 25-27=-143, 13-25=-20 Hor:: 27.28-4, 3-28=-11, 4/8-18, 7/9=-16, 9-10e-4 Concentrated Loads (b) Vert. 10-64(b) 11-55(b) 23-63(b) 31-12(b) 32-62(b) 33-60(b) 34-56(b) 35-56(b) 35-55(b) 38-55(b) 38-55(b) 39-63(b) Vert. 10-64(b) 11-55(b) 23-63(b) 31-12(b) 32-82(b) 33-60(b) 34-56(b) 35-56(b) 35-55(b) 38-55(b) 38-55(b) 39-63(b) Vert. 10-64(b) 11-55(b) 22-63(b) 31-12(b) 32-62(b) 33-60(b) 34-56(b) 35-56(b) 36-55(b) 38-55(b) 38-55(b) 38-55(b) 39-63(b) Vert. 10-64(b) 11-55(b) 22-63(b) 31-18(b) 32-62(b) 33-60(b) 34-56(b) 35-56(b) 36-55(b) 38-55(b) 38-55(b) 38-55(b) 39-63(b) Vert. 10-64(b) 11-55(b) 22-63(b) 31-18(b) 32-62(b) 33-60(b) 34-56(b) 35-56(b) 36-55(b) 38-55(b) 38-55(b) 38-55(b) 39-63(b) Vert. 10-64(b) 11-55(b) 22-63(b) 31-18(b) 32-62(b) 33-60(b) 34-56(b) 36-55(b) 37-55(b) 38-55(b) 38-55(b) 39-63(b) Vert. 10-64(b) 11-55(b) 22-63(b) 31-10(b) 32-62(b) 33-60(b) 34-56(b) 36-55(b) 37-55(b) 38-55(b) 38-	Vert: 10=64	4(B) 11=55(B) 23=63(B				55(B) 39=63(B)	
 Ver: 3/26-66, 34-58, 45-60, 25-28-143, 10-11-20, 7-8-20, 9-10103, 25-27-143, 13-25-20 Horz 72-28-4, 3/26-8-11, 48-16, 7-9-16, 9-10-4 Concentrated Loads (lb) Ver: 10-64(8) 11-55(8) 23-65(8) 31-12(8) 32-62(8) 33-60(8) 34-58(8) 35-55(8) 38-	,	ive (bal.) + 0.75(0.6 M	WFRS Wind (Neg. Int) Right): Lumber Incre	ase=1.60, Plate Increa	se=1.60		
Concentrated Loads (b) Vert: 10=64(8) 11=55(8) 23=63(8) 31=12(8) 32=62(8) 33=60(8) 34=58(8) 36=55(8) 37=55(8) 38=55(8) 39=63(8) 17) Dead + 0.75 Root Live (bal) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber increase=1.60, Plate Increase=1.60 Uniform Loads (pl) Vert: 3:26=58, 34=70, 4=8=70, 26:28=143, 10:11=-20, 7:8=20, 9:10=-103, 25:27=-143, 13:25=:20 Hor:: 27:28=13, 3:26=20, 44=6, 7:9=2, 9:10=-4 Concentrated Loads (b) Vert: 10=64(8) 11=55(8) 23=63(8) 31=15(8) 32=62(8) 33=60(8) 34=56(8) 36=55(8) 37=55(8) 38=55(8) 39=63(8) 18) Dead + 0.75 Root Live (bal) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (pl) Vert: 3:26=70, 34=70, 44=-50, 26=343, 10:11=-20, 7:8=20, 9:10=-103, 25:27=-143, 13:25=:20 Hor:: 27:28=-12, 3:26=8, 4:8=20, 7:9=13, 9:10=4 Concentrated Loads (b) Vert: 3:26=15, 3:4=72, 4:8=-52, 36:28=-143, 10:11=-20, 7:8=-20, 9:10=-103, 25:27=-143, 13:25=:20 Hor:: 27:28=16, 3:26=33(8) 31=10(8) 32=62(8) 33=60(8) 34=56(8) 36=55(8) 37=55(8) 38=55(8) 39=63(8) 19) Dead + 0.6 MWFRS Wind Min. Left: Lumber Increase=1.60. Plate Increase=1.60 Uniform Loads (pl) Vert: 3:26=15, 3:4=12, 4:8=-12, 26:28=-24, 10:11=-12, 7:8=-12, 9:10=-24, 25:27=-24, 13:25=-12 Hor:: 27:28=16, 3:26=3 Concentrated Loads (b) Vert: 3:26=12, 3:4=-12, 4:8=-12, 26:28=-24, 10:11=-12, 7:8=-12, 9:10=-24, 25:27=-24, 13:25=-12 Hor:: 27:28=16, 3:26=3 Concentrated Loads (b) Vert: 3:26=12, 3:4=-12, 4:8=-13, 26:28=-24, 10:11=-12, 7:8=-12, 9:10=-24, 25:27=-24, 13:25=-12 Hor:: 4:8=-3, 7:9=-16 Concentrated Loads (b) Vert: 3:26=90, 3:4==90, 4:8==-15, Plate Increase=1.60 Uniform Loads (pl) Vert: 3:26=90, 3:4==90, 4:8==-1, 5: Plate Increase=1.61 Uniform Loads (pl) Vert: 10=45(8(1) 11=7(8) 23=57(8) 33=-53(8) 33=-53(8) 34=-51(8) 36=-47(8) 37=-47(8) 38=47(8) 39=46(8) 21) 151 Dead + Root Live (unbalanced): Lumber Increase=-1.15, Plate Increase=1.15 Uniform Loads (pl) Vert: 10=45(8(1) 11=-109(8) 33=-1099(8) 33=-1099(8) 33=-1099(8) 35=-1099(8) 35=-1099(8) 32=-1099(8) 35=-1099	u /	-66, 3-4=-58, 4-8=-60,	26-28=-143, 10-11=-20, 7-8=-20, 9-10=-10	3, 25-27=-143, 13-25=-	20		
Vert: 10=44(b): 11=55(b): 23=62(b): 33=62(b): 33=65(c): 33=63(c): 33=63(3, 7-9=-16, 9-10=-4				
 17) Dead + 0.75 Root Live (bal) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Unform Loads (pl) Vert: 3-26=50, 3-4=-70, 4-8=-70, 26-28=-143, 10-11=-20, 7-8=-20, 9-10=-103, 25-27=-143, 13-25=-20 Horoz: 27-26=13, 3-26=-20, 4-8=-7, 7=2, 9-10=-4 Concentrated Loads (lb) Vert: 10-64(8) 11-55(8) 23=-63(8) 31=16(8) 32=-62(8) 33=-60(8) 34=-56(8) 38=-55(8) 37=-55(8) 38=-55(8) 39=-63(8) Dead + 0.75 Root Live (bal) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (pl) Vert: 3-26=-70, 3-4=-70, 4-8=-58, 26-28=-143, 10-11=-20, 7-8=-20, 9-10=-103, 25-27=-143, 13-25=-20 Horz: 27-29=2, 3-26=-8, 4-8=-00, 7-9=-13, s-10=-4 Concentrated Loads (b) Vert: 10-64(8) 11-55(8) 23=-65(8) 31=-10(8) 32=-62(8) 33=-60(8) 34=-56(8) 36=-55(8) 37=-55(8) 38=-55(8) 39=-63(8) Poed + 0.6 WWFRS Wind Min. Left: Lumber Increase=-1.60 Uniform Loads (pl) Vert: 10=46(8) MW-RS (bit Min. Left: Lumber Increase=-1.60 Uniform Loads (pl) Vert: 10=45(8) 11=-12, 26-28=-24, 10-11=-12, 7-8=-12, 9-10=-24, 25-27=-24, 13-25=-12 Horz: 27-27=16, 3-26=3 Concentrated Loads (b) Vert: 10=45(8) 11=47(8) 23=-57(8) 31=-2(8) 34=-51(8) 35=-48(8) 36=47(8) 37=47(8) 38=47(8) 39=46(8) Uniform Loads (pl) Vert: 10=45(8) 11=-12, 24=-15, 26-28=-24, 10-11=-12, 7-8=-12, 9-10=-24, 25-27=-24, 13-25=-12 Horz: 4-8=-3, 7-9=-16 Concentrated Loads (b) Vert: 10=45(8) 11=-47(8) 23=-57(8) 31=-26(8) 34=-51(8) 35=-48(8) 36=47(8) 37=47(8) 38=47(8) 39=-46(8) 11 ta Dead + Root Live (unbalanced): Lumber Increase=-1.15 Uniform Loads (pl) Vert: 10=-65(8) 11=-1099(8) 31=-699(8) 32=-1099(8) 33=-1099(8) 34=-1099(8) 35=-1099(8) 36=-1099(8) 35=-1099(8) 36=-1099(8) 37=-1099(8) 35=-1099(8) 36=-1099(8) 35=-1099(8) 36=-1099(8) 35=-1099(8) 36=-1099(8) 35=-1099(8) 36=-1099(8			3) 31=12(B) 32=62(B) 33=60(B) 34=58(B) 3	5=56(B) 36=55(B) 37=5	5(B) 38=	55(B) 39=63(B)	
Vert: 3:26=58, 3:4=70, 4:8=, 70, 26:28=-143, 10:11=20, 7:8=-20, 9:10=-103, 25:27=-143, 13:25=-20 Horz: 27:28=13, 3:268=-20, 4:8=, 7.9=2, 9:10=-4 Concentrated Loads (l0) Vert: 10=64(B) 11=55(B) 23=63(B) 31=18(B) 32=62(B) 33=60(B) 34=55(B) 35=55(B) 37=55(B) 38=55(B) 39=63(B) 18) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (pt) Vert: 3:28=70, 3:4=70, 4:4=58, 26:28=-143, 10:11=-20, 7:8=-20, 9:10=-103, 25:27=-143, 13:25=-20 Horz: 27:28=2, 3:28=8, 4:8=20, 7:9=-13, 9:10=4 Concentrated Loads (lt) Vert: 10=64(B) 11=55(B) 23=63(B) 31=10(B) 32=62(B) 33=60(B) 35=56(B) 35=55(B) 38=55(B) 38=55(B) 38=63(B) 9) Dead + 0.6 MWFRS Wind Min. Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (pt) Vert: 10=64(B) 11=47(B) 32=57(B) 31=22(B) 32=55(B) 33=53(B) 34=51(B) 36=47(B) 37=47(B) 38=47(B) 38=47(B) 39=46(B) 20) Dead + 0.6 MWFRS Wind Min. Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (pt) Vert: 10=45(B) 11=47(B) 32=57(B) 31=22(B) 32=55(B) 33=53(B) 34=51(B) 36=47(B) 37=47(B) 38=47(B) 38=47(B) 39=46(B) 20) Dead + 0.6 MWFRS Wind Min. Right: Lumber Increase=1.50 Uniform Loads (pt) Vert: 10=45(B) 11=47(B) 32=57(B) 31=24(B) 32=55(B) 33=53(B) 34=51(B) 36=47(B) 37=47(B) 38=47(B) 38=47(B) 39=46(B) 21) Tab Dead + Roof Live (unbalanc	17) Dead + 0.75 Roof Li						
Horz: 27-28=13, 3-26=20, 4-5=8, 7-5=2, 9-10=-4 Concentrated Loads (b) Vert: 10=64(8) 11=55(8) 23=63(8) 31=18(8) 32=62(8) 33=60(8) 34=56(8) 36=55(8) 37=55(8) 38=65(8) 39=63(8) 18) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 3-26=70, 3-4=70, 4-8=-58, 26-28=-143, 10-11=-20, 7-8=-20, 9-10=-103, 25-27=-143, 13-25=-20 Horz: 27-28=2, 3-26=-8, 4-8=-20, 7-9=-13, 9-10=-4 Concentrated Loads (lb) Vert: 10=64(8) 11=55(8) 23=63(8) 31=10(8) 32=62(B) 33=60(B) 34=58(B) 36=55(B) 37=55(B) 38=55(B) 39=63(B) 19) Dead + 0.6 MWFRS Wind Min. Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 3-26=-15, 3-4=-12, 4-8=-12, 26-28=-24, 10-11=-12, 7-8=-12, 9-10=-24, 25-27=-24, 13-25=-12 Horz: 27-28=16, 3-26=3 Concentrated Loads (lb) Vert: 3-26=-12, 3-4=-12, 4-8=-15, 26-28=-24, 10-11=-12, 7-8=-12, 9-10=-24, 25-27=-24, 13-25=-12 Horz: 4-8=3, 7-9=-16 Concentrated Loads (lb) Vert: 10=45(B) 11=47(B) 23=57(B) 31=22(B) 32=55(B) 33=53(B) 34=51(B) 35=48(B) 36=47(B) 37=47(B) 38=47(B) 39=46(B) 20) Dead + 0.6 MWFRS Wind Min. Right: Lumber Increase=1.60 Uniform Loads (plf) Vert: 3-26=-12, 3-4=-12, 4-8=-15, 26-28=-24, 10-11=-12, 7-8=-12, 9-10=-24, 25-27=-24, 13-25=-12 Horz: 4-9=3, 7-9=-16 Concentrated Loads (lb) Vert: 10=45(B) 11=47(B) 23=57(B) 31=24(B) 32=55(B) 33=53(B) 34=51(B) 35=48(B) 36=47(B) 37=47(B) 38=47(B) 39=46(B) 21) 15D Zead + Roof Live (unbalanced): Lumber Increase=-1.15 Uniform Loads (plf) Vert: 13-26=-03, 3-4=90, 4-8=-40, 26-28=-160, 10-11=-20, 7-8=-20, 9-10==61, 25-27=-60, 13-25=-20 Concentrated Loads (lb) Vert: 13-26=-40, 3-4==90, 4-8=-40, 26-28=-160, 10-11=-20, 7-8=-20, 9-10==61, 25-27=-60, 13-25=-20 Concentrated Loads (lb) Vert: 13-26=-40, 3-4==90, 4-8=-40, 26-28=-60, 10-11=-20, 7-8=-20, 9-10==111, 25-27=-60, 13-25=-20 Concentrated Loads (lb) Vert: 13-26=-40, 3-4==90, 4-8=-40, 26-28=-60, 10-11=-20, 7-8=-20, 9-10==111, 25-27=-60, 13-25=-20 Concentrated Loads (lb) Vert: 13-26=-40, 3-	u /	-58 3-470 4-870	26-28143 10-1120 7-820 9-1010	3 25-27143 13-25	20		
Vert: 10-e4(B) 11-55(B) 23=55(B) 33=56(B) 33=55(B) 33=54(B) 35=47(B) 37=47(B) 38=47(B) 39=46(B) 32=47(B) 32=45(B) 32=45(B) 32=45(B) 32=45(B) 32=45(B) 32=45(B) 32=45(B) 32=45(B) 32=47(B) 32=47(B) 32=46(B) 32=47(B) 32=44(B) 32=47(B)				0, 20 21 - 110, 10 20-	20		
 18) Dead + 0.75 Root Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60, Winform Loads (pl) Vert: 3-26=-70, 3-4=-70, 4-8=-58, 26-28=-143, 10-11=-20, 7-8=-20, 9-10=-103, 25-27=-143, 13-25=-20, Horz: 27-28=-2, 3-26=-8, 4-8=20, 7-9=-13, 9-10=-4 Concentrated Loads (lb) Vert: 10-64(B) 11=5(B) 23=63(B) 31=10(B) 32=62(B) 33=60(B) 34=58(B) 35=56(B) 36=55(B) 37=55(B) 38=55(B) 39=63(B) 9) Dead + 0.6 MWFRS Wind Min. Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (pl) Vert: 3-26=-15, 3-4=-12, 4-8=-12, 26-28=-24, 10-11=-12, 7-8=-12, 9-10=-24, 25-27=-24, 13-25=-12 Horz: 27-28=16, 3-26=-3 Concentrated Loads (lb) Vert: 10=45(B) 11=47(B) 23=57(B) 31=22(B) 32=55(B) 33=53(B) 34=51(B) 35=48(B) 36=47(B) 37=47(B) 38=47(B) 39=46(B) 20) Dead + 0.6 MWFRS Wind Min. Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (pl) Vert: 3-26=-12, 3-4=-12, 4-8=-15, 26-28=-24, 10-11=-12, 7-8=-12, 9-10=-24, 25-27=-24, 13-25=-12 Horz: 4-8-3, 7-9=-16 Concentrated Loads (lb) Vert: 10=45(B) 11=47(B) 23=57(B) 31=22(B) 32=55(B) 33=53(B) 34=51(B) 35=48(B) 36=47(B) 37=47(B) 38=47(B) 39=46(B) 21) 151 Dead + Rod Live (unbalanced): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (pl) Vert: 10=45(B) 11=47(B) 23=57(B) 31=24(B) 32=55(B) 33=53(B) 34=51(B) 35=48(B) 36=47(B) 37=47(B) 38=47(B) 39=46(B) 21) 151 Dead + Rod Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (pl) Vert: 10=66(B) 11=-109(B) 23=-1099(B) 32=-1099(B) 34=-1099(B) 35=-1099(B) 36=-1099(B) 36=-1099(B) 37=-1099(B) 38=-1099(B) 38=-1099(B) 36=-1099(B) 36=-1099(B) 37=-1099(B) 38=-1099(B) 38=-1099(B) 36=-1099(B) 36=-1099(B) 37=-1099(B) 38=-1099(B) 38=-1099(B) 33=-1099(B) 33=-1099(B) 35=-1099(B) 35=-1099(B) 36=-1099(B) 37=-1099(B) 38=-1099(B) 33=-1099(B) 33=-1099(B) 35=-1099(B) 36=-1099(B) 36=-1099(B)			2) 24 48(D) 22 C2(D) 22 C0(D) 24 58(D) 2		E(D) 20		
 Vert: 3:26=-70, 3:4=-70, 4:8=58, 2:628=-143, 10-11=:20, 7:8=-20, 9:10=-103, 2:5:27=-143, 13:25=-20 Concentrated Loads (lb) Vert: 10=64(B) 11=55(B) 2:3=63(B) 31=10(B) 32=62(B) 33=60(B) 34=58(B) 35=56(B) 36=55(B) 37=55(B) 38=55(B) 39=63(B) 19) Dead + 0.6 MWTRS Wind Min. Left: Lumber Increase=1.60 Uniform Loads (lth) Vert: 3:26=-15, 3:4=-12, 4:8=-12, 2:6:28=-24, 10:11=-12, 7:8=-12, 9:10=:24, 2:5:27=-24, 13:25=-12 Horz: 2:72:8=16, 3:26=3 Concentrated Loads (lb) Vert: 10=45(B) 11=47(B) 2:3=57(B) 31=22(B) 32=55(B) 33=53(B) 34=51(B) 35=48(B) 36=47(B) 37=47(B) 38=47(B) 39=46(B) 20) Dead + 0.6 MWFRS Wind Min. Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (pl) Vert: 3:26=-12, 3:4=-12, 4:8=15, 2:6:28=-24, 10:11=-12, 7:8=-12, 9:10=:24, 2:5:27=-24, 13:25=-12 Horz: 4:8=3, 7:9=-16 Concentrated Loads (lb) Vert: 3:26=-12, 3:4=-12, 4:8=-15, 2:6:28=-24, 10:11=-12, 7:8=-12, 9:10=:24, 2:5:27=-24, 13:25=-12 Horz: 4:8=3, 7:9=-16 Concentrated Loads (lb) Vert: 10=45(B) 11=47(B) 2:3=57(B) 31=24(B) 32=55(B) 33=53(B) 34=51(B) 35=48(B) 36=47(B) 37=47(B) 38=47(B) 39=46(B) 21) 1st Dead + Root Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (pl) Vert: 10=65(B) 11=-109(B) 2:3=-109(B) 31=-69(B) 32=-1099(B) 34=-1099(B) 35=-1099(B) 36=-1099(B) 36=-1099(B) 36=-1099(B) 35=-1099(B) 36=-1099(B) 35=-1099(B) 36=-1099(B) 36=-1099(B) 36=-1099(B) 36=-1099(B) 36=-1099(B) 36=-1099(B) 36=-1099(B) 35=-1099(B) 36=-1099(B) 35=-1099(B) 36=-1099(B) 37=-1099(
 Horz: 27:28=2, 3:26=8, 4:8=20, 7:9=:13, 9:10=:4 Concentrated Loads (b) Vert: 10=64(8) 11=:55(B) 23=63(B) 31=10(B) 32=62(B) 33=60(B) 34=58(B) 35=56(B) 36=55(B) 37=55(B) 38=55(B) 39=63(B) 19) Dead + 0.6 MWFRS Wind Min. Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (pl) Vert: 3:26=:15, 3:4=:12, 4:8=:12, 26:28=:24, 10:11=:12, 7:8=:12, 9:10=:24, 25:27=:24, 13:25=:12 Horz: 27:28=16, 3:26=:3 Concentrated Loads (b) Vert: 10=45(B) 11=47(B) 23=57(B) 31=22(B) 32=55(B) 33=53(B) 34=51(B) 35=48(B) 36=47(B) 37=47(B) 38=47(B) 39=46(B) 20) Dead + 0.6 MWFRS Wind Min. Right: Lumber Increase=1.60 Uniform Loads (pl) Vert: 3:26=:12, 3:4=:12, 4:8=:15, 26:28=:24, 10:11=:12, 7:8=:12, 9:10=:24, 25:27=:24, 13:25=:12 Horz: 4:38=:3, 7:9=:16 Uniform Loads (pl) Vert: 3:26=:12, 3:4=:12, 4:8=:15, 26:28=:24, 10:11=:12, 7:8=:12, 9:10=:24, 25:27=:24, 13:25=:12 Horz: 4:38=:3, 7:9=:16 Vert: 3:26=:12, 3:4=:12, 4:8=:15, 26:28=:24, 10:11=:12, 7:8=:12, 9:10=:24, 25:27=:24, 13:25=:12 Horz: 4:38=:3, 7:9=:16 Vert: 10=45(B) 11=:47(B) 23=57(B) 31=24(B) 32=55(B) 33=53(B) 34=51(B) 35=48(B) 36=47(B) 37=47(B) 38=47(B) 39=46(B) 21) 1st Dead + Root Live (unbalanced): Lumber Increase=1.15, Flate Increase=1.15 Uniform Loads (pl) Vert: 3:26=:90, 3:4=:90, 4:8=:40, 26:28=:160, 10:11=:20, 7:8=:20, 9:10=:61, 25:27=:160, 13:25=:20 Concentrated Loads (b) Vert: 3:26=:40, 3:4=:90, 4:8=:40, 26:28=:160, 10:11=:20, 7:8=:20, 9:10=:61, 25:27=:160, 13:25=:20 Concentrated Loads (b) Vert: 3:26=:40, 3:4=:90, 4:8=:90, 26:28=:60, 10:11=:20, 7:8=:20, 9:109:11, 25:27=:60, 13:25=:20 Concentrated Loads (b) Vert: 10=:643(B) 11=:1099(B) 23=-1099(B) 33=-1099(B) 34=-1099(B) 36=-1099(B) 36	Uniform Loads (plf)			,			
Concentrated Loads (b) Ver: 10=64(B) 11=55(B) 23=63(B) 31=10(B) 32=62(B) 33=60(B) 34=58(B) 35=55(B) 37=55(B) 38=55(B) 39=63(B) 19) Dead + 0.6 MWFRS Wind Min. Lett: Lumber Increase=1.60 Uniform Loads (plf) Ver: 3-26=-15, 3-4=-12, 4-8=-12, 26-28=-24, 10-11=-12, 7-8=-12, 9-10=-24, 25-27=-24, 13-25=-12 Horz: 27-28=16, 3-26=3 Concentrated Loads (b) Ver: 10=45(B) 11=47(B) 23=57(B) 31=22(B) 32=55(B) 33=53(B) 34=51(B) 35=48(B) 36=47(B) 37=47(B) 38=47(B) 39=46(B) 20) Dead + 0.6 MWFRS Wind Min. Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Ver: 3-26=-12, 3-4=-12, 4-8=-15, 26-28=-24, 10-11=-12, 7-8=-12, 9-10=-24, 25-27=-24, 13-25=-12 Horz: 4-8=-3, 7-9=-16 Concentrated Loads (b) Ver: 10=45(B) 11=47(B) 23=57(B) 31=24(B) 32=55(B) 33=53(B) 34=51(B) 35=48(B) 36=47(B) 37=47(B) 38=47(B) 39=46(B) 21) 1st Dead + Root Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Ver: 3-26=-90, 3-4=-90, 4-8=-40, 26-28=-160, 10-11=-20, 7-8=-20, 9-10=-61, 25-27=-160, 13-25=-20 Concentrated Loads (b) Ver: 10=-665(B) 11=-1099(B) 31=-699(B) 32=-1099(B) 33=-1099(B) 33=-1099(B) 35=-1099(B) 36=-1099(B) 37=-1099(B) 38=-1099(B) 39=-665(B) 22) 2nd Dead + Root Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 3-26=-40, 3-4=-90, 4-8==40, 26-28=-60, 10-11=-20, 7-8=-20, 9-10=-111, 25-27=-60, 13-25=-20 Concentrated Loads (b) Vert: 3-26=-40, 3-4=-90, 4-8==90, 26-28=-60, 10-11=-20, 7-8=-20, 9-10=-111, 25-27=-60, 13-25=-20 Concentrated Loads (b) Vert: 3-26=-40, 3-4=-90, 4-8==90, 26-28==60, 10-11=-20, 7-8=-20, 9-10=-111, 25-27=-60, 13-25=-20 Concentrated Loads (b) Vert: 3-26=-40, 3-4==-90, 4-8==90, 26-28==60, 10-11=-20, 7-8=-20, 9-10=-111, 25-27=-60, 13-25=-20 Concentrated Loads (b) Vert: 3-26=-40, 3-4==-90, 4-8==90, 26-28==60, 10-11=-20, 7-8=-20, 9-10=-111, 25-27=-60, 13-25=-20 Concentrated Loads (b) Vert: 3-26=-40, 3-4==-90, 4-8==90, 26-28==-60, 10=-11=-20, 7-8=-20, 9-10=-111, 25-27=-60, 13-25=-20 Concentrated Loads (b) Vert: 10=-645(B) 11				3, 25-27=-143, 13-25=-	20		
 19) Dead + 0.6 MWFRS Wind Min. Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 3-26=-15, 3-4=-12, 4-8=-12, 26-28=-24, 10-11=-12, 7-8=-12, 9-10=-24, 25-27=-24, 13-25=-12 Horz: 27-28=16, 3-26=3 Concentrated Loads (b) Vert: 10-45(B) 11=47(B) 23=57(B) 31=22(B) 32=55(B) 33=53(B) 34=51(B) 35=48(B) 36=47(B) 37=47(B) 38=47(B) 39=46(B) 20) Dead + 0.6 MWFRS Wind Min. Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 3-26=-12, 3-4=-12, 4-8=-15, 26-28=-24, 10-11=-12, 7-8=-12, 9-10=-24, 25-27=-24, 13-25=-12 Horz: 4-8=, 7-9=-16 Concentrated Loads (b) Vert: 10=45(B) 11=47(B) 23=57(B) 31=24(B) 32=55(B) 33=53(B) 34=51(B) 35=48(B) 36=47(B) 37=47(B) 38=47(B) 39=46(B) 21) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 3-26=-90, 3-4==90, 4-8=-40, 26-28=-160, 10-11=-20, 7-8=-20, 9-10=-61, 25-27=-160, 13-25=-20 Concentrated Loads (b) Vert: 10=-665(B) 11=-1099(B) 32=-1099(B) 32=-1099(B) 33=-1099(B) 33=-1099(B) 35=-1099(B) 36=-1099(B) 37=-1099(B) 38=-1099(B) 39=-665(B) 22) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 3-26=-40, 3-4==90, 4-8=-90, 26-28=-60, 10-11=-20, 7-8=-20, 9-10=-111, 25-27=-60, 13-25=-20 Concentrated Loads (b) Vert: 3-26=-40, 3-4==90, 26-28=-60, 10-11=-20, 7-8=-20, 9-10=-111, 25-27=-60, 13-25=-20 Concentrated Loads (b) Vert: 10=-663(B) 11=-1099(B) 23=-1099(B) 32=-1099(B) 33=-1099(B) 35=-1099(B) 36=-1099(B) 37=-1099(B) 38=-1099(B) 23=-1099(B) 31=-666(B) 32=-1099(B) 33=-1099(B) 35=-1099(B) 36=-1099(B) 35=-1099(B) 36=-1099(B) 33=-1099(B) 33=-1099(B) 33=-1099(B) 35=-1099(B) 36=-1099(B) 37=-1099(B) 38=-1099(B) 33=-1099(B) 33=-1099(B) 33=-1099(B) 35=-1099(B) 36=-1099(B) 37=-1099(B) 38=-1099(B) 33=-666(B) 23) 3rd Dead + 0.75 Roof Live (unbalanced) + 0.75 Uninhab. Attic Storage: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) 			7 5- 10, 5 10- 4				
Uniform Loads (pf) Vert: 3-26=-15, 3-4=-12, 4-8=-12, 26-28=-24, 10-11=-12, 7-8=-12, 9-10=-24, 25-27=-24, 13-25=-12 Horz: 27-28=16, 3-26=-3 Concentrated Loads (lb) Vert: 10=45(B) 11=47(B) 23=57(B) 31=22(B) 32=55(B) 33=53(B) 34=51(B) 35=48(B) 36=47(B) 37=47(B) 38=47(B) 39=46(B) 20) Dead + 0.6 MWFRS Wind Min. Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (pf) Vert: 3-26=-12, 3-4=-12, 4-8=-15, 26-28=-24, 10-11=-12, 7-8=-12, 9-10=-24, 25-27=-24, 13-25=-12 Horz: 4-8=-3, 7-9=-16 Concentrated Loads (lb) Vert: 10=45(B) 11=47(B) 23=57(B) 31=24(B) 32=55(B) 33=53(B) 34=51(B) 35=48(B) 36=47(B) 37=47(B) 38=47(B) 39=46(B) 21) 1st Dead + Root Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (pf) Vert: 3-26=-90, 3-4=-90, 4-8=-40, 26-28=-160, 10-11=-20, 7-8=-20, 9-10=-61, 25-27=-160, 13-25=-20 Concentrated Loads (lb) Vert: 3-26=-90, 3-4=-90, 4-8=-40, 26-28=-160, 10-11=-20, 7-8=-20, 9-10=-61, 25-27=-160, 13-25=-20 Concentrated Loads (lb) Vert: 3-26=-90, 3-4=-90, 4-8=-40, 26-28=-160, 10-11=-20, 7-8=-20, 9-10=-61, 25-27=-160, 13-25=-20 Concentrated Loads (lb) Vert: 3-26=-40, 3-4=-90, 4-8=-90, 26-28=-60, 10-11=-20, 7-8=-20, 9-10=-61, 25-27=-60, 13-25=-20 Concentrated Loads (lb) Vert: 3-26=-40, 3-4=-90, 4-8=-90, 26-28=-60, 10-11=-20, 7-8=-20, 9-10=-111, 25-27=-60, 13-25=-20 Concentrated Loads (lb) Vert: 3-26=-40, 3-4=-90, 4-8=-90, 26-28=-60, 10-11=-20, 7-8=-20, 9-10=-111, 25-27=-60, 13-25=-20 Concentrated Loads (lb) Vert: 3-26=-40, 3-4=-90, 4-8=-90, 26-28=-60, 10-11=-20, 7-8=-20, 9-10=-111, 25-27=-60, 13-25=-20 Concentrated Loads (lb) Vert: 3-26=-40, 3-4=-90, 4-8=-90, 26-28=-60, 10-11=-20, 7-8=-20, 9-10=-111, 25-27=-60, 13-25=-20 Concentrated Loads (lb) Vert: 3-26=-40, 3-4=-90, 4-8=-90, 26-28=-60, 10-11=-20, 7-8=-20, 9-10=-111, 25-27=-60, 13-25=-20 Concentrated Loads (lb) Vert: 10=-643(B) 11=-1099(B) 33=-1099(B) 33=-1099(B) 35=-1099(B) 35=-1099(B) 36=-1099(B) 35=-1099(B) 35=-1099(B) 35=-1099(B) 35=-1099(B) 35=-1099(B) 35=-1099(B) 35=-1099(B) 35=-1099(B) 35=-109				5=56(B) 36=55(B) 37=5	55(B) 38=	55(B) 39=63(B)	
 Vert: 3-26=-15, 3-4=-12, 4-8=-12, 26-28=-24, 10-11=-12, 7-8=-12, 9-10=-24, 25-27=-24, 13-25=-12 Horz: 27-28=-16, 3-26=3 Concentrated Loads (lb) Vert: 10=-45(B) 11-47(B) 23=57(B) 31=22(B) 32=-55(B) 33=53(B) 34=51(B) 35=48(B) 36=47(B) 37=47(B) 38=47(B) 39=46(B) 20) Dead + 0.6 MWFRS Wind Min. Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 3-26=-12, 3-4=-12, 4-8=-15, 26-28=-24, 10-11=-12, 7-8=-12, 9-10=-24, 25-27=-24, 13-25=-12 Horz: 4-8=-3, 7-9=-16 Concentrated Loads (lb) Vert: 10=45(B) 11-47(B) 23=57(B) 31=24(B) 32=55(B) 33=53(B) 34=51(B) 35=48(B) 36=47(B) 37=47(B) 38=47(B) 39=46(B) 21) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 10=-465(B) 11=-1099(B) 23=-1099(B) 31=-2099(B) 33=-1099(B) 34=-1099(B) 35=-1099(B) 36=-1099(B) 37=-1099(B) 38=-1099(B) 39=-665(B) 22) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 3-26=-40, 3-4=-90, 26-28=-60, 10-11=-20, 7-8=-20, 9-10=-61, 25-27=-60, 13-25=-20 Concentrated Loads (lb) Vert: 10=-665(B) 11=-1099(B) 23=-1099(B) 32=-1099(B) 33=-1099(B) 35=-1099(B) 36=-1099(B) 37=-1099(B) 38=-1099(B) 39=-665(B) 22) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 3-26=-40, 3-4=-90, 26-28=-60, 10-11=-20, 7-8=-20, 9-10=-111, 25-27=-60, 13-25=-20 Concentrated Loads (lb) Vert: 10=-643(B) 11=-1099(B) 23=-1099(B) 33=-1099(B) 35=-1099(B) 36=-1099(B) 36=-1099(B)		s wind win. Leπ: Lum	ber Increase=1.60, Plate Increase=1.60				
Concentrated Loads (lb) Vert: 10-45(B) 11=47(B) 23=57(B) 31=22(B) 32=55(B) 33=53(B) 34=51(B) 35=48(B) 36=47(B) 37=47(B) 38=47(B) 39=46(B) 20) Dead + 0.6 MWFRS Wind Min. Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 3-26=-12, 3-4=-12, 4-8=-15, 26-28=-24, 10-11=-12, 7-8=-12, 9-10=-24, 25-27=-24, 13-25=-12 Horz: 4.8=-3, 7-9=-16 Concentrated Loads (lb) Vert: 10-45(B) 11=47(B) 23=57(B) 31=24(B) 32=55(B) 33=53(B) 34=51(B) 35=48(B) 36=47(B) 37=47(B) 38=47(B) 39=46(B) 21) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 3-26=-90, 3-4=-90, 4-8=-40, 26-28=-160, 10-11=-20, 7-8=-20, 9-10=-61, 25-27=-160, 13-25=-20 Concentrated Loads (lb) Vert: 10=-665(B) 11=-1099(B) 23=-1099(B) 31=-699(B) 32=-1099(B) 34=-1099(B) 35=-1099(B) 36=-1099(B) 36=-1099(B) 37=-1099(B) 38=-1099(B) 39=-665(B) 22) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 10=-643(B) 11=-1099(B) 23=-1099(B) 31=-666(B) 32=-1099(B) 33=-1099(B) 34=-1099(B) 35=-1099(B) 36=-1099(B) 37=-1099(B) 38=-1099(B) 23=-1099(B) 31=-666(B) 32=-1099(B) 33=-1099(B) 35=-1099(B) 35=-1099(B) 36=-1099(B) 37=-1099(B) 38=-1099(B) 23=-1099(B) 31=-666(B) 32=-1099(B) 33=-1099(B) 35=-1099(B) 35=-1099(B) 36=-1099(B) 37=-1099(B) 38=-1099(B) 33=-665(B) 23) 3rd Dead + Roof Live (unbalanced) + 0.75 Uninhab. Attic Storage: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 10=-643(B) 11=-1099(B) 23=-1099(B) 31=-666(B) 32=-1099(B) 33=-1099(B) 35=-1099(B) 35=-1099(B) 36=-1099(B) 35=-1099(B)	Vert: 3-26=		26-28=-24, 10-11=-12, 7-8=-12, 9-10=-24,	25-27=-24, 13-25=-12			
 Vert: 10=45(B) 11=47(B) 23=57(B) 31=22(B) 32=55(B) 33=53(B) 34=51(B) 35=48(B) 36=47(B) 37=47(B) 38=47(B) 39=46(B) 20) Dead + 0.6 MWFRS Wind Min. Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 3-26=-12, 3-4=-12, 4-8=-15, 26-28=-24, 10-11=-12, 7-8=-12, 9-10=-24, 25-27=-24, 13-25=-12 Horz: 4-8=-3, 7-9=-16 Concentrated Loads (lb) Vert: 10=45(B) 11=47(B) 23=57(B) 31=24(B) 32=55(B) 33=53(B) 34=51(B) 35=48(B) 36=47(B) 37=47(B) 38=47(B) 39=46(B) 21) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 10=-665(B) 11=-1099(B) 23=-1099(B) 31=-699(B) 32=-1099(B) 33=-1099(B) 35=-1099(B) 36=-1099(B) 37=-1099(B) 38=-1099(B) 39=-665(B) 22) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 10=-665(B) 11=-1099(B) 23=-1099(B) 32=-1099(B) 33=-1099(B) 34=-1099(B) 35=-1099(B) 36=-1099(B) 37=-1099(B) 38=-1099(B) 39=-665(B) 22) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 10=-643(B) 11=-1099(B) 23=-1099(B) 31=-699(B) 32=-1099(B) 33=-1099(B) 35=-1099(B) 36=-1099(B) 37=-1099(B) 38=-1099(B) 31=-666(B) 32=-1099(B) 33=-1099(B) 35=-1099(B) 36=-1099(B) 37=-1099(B) 38=-1099(B) 31=-666(B) 32=-1099(B) 33=-1099(B) 35=-1099(B) 36=-1099(B) 37=-1099(B) 38=-1099(B) 31=-666(B) 32=-1099(B) 33=-1099(B) 35=-1099(B) 36=-1099(B) 37=-1099(B) 38=-1099(B) 38=-666(B) 23) 3rd Dead + 0.75 Roof Live (unbalanced) + 0.75 Uninhab. Attic Storage: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) 							
 Uniform Loads (plf) Vert: 3-26=-12, 3-4=-12, 4-8=-15, 26-28=-24, 10-11=-12, 7-8=-12, 9-10=-24, 25-27=-24, 13-25=-12 Horz: 4-8=-3, 7-9=-16 Concentrated Loads (lb) Vert: 10=45(B) 11=47(B) 23=57(B) 31=24(B) 32=55(B) 33=53(B) 34=51(B) 35=48(B) 36=47(B) 37=47(B) 38=47(B) 39=46(B) 21) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 3-26=-90, 3-4=-90, 4-8=-40, 26-28=-160, 10-11=-20, 7-8=-20, 9-10=-61, 25-27=-160, 13-25=-20 Concentrated Loads (lb) Vert: 10=-665(B) 11=-1099(B) 23=-1099(B) 31=-699(B) 32=-1099(B) 33=-1099(B) 35=-1099(B) 36=-1099(B) 36=-1099(B) 35=-1099(B) 35=-1099(B) 36=-1099(B) 36=-1099(B) 36=-1099(B) 37=-1099(B) 38=-1099(B) 31=-666(B) 32=-1099(B) 33=-1099(B) 34=-1099(B) 35=-1099(B) 36=-1099(B) 36=-1099(B) 37=-1099(B) 38=-1099(B) 31=-666(B) 32=-1099(B) 33=-1099(B) 35=-1099(B) 35=-1099(B) 36=-1099(B) 35=-1099(B) 37=-1099(B) 38=-1099(B) 31=-666(B) 32=-1099(B) 33=-1099(B) 34=-1099(B) 35=-1099(B) 36=-1099(B) 36=-1099(B) 37=-1099(B) 38=-1099(B) 38=-1099(B) 33=-1099(B) 35=-1099(B) 3	Vert: 10=45	5(B) 11=47(B) 23=57(B		5=48(B) 36=47(B) 37=4	I7(B) 38≕	47(B) 39=46(B)	
 Vert: 3²-2612, 3-4=-12, 4-8=-15, 26-28=-24, 10-11=-12, 7-8=-12, 9-10=-24, 25-27=-24, 13-25=-12 Horz: 4-8=-3, 7-9=-16 Concentrated Loads (lb) Vert: 10=-45(B) 11=47(B) 23=57(B) 31=24(B) 32=55(B) 33=53(B) 34=51(B) 35=48(B) 36=47(B) 37=47(B) 38=47(B) 39=46(B) 21) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 3-26=-90, 3-4=-90, 4-8=-40, 26-28=-160, 10-11=-20, 7-8=-20, 9-10=-61, 25-27=-160, 13-25=-20 Concentrated Loads (lb) Vert: 10=-665(B) 11=-1099(B) 23=-1099(B) 31=-699(B) 32=-1099(B) 33=-1099(B) 35=-1099(B) 36=-1099(B) 36=-1099(B) 37=-1099(B) 38=-1099(B) 38=-665(B) 22) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 10=-643(B) 11=-1099(B) 23=-1099(B) 31=-666(B) 32=-1099(B) 33=-1099(B) 35=-1099(B) 36=-1099(B) 36=-1099(B) 36=-1099(B) 37=-1099(B) 23=-1099(B) 31=-666(B) 32=-1099(B) 33=-1099(B) 35=-1099(B) 36=-1099(B) 36=-1099(B) 37=-1099(B) 38=-1099(B) 35=-1099(B) 35=-1099(B) 36=-1099(B) 36=-1099(B) 37=-1099(B) 38=-666(B) 32=-1099(B) 33=-1099(B) 35=-1099(B) 35=-1099(B) 36=-1099(B) 36=-1099(B) 37=-1099(B) 38=-1099(B) 31=-666(B) 32=-1099(B) 33=-1099(B) 35=-1099(B) 36=-1099(B) 36=-1099(B) 36=-1099(B) 37=-1099(B) 38=-1099(B) 38=-1099(B) 35=-1099(B) 35=-1099(B) 36=-1099(B) 36=-1099(B)		8 Wind Min. Right: Lun	hber Increase=1.60, Plate Increase=1.60				
Concentrated Loads (lb) Vert: 10=45(B) 11=47(B) 23=57(B) 31=24(B) 32=55(B) 33=53(B) 34=51(B) 35=48(B) 36=47(B) 37=47(B) 38=47(B) 39=46(B) 21) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 3-26=-90, 3-4=-90, 4-8=-40, 26-28=-160, 10-11=-20, 7-8=-20, 9-10=-61, 25-27=-160, 13-25=-20 Concentrated Loads (lb) Vert: 10=-665(B) 11=-1099(B) 23=-1099(B) 31=-699(B) 32=-1099(B) 33=-1099(B) 34=-1099(B) 35=-1099(B) 36=-1099(B) 37=-1099(B) 38=-1099(B) 39=-665(B) 22) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 3-26=-40, 3-4=-90, 4-8=-90, 26-28=-60, 10-11=-20, 7-8=-20, 9-10=-111, 25-27=-60, 13-25=-20 Concentrated Loads (lb) Vert: 10=-643(B) 11=-1099(B) 23=-1099(B) 31=-666(B) 32=-1099(B) 33=-1099(B) 35=-1099(B) 35=-1099(B) 36=-1099(B) 37=-1099(B) 38=-1099(B) 39=-665(B) 23) 3rd Dead + 0.75 Roof Live (unbalanced) + 0.75 Uninhab. Attic Storage: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)	u /	-12, 3-4=-12, 4-8=-15,	26-28=-24, 10-11=-12, 7-8=-12, 9-10=-24,	25-27=-24, 13-25=-12			
 Vert: 10=45(B) 11=47(B) 23=57(B) 31=24(B) 32=55(B) 33=53(B) 34=51(B) 35=48(B) 36=47(B) 37=47(B) 38=47(B) 39=46(B) 21) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 3-26=-90, 3-4=-90, 4-8=-40, 26-28=-160, 10-11=-20, 7-8=-20, 9-10=-61, 25-27=-160, 13-25=-20 Concentrated Loads (b) Vert: 10=-665(B) 11=-1099(B) 23=-1099(B) 31=-699(B) 32=-1099(B) 33=-1099(B) 34=-1099(B) 35=-1099(B) 36=-1099(B) 35=-1099(B) 35=-1		-,					
 21) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 3-26=-90, 3-4=-90, 4-8=-40, 26-28=-160, 10-11=-20, 7-8=-20, 9-10=-61, 25-27=-160, 13-25=-20 Concentrated Loads (lb) Vert: 10=-665(B) 11=-1099(B) 23=-1099(B) 31=-699(B) 32=-1099(B) 33=-1099(B) 35=-1099(B) 35=-1099(B) 36=-1099(B) 37=-1099(B) 38=-1099(B) 39=-665(B) 22) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 3-26=-40, 3-4=-90, 4-8=-90, 26-28=-60, 10-11=-20, 7-8=-20, 9-10=-111, 25-27=-60, 13-25=-20 Concentrated Loads (lb) Vert: 10=-643(B) 11=-1099(B) 23=-1099(B) 31=-666(B) 32=-1099(B) 33=-1099(B) 35=-1099(B) 35=-1099(B) 36=-1099(B) 37=-1099(B) 38=-1099(B) 39=-665(B) 23) 3rd Dead + 0.75 Roof Live (unbalanced) + 0.75 Uninhab. Attic Storage: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) 		()	3) 31=24(B) 32=55(B) 33=53(B) 34=51(B) 3	5=48(B) 36=47(B) 37=4	I7(B) 38=	47(B) 39=46(B)	
 Vert: 3-2690, 3-4=-90, 4-8=-40, 26-28=-160, 10-11=-20, 7-8=-20, 9-10=-61, 25-27=-160, 13-25=-20 Concentrated Loads (lb) Vert: 10=-665(B) 11=-1099(B) 23=-1099(B) 31=-699(B) 32=-1099(B) 33=-1099(B) 34=-1099(B) 35=-1099(B) 36=-1099(B) 35=-1099(B) 35=-1099(0-10(0) 00-11(0) 01-	(D) 00-	(D) 00= 10(D)	
Concentrated Loads (lb) Vert: 10=-665(B) 11=-1099(B) 23=-1099(B) 31=-699(B) 32=-1099(B) 33=-1099(B) 34=-1099(B) 35=-1099(B) 36=-1099(B) 37=-1099(B) 38=-1099(B) 39=-665(B) 22) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 3-26=-40, 3-4=-90, 4-8=-90, 26-28=-60, 10-11=-20, 7-8=-20, 9-10=-111, 25-27=-60, 13-25=-20 Concentrated Loads (lb) Vert: 10=-643(B) 11=-1099(B) 23=-1099(B) 31=-666(B) 32=-1099(B) 33=-1099(B) 34=-1099(B) 35=-1099(B) 36=-1099(B) 37=-1099(B) 38=-1099(B) 39=-665(B) 23) 3rd Dead + 0.75 Roof Live (unbalanced) + 0.75 Uninhab. Attic Storage: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)		00 2 4- 00 4 9- 40	26 28 160 10 11 20 7 8 20 0 10 61	25 27- 160 12 25- 2	0		
37=-1099(B) 38=-1099(B) 39=-665(B) 22) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 3-26=-40, 3-4=-90, 4-8=-90, 26-28=-60, 10-11=-20, 7-8=-20, 9-10=-111, 25-27=-60, 13-25=-20 Concentrated Loads (lb) Vert: 10=-643(B) 11=-1099(B) 23=-1099(B) 31=-666(B) 32=-1099(B) 33=-1099(B) 34=-1099(B) 35=-1099(B) 36=-1099(B) 37=-1099(B) 38=-1099(B) 39=-665(B) 23) 3rd Dead + 0.75 Roof Live (unbalanced) + 0.75 Uninhab. Attic Storage: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)			20-28=-100, 10-11=-20, 7-8=-20, 9-10=-01	, 25-27=-100, 15-25=-2	0		
 22) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 3-26=-40, 3-4=-90, 4-8=-90, 26-28=-60, 10-11=-20, 7-8=-20, 9-10=-111, 25-27=-60, 13-25=-20 Concentrated Loads (lb) Vert: 10=-643(B) 11=-1099(B) 23=-1099(B) 31=-666(B) 32=-1099(B) 33=-1099(B) 34=-1099(B) 35=-1099(B) 36=-1099(B) 37=-1099(B) 38=-1099(B) 39=-665(B) 23) 3rd Dead + 0.75 Roof Live (unbalanced) + 0.75 Uninhab. Attic Storage: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) 				99(B) 34=-1099(B) 35≕	1099(B) 3	36=-1099(B)	
Uniform Loads (plf) Vert: 3-26=-40, 3-4=-90, 4-8=-90, 26-28=-60, 10-11=-20, 7-8=-20, 9-10=-111, 25-27=-60, 13-25=-20 Concentrated Loads (lb) Vert: 10=-643(B) 11=-1099(B) 23=-1099(B) 31=-666(B) 32=-1099(B) 33=-1099(B) 34=-1099(B) 35=-1099(B) 36=-1099(B) 37=-1099(B) 38=-1099(B) 39=-665(B) 23) 3rd Dead + 0.75 Roof Live (unbalanced) + 0.75 Uninhab. Attic Storage: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)							
Concentrated Loads (lb) Vert: 10=-643(B) 11=-1099(B) 23=-1099(B) 31=-666(B) 32=-1099(B) 33=-1099(B) 34=-1099(B) 35=-1099(B) 36=-1099(B) 37=-1099(B) 38=-1099(B) 38=-1099(B) 38=-1099(B) 38=-1099(B) 38=-1099(B) 38=-1099(B) 38=-1099(B) 37=-1099(B) 38=-1099(B) 38=-1099(B) 37=-1099(B) 38=-1099(B) 38=-1099(B) 37=-1099(B) 38=-1099(B) 38=-1099(B) 37=-1099(B) 38=-1099(B) 37=-1099(B) 38=-1099(B) 38=-1099(B) 38=-1099(B) 38=-1099(B) 38=-1099(B) 38=-1099(B) 38=-1099(B) 37=-1099(B) 38=-1099(B) 38=-1099(B) 37=-1099(B) 38=-1099(B) 38=-1099(B) 37=-1099(B) 38=-1099(B) 37=-1099(B) 37=-1099(B) 38=-1099(B) 37=-1099(B) 38=-1099(B) 38=-1099(B) 37=-1099(B) 37=-1099(B) 38=-1099(B) 37=-1099(B) 37=-1099(B) 38=-1099(B) 37=-1099(B) 37=-1099(B) 38=-1099(B) 37=-1099(B) 38=-1099(B) 37=-1099(B) 37	Uniform Loads (plf)	. ,					
Vert: 10=-643(B) 11=-1099(B) 23=-1099(B) 31=-666(B) 32=-1099(B) 33=-1099(B) 34=-1099(B) 35=-1099(B) 35=-1009(B) 35=-1000(B) 35=-1000(B) 35			26-28=-60, 10-11=-20, 7-8=-20, 9-10=-111	, 25-27=-60, 13-25=-20			
37=-1099(B) 38=-1099(B) 39=-665(B) 23) 3rd Dead + 0.75 Roof Live (unbalanced) + 0.75 Uninhab. Attic Storage: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)			=-1099(B) 31=-666(B) 32=-1099(B) 33=-10	99(B) 34=-1099(B) 35=-	1099(B) 3	36=-1099(B)	
Uniform Loads (plf)					. 4 45		
	,	oi Live (unbalanced) 4	- 0.75 Uninnab. Attic Storage: Lumber Incre	ase=1.15, Plate Increas	se=1.15		
	u /	-78, 3-4=-78, 4-8=-40,	26-28=-135, 10-11=-20, 7-8=-20, 9-10=-61	, 25-27=-135, 13-25=-2	0		

ntinued on page 4

Job	Truss	Truss Type	Qty	Ply	Summit/19 Woodside	143853156
2552987	A04	Roof Special Girder	1	2		110000100
Builders First Source, Valle	y Center, KS 67147				Job Reference (optional) /lar 9 2020 MiTek Industries, Ir	nc. Fri Dec 4 09:07:13 2020 Page 4
			ID:wH4RYhEsTNe	UP2dXvO	fi1syQY8e-FYGUe76xylJPiJAvl	bzp2S1_L8VsM6VR8zqksPuyCORS
LOAD CASE(S)						
Concentrated Loads Vert: 10=-68		31=-616(B) 32=-967(B) 33=-967(B) 34	=-967(B) 35=-967(E	3) 36=-114	41(B) 37=-1141(B) 38=-1141	(B) 39=-583(B)
24) 4th Dead + 0.75 Root		nhab. Attic Storage: Lumber Increase=				
Uniform Loads (plf) Vert: 3-26=-4	40, 3-4=-78, 4-8=-77, 26-28=-6	60, 10-11=-20, 7-8=-20, 9-10=-99, 25-2	7=-60, 13-25=-20			
Concentrated Loads		24 - 501/D) 22 - 067/D) 22 - 067/D) 24	067(P) 25 067(F	0) 26 11	11/D) 27_ 11/1/D) 20_ 11/1	(P) 20 _ 592(P)
		31=-591(B) 32=-967(B) 33=-967(B) 34 Left: Lumber Increase=1.60, Plate Inc		5) 30=-114	+1(D) 37=-1141(D) 30=-1141	(D) 39=-303(D)
Uniform Loads (plf)	2 3-1-25 1-8-13 26-28-13	10-11=-12, 7-8=-12, 9-10=-19, 25-27=	-13 13-2512			
Horz: 27-28=	=11, 3-26=-34, 4-8=25, 7-9=16		-13, 13-2312			
Concentrated Loads	. ,	1=-410(B) 32=-522(B) 33=-539(B) 34=	-562(B) 35=-584(B)	36=-589	B) 37=-589(B) 38=-589(B) 39	9=-364(B)
26) Reversal: Dead + 0.6		Right: Lumber Increase=1.60, Plate In		00-000		
Uniform Loads (plf) Vert: 3-26=1	3. 3-4=25. 4-8=22. 26-28=-13.	10-11=-12, 7-8=-12, 9-10=-19, 25-27=	-13, 13-25=-12			
Horz: 27-28=	-16, 3-26=-25, 4-8=34, 7-9=-1		10, 10 20- 12			
Concentrated Loads Vert: 10=-37		1=-416(B) 32=-522(B) 33=-539(B) 34=	-562(B) 35=-584(B)	36=-5890	B) 37=-589(B) 38=-589(B) 3	9=-364(B)
27) Reversal: Dead + 0.6		Left: Lumber Increase=1.60, Plate Inc				
Uniform Loads (plf) Vert: 3-26=-1	16 3-4=-14 4-8=-25 26-28=-7	71, 10-11=-20, 7-8=-20, 9-10=-67, 25-2	7=-71 13-25=-20			
Horz: 27-28=	=22, 3-26=-24, 4-8=15, 7-9=6,		1 - 11, 10 20 - 20			
Concentrated Loads		1=-384(B) 32=-486(B) 33=-503(B) 34=	-526(B) 35=-548(B)	36=-553(B) 37=-553(B) 38=-553(B) 3	9=-328(B)
28) Reversal: Dead + 0.6		Right: Lumber Increase=1.60, Plate In		00000	2) 01 000(2) 00 000(2) 0	0 020(2)
Uniform Loads (plf) Vert: 3-26=-2	25. 3-4=-14. 4-8=-16. 26-28=-7	71, 10-11=-20, 7-8=-20, 9-10=-67, 25-2	7=-71. 13-25=-20			
Horz: 27-28=	-6, 3-26=-15, 4-8=24, 7-9=-22		,			
Concentrated Loads Vert: 10=-32		1=-390(B) 32=-486(B) 33=-503(B) 34=	-526(B) 35=-548(B)	36=-553(B) 37=-553(B) 38=-553(B) 3	9=-328(B)
29) Reversal: Dead + 0.6		1st Parallel: Lumber Increase=1.60, P				(-)
Uniform Loads (plf) Vert: 3-26=2	5. 3-4=9. 4-8=9. 26-28=-13. 10)-11=-12, 7-8=-12, 9-10=-19, 25-27=-1	3. 13-25=-12			
Horz: 27-28=	=6, 3-26=-37, 4-8=21, 7-9=14,		-,			
Concentrated Loads Vert: 10=-37		1=-407(B) 32=-522(B) 33=-539(B) 34=	-562(B) 35=-584(B)	36=-589(B) 37=-589(B) 38=-589(B) 39	9=-364(B)
	MWFRS Wind (Pos. Internal)	2nd Parallel: Lumber Increase=1.60, F	late Increase=1.60			
Uniform Loads (plf) Vert: 3-26=9	, 3-4=9, 4-8=25, 26-28=-13, 10	0-11=-12, 7-8=-12, 9-10=-19, 25-27=-1	3, 13-25=-12			
Horz: 27-28= Concentrated Loads	=-14, 3-26=-21, 4-8=37, 7-9=-6	6, 9-10=5				
		1=-417(B) 32=-522(B) 33=-539(B) 34=	-562(B) 35=-584(B)	36=-589(B) 37=-589(B) 38=-589(B) 38	9=-364(B)
,	MWFRS Wind (Pos. Internal)	3rd Parallel: Lumber Increase=1.60, P	late Increase=1.60			
Uniform Loads (plf) Vert: 3-26=1-	4, 3-4=4, 4-8=4, 26-28=-13, 10	0-11=-12, 7-8=-12, 9-10=-19, 25-27=-1	3, 13-25=-12			
	=6, 3-26=-26, 4-8=16, 7-9=14,	9-10=5				
Concentrated Loads Vert: 10=-37		1=-404(B) 32=-522(B) 33=-539(B) 34=	-562(B) 35=-584(B)	36=-589(B) 37=-589(B)	
38=-589(B) 3		4th Parallel: Lumber Increase=1.60, P	ate Increase-1.60			
Uniform Loads (plf)	· · · · · · · · · · · · · · · · · · ·					
	, 3-4=4, 4-8=14, 26-28=-13, 1(14, 3-26=-16, 4-8=26, 7-9=-6	0-11=-12, 7-8=-12, 9-10=-19, 25-27=-1	3, 13-25=-12			
Concentrated Loads	(lb)					
Vert: 10=-37 38=-589(B) 3		1=-410(B) 32=-522(B) 33=-539(B) 34=	-562(B) 35=-584(B)	36=-589(B) 37=-589(B)	
33) Reversal: Dead + 0.6	()	1st Parallel: Lumber Increase=1.60, P	late Increase=1.60			
Uniform Loads (plf) Vert: 3-26=-1	14. 3-4=-30. 4-8=-30. 26-28=-7	71, 10-11=-20, 7-8=-20, 9-10=-67, 25-2	7=-71. 13-25=-20			
Horz: 27-28=	=17, 3-26=-26, 4-8=10, 7-9=3,		,			
Concentrated Loads Vert: 10=-32		1=-381(B) 32=-486(B) 33=-503(B) 34=	-526(B) 35=-548(B)	36=-553(B) 37=-553(B)	
38=-553(B) 3	39=-328(B)		., .,			
Uniform Loads (plf)	MWFRS Wind (Neg. Internal)	2nd Parallel: Lumber Increase=1.60, F	late increase=1.60			
	30, 3-4=-30, 4-8=-14, 26-28=-7 =-3, 3-26=-10, 4-8=26, 7-9=-17	71, 10-11=-20, 7-8=-20, 9-10=-67, 25-2	7=-71, 13-25=-20			
Concentrated Loads		, 9-10=-5				
Vert: 10=-32 38=-553(B) 3		1=-392(B) 32=-486(B) 33=-503(B) 34=	-526(B) 35=-548(B)	36=-553(B) 37=-553(B)	
		IWFRS Wind (Neg. Int) Left): Lumber I	ncrease=1.60, Plate	e Increase	=1.60	
Uniform Loads (plf)	<u>30 3-4=-58 4-866 26-29- 1</u>	43, 10-11=-20, 7-8=-20, 9-10=-103, 25	-27=-143 13-25- 5	20		
	=16, 3-26=-18, 4-8=11, 7-9=4,		, <u>_</u> 1 = 1 1 0, 10-20=-2			
Continued on page 5						
	gn parameters and READ NOTES ON T	HIS AND INCLUDED MITEK REFERENCE PAGE	MII-7473 rev. 5/19/2020 E	BEFORE US	Ε.	

Job	Truss	Truss Type	Qty	Ply	Summit/19 Woodside
					143853156
2552987	A04	Roof Special Girder	1	2	
				–	Job Reference (optional)
Builders First Source, Valley Center, KS 67147				8.240 s N	Aar 9 2020 MiTek Industries, Inc. Fri Dec 4 09:07:13 2020 Page 5

8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Dec 4 09:07:13 2020 Page 5 ID:wH4RYhEsTNeUP2dXvOfi1syQY8e-FYGUe76xylJPiJAvbzp2S1_L8VsM6VR8zqksPuyCORS

LOAD CASE(S)

Concentrated Loads (lb)

Vert: 10=-579(B) 11=-985(B) 23=-805(B) 31=-541(B) 32=-804(B) 33=-816(B) 34=-834(B) 35=-850(B) 36=-985(B) 37=-985(B) 38=-985(B) 39=-515(B) 36) Reversal: Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 3-26=-66, 3-4=-58, 4-8=-60, 26-28=-143, 10-11=-20, 7-8=-20, 9-10=-103, 25-27=-143, 13-25=-20

Horz: 27-28=-4, 3-26=-11, 4-8=18, 7-9=-16, 9-10=-4

Concentrated Loads (lb)

Vert: 10=-579(B) 11=-985(B) 23=-805(B) 31=-546(B) 32=-804(B) 33=-816(B) 34=-834(B) 35=-850(B) 36=-985(B) 37=-985(B) 38=-985(B) 39=-515(B) 37) Reversal: Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vert: 3-26=-58, 3-4=-70, 4-8=-70, 26-28=-143, 10-11=-20, 7-8=-20, 9-10=-103, 25-27=-143, 13-25=-20

Horz: 27-28=13, 3-26=-20, 4-8=8, 7-9=2, 9-10=-4

Concentrated Loads (lb)

Vert: 10=-579(B) 11=-985(B) 23=-805(B) 31=-539(B) 32=-804(B) 33=-816(B) 34=-834(B) 35=-850(B) 36=-985(B) 37=-985(B) 38=-985(B) 39=-515(B) 38) Reversal: Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 3-26=-70, 3-4=-70, 4-8=-58, 26-28=-143, 10-11=-20, 7-8=-20, 9-10=-103, 25-27=-143, 13-25=-20

Horz: 27-28=-2, 3-26=-8, 4-8=20, 7-9=-13, 9-10=-4

Concentrated Loads (lb)

Vert: 10=-579(B) 11=-985(B) 23=-805(B) 31=-547(B) 32=-804(B) 33=-816(B) 34=-834(B) 35=-850(B) 36=-985(B) 37=-985(B) 38=-985(B) 39=-515(B) 39) Reversal: Dead + 0.6 MWFRS Wind Min. Left: Lumber Increase=1.60, Plate Increase=1.60

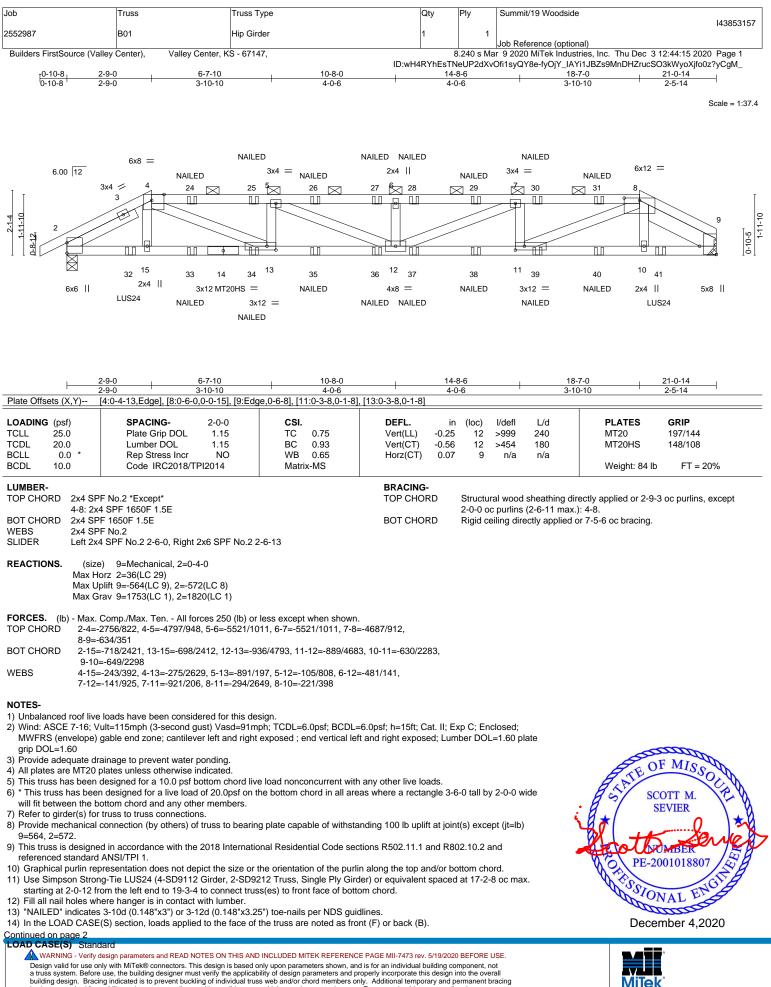
Uniform Loads (plf)

Vert: 3-26=-15, 3-4=-12, 4-8=-12, 26-28=-24, 10-11=-12, 7-8=-12, 9-10=-24, 25-27=-24, 13-25=-12

Horz: 27-28=16, 3-26=3

Concentrated Loads (lb)

Vert: 10=-333(B) 11=-534(B) 23=-467(B) 31=-358(B) 32=-466(B) 33=-483(B) 34=-506(B) 35=-528(B) 36=-534(B) 37=-534(B) 38=-534(B) 39=-329(B) 40) Reversal: Dead + 0.6 MWFRS Wind Min. Right: Lumber Increase=1.60, Plate Increase=1.60


Uniform Loads (plf)

Vert: 3-26=-12, 3-4=-12, 4-8=-15, 26-28=-24, 10-11=-12, 7-8=-12, 9-10=-24, 25-27=-24, 13-25=-12

Horz: 4-8=-3, 7-9=-16 Concentrated Loads (lb)

Vert: 10=-333(B) 11=-534(B) 23=-467(B) 31=-356(B) 32=-466(B) 33=-483(B) 34=-506(B) 35=-528(B) 36=-534(B) 37=-534(B) 38=-534(B) 39=-329(B)

a truss systems. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

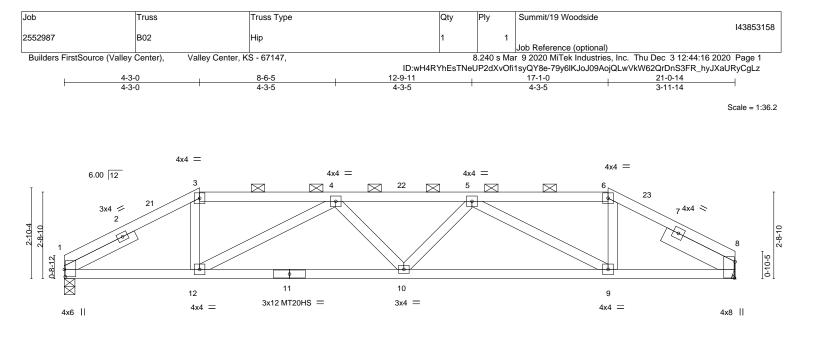
16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Summit/19 Woodside	
					14385	53157
2552987	B01	Hip Girder	1	1		
					Job Reference (optional)	
2552987	B01	Hip Girder	1		Job Reference (optional)	

Builders FirstSource (Valley Center), Valley Center, KS - 67147,

8.240 s Mar 9 2020 MiTek Industries, Inc. Thu Dec 3 12:44:15 2020 Page 2 ID:wH4RYhEsTNeUP2dXvOfi1syQY8e-fyOjY_IAYi1JBZs9MnDHZrucSO3kWyoXjfo0z?yCgM_

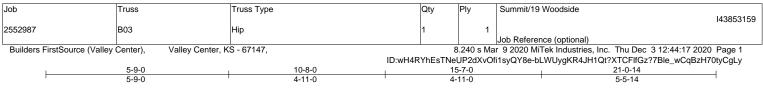
LOAD CASE(S) Standard

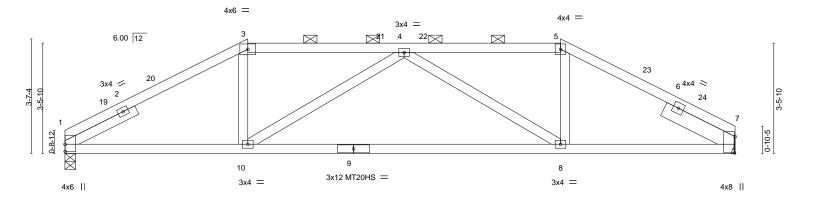

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

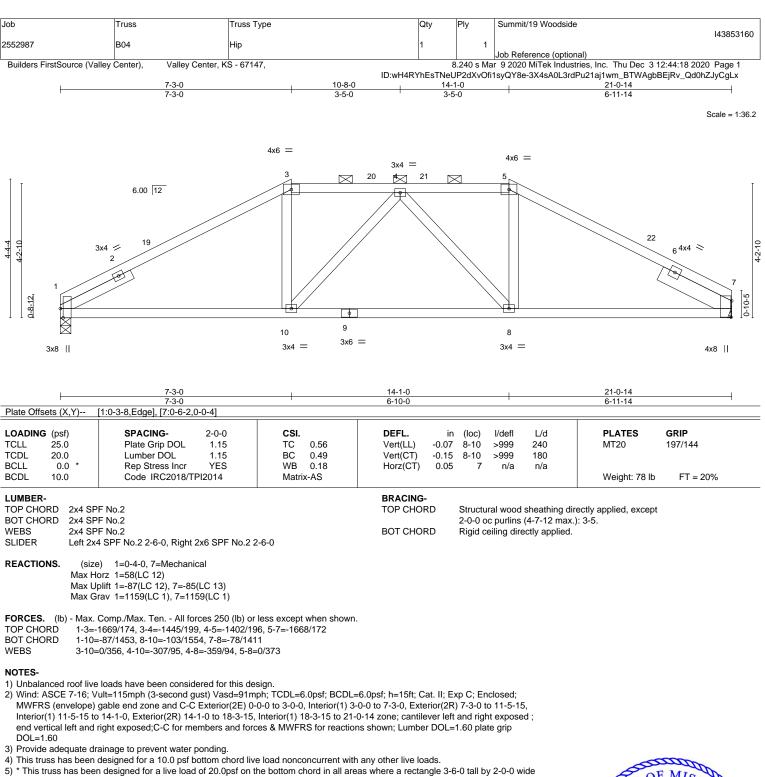
Uniform Loads (plf) Vert: 1-4=-90, 4-8=-90, 8-9=-90, 16-20=-20

Concentrated Loads (lb)

Vert: 24=-57(F) 25=-57(F) 26=-57(F) 27=-57(F) 28=-57(F) 29=-57(F) 30=-57(F) 31=-57(F) 32=-197(F) 33=-41(F) 34=-41(F) 35=-41(F) 36=-41(F) 37=-41(F) 38=-41(F) 39=-41(F) 40=-41(F) 41=-197(F) 41=-197(F)




	4-3-0 4-3-0	<u>10-8-0</u> 6-5-0		<u>17-1-0</u> 6-5-0	<u>21-0-14</u> 3-11-14
Plate Offsets (X,Y		0-0-0		0-0-0	3-11-14
LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.49 BC 0.66 WB 0.52 Matrix-AS	DEFL. in Vert(LL) -0.10 Vert(CT) -0.24 Horz(CT) 0.07	9-10 >999 180	PLATES GRIP MT20 197/144 MT20HS 148/108 Weight: 80 lb FT = 20%
BOT CHORD 22 WEBS 22 SLIDER Le REACTIONS.	4 SPF No.2 4 SPF No.2 4 SPF No.2 ft 2x4 SPF No.2 2-6-0, Right 2x6 SPF No.2 (size) 1=0-4-0, 8=Mechanical ax Horz 1=35(LC 12)	2-6-0	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing 2-0-0 oc purlins (3-6-8 max Rigid ceiling directly applie	x.): 3-6.
FORCES. (Ib) - TOP CHORD BOT CHORD WEBS NOTES- 1) Unbalanced roo	ax Uplift 1=-90(LC 12), 8=-88(LC 13) ax Grav 1=1159(LC 1), 8=1159(LC 1) Max. Comp./Max. Ten All forces 250 (lb) (-3=-1829/168, 3-4=-1569/172, 4-5=-2519/ -12=-119/1599, 10-12=-234/2462, 9-10=-2 8-12=-5/565, 4-12=-1081/163, 5-9=-1145/10	211, 5-6=-1481/166, 6-8=-1 23/2438, 8-9=-97/1512 36, 6-9=-6/579 lesign.	1747/164		
MWFRS (envel Interior(1) 8-6-5 exposed;C-C fo 3) Provide adequa 4) All plates are M 5) This truss has will fit between 7) Refer to girder(16; Vult=115mph (3-second gust) Vasd=91 ppe) gable end zone and C-C Exterior(2E) to 17-1-0, Exterior(2E) 17-1-0 to 21-0-14 z r members and forces & MWFRS for reacti te drainage to prevent water ponding. T20 plates unless otherwise indicated. een designed for a 10.0 psf bottom chord I been designed for a live load of 20.0psf or he bottom chord and any other members. s) for truss to truss connections.	D-0-0 to 3-0-0, Interior(1) 3 one; cantilever left and righ ons shown; Lumber DOL= ve load nonconcurrent with the bottom chord in all are	-0-0 to 4-3-0, Exterior(21 ht exposed ; end vertical 1.60 plate grip DOL=1.6 h any other live loads. has where a rectangle 3-	R) 4-3-0 to 8-6-5, left and right 0 6-0 tall by 2-0-0 wide	TE OF MISSOL
 8) Provide mecha 9) This truss is de referenced star 10) This truss des sheetrock be 	ical connection (by others) of truss to bear signed in accordance with the 2018 Interna dard ANSI/TPI 1. gn requires that a minimum of 7/16" structu spplied directly to the bottom chord. n representation does not depict the size of	tional Residential Code sec Iral wood sheathing be app	ctions R502.11.1 and R8	02.10.2 and hord and 1/2" gypsum	SCOTT M. SEVIER PE-2001018807


Scale = 1:36.2

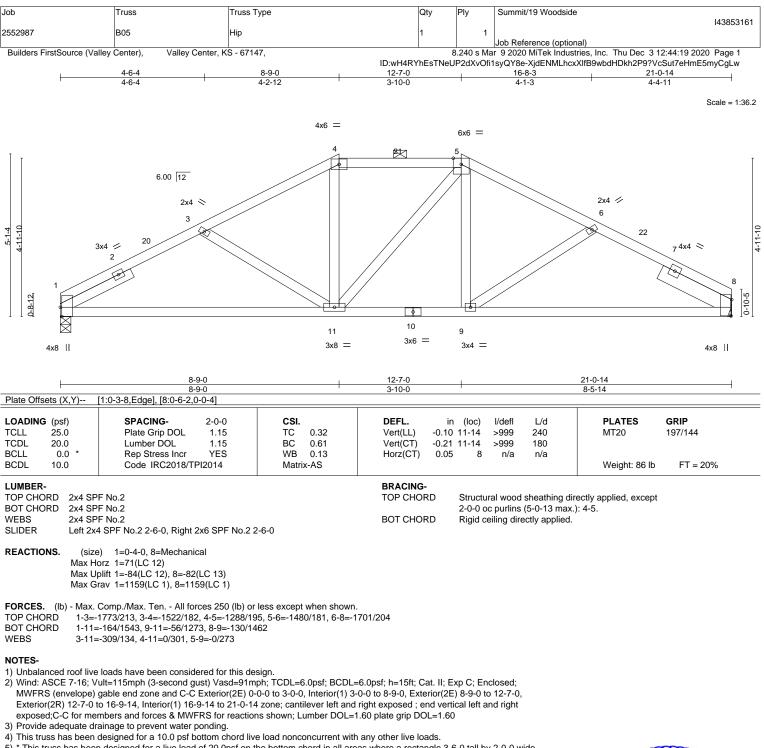
	5-9-0		15-7-0			21-0-14	
	5-9-0		9-10-0		1	5-5-14	
Plate Offsets (X,Y) [1:0-2-12,0-0-1], [7:0-6-2,0-0-4]						
LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 * BCDL 10.0 *	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.54 BC 0.83 WB 0.40 Matrix-AS	DEFL. ir Vert(LL) -0.26 Vert(CT) -0.55 Horz(CT) 0.07	9 8-10 >428	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 77 lb	GRIP 197/144 148/108 FT = 20%
LUMBER- TOP CHORD 2x4 SPF BOT CHORD 2x4 SPF WEBS 2x4 SPF SLIDER Left 2x4	No.2	2-6-0	BRACING- TOP CHORD BOT CHORD	Structural woo 2-0-0 oc purlin Rigid ceiling di	s (4-4-5 max.):	ectly applied, except 3-5.	
Max Ho Max Up) 1=0-4-0, 7=Mechanical rz 1=46(LC 12) lift 1=-89(LC 12), 7=-87(LC 13) av 1=1159(LC 1), 7=1159(LC 1)						
TOP CHORD 1-3=-1 BOT CHORD 1-10=-	Comp./Max. Ten All forces 250 (lb) or 817/155, 3-4=-1552/169, 4-5=-1492/16 88/1568, 8-10=-160/1946, 7-8=-74/150 0/464, 4-10=-568/154, 4-8=-628/155, 5	65, 5-7=-1762/152 09					
 Wind: ASCE 7-16; Vu MWFRS (envelope) g Interior(1) 9-11-15 to end vertical left and ri DOL=1.60 Provide adequate dra 4) All plates are MT20 p 5) This truss has been d 6) * This truss has been d 6) * This truss has been d 7) Refer to girder(s) for t 8) Provide mechanical c 9) This truss is designed referenced standard / 10) This truss design re- sheetrock be applied 	loads have been considered for this de It=115mph (3-second gust) Vasd=91m jable end zone and C-C Exterior(2E) 0 15-7-0, Exterior(2R) 15-7-0 to 19-9-15, ight exposed;C-C for members and ford inage to prevent water ponding. lates unless otherwise indicated. lesigned for a 10.0 psf bottom chord liv designed for a live load of 20.0psf on t itom chord and any other members. truss to truss connections. connection (by others) of truss to bearin d in accordance with the 2018 Internation ANSI/TPI 1. quires that a minimum of 7/16" structur d directly to the bottom chord. resentation does not depict the size or	aph; TCDL=6.0psf; BCDL= -0-0 to 3-0-0, Interior(1) 3- Interior(1) 19-9-15 to 21-0 ces & MWFRS for reaction the load nonconcurrent with the bottom chord in all area and plate capable of withstar onal Residential Code sect al wood sheathing be appl	0-0 to 5-9-0, Exterior(2F 0-14 zone; cantilever lef s shown; Lumber DOL: any other live loads. as where a rectangle 3- nding 100 lb uplift at joi ions R502.11.1 and R8 ied directly to the top cl	R) 5-9-0 to 9-11- t and right expose =1.60 plate grip 6-0 tall by 2-0-0 nt(s) 1, 7. 102.10.2 and hord and 1/2" gy	ı5, ed ; wide	SC S	E MISSOLA DTT M. EVIER 01018807

December 4,2020

will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7.


8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

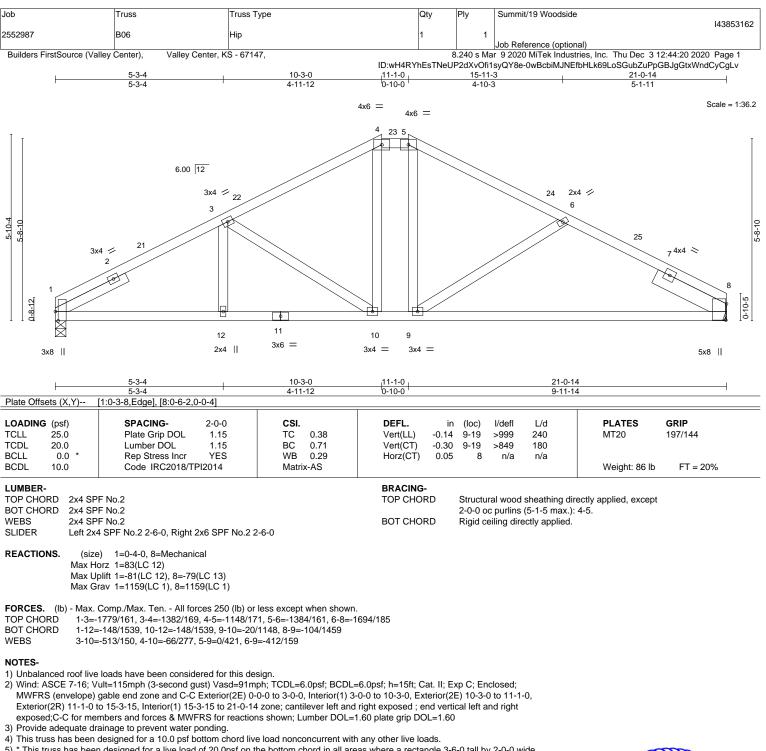
10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

MITEK 16023 Swingley Ridge Rd Chesterfield, MO 63017

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

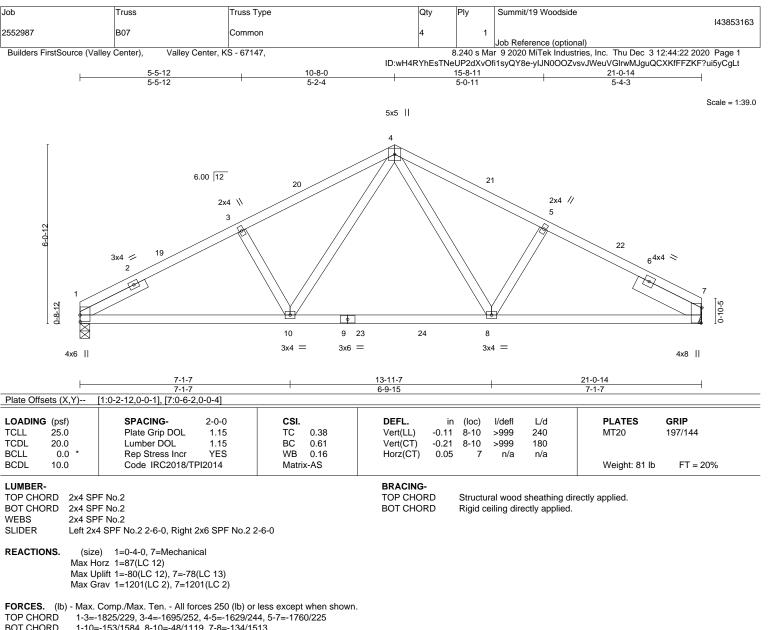
7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 8.


 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

16023 Swingley Ridge Rd Chesterfield, MO 63017


5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 8.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

16023 Swingley Ridge Rd Chesterfield, MO 63017

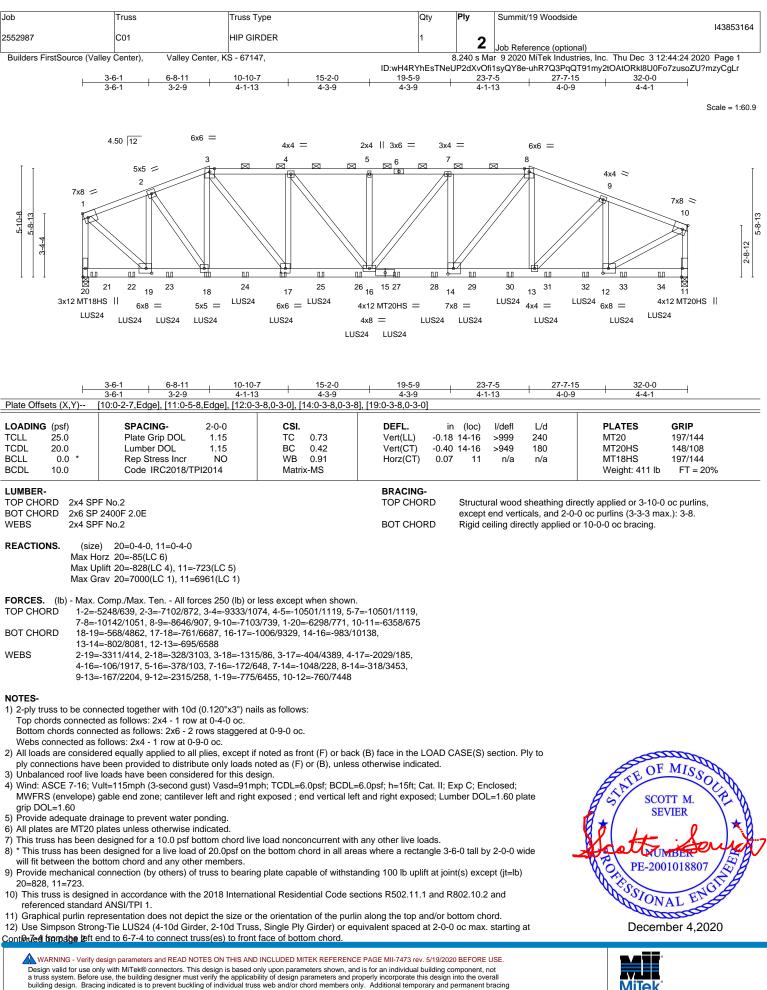
- 1-10=-153/1584. 8-10=-48/1119. 7-8=-134/1513
- WEBS 3-10=-392/167, 4-10=-78/634, 4-8=-68/566, 5-8=-351/160

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-0-0 to 3-0-0. Interior(1) 3-0-0 to 10-8-0. Exterior(2R) 10-8-0 to 13-8-0. Interior(1) 13-8-0 to 21-0-14 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Design valid for use only with MiTeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

[Job	Truss	Truss Type	Qty	Ply	Summit/19 Woodside
						143853164
	2552987	C01	HIP GIRDER	1	2	
					2	Job Reference (optional)
	Builders FirstSource (Valley	Center), Valley Center, K	S - 67147,	8	3.240 s Ma	r 9 2020 MiTek Industries, Inc. Thu Dec 3 12:44:24 2020 Page 2
		,, ,				, C

NOTES-

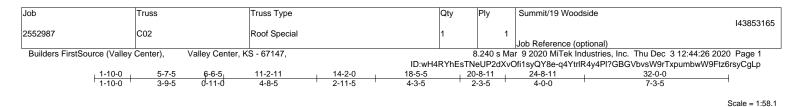
13) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 8-7-4 from the left end to 30-7-4 to

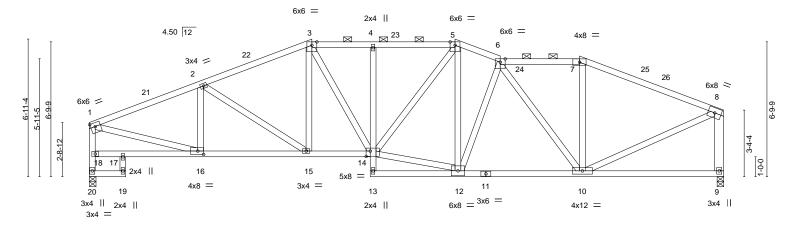
ID:wH4RYhEsTNeUP2dXvOfi1syQY8e-uhR7Q3PqQT91my2tOAtORkl8U0Fo7zusoZU?mzyCgLr

connect truss(es) to front face of bottom chord.

14) Fill all nail holes where hanger is in contact with lumber.

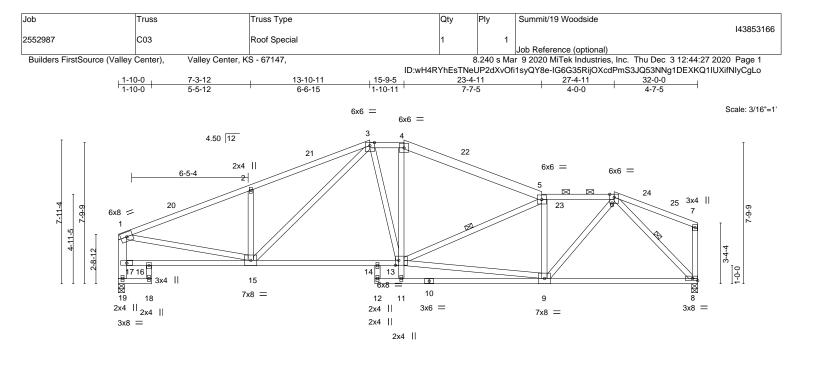
LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf) Vert: 1-3=-90, 3-8=-90, 8-10=-90, 11-20=-20

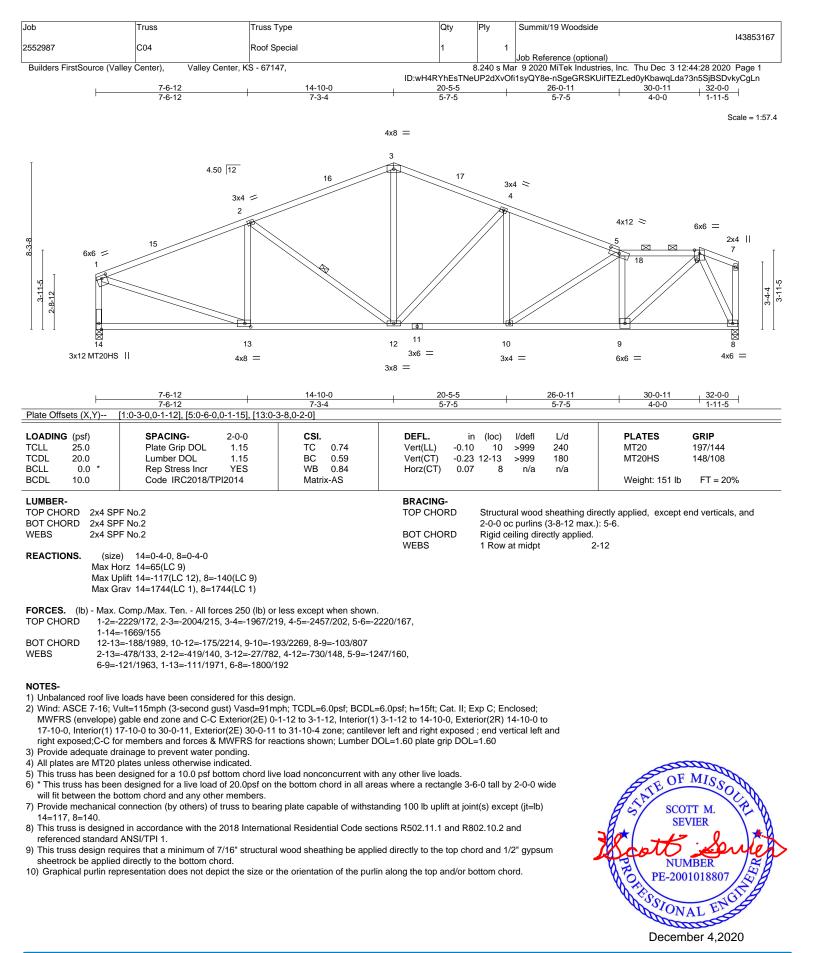
Concentrated Loads (lb)

Vert: 18=-609(F) 17=-609(F) 21=-615(F) 22=-609(F) 23=-609(F) 24=-609(F) 25=-609(F) 25=-724(F) 27=-724(F) 28=-724(F) 29=-724(F) 30=-724(F) 31=-645(F) 32=-645(F) 33=-645(F) 34=-645(F)



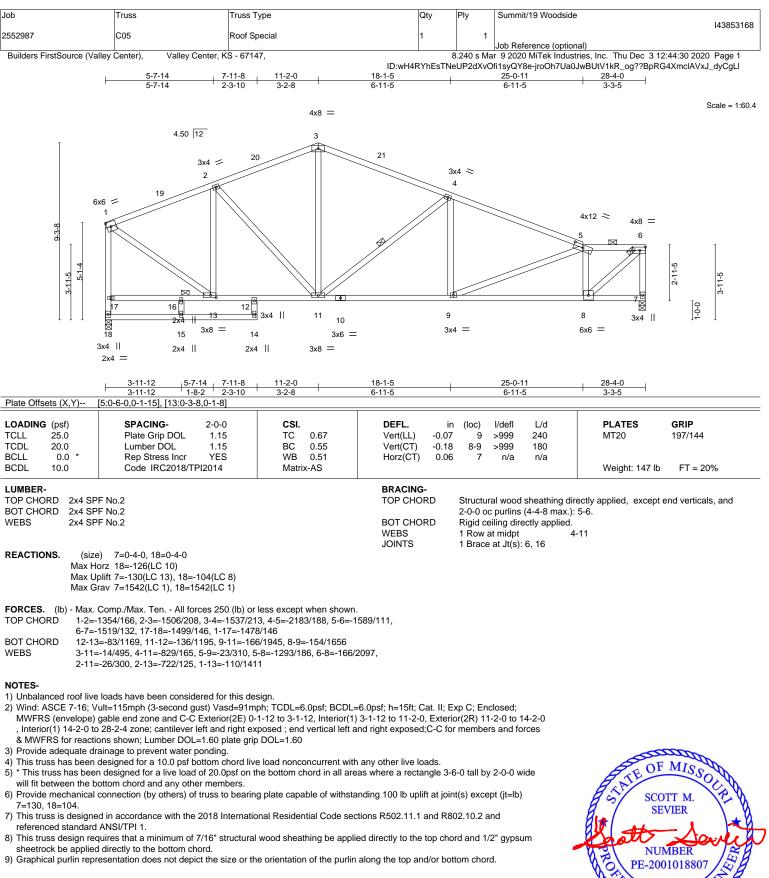
1-10-0		11-2-11	14-2-0	18-5-5	20-8-11	24-8-11	32-0-0	
1-10-0		5-7-5	2-11-5	4-3-5	2-3-5	4-0-0	7-3-5	
Plate Offsets (X,Y) [1:0-2-12,0-2-4], [14:0-2-	8,0-3-4], [16:0-3	-8,0-2-0]					
LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/T	2-0-0 1.15 1.15 YES PI2014	CSI. TC 0.79 BC 0.58 WB 0.71 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.11 4 -0.24 4 0.10 9	l/defl L/d >999 240 >999 180 n/a n/a	PLATES MT20 Weight: 170 lb	GRIP 197/144 FT = 20%
				BRACING- TOP CHOF BOT CHOF	RD Structu 2-0-0 d	ural wood sheathing o oc purlins (3-4-14 ma ceiling directly applied		end verticals, and
Max Ho Max Up) 20=0-4-0, 9=0-4-0 orz 20=80(LC 11) llift 20=-141(LC 8), 9=-1 av 20=1739(LC 1), 9=1							
TOP CHORD 1-2=-2 6-7=-1 BOT CHORD 16-17= WEBS 3-14=-	2537/260, 2-3=-2522/28 700/215, 7-8=-1924/19 =-149/255, 15-16=-283/2	1, 3-4=-2478/309 2, 18-20=-1705/ 2301, 14-15=-23 92, 5-14=-80/72	ess except when shown. 5, 4-5=-2474/306, 5-6=-2 158, 1-18=-1665/164, 8-9 6/2278, 4-14=-413/102, 7 7, 6-12=-358/117, 6-10=- 199	242/266,)=-1669/200 10-12=-227/2187				
 MWFRS (envelope) g 14-3-12, Interior(1) 14 Interior(1) 27-8-11 to & MWFRS for reactio Provide adequate dra This truss has been of this truss has been of this truss has been of this truss has been of this truss has been of 20=141, 9=162. This truss is designed referenced standard. This truss design req sheetrock be applied 	ult=115mph (3-second g jable end zone and C-C 4-3-12 to 18-5-5, Exterio 31-9-4 zone; cantilever ins shown; Lumber DOL iinage to prevent water lesigned for a 10.0 psf t designed for a 1ive load totom chord and any oth iconnection (by others) o d in accordance with the ANSI/TPI 1. uires that a minimum of directly to the bottom cl	ust) Vasd=91mp Exterior(2E) 0-' or(2E) 18-5-5 to 3' left and right exp =-1.60 plate grip ponding. oottom chord live I of 20.0psf on th er members. f truss to bearing e 2018 Internation 7/16" structural hord.	h; TCDL=6.0psf; BCDL= 1-12 to 3-1-12, Interior(1) 20-8-11, Interior(1) 20-8- bosed ; end vertical left a	3-1-12 to 11-2-1 11 to 24-8-11, Exi nd right exposed; any other live loz as where a rectar nding 100 lb uplif tions R502.11.1 a ed directly to the t	I, Exterior(2R) erior(2R) 24-8 C-C for member ads. Igle 3-6-0 tall b t at joint(s) exc and R802.10.2 op chord and f	11-2-11 to -11 to 27-8-11, ers and forces by 2-0-0 wide ept (jt=lb) and 1/2" gypsum	SE NU PE-200	MISSOLUER WIER MBER D1018807

December 4,2020

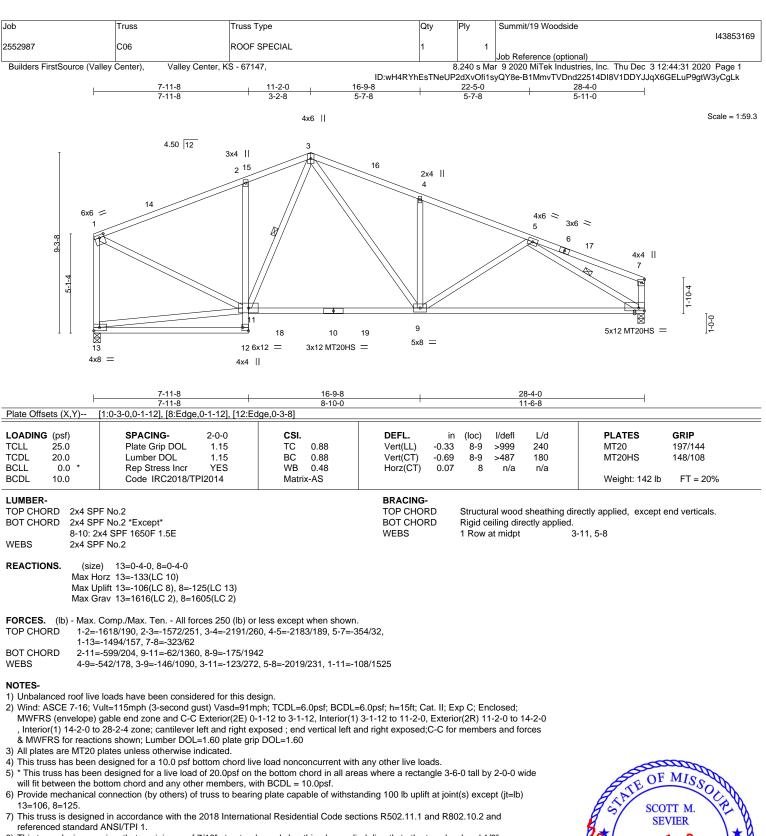


	1-10-0 7-3-12	14-2-0		23-4-11	27-4-11	32-0-0	
	1-10-0 5-5-12	6-10-4	1-7-5	7-7-5	4-0-0	4-7-5	1
Plate Offsets (X,Y)	[13:0-2-4,0-3-4]						
LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.64 BC 0.61 WB 0.57 Matrix-AS	Vert(CT) -	in (loc) l/defl 0.12 8-9 >999 0.31 14-15 >999 0.10 8 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 168 lb	GRIP 197/144 FT = 20%
4-5: 2x BOT CHORD 2x4 SF WEBS 2x4 SF	PF No.2 *Except* 66 SPF No.2 PF No.2 PF No.2 *Except* 2x6 SPF No.2		BRACING- TOP CHORD BOT CHORD WEBS	2-0-0 oc purlins	(3-6-13 max.): ectly applied.	ctly applied, except 3-4, 5-6. 13, 6-8	end verticals, and
Max H Max U	e) 19=0-4-0, 8=0-4-0 lorz 19=69(LC 11) Jplift 19=-122(LC 8), 8=-146(LC 9) Grav 19=1739(LC 1), 8=1739(LC 1)						
TOP CHORD 1-2=- 17-19 BOT CHORD 16-17 WEBS 1-15= 6-9=-	Comp./Max. Ten All forces 250 (lb) or -2680/247, 2-3=-2663/326, 3-4=-2153/27 9=-1680/143, 1-17=-1651/162 7=-124/418, 15-16=-168/362, 14-15=-19 =-180/2162, 2-15=-642/221, 11-13=0/37 -70/1443, 3-15=-154/561, 9-13=-229/231 -1979/211	70, 4-5=-2391/258, 5-6= 7/2078, 13-14=-197/207 5, 4-13=-10/364, 5-9=-1	=-2323/215, 178, 8-9=-165/1420 1252/187,				
 2) Wind: ASCE 7-16; MWWFRS (envelope) 15-9-5, Exterior(2R) zone; cantilever left shown; Lumber DOI 3) Provide adequate di 4) This truss has been will fit between the b 6) Provide mechanical 19=122, 8=146. 7) This truss is designer referenced standard 8) This truss design resheetrock be applied 	e loads have been considered for this de /ult=115mph (3-second gust) Vasd=91m gable end zone and C-C Exterior(2E) 0-) 15-9-5 to 18-9-5, Interior(1) 18-9-5 to 27 and right exposed ; end vertical left and L=1.60 plate grip DOL=1.60 rainage to prevent water ponding. designed for a 10.0 psf bottom chord live en designed for a live load of 20.0psf on t bottom chord and any other members. I connection (by others) of truss to bearin ed in accordance with the 2018 Internation d ANSI/TPI 1. quires that a minimum of 7/16" structural d directly to the bottom chord.	př; TCDL=6.0psf; BCD -2-12 to 3-2-12, Interior(7-4-11, Exterior(2R) 27- right exposed;C-C for n e load nonconcurrent w he bottom chord in all a ug plate capable of withs onal Residential Code s I wood sheathing be app	(1) 3-2-12 to 13-10-11, -4-11 to 30-4-11, Interimembers and forces & with any other live loads areas where a rectangl standing 100 lb uplift a sections R502.11.1 and uplied directly to the top	Exterior(2E) 13-10-1 or(1) 30-4-11 to 31-10 MWFRS for reaction: a 3-6-0 tall by 2-0-0 v t joint(s) except (jt=lb) t R802.10.2 and chord and 1/2" gyps	0-4 s vide)	Sett	MISSOLA DTT M. VIER DI018807

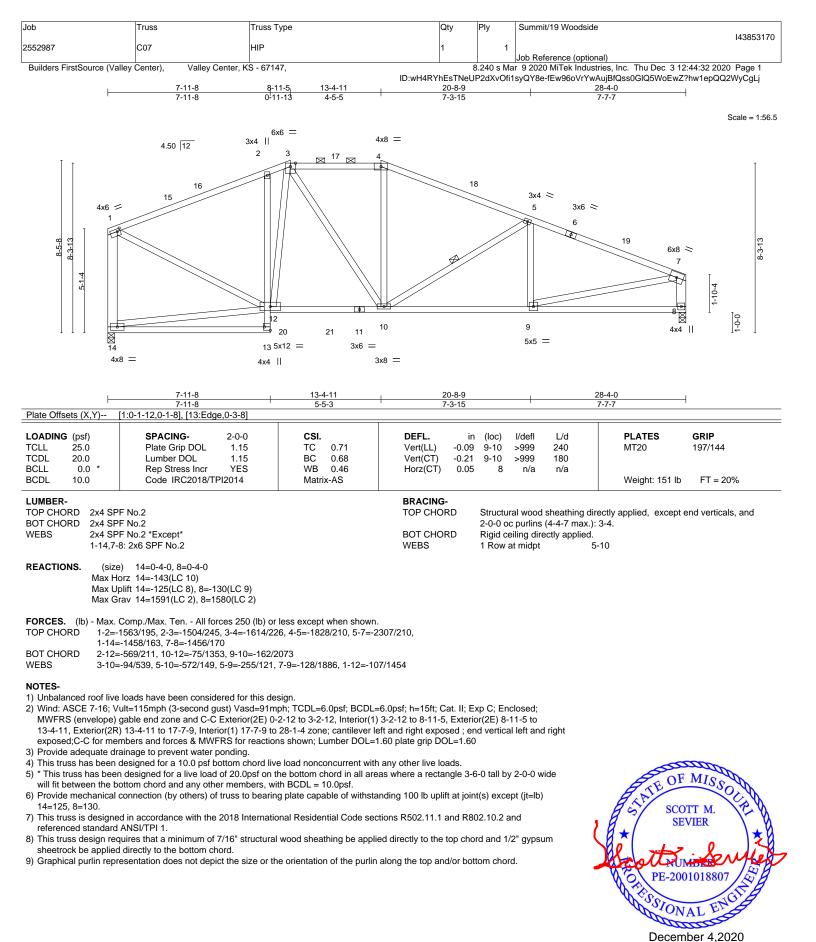
9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



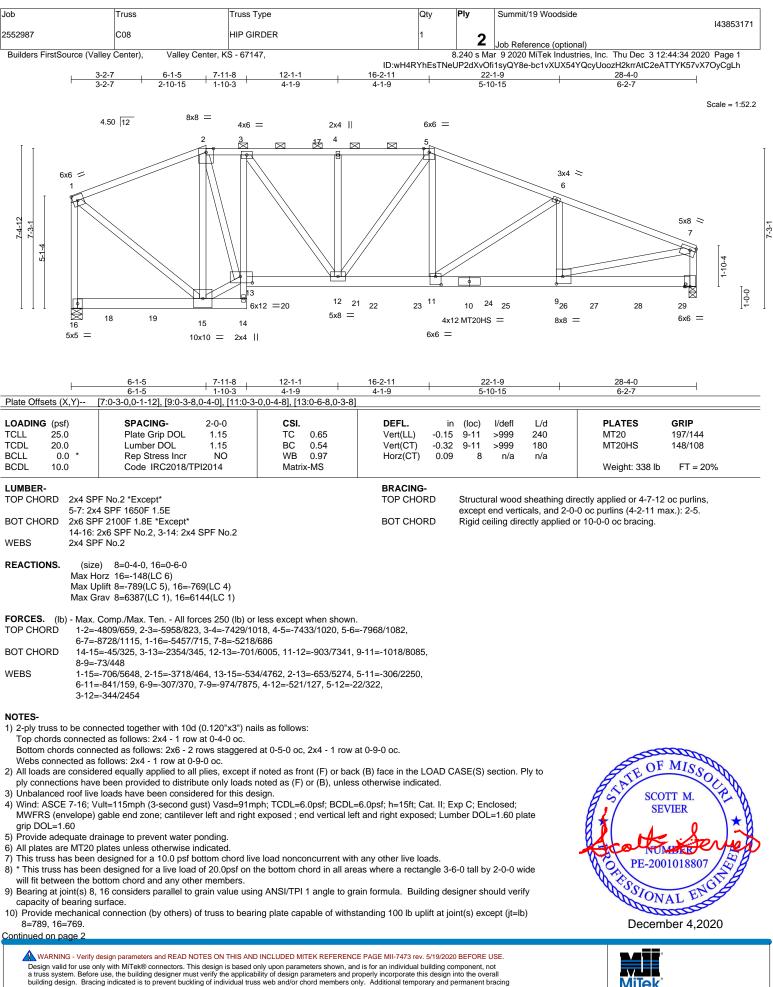
MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017



NITEK* 16023 Swingley Ridge Rd Chesterfield, MO 63017


Mitek 16023 Swingley Ridge Rd Chesterfield, MO 63017

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


16023 Swingley Ridge Rd Chesterfield, MO 63017

👠 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not Lessign value use only winn win exec connectors. Inis design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporely incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

a truss system and to use the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Summit/19 Woodside
					I43853171
2552987	C08	HIP GIRDER	1	2	
				2	Job Reference (optional)
Builders FirstSource (Valley Center), Valley Center, KS - 67147,			8.240 s Mar 9 2020 MiTek Industries, Inc. Thu Dec 3 12:44:35 2020 Page 2		

8.240 s Mar 9 2020 MiTek Industries, Inc. Thu Dec 3 12:44:35 2020 Page 2 ID:wH4RYhEsTNeUP2dXvOfi1syQY8e-3obHkqYjrrYTaeN?X_azN3j2ySzPCwoUKne4fqyCgLg

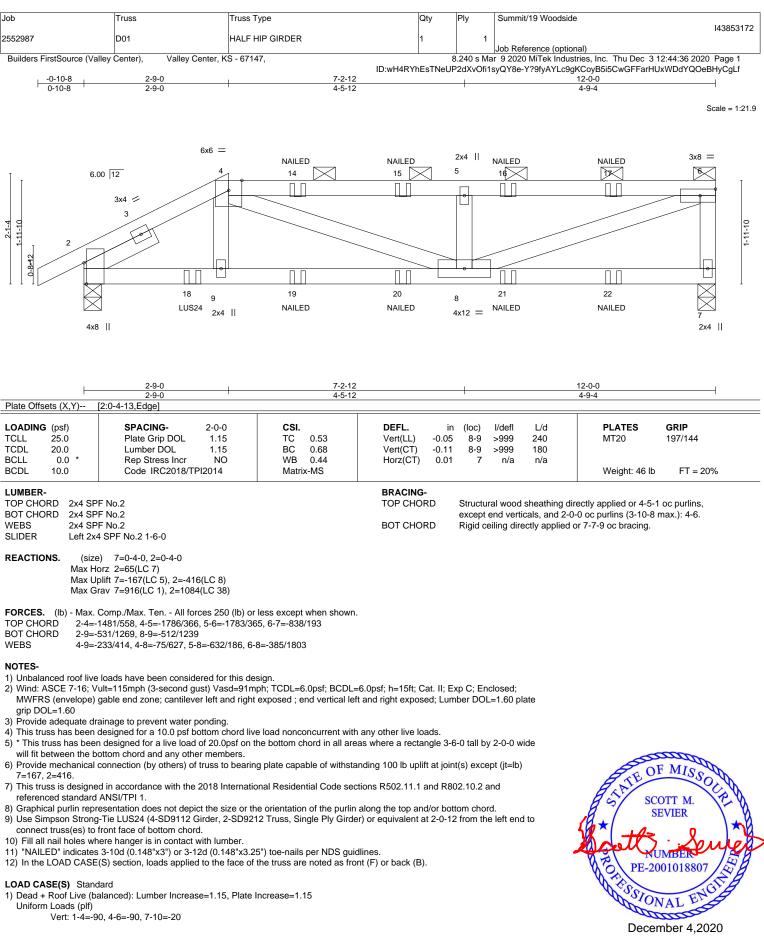
NOTES-

- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 705 lb down and 89 lb up at 1-8-12, 752 lb down and 105 lb up at 3-8-12, 705 lb down and 138 lb up at 5-8-12, 712 lb down and 78 lb up at 7-9-12, 671 lb down and 93 lb up at 9-8-12, 671 lb down and 93 lb up at 11-8-12, 671 lb down and 93 lb up at 13-8-12, 671 lb down and 93 lb up at 13-8-12, 671 lb down and 93 lb up at 13-8-12, 671 lb down and 93 lb up at 13-8-12, 671 lb down and 93 lb up at 13-8-12, 671 lb down and 93 lb up at 13-8-12, 671 lb down and 93 lb up at 13-8-12, 671 lb down and 93 lb up at 13-8-12, 671 lb down and 93 lb up at 13-8-12, 671 lb down and 93 lb up at 13-8-12, 671 lb down and 93 lb up at 13-8-12, 671 lb down and 93 lb up at 13-8-12, 671 lb down and 93 lb up at 13-8-12, 671 lb down and 80 lb up at 21-8-12, 658 lb down and 80 lb up at 23-8-12, and 658 lb down and 89 lb up at 23-8-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

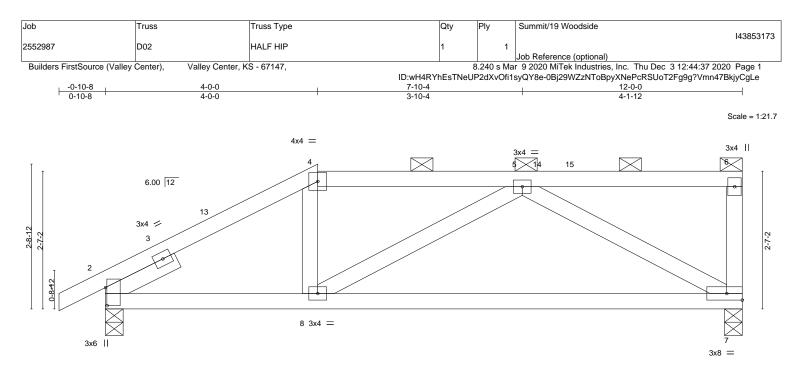

Uniform Loads (plf)

Vert: 1-2=-90, 2-5=-90, 5-7=-90, 14-16=-20, 8-13=-20

Concentrated Loads (lb)

Vert: 14=-712(F) 15=-705(F) 18=-705(F) 19=-705(F) 20=-671(F) 21=-671(F) 22=-671(F) 23=-671(F) 24=-667(F) 25=-647(F) 26=-643(F) 27=-658(F) 28=-658(F) 29=-663(F) 29=-663(F) 20=-643(F) 20=-671(F) 21=-671(F) 22=-671(F) 23=-671(F) 24=-667(F) 25=-647(F) 26=-643(F) 27=-658(F) 28=-658(F) 29=-663(F) 20=-671(F) 24=-667(F) 26=-647(F) 26=-643(F) 27=-658(F) 28=-658(F) 29=-663(F) 20=-671(F) 24=-667(F) 26=-647(F) 26=-647(F) 26=-643(F) 27=-658(F) 28=-658(F) 29=-663(F) 20=-663(F) 20=-6

Continued on page 2


Job	Truss	Truss Type	Qty	Ply	Summit/19 Woodside	
					143853172	
2552987	D01	HALF HIP GIRDER	1	1		
					Job Reference (optional)	
Builders FirstSource (Valley Center), Valley Center, KS - 67147,		S - 67147,	8.240 s Mar 9 2020 MiTek Industries, Inc. Thu Dec 3 12:44:36 2020 Page 2			

ID:wH4RYhEsTNeUP2dXvOfi1syQY8e-Y?9fyAYLc9gKCoyB5i5CwGFFarHUxWDdYQOeBHyCgLf

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 14=-57(F) 15=-57(F) 16=-57(F) 17=-57(F) 18=-197(F) 19=-41(F) 20=-41(F) 21=-41(F) 22=-41(F)

Plate Offsets (X,Y)	<u>4-0-0</u> <u>4-0-0</u> [2:0-4-1,0-0-5]		12-0-0 8-0-0
LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.29 BC 0.46 WB 0.31 Matrix-AS	DEFL. in (loc) l/defl L/d Vert(LL) -0.10 7-8 >999 240 Vert(CT) -0.22 7-8 >651 180 Horz(CT) 0.01 7 n/a n/a
LUMBER- TOP CHORD 2x4 SPI BOT CHORD 2x4 SPI			BRACING- TOP CHORD Structural wood sheathing directly applied, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 4-6.

 BOT CHORD
 2x4 SPF No.2
 2-0-0 oc purlins (6-0 max.): 4-6.

 WEBS
 2x4 SPF No.2
 BOT CHORD

 SLIDER
 Left 2x4 SPF No.2 1-6-0

REACTIONS. (size) 2=0-4-0, 7=0-4-0 Max Horz 2=88(LC 11) Max Uplift 2=-47(LC 12), 7=-73(LC 9) Max Grav 2=734(LC 1), 7=649(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-922/146, 4-5=-769/159

BOT CHORD 2-8=-175/774, 7-8=-194/766

WEBS 5-7=-810/207

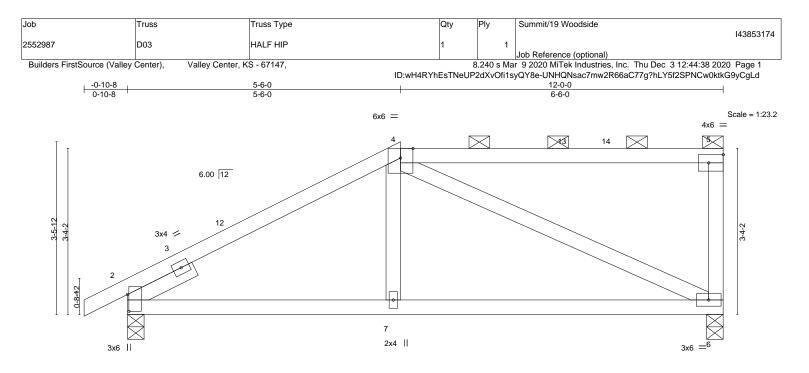
NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 4-0-0, Exterior(2R) 4-0-0 to 8-2-15, Interior(1) 8-2-15 to 11-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 7.
 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

NUMBER PE-2001018807 December 4,2020

16023 Swingley Ridge Rd Chesterfield, MO 63017

Plate Offsets (X,Y) [5-6-0 5-6-0 [2:0-4-1,0-0-5], [5:Edge,0-2-0]			<u>12-0-0</u> 6-6-0	
LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. TC 0.65 BC 0.33 WB 0.60 Matrix-AS	DEFL. ir Vert(LL) -0.05 Vert(CT) -0.05 Horz(CT) 0.01	6-7 >999 180	PLATES GRIP MT20 197/144 Weight: 45 lb FT = 20%
LUMBER- TOP CHORD 2x4 SPI BOT CHORD 2x4 SPI	F No.2		BRACING- TOP CHORD	Structural wood sheathing dir 2-0-0 oc purlins (6-0-0 max.):	rectly applied, except end verticals, and 4-5.

 WEBS
 2x4 SPF No.2
 BOT CHORD
 Rigid ceiling directly applied.

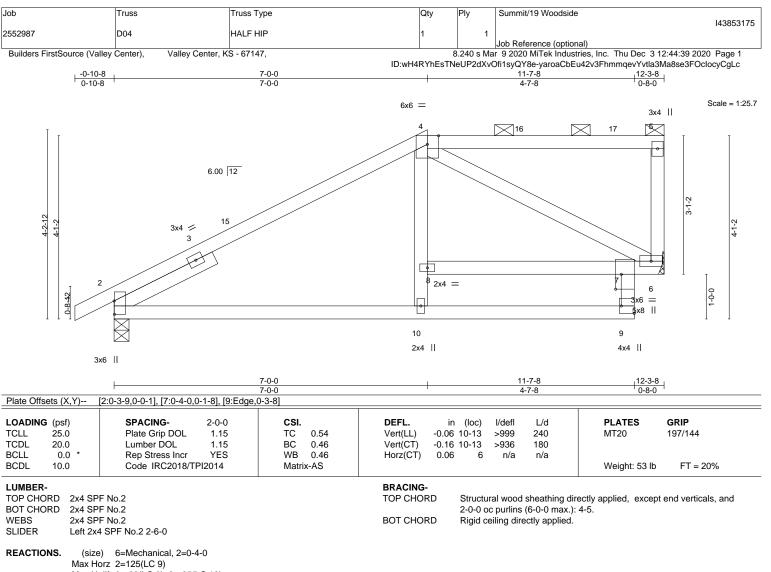
 SLIDER
 Left 2x4 SPF No.2 1-6-0
 REACTIONS.
 (size)
 2=0-4-0, 6=0-4-0

Max Horz 2=116(LC 11) Max Uplift 2=-58(LC 12), 6=-71(LC 9) Max Grav 2=734(LC 1), 6=649(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-4=-851/150, 5-6=-292/96

BOT CHORD 2-7=-207/701, 6-7=-210/695


WEBS 4-6=-680/187

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 5-6-0, Exterior(2R) 5-6-0 to 9-8-15, Interior(1) 9-8-15 to 11-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.
 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

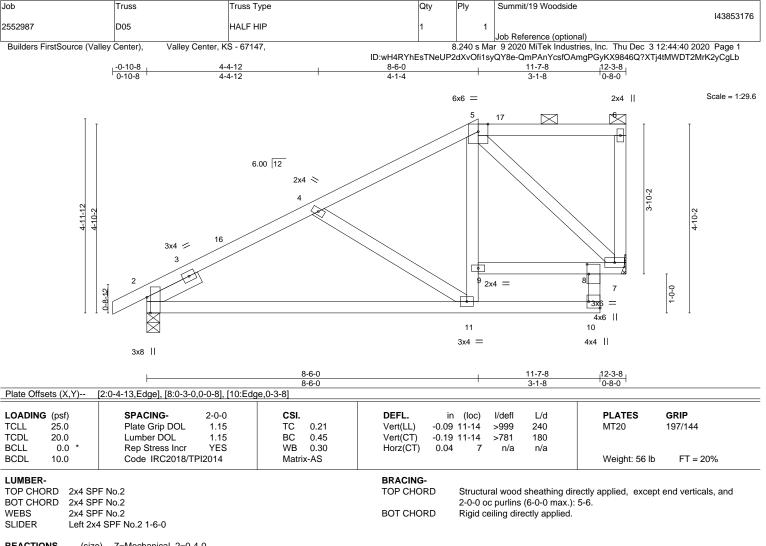
Max Uplift 6=-69(LC 9), 2=-65(LC 12)

Max Grav 6=665(LC 1), 2=750(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-4=-692/128

BOT CHORD 2-10=-180/588, 9-10=-107/393, 7-8=-102/259, 6-7=-209/652


WEBS 4-6=-732/208

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 7-0-0, Exterior(2R) 7-0-0 to 11-2-15, Interior(1) 11-2-15 to 12-1-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

OF MISS TE SCOTT M. SEVIER NUMB NOFFESSIONAL PE-2001018807 E December 4,2020

REACTIONS. (size) 7=Mechanical, 2=0-4-0 Max Horz 2=153(LC 9) Max Uplift 7=-65(LC 9), 2=-69(LC 12) Max Grav 7=665(LC 1), 2=750(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-4=-829/151, 4-5=-537/109

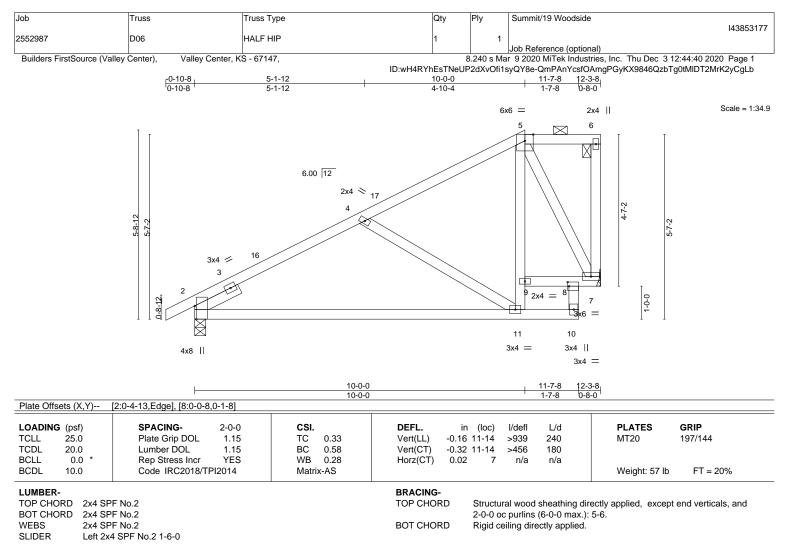
BOT CHORD 2-11=-276/736, 10-11=-103/306, 7-8=-147/423

WEBS 4-11=-389/164, 9-11=0/352, 5-9=0/325, 5-7=-586/153

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 8-6-0, Exterior(2E) 8-6-0 to 12-1-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 2.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

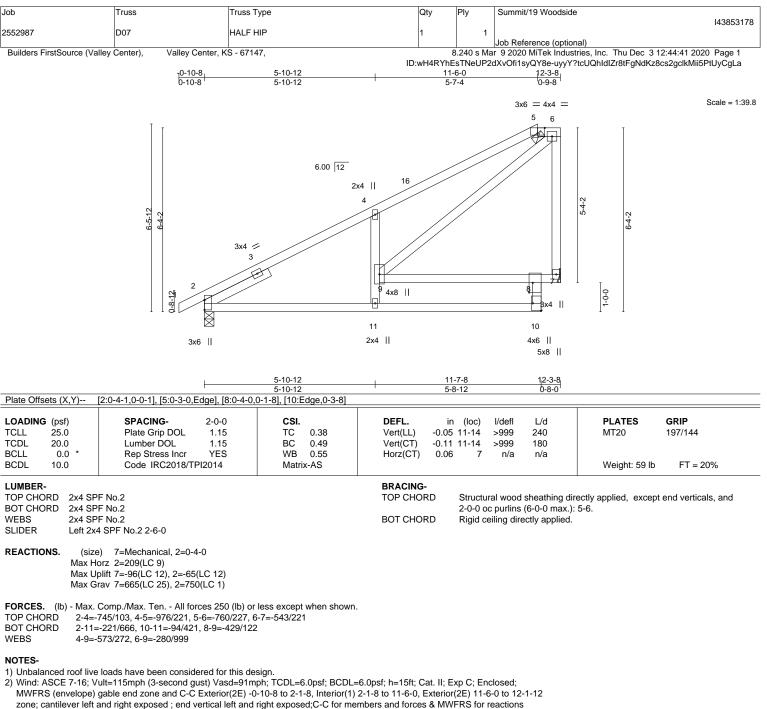
REACTIONS. (size) 7=Mechanical, 2=0-4-0 Max Horz 2=181(LC 9) Max Uplift 7=-68(LC 12), 2=-69(LC 12) Max Grav 7=665(LC 1), 2=750(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-798/145, 4-5=-408/89

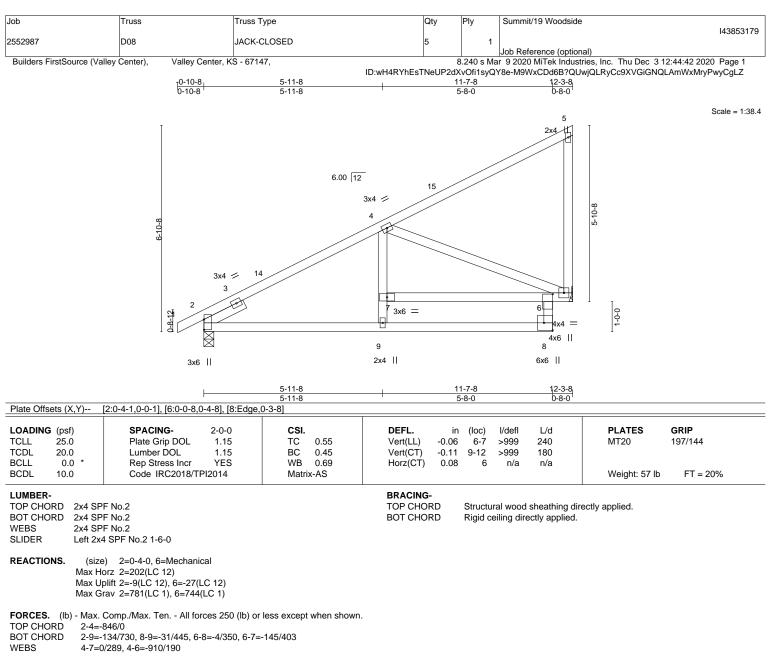
BOT CHORD 2-11=-266/705, 7-8=-106/268

WEBS 4-11=-509/192, 9-11=0/499, 5-9=-1/427, 5-7=-605/138


NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 10-0-0, Exterior(2E) 10-0-0 to 12-1-12 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 2.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


16023 Swingley Ridge Rd Chesterfield, MO 63017

- shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 2.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 12-1-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

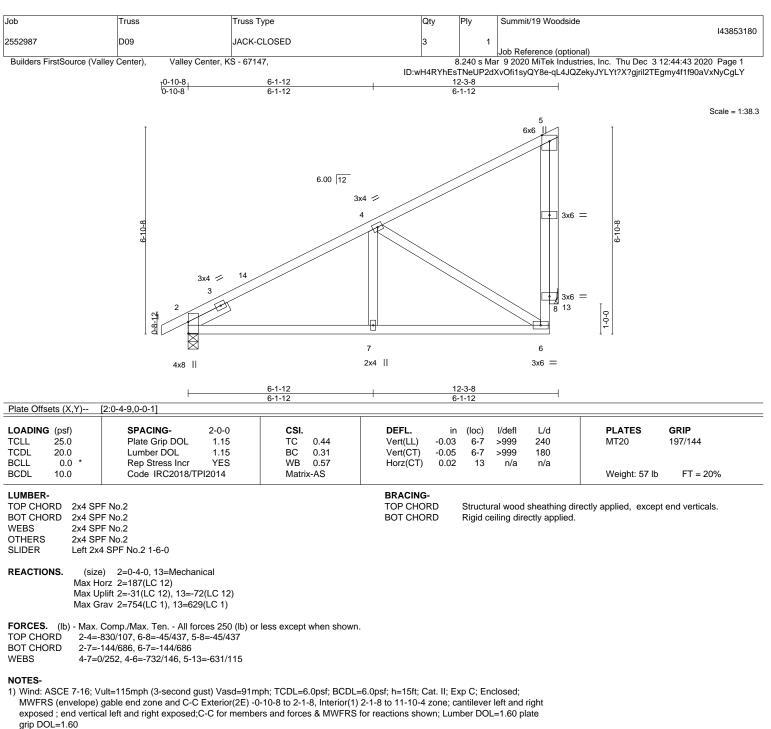
2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and


referenced standard ANSI/TPI 1. 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum

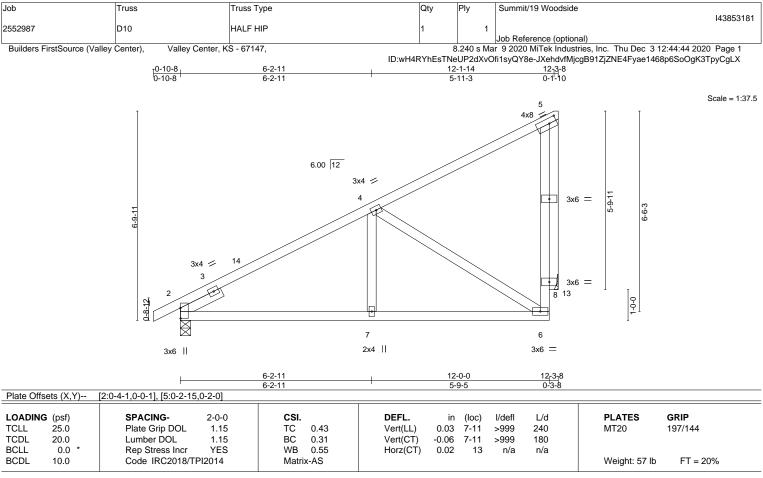
sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.


5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 13.
 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LUMBER-

 TOP CHORD
 2x4 SPF No.2

 BOT CHORD
 2x4 SPF No.2

 WEBS
 2x4 SPF No.2

 SLIDER
 Left 2x4 SPF No.2 1-6-0

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied.

REACTIONS. (size) 2=0-4-0, 13=Mechanical Max Horz 2=216(LC 12) Max Uplift 2=-35(LC 12), 13=-132(LC 12) Max Grav 2=754(LC 1), 13=629(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-4=-798/8, 6-8=-59/440, 5-8=-59/440
- BOT CHORD 2-7=-149/677 6-7=-149/677

WEBS 4-7=0/254, 4-6=-728/169, 5-13=-631/132

NOTES-

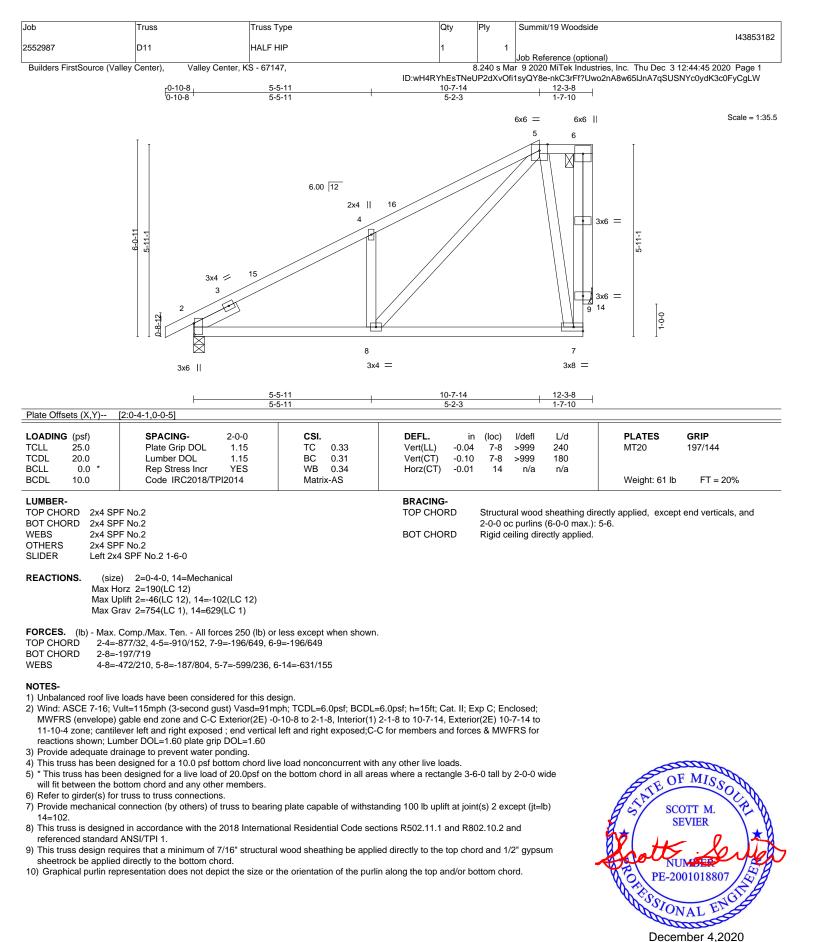
 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 11-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

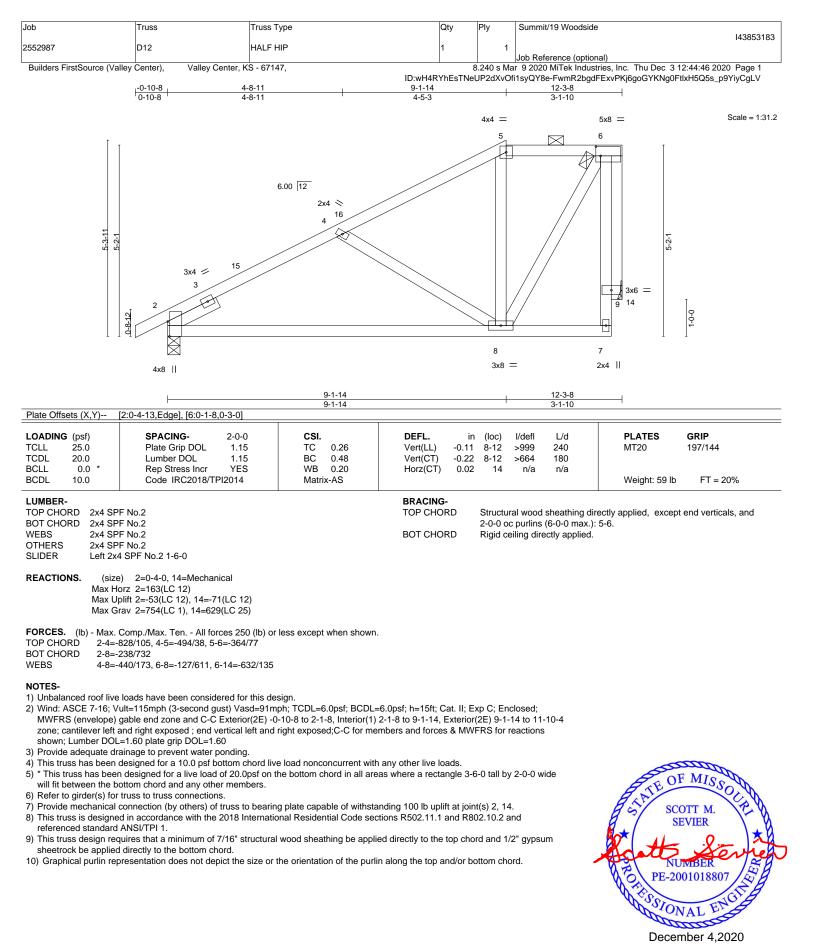
3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

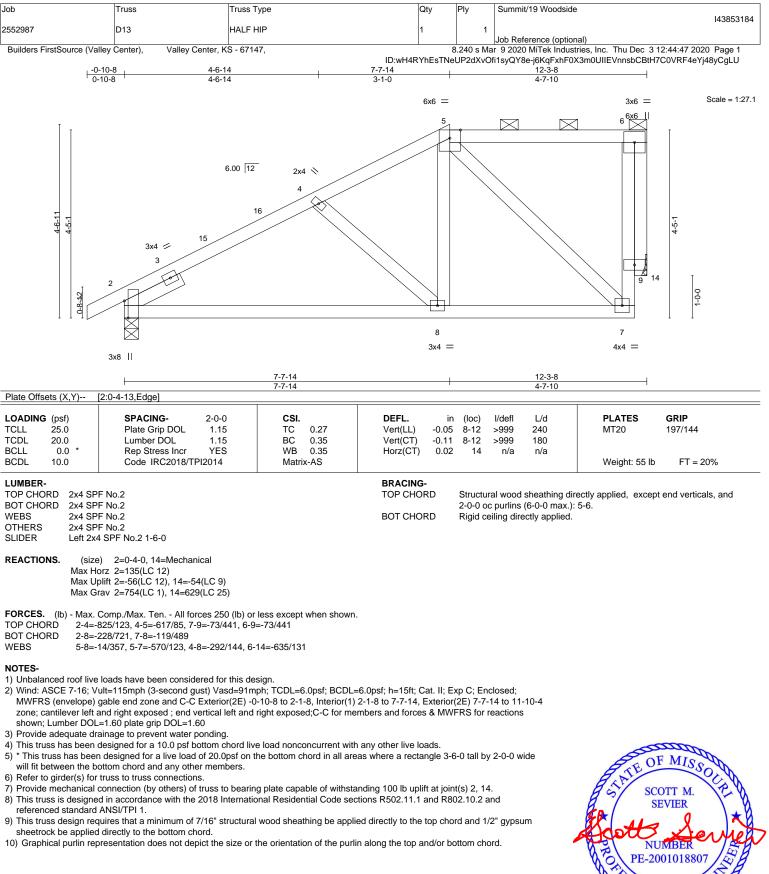
5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 13=132.


6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

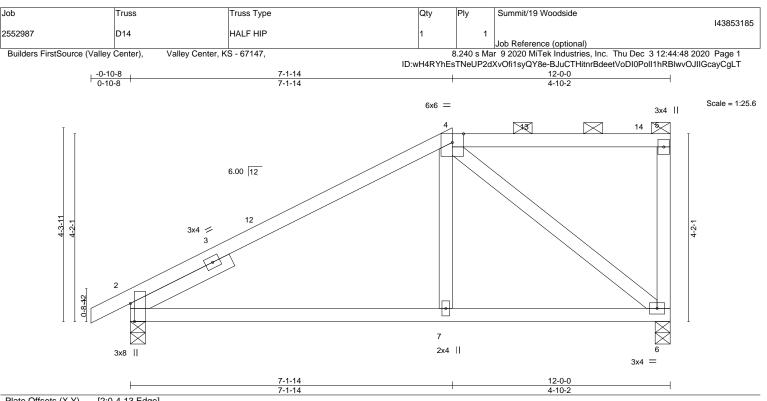

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


MiTek

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X, Y)	2:0-4-13,Edgej				
OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. ir	n (loc) l/defl L/d	PLATES GRIP
TCLL 25.0	Plate Grip DOL 1.15	TC 0.56	Vert(LL) 0.06	6 7-10 >999 240	MT20 197/144
TCDL 20.0	Lumber DOL 1.15	BC 0.43	Vert(CT) -0.13	3 7-10 >999 180	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.46	Horz(CT) 0.03	3 2 n/a n/a	
BCDL 10.0	Code IRC2018/TPI2014	Matrix-AS			Weight: 47 lb FT = 20%
UMBER-			BRACING-		
TOP CHORD 2x4 SPF No.2			TOP CHORD	Structural wood sheathing	ng directly applied, except end verticals, and
BOT CHORD 2x4 SPF No.2				2-0-0 oc purlins (6-0-0 n	nax.): 4-5.

TOP CHORD2x4 SPF No.2TOP CHORDStructural wood sheathing directly applied, except end verticals, and
2-0-0 oc purlins (6-0-0 max.): 4-5.WEBS2x4 SPF No.2BOT CHORDRigid ceiling directly applied.SLIDERLeft 2x4 SPF No.2 2-6-0BOT CHORDRigid ceiling directly applied.

REACTIONS. (size) 2=0-4-0, 6=0-4-0 Max Horz 2=147(LC 11) Max Uplift 2=-66(LC 12), 6=-68(LC 9) Max Grav 2=734(LC 1), 6=649(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-661/128

BOT CHORD 2-7=-200/563, 6-7=-202/556

WEBS 4-7=0/279, 4-6=-702/211

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 7-1-14, Exterior(2R) 7-1-14 to 11-4-13, Interior(1) 11-4-13 to 11-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

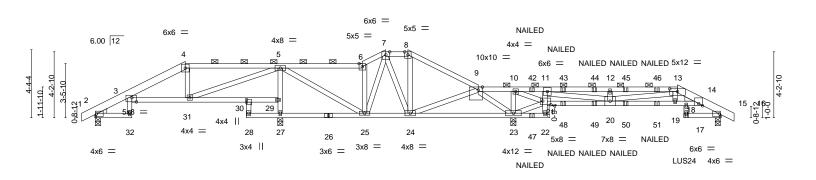
3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.
 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

NUMBER PE-2001018807


December 4,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job		Truss		Truss Typ	е			0	Qty	Ply	Summit	/19 Woodside		
255298	87	D15		Roof Spec	cial Girder			1		1				l43853186
											Job Refe	erence (optional)		
Builders FirstSource (Valley Center), Valley Center, KS - 67147,					8	3.240 s Ma	ar 9 2020	MiTek Industries	, Inc. Thu De	c 3 12:44:51 2020 Page 1				
							ID:v	vH4RYł	EsTNeU	P2dXvOfi	1syQY8e-	-btZK5lkl4mZCV	5c3TLsj1RNm	fuOqyELq?GWwDvyCgLQ
	-0-10-8 2-4-0	5-9-0		11-10-0 13			20-0-0	24-6		26-9-0	28-11-0	32-11-4	37-3-0	37 ₁ 8 ₁ 0 40-0-0 40-10-8
	0-10-8 2-4-0	3-5-0	3-11-0	2-2-0 1-	-6-8 3-8	-8 1-6-0	1-5-0	4-6	-0	2-3-0	2-2-0	4-0-4	4-3-12	0-5-0 2-4-0 0 ¹ 10-8

Scale = 1:73.7

2-4-0			0 20-0-0 24-6-0 26-9-0 0 1-5-0 4-6-0 2-3-0	28-11-0 32-11-4	33 ₁ 378 37-3-0 37 ₁ 810 40-0-0 0-4-4 3-11-8 0-5-0 2-4-0
Plate Offsets (X,Y)	[3:0-3-8,0-3-4], [9:0-3-3,Edge], [13:0-6-0				
LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCode IRC2018/TPI2014	CSI. TC 0.73 BC 0.75 WB 0.67 Matrix-MS	DEFL. in (loc) Vert(LL) 0.11 19-20 Vert(CT) -0.21 19-20 Horz(CT) 0.13 15	l/defl L/d >999 240 >741 180 n/a n/a	PLATES GRIP MT20 197/144 Weight: 176 lb FT = 20%
BOT CHORD 2x4 SP	x6 SPF No.2, 13-16: 2x6 SP 2400F 2.0E PF No.2 PF No.2		2-0-0 0 BOT CHORD Rigid 0	oc purlins (3-4-0 max.): 4	ectly applied or 6-0-0 oc purlins, except 4-6, 7-8, 9-13. r 6-0-0 oc bracing. Except:
(Ib) - Max H Max U	earings 0-4-0. lorz 2=65(LC 12) Jplift All uplift 100 lb or less at joint(s) 2 9), 27=-246(LC 29) Srav All reactions 250 lb or less at joint 37), 23=2202(LC 1), 27=1527(LC 1	s) except 2=589(LC 21),	,		
TOP CHORD 3-4=- 9-10= 14-15 BOT CHORD 3-31= 23-24 14-18	Comp./Max. Ten All forces 250 (lb) or -606/91, 4-5=-536/113, 5-6=-324/235, 6- =-384/1749, 10-11=-157/714, 11-12=-22 5=-407/227 =-68/561, 30-31=-490/80, 27-28=-271/25 4=-747/317, 11-21=-995/274, 20-21=-50 8=-901/2186 =-343/110, 5-25=-202/780, 6-25=-383/17	7=-376/269, 7-8=-329/25 02/620, 12-13=-2202/620 5, 25-27=-421/63, 24-25= 1/176, 19-20=-926/2247,	9, 8-9=-441/256, , 13-14=-2207/928, .127/291, 18-19=-901/2186,		
10-23 27-29	3=-583/154, 21-23=-1744/460, 10-21=-2 9=-1360/307, 5-29=-1345/312, 9-23=-12 =-131/1087	59/1134, 12-20=-422/116	, 11-20=-751/2742,		Ster OF MISS
2) Wind: ASCE 7-16; V MWFRS (envelope) grip DOL=1.60	e loads have been considered for this de /ult=115mph (3-second gust) Vasd=91m gable end zone; cantilever left and right rainage to prevent water ponding.	ph; TCDL=6.0psf; BCDL=			SCOTT M. SEVIER
 4) All plates are 2x4 M 5) This truss has been 6) * This truss has bee will fit between the b 	T20 unless otherwise indicated. designed for a 10.0 psf bottom chord liv in designed for a live load of 20.0psf on t bottom chord and any other members.	he bottom chord in all are	as where a rectangle 3-6-0 tall t		NUMBER PE-2001018807
15=442, 23=387, 27	ed in accordance with the 2018 Internation			,	December 4,2020
	resentation does not depict the size or the	e orientation of the purlin	along the top and/or bottom cho	ord.	
Design valid for use o a truss system. Before building design. Braci is always required for fabrication, storage, d	design parameters and READ NOTES ON THIS AND only with MITek® connectors. This design is based of e use, the building designer must verify the applicat ing indicated is to prevent buckling of individual trus stability and to prevent collapse with possible perso- tability and to prevent collapse grading of trusses and truss sy available from Truss Plate Institute, 2670 Crain Hig	only upon parameters shown, an ility of design parameters and p is web and/or chord members on onal injury and property damage rstems, see ANSI/TP11	d is for an individual building component, roperly incorporate this design into the ov ly. Additional temporary and permanent For general guidance regarding the Quality Criteria, DSB-89 and BCSI Bu	not erall bracing	16023 Swingley Ridge Rd Chesterfield, MO 63017

ŀ	lob	Truss	Truss Type	Qty	Ply	Summit/19 Woodside			
						143853186			
	2552987	D15	Roof Special Girder	1	1				
						Job Reference (optional)			
	Builders FirstSource (Valley Center), Valley Center, KS - 67147,				8.240 s Mar 9 2020 MiTek Industries, Inc. Thu Dec 3 12:44:51 2020 Page 2				
			ID:wH4RY	ID:wH4RYhEsTNeUP2dXvOfi1syQY8e-btZK5lkl4mZCV5c3TLsj1RNmfuOqyELq?GWwDvyCgLQ					

NOTES-

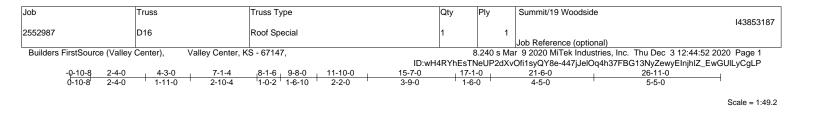
10) Use Simpson Strong-Tie LUS24 (4-SD9112 Girder, 2-SD9212 Truss, Single Ply Girder) or equivalent at 37-9-12 from the left end to connect truss(es) to back face of bottom chord.

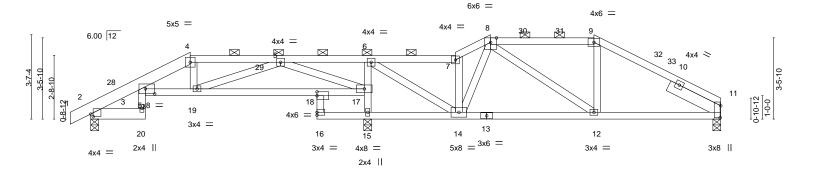
- 11) Fill all nail holes where hanger is in contact with lumber.
 12) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

13) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

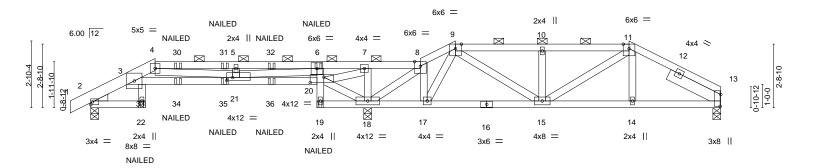

Uniform Loads (plf)


Vert: 1-3=-90, 3-4=-90, 4-6=-90, 6-7=-90, 7-8=-90, 8-9=-90, 9-13=-90, 13-16=-90, 32-33=-20, 3-30=-20, 22-28=-20, 18-21=-20, 17-39=-20 Concentrated Loads (lb)

Vert: 18=-197(B) 42=-57(B) 43=-38(B) 44=-38(B) 45=-38(B) 46=-38(B) 47=-41(B) 48=-61(B) 49=-61(B) 50=-61(B) 51=-61(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2-4		9-8-0	11-10-0	15-7-0	17-1-0	21-6-0	26-11-0	
2-4 Diata Offacta (X X)		5-5-0	2-2-0	3-9-0	1-6-0	4-5-0	5-5-0	
Plate Offsets (X,Y)	[2:0-1-4,0-1-5], [3:0-4-12	,0-2-8], [11:0-6-1	,0-0-5], [18:0-0-0,0-2-0]					
LOADING(psf)TCLL25.0TCDL20.0BCLL0.0BCDL10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/T	2-0-0 1.15 1.15 YES Pl2014	CSI. TC 0.67 BC 0.52 WB 0.42 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.07 3-19 -0.14 3-19 0.08 11	l/defl L/d >999 240 >999 180 n/a n/a	PLATES MT20 Weight: 112 lb	GRIP 197/144 FT = 20%
1-4: 2x BOT CHORD 2x4 SF 2-20: 2 WEBS 2x4 SF	PF No.2 *Except* 6 SPF No.2 PF No.2 *Except* tx6 SPF No.2 PF No.2 2x6 SPF No.2 2-6-0			BRACING TOP CHOP BOT CHOP	RD Structu 2-0-0 o	ral wood sheathing dii c purlins (5-10-2 max. eiling directly applied.		
Max H Max U	e) 11=0-4-0, 2=0-4-0, 1 lorz 2=65(LC 12) plift 11=-62(LC 13), 2=-8 irav 11=739(LC 1), 2=61	6(LC 12), 15=-12						
TOP CHORD 3-26	Comp./Max. Ten All fo =-305/60, 3-4=-958/142, 4 -792/173, 9-11=-918/152		ess except when shown. 6=-5/606, 6-7=-585/157, 7	7-8=-630/180,				
12-14	4=-79/624, 11-12=-75/792	2	49, 15-16=-327/0, 14-15= 132, 6-14=-93/1230, 5-19					
 NOTES- 1) Unbalanced roof livu 2) Wind: ASCE 7-16; MWFRS (envelope) Interior(1) 7-3-0 to 1 to 26-11-0 zone; car reactions shown; Lu 3) Provide adequate d 4) This truss has been 5) * This truss has been will fit between the b 6) Provide mechanical (jt=lb) 15=122. 7) This truss is designer referenced standard 8) This truss design re sheetrock be applie 	gable end zone and C-C 7-1-0, Exterior(2R) 17-1- tillever left and right expo mber DOL=1.60 plate gri rainage to prevent water designed for a 10.0 psf b n designed for a live load bottom chord and any oth connection (by others) of ed in accordance with the I ANSI/TPI 1. quires that a minimum of d directly to the bottom ch	ust) Vasd=91mp Exterior(2E) -0 0 to 20-1-0, Inter used ; end verticac p DOL=1.60 ponding. ottom chord live of 20.0psf on the of 20.0psf on the r members. truss to bearing 2018 Internation 7/16" structural v iord.	gn. h; TCDL=6.0psf; BCDL=6 (0-8 to 2-0-7, Interior(1) 2 or(1) 20-1-0 to 21-6-0, E: I left and right exposed;C load nonconcurrent with : e bottom chord in all area plate capable of withstan al Residential Code secti wood sheathing be applied orientation of the purlin a	2-0-7 to 4-3-0, E2 xterior(2R) 21-6- -C for members any other live low is where a rectain iding 100 lb uplif ions R502.11.1 and d directly to the form	tterior(2R) 4-3-(0 to 24-6-0, Inte and forces & M ads. ngle 3-6-0 tall b t at joint(s) 11, 2 and R802.10.2 a op chord and 1) to 7-3-0, erior(1) 24-6-0 IWFRS for y 2-0-0 wide 2 except and /2" gypsum	NUT PE-200 PE-200	UIT M. VIER


December 4,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type		Qty	Ply	Summit/19 Woodside		
								l43853188
2552987	D17	Roof Special Girder		1	1			
						Job Reference (optional)		
Builders FirstSource (Valley	Center), Valley Center, I	S - 67147,		8	8.240 s Ma	r 9 2020 MiTek Industries, Inc.	Thu Dec 3 12:44:55 202	0 Page 1
			ID:wH4F	RYhEsTNe	UP2dXvOf	i1syQY8e-UfprxgnG7?3e_jvriB	xfBHYTmWlou2wQwuU8N	ИgyCgLM
-0-10-8 2-4-0	2 ₁ 9-0 6-2-8	9-8-0 11-10-0	14-1-0 15-1	7-0	19-3-8	23-0-0	26-11-0	
0-10-8 2-4-0	0-5-0 3-5-8	3-5-8 2-2-0	2-3-0 1-6	i-0	3-8-8	3-8-8	3-11-0	

Scale = 1:49.2

<u>2-4-0 219-0 6-0-0 6-218 9-8-0 11-10-0 14-1-0 15-7-0 19-3-8 23-0-0 26-11-0</u> 2-4-0 0-5-0 3-3-0 0-2-8 3-5-8 2-2-0 2-3-0 1-6-0 3-8-8 3-8-8 3-11-0
Plate Offsets (X,Y) [13:0-6-1,0-0-5], [20:0-7-0,0-2-12], [21:0-3-0,0-1-8]
LOADING (psf) TCLL 25.0 SPACING- Plate Grip DOL 1.15 2-0-0 TCL CSI. DEFL. in (loc) l/defl L/d TCLL 25.0 Plate Grip DOL 1.15 TC 0.59 Vert(LL) -0.12 3-21 >999 240 MT20 197/144 TCDL 20.0 Lumber DOL 1.15 BC 0.75 Vert(CT) -0.26 3-21 >539 180 BCLL 0.0 Rep Stress Incr NO WB 0.70 Horz(CT) 0.14 13 n/a n/a BCDL 10.0 Code IRC2018/TPI2014 Matrix-MS Vert(CT) 0.14 13 n/a n/a
LUMBER- BRACING- TOP CHORD 2x4 SPF No.2 *Except* TOP CHORD 1-4: 2x6 SP 2400F 2.0E TOP CHORD Structural wood sheathing directly applied or 5-8-5 oc purlins, except BOT CHORD 2x4 SPF No.2 *Except* 2-0-0 oc purlins (3-11-6 max.): 4-8, 9-11. BOT CHORD 2x4 SPF No.2 *Except* BOT CHORD 2-22,3-20: 2x4 SPF 1650F 1.5E BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. WEBS 2x4 SPF No.2 Eleft: 2x4 SPF No.3 SLIDER Right 2x6 SPF No.2 2-6-0 Eleft: 2x6 SPF No.2 2-6-0
REACTIONS. (size) 13=0-4-0, 2=0-4-0, 18=0-4-0 Max Horz 2=53(LC 8) Max Uplift 13=-98(LC 30), 2=-125(LC 8), 18=-232(LC 4) Max Grav 13=625(LC 22), 2=802(LC 21), 18=2232(LC 1)
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 3-28=-274/60, 3-4=-2431/450, 4-5=-1741/322, 5-6=-1741/322, 6-7=-155/1283, 7-8=-252/1866, 8-9=-289/706, 9-10=-808/304, 10-11=-808/304, 11-13=-769/179 BOT CHORD 3-22=-51/298, 3-21=-484/2660, 20-21=-1061/126, 6-20=-931/188, 17-18=-687/246, 15-17=-347/355, 14-15=-127/659, 13-14=-124/662 WEBS 8-17=-89/1037, 9-17=-1107/162, 9-15=-89/857, 10-15=-406/116, 7-18=-350/77, 8-18=-1524/100, 5-21=-326/96, 6-21=-445/2848, 18-20=-1915/272, 7-20=-103/616, 4-21=-930/175
 NOTES- Uhbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 13 except (jt=lb) 2=125, 18=232. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines. I) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

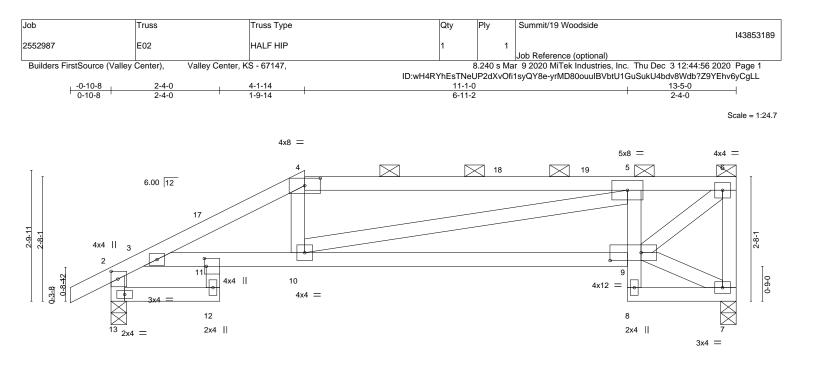
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Summit/19 Woodside
					143853188
2552987	D17	Roof Special Girder	1	1	
					Job Reference (optional)
Builders FirstSource (Valley Center), Valley Center, KS - 67147, 8.240 s Mar 9 2020 MiTek Industries, Inc. Thu De					r 9 2020 MiTek Industries, Inc. Thu Dec 3 12:44:55 2020 Page 2

ID:wH4RYhEsTNeUP2dXvOfi1syQY8e-UfprxgnG7?3e_jvriBxfBHYTmWlou2wQwuU8MgyCgLM

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf) Vert: 1-3=-90, 3-4=-90, 4-8=-90, 8-9=-90, 9-11=-90, 11-13=-90, 22-27=-20, 3-20=-20, 19-23=-20

Concentrated Loads (lb)

Vert: 22=-210(B) 6=-57(B) 20=-41(B) 30=-36(B) 31=-36(B) 32=-36(B) 34=-62(B) 35=-62(B) 36=-62(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	2-4-0	4-1-14		11-1-(13-5-0
	2-4-0	1-9-14		6-11-2	2	2-4-0
Plate Offsets (X,Y)	[2:0-2-0,0-1-12], [4:0-4-0	,0-1-15], [9:0-8-	-0,0-2-0], [11:0-2-0,0-0-8]			
LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/T	2-0-0 1.15 1.15 YES Pl2014	CSI. TC 0.78 BC 0.53 WB 0.26 Matrix-AS	DEFL. ir Vert(LL) -0.07 Vert(CT) -0.16 Horz(CT) 0.05	6 9-10 >999 180	MT20 197/144
BOT CHORD 2x4 S WEBS 2x4 S REACTIONS. (si Max Max	SPF No.2 SPF No.2 SPF No.2 ize) 7=0-4-0, 13=0-4-0 Horz 13=96(LC 11) Uplift 7=-82(LC 9), 13=-49 Grav 7=718(LC 1), 13=81	· /		BRACING- TOP CHORD BOT CHORD	Structural wood sheatt 2-0-0 oc purlins (3-10- Rigid ceiling directly a	
TOP CHORD 2-3 2-1 BOT CHORD 3-1	x. Comp./Max. Ten All fo =-529/83, 3-4=-1505/215, 4 3=-808/180 1=-146/1122, 10-11=-276/ 0=0/267, 5-10=-102/310, 6	4-5=-1345/2́34, 1355, 9-10=-18 [:]	5-6=-834/128, 6-7=-663/1	12,		
2) Wind: ASCE 7-16; MWFRS (envelope Interior(1) 8-4-13 t MWFRS for reaction	ve loads have been consid Vult=115mph (3-second g e) gable end zone and C-C o 13-3-4 zone; cantilever le ons shown; Lumber DOL=	ust) Vasd=91m Exterior(2E) -0 eft and right exp I.60 plate grip D	ph; TCDL=6.0psf; BCDL=6 -10-8 to 2-1-8, Interior(1) 2 losed ; end vertical left and	2-1-8 to 4-1-14, Exterio	r(2R) 4-1-14 to 8-4-13,	

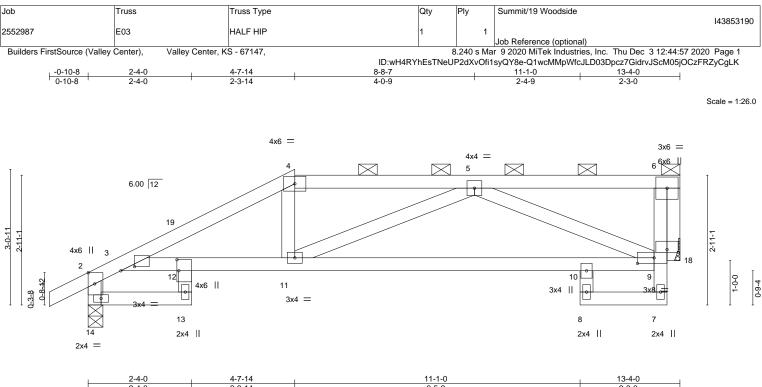
3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Bearing at joint(s) 13 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 13.
 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

te Offsets (X,Y) [2:0-3-0,Edge], [3:0-3-11,0-1-2], [9:0-3-0	,0-0-12], [9:0-4-8,0-1-8], [12:0-3-0,0-0-8]	<u>' 2-3-0</u> '
SPACING (psf) SPACING- 2-0-0 SLL 25.0 Plate Grip DOL 1.15 DL 20.0 Lumber DOL 1.15 LL 0.0 * Rep Stress Incr YES	CSI. DEFL. in (loc) TC 0.49 Vert(LL) -0.08 10-11 BC 0.67 Vert(CT) -0.17 10-11 WB 0.40 Horz(CT) 0.05 18	I/defi L/d PLATES GRIP >999 240 MT20 197/144 >929 180 n/a n/a
DL 10.0 Code IRC2018/TPI2014	Matrix-AS	Weight: 53 lb FT = 20%
MBER- PP CHORD 2x4 SPF No.2 DT CHORD 2x4 SPF No.2		ral wood sheathing directly applied, except end verticals, and

BOT CHORD2x4 SPF No.22-0-0 oc purlins (5-2-4 max.): 4-6.WEBS2x4 SPF No.2BOT CHORDRigid ceiling directly applied.OTHERS2x4 SPF No.2EXA SPF No.2Rigid ceiling directly applied.

REACTIONS. (size) 14=0-4-0, 18=Mechanical Max Horz 14=78(LC 9) Max Uplift 14=-50(LC 12), 18=-73(LC 9)

Max Grav 14=817(LC 1), 18=678(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-3=-574/71, 3-4=-1381/180, 4-5=-1201/202, 5-6=-254/0, 6-9=-54/495, 2-14=-802/176
- BOT CHORD 13-14=-131/286, 3-12=-86/930, 11-12=-215/1216, 10-11=-206/1183, 9-10=-144/1206

WEBS 4-11=0/296, 5-9=-1038/273, 6-18=-697/95

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 4-7-14, Exterior(2R) 4-7-14 to 8-8-7, Interior(1) 8-8-7 to 12-10-12 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

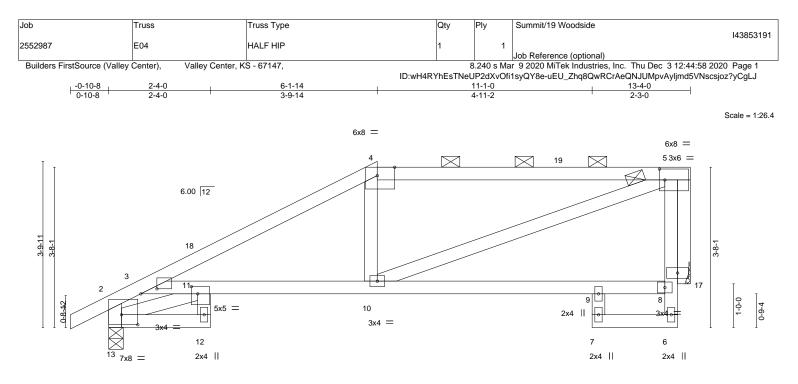
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Bearing at joint(s) 14 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 18.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	L	2-4-0		6-1-14	1	11-1-0			13-4-0	
	1	2-4-0		3-9-14	1	4-11-2			2-3-0	
Plate Offs	sets (X,Y)	[2:0-1-12,0-0-14], [3:0-4-	7,0-1-6], [4:0-	4-13,Edge], [5:0-1-8,0-3-0],	, [11:0-1-12,0-2-0]	<u>], [13:0-4-8,0-2-</u>	12]			
OADING	(nef)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
CLL	25.0	Plate Grip DOL	1.15	TC 0.74	Vert(LL)	-0.08 10-11	>999	240	MT20	197/144
CDL	20.0	Lumber DOL	1.15	BC 0.81	Vert(CT)	-0.17 10-11	>915	180		
CLL	0.0 *	Rep Stress Incr	YES	WB 0.27	Horz(CT)	0.06 17	n/a	n/a		
BCDL	10.0	Code IRC2018/T	PI2014	Matrix-AS					Weight: 56 lb	FT = 20%
LUMBER	-				BRACING-					

TOP CHORD TOP CHORD 2x4 SPF No.2 Structural wood sheathing directly applied, except end verticals, and BOT CHORD 2x4 SPF No.2 2-0-0 oc purlins (3-11-6 max.): 4-5. WEBS 2x4 SPF No.2 BOT CHORD Rigid ceiling directly applied OTHERS 2x4 SPF No.2

REACTIONS. (size) 13=0-4-0, 17=Mechanical Max Horz 13=101(LC 12) Max Uplift 13=-57(LC 12), 17=-69(LC 9) Max Grav 13=817(LC 1), 17=678(LC 1)

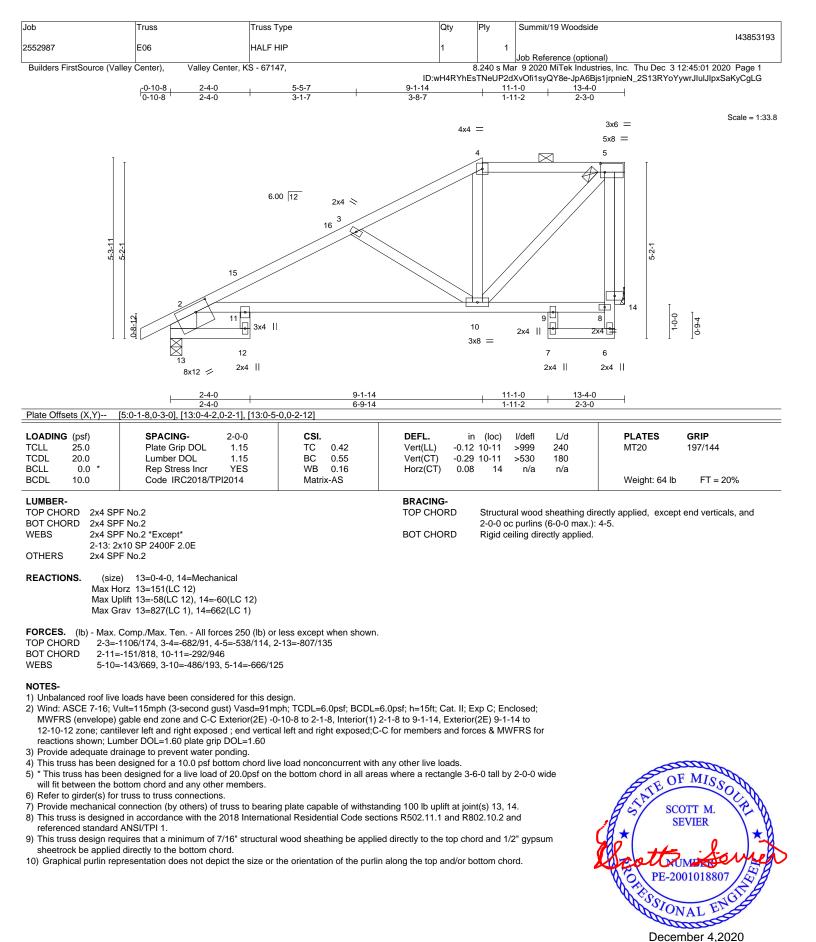
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 2-3=-636/118, 3-4=-1185/166, 4-5=-1032/204, 2-13=-813/177 12-13=-118/286, 3-11=-36/674, 10-11=-214/1025, 8-9=-18/270 TOP CHORD
- BOT CHORD
- WEBS 5-10=-204/861, 5-17=-692/108


NOTES-

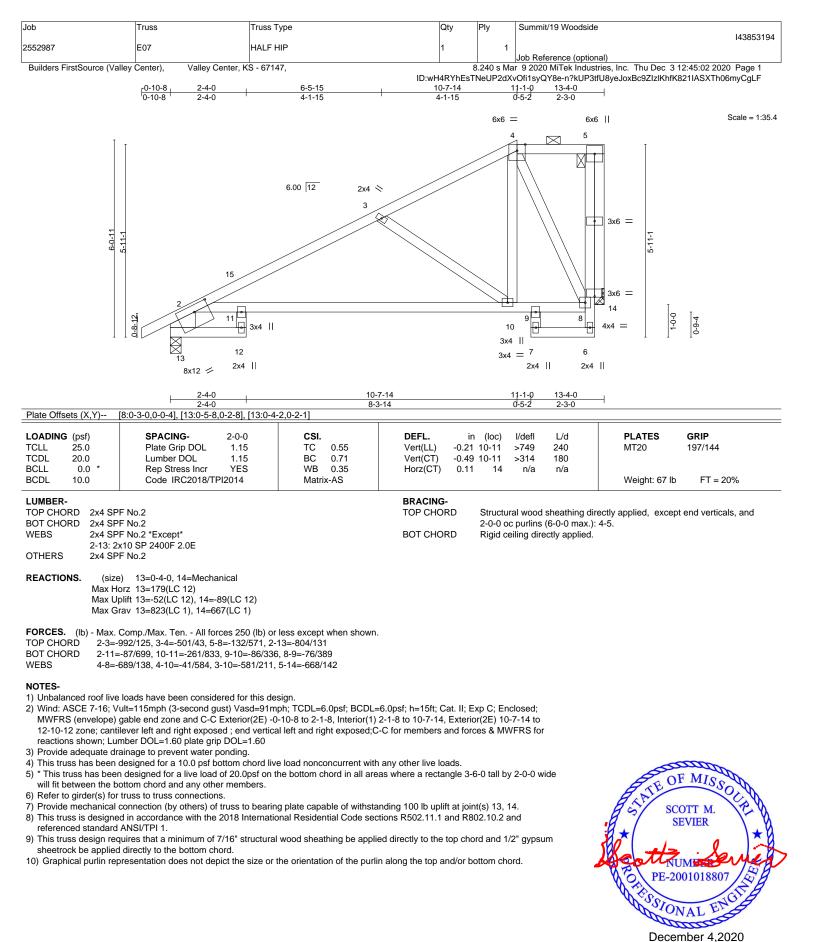
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 6-1-14, Exterior(2R) 6-1-14 to 10-4-13, Interior(1) 10-4-13 to 12-10-12 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Bearing at joint(s) 13 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 13, 17.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🗼 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

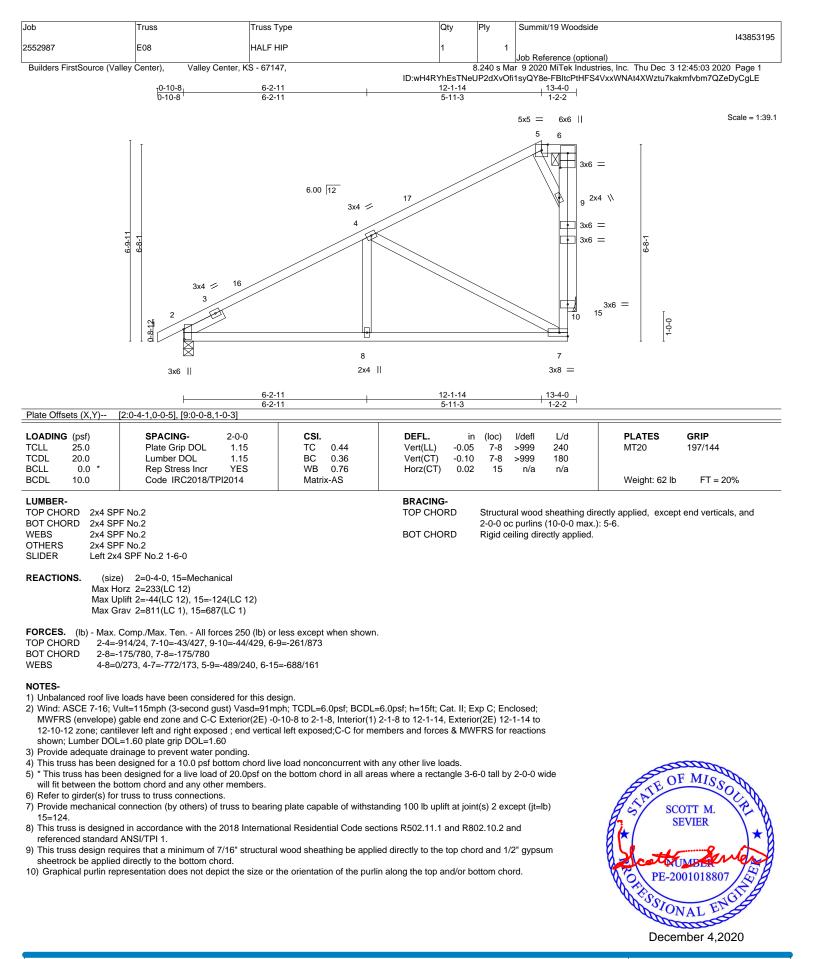


🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH1</u> Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

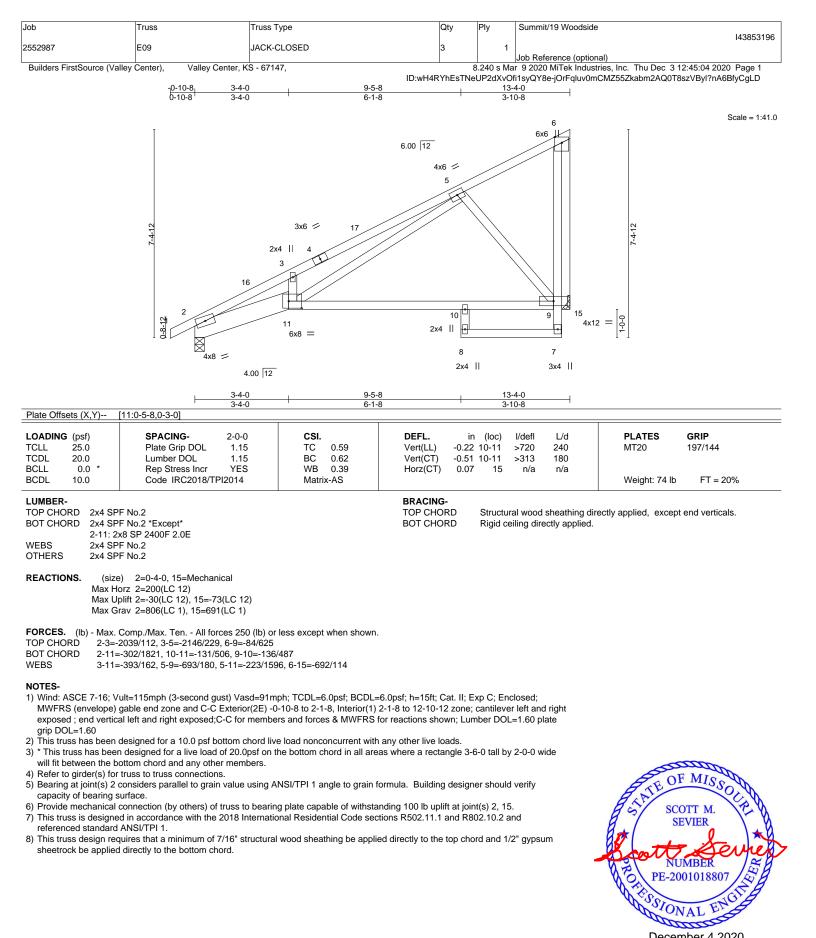
 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


December 4,2020

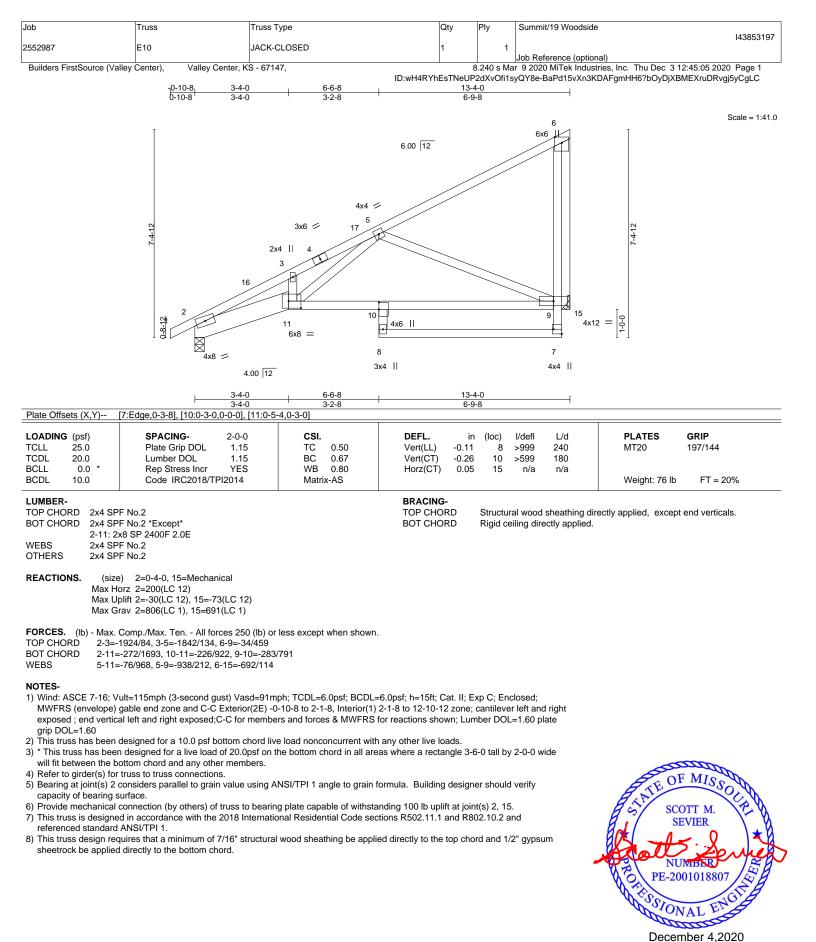
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



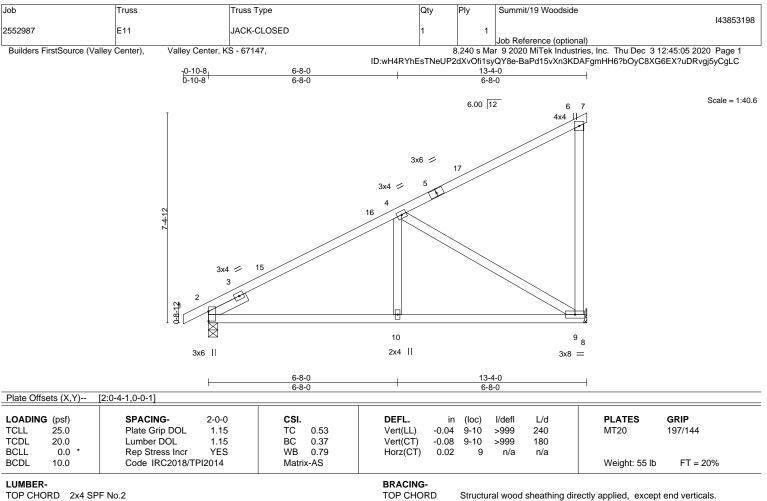
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



16023 Swingley Ridge Rd Chesterfield, MO 63017


I-7473 rev. 5/19/2020 BEFORE USE. ndividual building component, not rporate this design into the overall nal temporary and permanent bracing 'al guidance regarding the iteria, DSB-89 and BCSI Building Component teria, DSB-89 and BCSI Building Component

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 December 4,2020

MITEK 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 SLIDER Left 2x4 SPF No.2 1-6-0 TOP CHORD BOT CHORD

Rigid ceiling directly applied.

REACTIONS. (size) 2=0-4-0, 9=Mechanical Max Horz 2=265(LC 11) Max Uplift 2=-51(LC 12), 9=-58(LC 9) Max Grav 2=800(LC 1), 9=732(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-872/114

BOT CHORD 2-10=-234/739 9-10=-234/739

WEBS 4-10=0/283, 4-9=-828/184

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 13-4-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

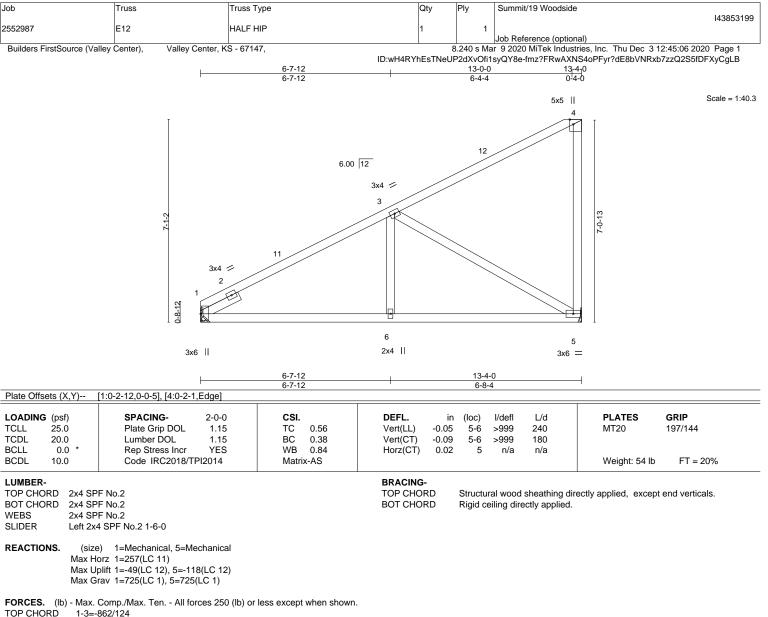
2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 3) will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 9.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and


referenced standard ANSI/TPI 1.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

🗼 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD 1-6=-228/764, 5-6=-228/764

WEBS 3-6=0/289, 3-5=-855/189

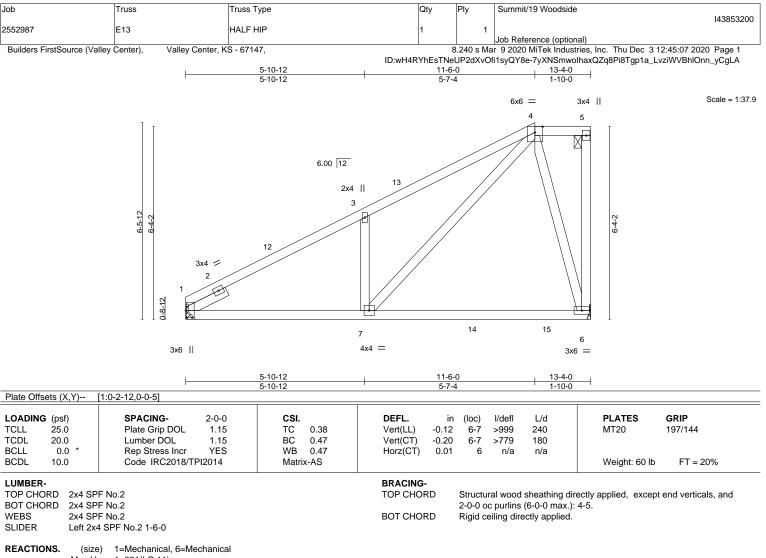
NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 13-2-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.


5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 5=118.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 NITEK 16023 Swingley Ridge Rd Chesterfield, MO 63017

Max Horz 1=221(LC 11) Max Uplift 1=-55(LC 12), 6=-85(LC 12) Max Grav 1=749(LC 2), 6=772(LC 2)

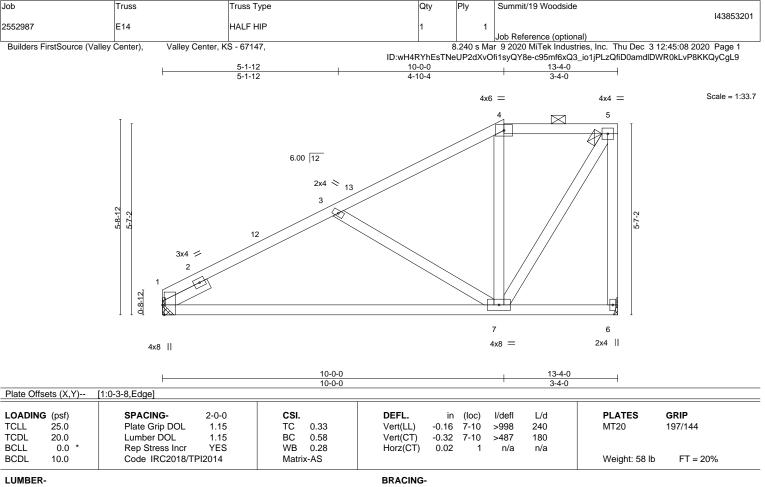
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-3=-1013/125, 3-4=-1036/238

BOT CHORD 1-7=-252/858

WEBS 3-7=-517/216, 4-7=-187/961, 4-6=-678/297

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 11-6-0, Exterior(2E) 11-6-0 to 13-2-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 6.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1. 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

 TOP CHORD
 2x4 SPF No.2
 TOP CHORD
 Structural wood sheathing directly applied, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 4-5.

 WEBS
 2x4 SPF No.2
 BOT CHORD
 BOT CHORD
 Structural wood sheathing directly applied, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 4-5.

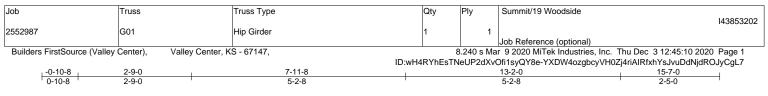
 SLIDER
 Left 2x4 SPF No.2 1-6-0
 BOT CHORD
 Rigid ceiling directly applied.

REACTIONS. (size) 1=Mechanical, 6=Mechanical Max Horz 1=193(LC 11) Max Uplift 1=-57(LC 12), 6=-69(LC 9)

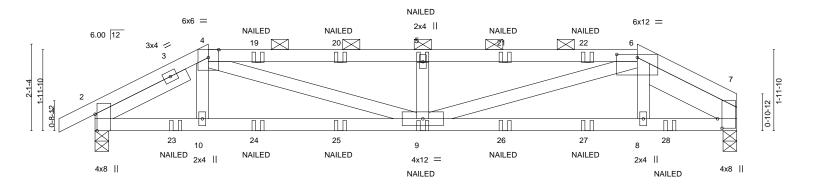
Max Grav 1=725(LC 1), 6=725(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 1-3=-903/166, 3-4=-529/109, 4-5=-386/124, 5-6=-727/181
- BOT CHORD 1-7=-299/808
- WEBS 3-7=-501/178, 5-7=-179/714


NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 10-0-0, Exterior(2E) 10-0-0 to 13-2-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 6.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1. 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale = 1:28.0

2-9-0	7-11-8 5-2-8		<u>13-2-0</u> 5-2-8	<u>15-7-0</u> 2-5-0
Plate Offsets (X,Y) [2:0-4-13,Edge], [6:0-6-0,0-0-15]		_		
LOADING (psf) SPACING- 2-0-0 TCLL 25.0 Plate Grip DOL 1.15 TCDL 20.0 Lumber DOL 1.15 BCLL 0.0 * Rep Stress Incr NO BCDL 10.0 Code IRC2018/TPI2014	CSI. TC 0.99 BC 0.82 WB 0.41 Matrix-MS	DEFL. ir Vert(LL) -0.10 Vert(CT) -0.23 Horz(CT) 0.03	9-10 >999 240 9-10 >815 180	PLATES GRIP MT20 197/144 Weight: 62 lb FT = 20%
UMBER- OP CHORD 2x4 SPF No.2 SOT CHORD 2x4 SPF No.2 SOT CHORD 2x4 SPF No.2 VEBS 2x4 SPF No.2 SLIDER Left 2x4 SPF No.2 2-6-0, Right 2x6 SPF REACTIONS. (size) 7=0-4-0, 2=0-4-0 Max Horz 2=37(LC 8)	No.2 2-6-0	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir 2-0-0 oc purlins (2-1-2 max.): Rigid ceiling directly applied c	
Max Grav 7=1299(LC 1), 2=1364(LC 1) ORCES. (lb) - Max. Comp./Max. Ten All forces 250 OP CHORD 2-4=-1996/209, 4-5=-3171/336, 5-6=-3 OT CHORD 2-10=-179/1767, 9-10=-183/1751, 8-9 /EBS 4-10=0/255, 4-9=-181/1530, 5-9=-769/	171/337, 6-7=-253/81 -149/1628, 7-8=-144/1647			
 NOTES- 1) Unbalanced roof live loads have been considered for 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vas MWFRS (envelope) gable end zone; cantilever left ar grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) This truss has been designed for a 10.0 psf bottom ci 5) * This truss has been designed for a live load of 20.0 µ will fit between the bottom chord and any other memt 6) Provide mechanical connection (by others) of truss to 7=140, 2=156. 7) This truss is designed in accordance with the 2018 In referenced standard ANSI/TPI 1. 8) Graphical purlin representation does not depict the si: 9) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.144") 	d=91mph; TCDL=6.0psf; BCDI d right exposed ; end vertical l ord live load nonconcurrent wi sf on the bottom chord in all ar ers. bearing plate capable of withs ernational Residential Code se e or the orientation of the purli 'x3.25") toe-nails per NDS gui	eft and right exposed; Lur th any other live loads. reas where a rectangle 3- tanding 100 lb uplift at join ections R502.11.1 and R8 in along the top and/or bo dlines.	nber DOL=1.60 plate 6-0 tall by 2-0-0 wide nt(s) except (jt=lb) 02.10.2 and	SCOTT M. SEVIER

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-4=-90, 4-6=-90, 6-7=-90, 11-15=-20

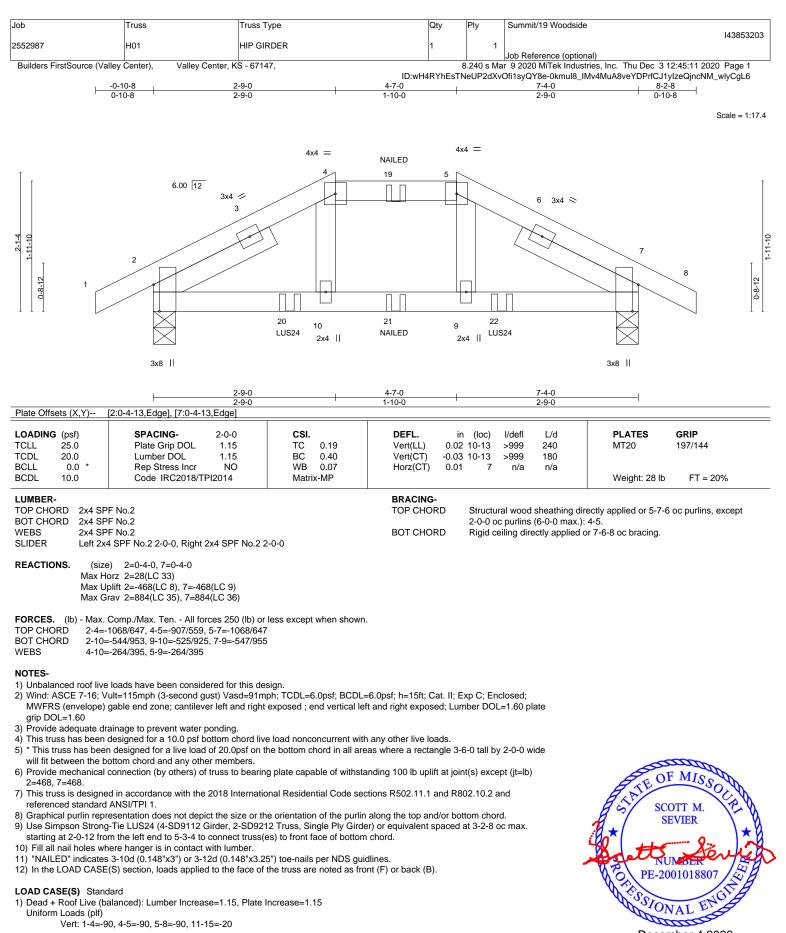
NUMBER PE-PE-SSIONAL EN GI

December 4,2020

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Summit/19 Woodside
					143853202
2552987	G01	Hip Girder	1	1	
					Job Reference (optional)
Builders FirstSource (Valley	Center), Valley Center, K	S - 67147,	8	8.240 s Ma	r 9 2020 MiTek Industries, Inc. Thu Dec 3 12:45:10 2020 Page 2


8.240 s Mar 9 2020 Mi Lek Industries, Inc. Thu Dec 3 12:45:10 2020 Page 2 ID:wH4RYhEsTNeUP2dXvOfi1syQY8e-YXDW4ozgbcyVH0Zj4riAlRfxhYsJvuDdNjdROJyCgL7

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 9=-41(F) 5=-57(F) 19=-57(F) 20=-57(F) 21=-57(F) 22=-57(F) 23=-191(F) 24=-41(F) 25=-41(F) 26=-41(F) 27=-41(F) 28=-191(F) 26=-41(F) 26=-41(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MI-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-4=-90, 4-5=-90, 5-8=-90, 11-15=-20

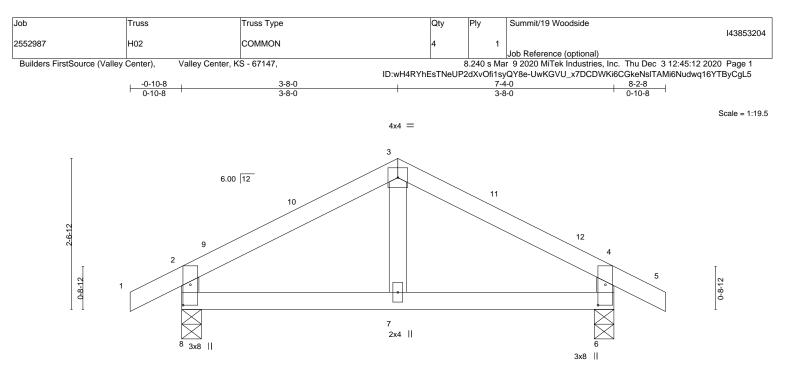
Continued on page 2

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH1</u> Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

E

Job	Truss	Truss Type	Qty	Ply	Summit/19 Woodside
					143853203
2552987	H01	HIP GIRDER	1	1	
					Job Reference (optional)
Builders FirstSource (Valley 0	Center), Valley Center, K	S - 67147,	8	8.240 s Ma	r 9 2020 MiTek Industries, Inc. Thu Dec 3 12:45:11 2020 Page 2


ID:wH4RYhEsTNeUP2dXvOfi1syQY8e-0kmul8_IMv4MuA8veYDPrfCJ1yIzeQjncNM_wlyCgL6

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 19=-57(F) 20=-197(F) 21=-41(F) 22=-197(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MI-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		3-8-0 3-8-0	7-4-0 3-8-0	———————————
Plate Offsets (X,Y)	[6:0-4-3,0-1-8], [8:0-4-3,0-1-8]			
LOADING (psf) TCLL 25.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.23	DEFL. in (loc) l/defl L/d Vert(LL) -0.01 7 >999 240	PLATES GRIP MT20 197/144
TCDL 20.0 BCLL 0.0 * BCDL 10.0	Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	BC 0.15 WB 0.03 Matrix-AS	Vert(CT) -0.01 7 >999 180 Horz(CT) 0.00 6 n/a n/a	Weight: 23 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No.2 2x4 SPF No.2 BOT CHORD WEBS 2x4 SPF No.2

REACTIONS. (size) 8=0-4-0, 6=0-4-0 Max Horz 8=-43(LC 10) Max Uplift 8=-46(LC 12), 6=-46(LC 13)

Max Grav 8=479(LC 1), 6=479(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-414/158, 3-4=-414/158, 2-8=-426/208, 4-6=-426/207 TOP CHORD

BOT CHORD 7-8=-57/295, 6-7=-57/295

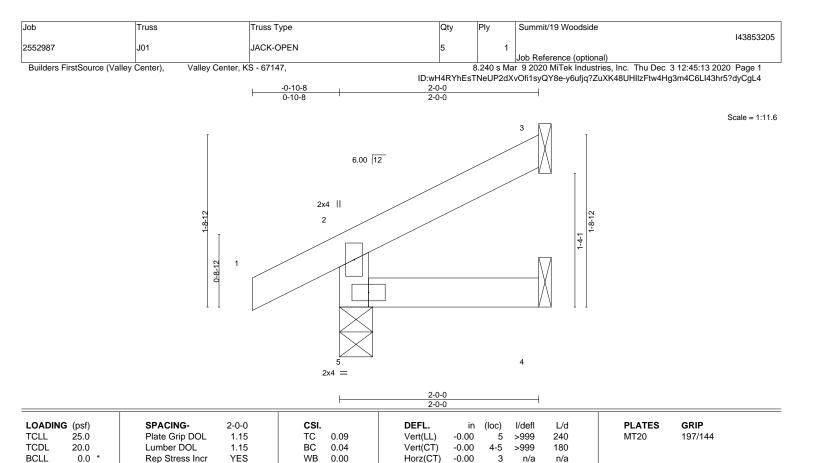
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-8-0, Exterior(2R) 3-8-0 to 6-8-0, Interior(1) 6-8-0 to 8-2-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.



Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

👠 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-

TOP CHORD

BOT CHORD

N	0	ТΕ	-

BCDL

WEBS

LUMBER-

BOT CHORD

REACTIONS.

10.0

TOP CHORD 2x4 SPF No.2

2x4 SPF No.2

2x4 SPF No.2

Max Horz 5=44(LC 12)

Max Uplift 5=-18(LC 12), 3=-28(LC 12) Max Grav 5=219(LC 1), 3=61(LC 1), 4=33(LC 3) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

(size)

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Code IRC2018/TPI2014

5=0-4-0, 3=Mechanical, 4=Mechanical

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Matrix-MR

4) Refer to girder(s) for truss to truss connections.

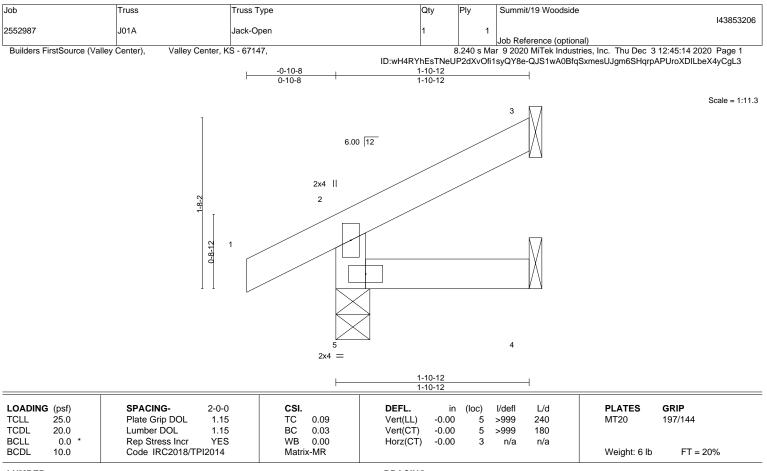
5) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Weight: 6 lb

Structural wood sheathing directly applied or 2-0-0 oc purlins,


Rigid ceiling directly applied or 10-0-0 oc bracing

except end verticals.

FT = 20%

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF No.2

BRACING-TOP CHORD

Structural wood sheathing directly applied or 1-10-12 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-4-0, 3=Mechanical, 4=Mechanical Max Horz 5=42(LC 12) Max Uplift 5=-18(LC 12), 3=-27(LC 12)

Max Grav 5=214(LC 1), 3=56(LC 1), 4=31(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

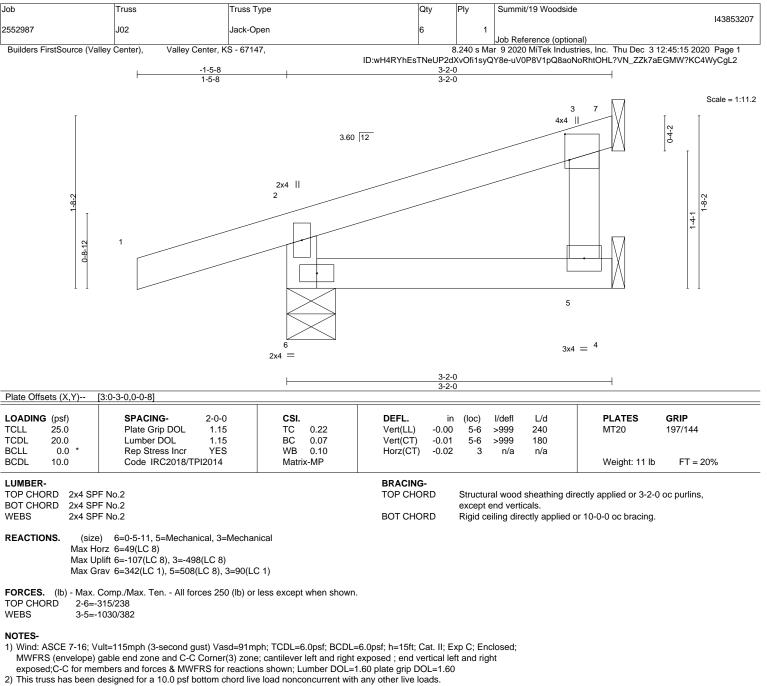
 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.


7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

⁵⁾ Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

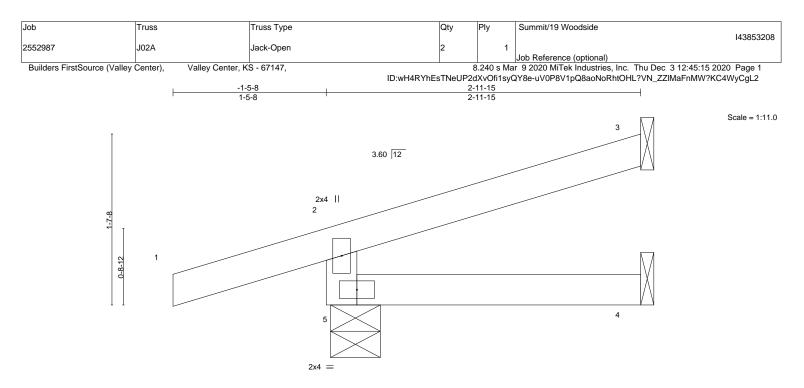
3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=107, 3=498.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


8) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

FORE USE. onent, not the overall great brains

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

			2-11-15 2-11-7	
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 25.0	Plate Grip DOL 1.15	TC 0.22	Vert(LL) -0.00 4-5 >999 240	MT20 197/144
TCDL 20.0	Lumber DOL 1.15	BC 0.06	Vert(CT) -0.00 4-5 >999 180	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00 3 n/a n/a	
BCDL 10.0	Code IRC2018/TPI2014	Matrix-MR		Weight: 9 lb FT = 20%

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF No.2

BRACING-TOP CHORD

Structural wood sheathing directly applied or 2-11-15 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-5-11, 3=Mechanical, 4=Mechanical Max Horz 5=47(LC 8) Max Uplift 5=-82(LC 8), 3=-31(LC 12) Max Grav 5=339(LC 1), 3=91(LC 1), 4=48(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-5=-304/198

NOTES-

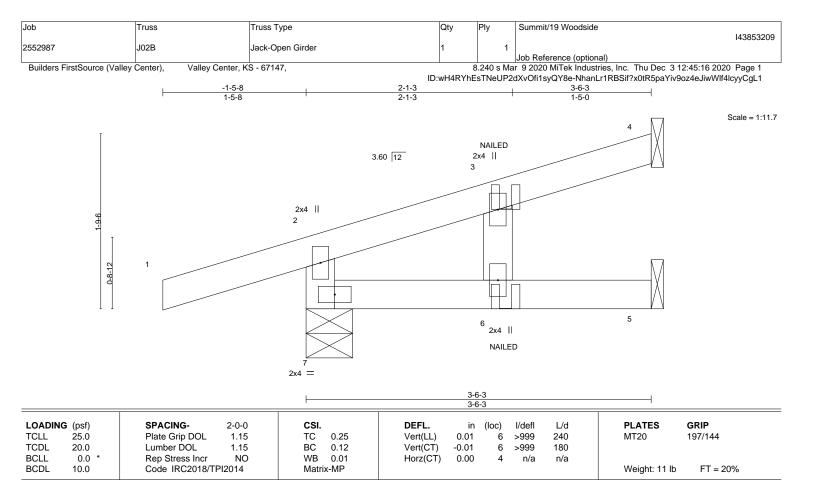
 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.
7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and

referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-

TOP CHORD

BOT CHORD

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Structural wood sheathing directly applied or 3-6-3 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing

except end verticals

16023 Swingley Ridge Rd Chesterfield, MO 63017

WEBS 2x4 SPF No.2 REACTIONS. (size) 7=0

2x4 SPF No.2

2x4 SPF No.2

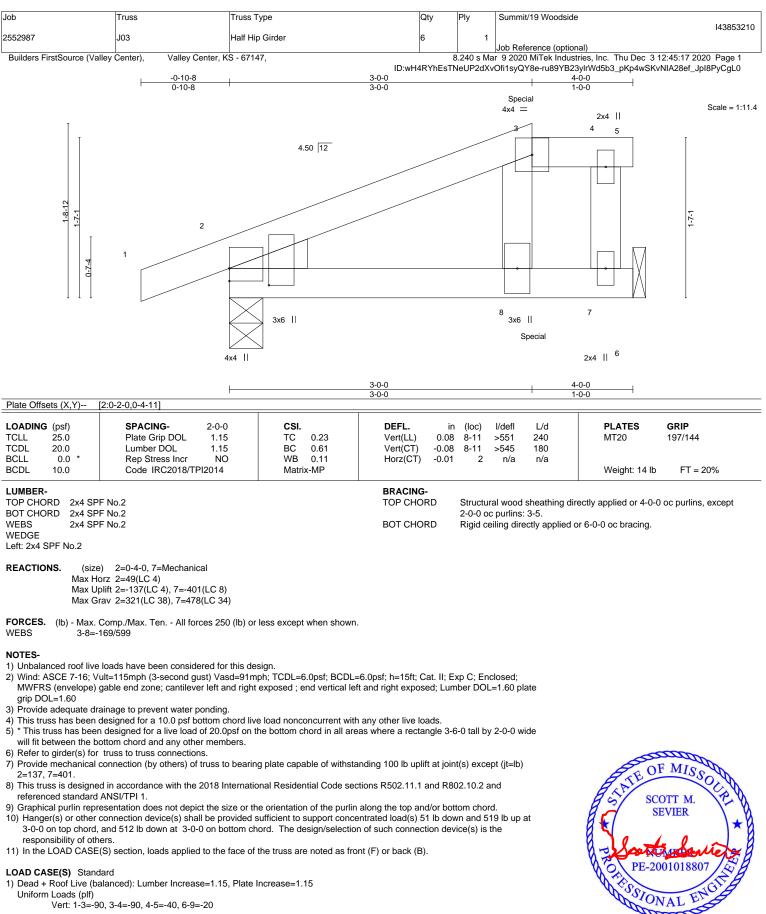
 (size) 7=0-5-11, 4=Mechanical, 5=Mechanical Max Horz 7=53(LC 4) Max Uplift 7=-83(LC 4), 4=-24(LC 8), 5=-1(LC 8)

Max Grav 7=361(LC 1), 4=95(LC 1), 5=58(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-7=-294/88

NOTES-

LUMBER-


TOP CHORD

BOT CHORD

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 4, 5. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1. 8) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidlines.
- INALLED INDICATES 3-100 (0.148 x.3⁻) or 2-120 (0.148 x.3.25⁻) toe-nalls per NDS guidlines.
 In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
 - Vert: 1-2=-90, 2-4=-90, 5-7=-20

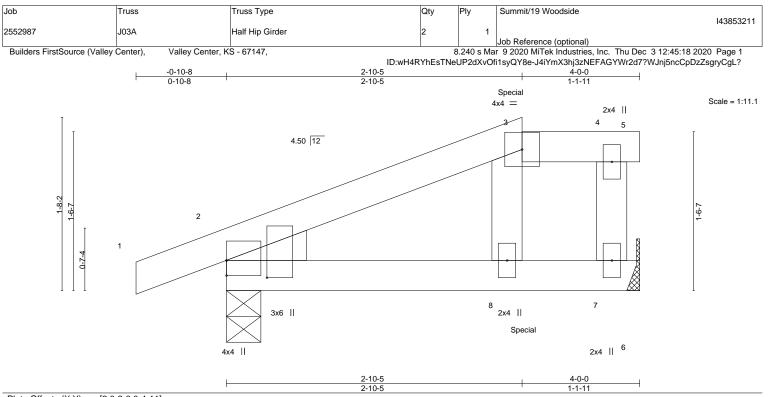
Vert: 1-3=-90, 3-4=-90, 4-5=-40, 6-9=-20

Continued on page 2

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH1</u> Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017


December 4,2020

Job	Truss	Truss Type	Qty	Ply	Summit/19 Woodside
					143853210
2552987	J03	Half Hip Girder	6	1	
					Job Reference (optional)
Builders FirstSource (Valley	Center), Valley Center, K	S - 67147,	8	.240 s Ma	r 9 2020 MiTek Industries, Inc. Thu Dec 3 12:45:17 2020 Page 2

ID:wH4RYhEsTNeUP2dXvOfi1syQY8e-ru89YB23yIrWd5b3_pKp4wSKvNIA28ef_JpI8PyCgL0

LOAD CASE(S) Standard Concentrated Loads (Ib) Vert: 8=-6(B)

CDL 20.0	Lumber DOL Rep Stress Incr Code IRC2018/TF	1.15 NO	BC 0.3	0.31 V 0.02 H	Vert(LL) -0.0 Vert(CT) -0.0 Horz(CT) 0.0		>999 >999 n/a	240 180 n/a	MT20 Weight: 14 lb	197/144 FT = 20%
CDL 20.0	Lumber DOL	1.15	BC 0.3).31 V	Vert(CT) -0.0	04 8-11	>999	180	MT20	197/144
				-	- ()				MT20	197/144
CLL 25.0	Fiate Grip DOL	1.15	10 0.).19 V	Vert(LL) -0.0	02 8-11	>999	240	MT20	197/144
	Plate Grip DOL	1.15	TC 0.1							
.OADING (psf)	SPACING-	2-0-0	CSI.	D	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP

BOT CHORD

except end verticals, and 2-0-0 oc purlins: 3-5.

Rigid ceiling directly applied or 6-0-0 oc bracing.

 TOP CHORD
 2x4 SPF No.2

 BOT CHORD
 2x4 SPF No.2

 WEBS
 2x4 SPF No.2

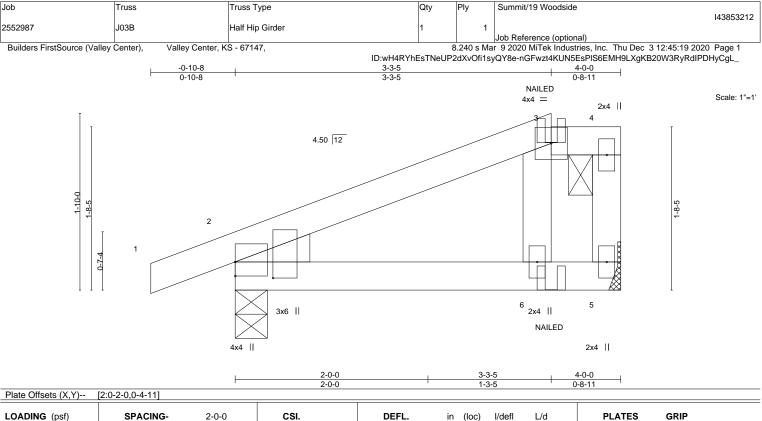
 WEDGE
 Left: 2x4 SPF No.2

REACTIONS. (size) 7=Mechanical, 2=0-4-0

Max Horz 2=51(LC 7) Max Uplift 7=-26(LC 5), 2=-51(LC 4) Max Grav 7=211(LC 1), 2=292(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 2.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 64 lb down and 69 lb up at 2-10-5 on top chord, and 14 lb down and 3 lb up at 2-10-5 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
 - Vert: 1-3=-90, 3-4=-90, 4-5=-40, 6-9=-20 Concentrated Loads (Ib) Vert: 8=3(B)

16023 Swingley Ridge Rd Chesterfield, MO 63017

LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCode IRC2018/TPI2014	CSI. TC 0.23 BC 0.33 WB 0.02 Matrix-MP	DEFL. in (loc) I/defl L/d PLATES GRIP Vert(LL) -0.02 6-9 >999 240 MT20 197/144 Vert(CT) -0.04 6-9 >999 180 Horz(CT) 0.01 2 n/a n/a Weight: 14 lb FT = 20%
LUMBER- TOP CHORD 2x4 SI	PF No.2		BRACING- TOP CHORD Structural wood sheathing directly applied or 4-0-0 oc purlins,

BOT CHORD

except end verticals, and 2-0-0 oc purlins: 3-4.

Rigid ceiling directly applied or 6-0-0 oc bracing.

 TOP CHORD
 2x4 SPF No.2

 BOT CHORD
 2x4 SPF No.2

 WEBS
 2x4 SPF No.2

 WEDGE
 Left: 2x4 SPF No.2

REACTIONS. (size) 5=Mechanical, 2=0-4-0

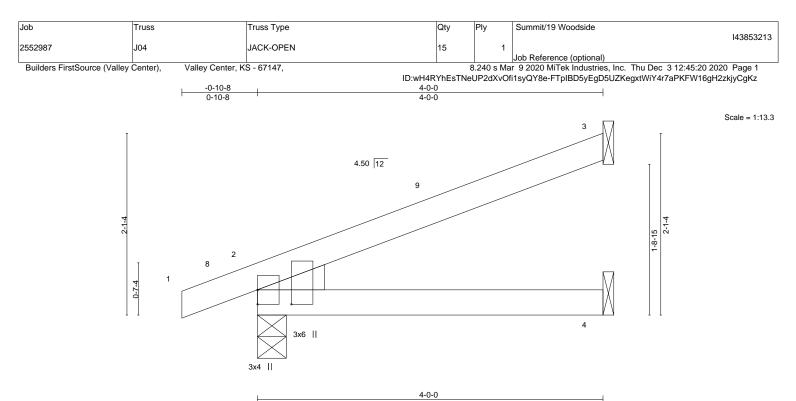
Max Horz 2=58(LC 7) Max Uplift 5=-35(LC 5), 2=-53(LC 4) Max Grav 5=230(LC 1), 2=306(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) "NAILED" indicates 2-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).


LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-90, 3-4=-90, 5-7=-20 Concentrated Loads (lb) Vert: 3=-3(F) 6=-29(F)

16023 Swingley Ridge Rd Chesterfield, MO 63017

	1		4-0-0	
Plate Offsets (X,Y)	[2:0-2-0,0-4-11]			
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 25.0	Plate Grip DOL 1.15	TC 0.23	Vert(LL) 0.02 4-7 >999 240	MT20 197/144
TCDL 20.0	Lumber DOL 1.15	BC 0.20	Vert(CT) -0.03 4-7 >999 180	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.01 2 n/a n/a	
BCDL 10.0	Code IRC2018/TPI2014	Matrix-AS		Weight: 12 lb FT = 20%
LUMBER-			BRACING-	

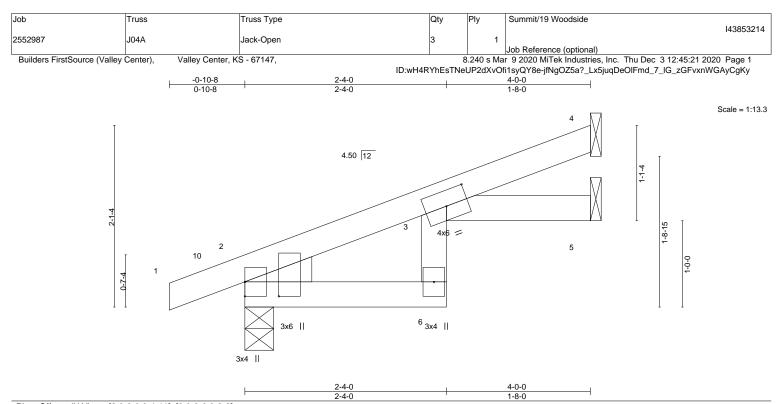
TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEDGE Left: 2x4 SPF No.2

TOP CHORD BOT CHORD

Structural wood sheathing directly applied. Rigid ceiling directly applied.

REACTIONS. (size) 3=Mechanical, 2=0-4-0, 4=Mechanical Max Horz 2=66(LC 8) Max Uplift 3=-44(LC 12), 2=-40(LC 8)

Max Grav 3=147(LC 1), 2=304(LC 1), 4=77(LC 3)


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-11-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl L/d	PLATES GRIP
CLL 25.0	Plate Grip DOL 1.15	TC 0.34	Vert(LL) -0.02	6	>999 240	MT20 197/144
CDL 20.0	Lumber DOL 1.15	BC 0.22	Vert(CT) -0.04	6	>999 180	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.03	5	n/a n/a	
3CDL 10.0	Code IRC2018/TPI2014	Matrix-AS				Weight: 13 lb FT = 20%

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

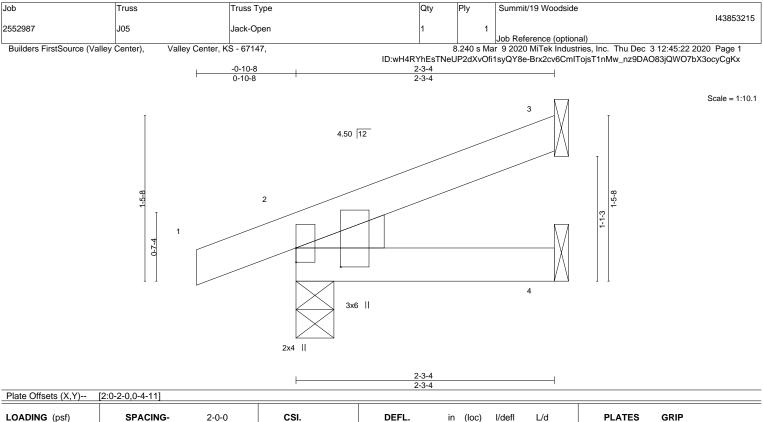
Rigid ceiling directly applied.

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEDGE

Left: 2x4 SPF No.2

REACTIONS. (size) 4=Mechanical, 2=0-4-0, 5=Mechanical Max Horz 2=66(LC 8)

Max Uplift 4=-32(LC 12), 2=-40(LC 8), 5=-5(LC 12) Max Grav 4=126(LC 1), 2=304(LC 1), 5=82(LC 1)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-2-4, Interior(1) 2-2-4 to 3-11-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2, 5.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/T	2-0-0 1.15 1.15 YES PI2014	CSI. TC BC WB Matri	0.07 0.05 0.00 x-MP	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.00 -0.00 0.00	(loc) 7 7 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 7 lb	GRIP 197/144 FT = 20%

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEDGE Left: 2x4 SPF No.2 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 2-3-4 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

Len. 2X4 SFF IN

REACTIONS. (size) 3=Mechanical, 2=0-4-0, 4=Mechanical

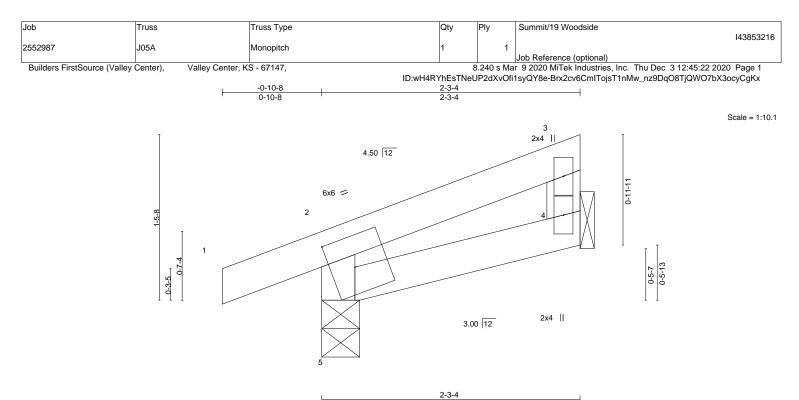
Max Horz 2=44(LC 8) Max Uplift 3=-22(LC 12), 2=-38(LC 8) Max Grav 3=72(LC 1), 2=216(LC 1), 4=41(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

ate Offsets (X,Y) [2:0-1-14,0-0-0], [2:0-2-8,0-3-4], [5:0-0-	10,0-1-10]	2-3-4	
OADING (psf) CLL 25.0 CDL 20.0 CLL 0.0 * CDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.09 BC 0.03 WB 0.00 Matrix-MR	DEFL. in (loc) l/defl L/d Vert(LL) -0.00 5 >999 240 Vert(CT) -0.00 4-5 >999 180 Horz(CT) -0.00 4 n/a n/a Weight: 7 lb FT = 20%	,
UMBER- OP CHORD 2x4 SPF	- No.2	1	BRACING- TOP CHORD Structural wood sheathing directly applied or 2-3-4 oc purlins,	

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF No.2

REACTIONS. (size) 4=Mechanical, 5=0-4-0 Max Horz 5=44(LC 9)

Max H012 5=44(LC 9) Max Uplift 4=-14(LC 12), 5=-49(LC 8) Max Grav 4=85(LC 1), 5=224(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

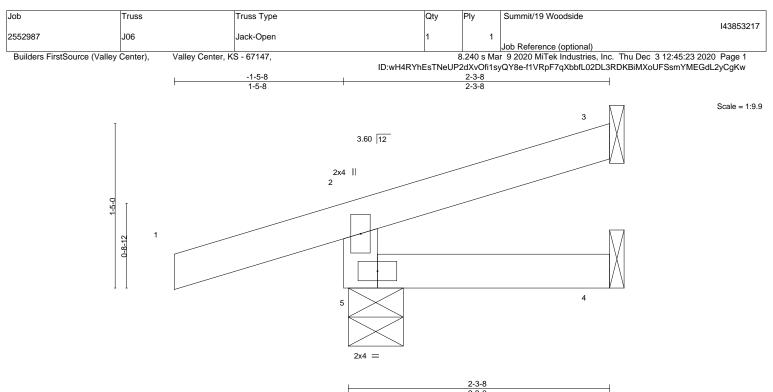
NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.


5) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.
7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and

referenced standard ANSI/TPI 1.

								2-3-0				
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	25.0	Plate Grip DOL	1.15	TC	0.22	Vert(LL)	0.00	5	>999	240	MT20	197/144
TCDL	20.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	-0.00	4-5	>999	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.00	3	n/a	n/a		
BCDL	10.0	Code IRC2018/TI	PI2014	Matri	x-MR						Weight: 7 lb	FT = 20%

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF No.2

BRACING-TOP CHORD

Structural wood sheathing directly applied or 2-3-8 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-5-11, 3=Mechanical, 4=Mechanical Max Horz 5=39(LC 8) Max Uplift 5=-84(LC 8), 3=-21(LC 12) Max Grav 5=315(LC 1), 3=52(LC 1), 4=32(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-5=-279/189

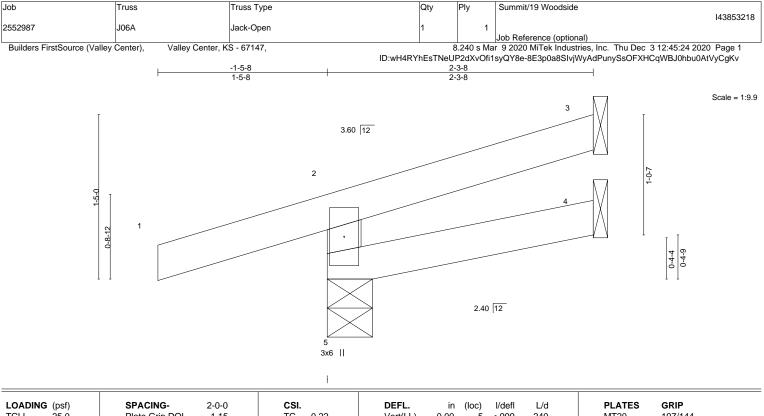
NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.


5) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.
 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and

referenced standard ANSI/TPI 1.

BCDL	10.0	Code IRC2018/TPI	2014	Matri	x-MR						Weight: 8 lb	FT = 20%	
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.00	3	n/a	n/a			
TCDL	20.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	-0.00	4-5	>999	180			
TCLL	25.0	Plate Grip DOL	1.15	TC	0.22	Vert(LL)	0.00	5	>999	240	MT20	197/144	
LOADING	G (pst)	SPACING-	2-0-0	CSI.		DEFL.	ın	(loc)	l/defl	L/d	PLATES	GRIP	

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 2-3-8 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. 5=0-4-11, 3=Mechanical, 4=Mechanical (size) Max Horz 5=39(LC 8) Max Uplift 5=-84(LC 8), 3=-21(LC 12) Max Grav 5=315(LC 1), 3=52(LC 1), 4=33(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-5=-280/188

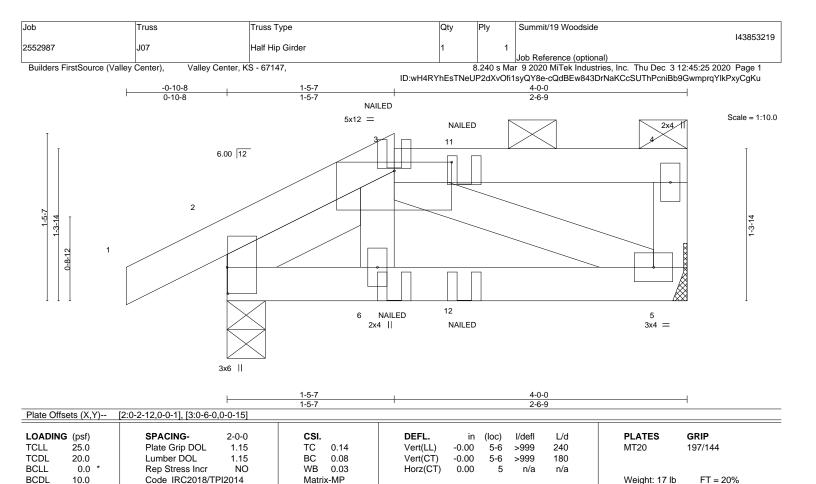
NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.


5) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and

referenced standard ANSI/TPI 1.

BRACING-

TOP CHORD

BOT CHORD

FORCES.	(lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown.
---------	---

LUMBER-

WEBS

SLIDER

BOT CHORD

REACTIONS.

TOP CHORD 2x4 SPF No.2

2x4 SPF No.2

2x4 SPF No.2

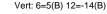
Left 2x4 SPF No.2 1-4-3

Max Horz 2=40(LC 7)

NOTES-

1) Unbalanced roof live loads have been considered for this design.

(size) 2=0-4-0, 5=Mechanical

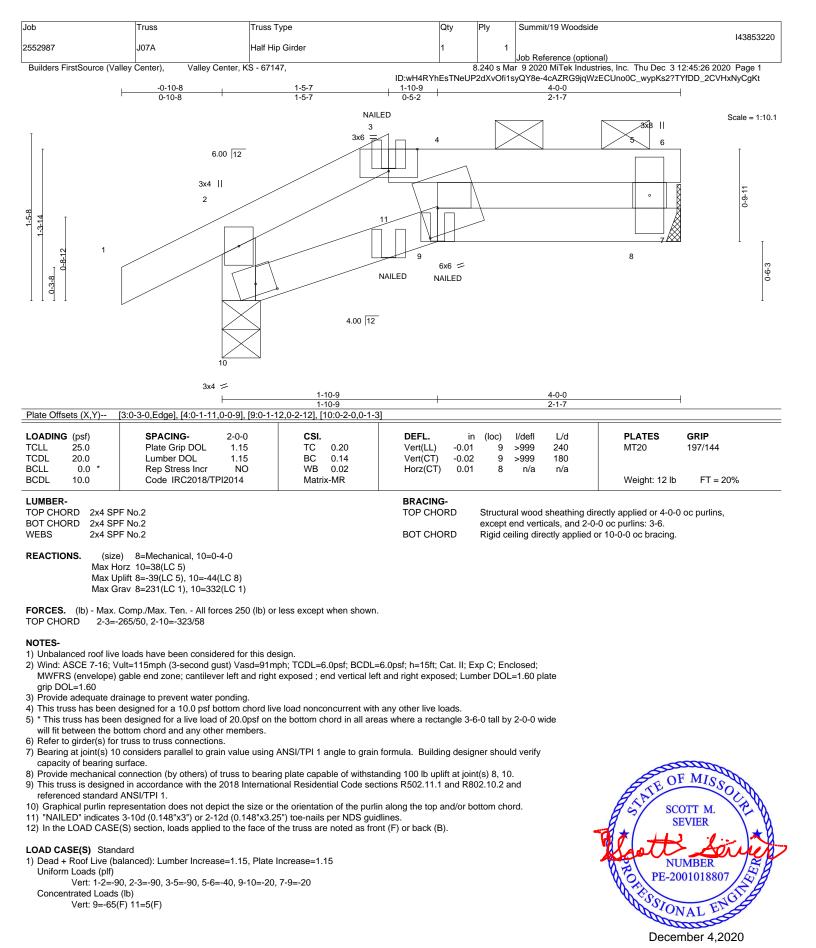

Max Uplift 2=-33(LC 8), 5=-25(LC 5) Max Grav 2=303(LC 1), 5=209(LC 1)

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 5.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

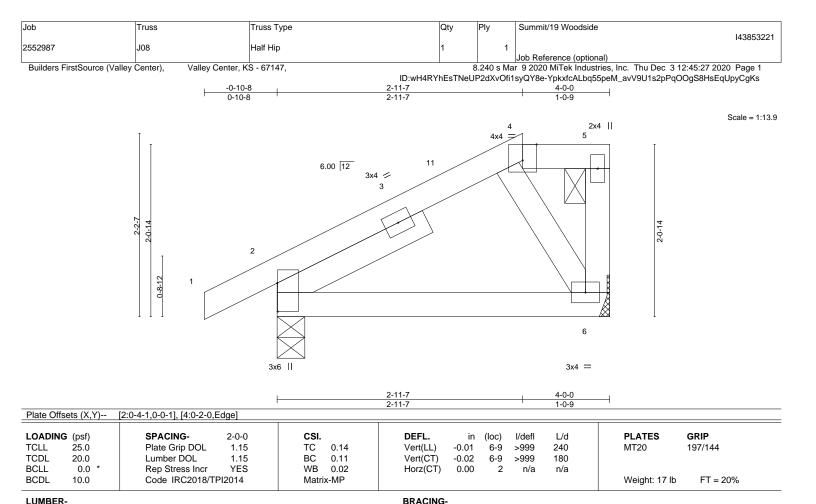
LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-90, 3-4=-90, 5-7=-20 Concentrated Loads (lb)



Structural wood sheathing directly applied or 4-0-0 oc purlins,


except end verticals, and 2-0-0 oc purlins: 3-4.

Rigid ceiling directly applied or 10-0-0 oc bracing

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 16023 Swingley Ridge Rd Chesterfield, MO 63017

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2

SLIDER Left 2x4 SPF No.2 2-0-0

REACTIONS. (size) 2=0-4-0, 6=Mechanical Max Horz 2=68(LC 11) Max Uplift 2=-34(LC 12), 6=-23(LC 9) Max Grav 2=300(LC 1), 6=203(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

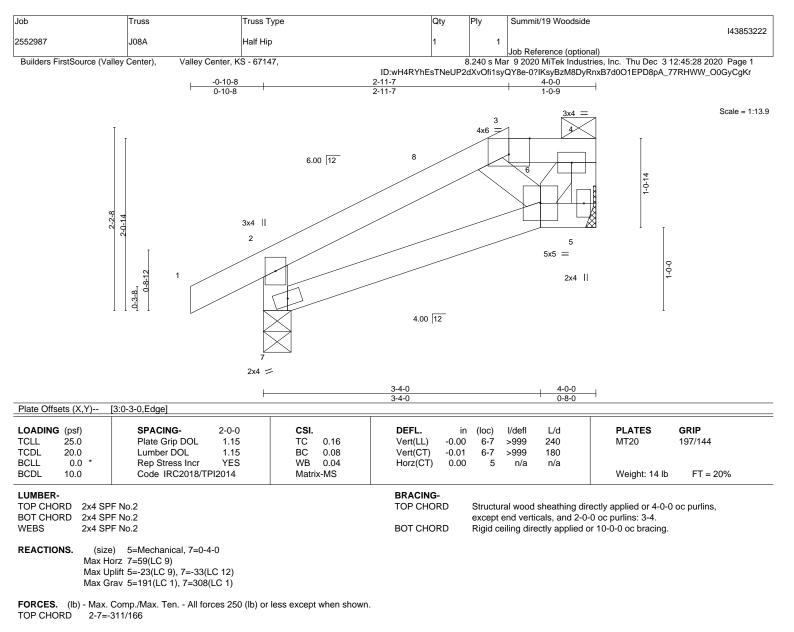
2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 2-11-7, Exterior(2E) 2-11-7 to 3-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



Structural wood sheathing directly applied or 4-0-0 oc purlins,

except end verticals, and 2-0-0 oc purlins: 4-5.

Rigid ceiling directly applied or 10-0-0 oc bracing

NOTES-

1) Unbalanced roof live loads have been considered for this design.

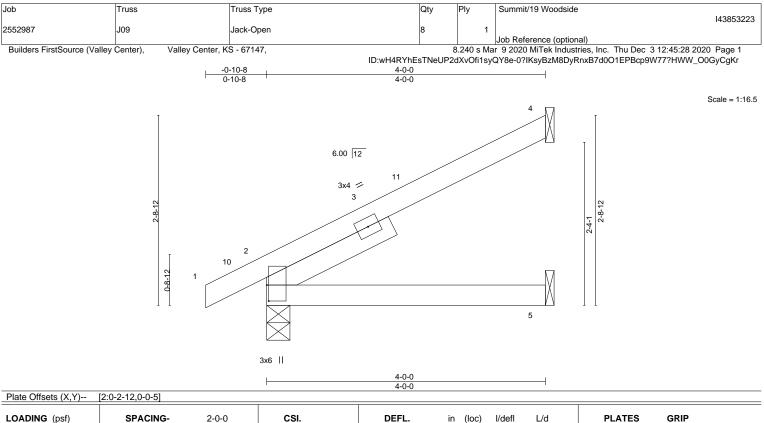
2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 2-11-7, Exterior(2E) 2-11-7 to 3-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Refer to girder(s) for truss to truss connections.


7) Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 7.
 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOADING (psf) SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 25.0 Plate Grip DOL 1.15	TC 0.26	Vert(LL) 0.02	5-8	>999 2	240	MT20	197/144
TCDL 20.0 Lumber DOL 1.15	BC 0.18	Vert(CT) -0.03	5-8	>999 1	180		
BCLL 0.0 * Rep Stress Incr YES	WB 0.00	Horz(CT) 0.01	2	n/a i	n/a		
BCDL 10.0 Code IRC2018/TPI2014	Matrix-MP					Weight: 13 lb	FT = 20%

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2SLIDERLeft 2x4 SPF No.2 2-0-0

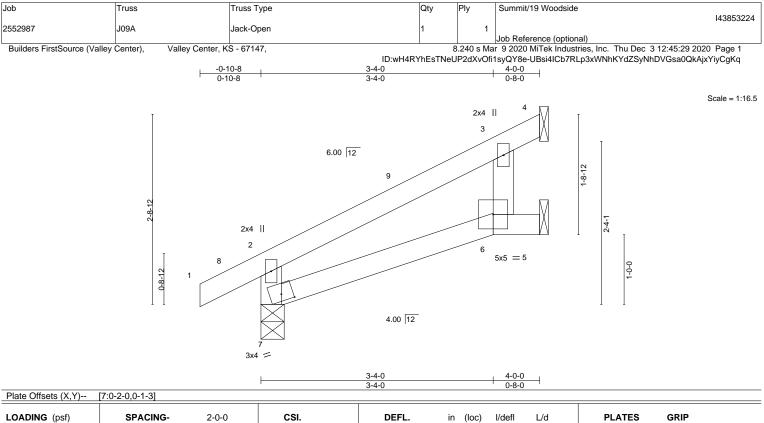
BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 4=Mechanical, 2=0-4-0, 5=Mechanical

Max Horz 2=86(LC 12) Max Uplift 4=-55(LC 12), 2=-17(LC 12)

Max Grav 4=150(LC 1), 2=304(LC 1), 5=76(LC 3)


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-11-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate
- grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

TCLL 25.0 Plate Grip DOL 1.15 TC 0.24 Vert(LL) 0.02 6-7 >999 240 MT20 197/144 TCDL 20.0 Lumber DOL 1.15 BC 0.14 Vert(CT) -0.03 6-7 >999 180 BCLL 0.0* Rep Stress Incr YES WB 0.02 Horz(CT) 0.01 4 n/a n/a

BOT CHORD

LUMBER-	
---------	--

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2

Structural wood sheathing directly applied or 4-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

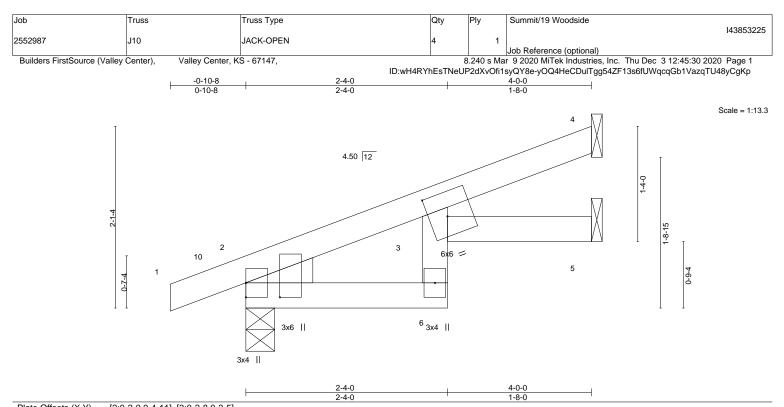
REACTIONS. (size) 7=0-4-0, 4=Mechanical, 5=Mechanical

Max Horz 7=79(LC 12) Max Uplift 7=-18(LC 12), 4=-16(LC 12), 5=-34(LC 12)

Max Grav 7=313(LC 1), 4=105(LC 3), 5=95(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-7=-269/122

NOTES-


- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-11-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Refer to girder(s) for truss to truss connections.

- 5) Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 4, 5.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl L/d	PLATES GRIP
TCLL 25.0	Plate Grip DOL 1.15	TC 0.34	Vert(LL) -0.02	6 ;	>999 240	MT20 197/144
CDL 20.0	Lumber DOL 1.15	BC 0.22	Vert(CT) -0.05	6 ;	>999 180	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.03	5	n/a n/a	
BCDL 10.0	Code IRC2018/TPI2014	Matrix-AS				Weight: 13 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEDGE Left: 2x4 SPF No.2 TOP CHORD BOT CHORD Structural wood sheathing directly applied. Rigid ceiling directly applied.

REACTIONS. (size) 4=Mechanical, 2=

(size) 4=Mechanical, 2=0-4-0, 5=Mechanical Max Horz 2=66(LC 8) Max Uplift 4=-33(LC 12), 2=-40(LC 8), 5=-4(LC 12) Max Grav 4=128(LC 1), 2=305(LC 1), 5=81(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-1, Interior(1) 2-1-1 to 3-11-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2, 5.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

				4-0-0				1	
Plate Offsets (X,Y)	[2:0-2-0,0-4-11]								
OADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (le	oc) l/	/defl L/d	PLATES	GRIP
TCLL 25.0	Plate Grip DOL	1.15	TC 0.23	Vert(LL)	0.02	4-7 >	999 240	MT20	197/144
CDL 20.0	Lumber DOL	1.15	BC 0.20	Vert(CT)	-0.03	4-7 >	999 180		
CLL 0.0 *	Rep Stress Incr	YES	WB 0.00	Horz(CT)	0.01	2	n/a n/a		
BCDL 10.0	Code IRC2018/TI	PI2014	Matrix-AS					Weight: 12 lb	FT = 20%
LUMBER-				BRACING-					

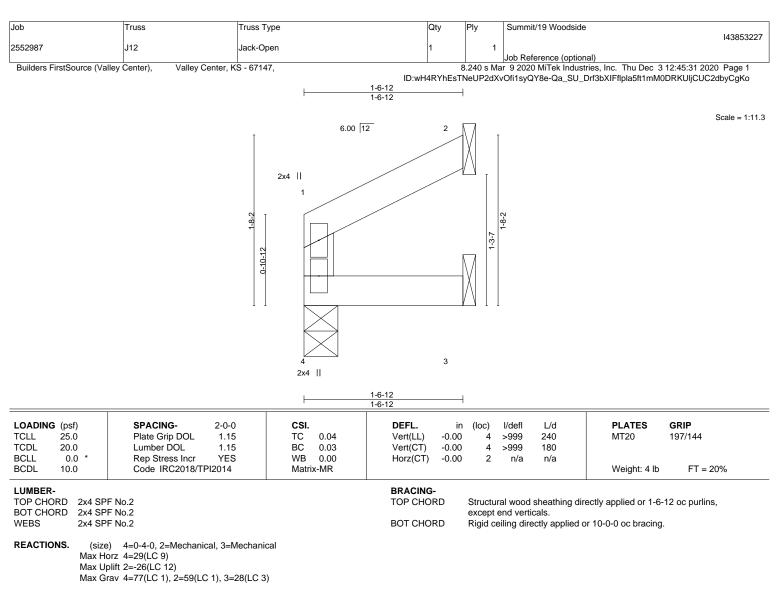
TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEDGE Left: 2x4 SPF No.2

TOP CHORD BOT CHORD

Structural wood sheathing directly applied. Rigid ceiling directly applied.

REACTIONS. (size) 3=Mechanical, 2=0-4-0, 4=Mechanical Max Horz 2=66(LC 8) Max Uplift 3=-44(LC 12), 2=-40(LC 8)

Max Grav 3=147(LC 1), 2=304(LC 1), 4=77(LC 3)


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-11-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

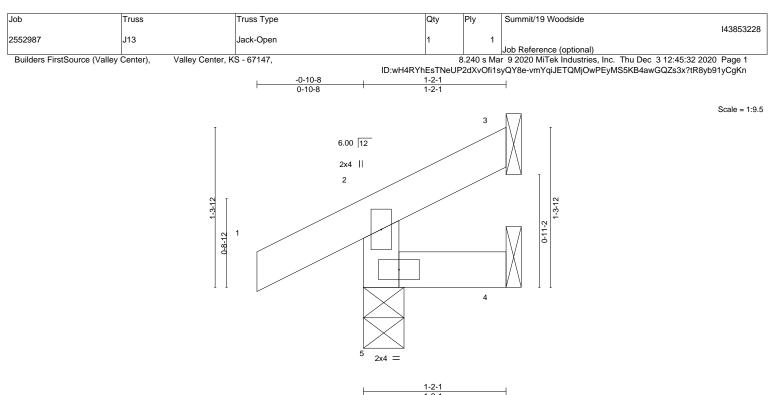
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

				1-2-1				
LOADIN	G (psf)	SPACING- 2-0-	CSI.	DEFL. in	(loc)	l/defl	L/d	PLATES GRIP
TCLL	25.0	Plate Grip DOL 1.1	5 TC 0.09	Vert(LL) 0.00	5	>999	240	MT20 197/144
TCDL	20.0	Lumber DOL 1.1	5 BC 0.02	Vert(CT) 0.00	5	>999	180	
BCLL	0.0 *	Rep Stress Incr YE	S WB 0.00	Horz(CT) -0.00	3	n/a	n/a	
BCDL	10.0	Code IRC2018/TPI2014	Matrix-MR					Weight: 4 lb FT = 20%

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 1-2-1 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-4-0, 3=Mechanical, 4=Mechanical Max Horz 5=30(LC 9) Max Uplift 5=-20(LC 12), 3=-13(LC 12), 4=-2(LC 1) Max Grav 5=194(LC 1), 3=12(LC 19), 4=14(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

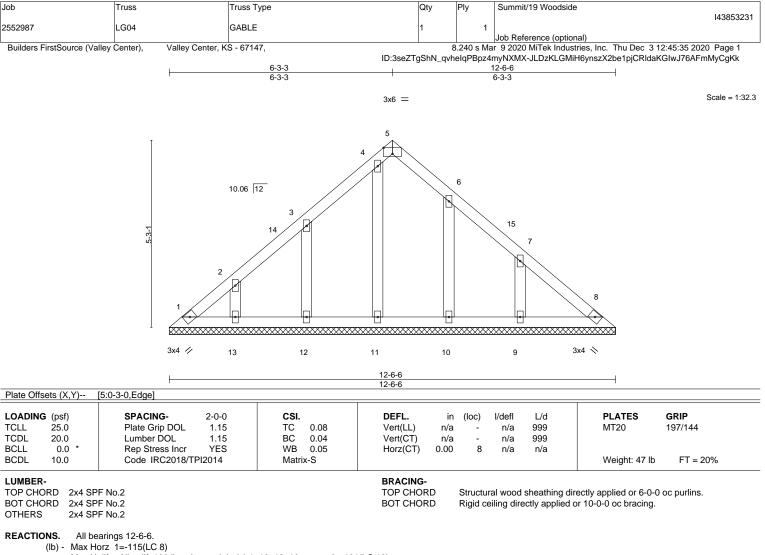
3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3, 4.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

				D	0 :://0.1/	
Job	Truss	Truss Type	Qty	Ply	Summit/19 Woodside	143853229
2552987	LG01	GABLE	1	1	Job Reference (option	
Builders FirstSource (Va	alley Center), Valley Center, H		ID:3seZTgShN_c			ries, Inc. Thu Dec 3 12:45:34 2020 Page 1 59iOKUt7oGVfGZEErXom9uSRiDwyCgKI
			8-4-14 <u>7-9-11 10-4-14 12-4-14</u> 0-7-4 2-0-0 2-0-0	4 14-4-14 2-0-0	15-7-5	
		0 ¹ 11-11 2-0-0 2-0-0 2-0-0 0-2-12	0 ^L 7-4 2-0-0 2-0-0 0-7-3 3x6	2-0-0	1-2-7	Scale = 1:68.7
			3.0 11			
			6			
		5	7			
		17.09 12 4	8			
		1-1-6		\		
		3		9		
		2			10	
					11	
		19 18 17	16 15 14	13	3x4 \\ 12	
		3x4 <u>√2-7</u> 0 ₁ 11-11 3-2-7 5-2-7 7-2-7	8-4-14 10-4-14 12-4-1	4 14-4-14		
		0 ¹ 11-11 2-0-0 2-0-0 2-0-0 0-2-12	1-2-7 2-0-0 2-0-0	2-0-0	1-2-7	
LOADING (psf)	SPACING- 2-0-0		DEFL. in	. ,	l/defl L/d	PLATES GRIP
TCLL 25.0 TCDL 20.0	Plate Grip DOL 1.15 Lumber DOL 1.15		Vert(LL) n/a Vert(CT) n/a		n/a 999 n/a 999	MT20 197/144
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2018/TPI2014	S WB 0.24 Matrix-S	Horz(CT) 0.01	11	n/a n/a	Weight: 97 lb FT = 20%
LUMBER-			BRACING-			
TOP CHORD 2x4 SP			TOP CHORD			ectly applied or 6-0-0 oc purlins.
	PF No.2		BOT CHORD WEBS	1 Row a	eiling directly applied o at midpt 5-	-16, 7-15
	earings 15-7-5.					
()	orz 1=-277(LC 8) plift All uplift 100 lb or less at jo	pint(s) 16, 15 except 1=-215(LC 10),	11=-187(LC 11), 19=	-148(LC 1	12),	
Max G		C 12), 12=-148(LC 13), 13=-175(LC at joint(s) 19, 16, 12, 15 except 1=4		C 13).		
		19), 13=272(LC 20), 14=282(LC 20		e .e),		
		0 (lb) or less except when shown.				
BOT CHORD 1-19=		8=-218/296, 16-17=-218/296, 15-16	6=-218/296,			
	5=-218/296, 13-14=-218/296, 12 =-264/200, 4-17=-286/219, 9-13=					
NOTES-						
1) Unbalanced roof live	e loads have been considered fo	r this design. sd=91mph; TCDL=6.0psf; BCDL=6.0	Draft h. 45th Cat. II. F			
MWFRS (envelope)	gable end zone and C-C Exterio	or(2E) 0-3-6 to 3-2-7, Interior(1) 3-2-7	7 to 7-9-11, Exterior(2	R) 7-9-11	to 10-9-11,	
	o 15-3-15 zone; cantilever left ar ons shown; Lumber DOL=1.60 p	d right exposed ; end vertical left an late grip DOL=1.60	d right exposed;C-C f	or membe	ers and forces	
	T20 unless otherwise indicated.					
		chord live load nonconcurrent with ar opsf on the bottom chord in all areas		6-0 tall by	2-0-0 wide	E OF MISS
will fit between the b	ottom chord and any other mem	bers.	_	-		Extreme Carl
(jt=lb) 1=215, 11=18	7, 19=148, 18=175, 17=195, 12					SCOTT M. SEVIER
 This truss is designer referenced standard 		nternational Residential Code section	ns R502.11.1 and R8	02.10.2 a	nd	
						NUMBER NUMBER
					_	PE-2001018807
						A TAS OF B
						SSIONAL ENG
						December 4,2020
						D00011001 7,2020

b	Truss	Truss Type	Qty	Ply	Summit/19 Woodside	
552987	LG03	GABLE	1	1		143853230
Builders FirstSource (Va	alley Center) Valley Cent	er, KS - 67147,		8 240 s Ma	Job Reference (optiona	al) es, Inc. Thu Dec 3 12:45:34 2020 Page 1
		1-2-7	3-2-7 5-2-7 7-2-7 8-			_59iOKUt7oGVtFoEEJXop9uSRiDwyCgKl
				6		Scale = 1:67.7
			5 9 12 4 12 3 8 12 8 12 8 12 8 12 8 12 8 12 8 12	R R R		
		11 4x4 // <u>1-2-7</u> 1-2-7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 <u>8-15</u> -6-8		
COADING (psf) CLL 25.0 CDL 20.0 SCLL 0.0 SCLL 10.0	Plate Grip DOL Lumber DOL	2-0-0 CSI. 1.15 TC 0.15 1.15 BC 0.02 YES WB 0.24 014 Matrix-P	DEFL. i Vert(LL) n/ Vert(CT) n/ Horz(CT) 0.00	a -	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES GRIP MT20 197/144 Weight: 65 lb FT = 20%
UMBER- OP CHORD 2x4 SF OT CHORD 2x4 SF VEBS 2x4 SF			BRACING- TOP CHORD BOT CHORD WEBS	except e	end verticals. iling directly applied or	ctly applied or 6-0-0 oc purlins, 10-0-0 oc bracing. 7, 5-8
(Ib) - Max H Max U Max G ORCES. (Ib) - Max. OP CHORD 1-2=	9=-178(LC 12), 8=-158(arav All reactions 250 lb or	less at joint(s) 7, 11, 8 except 1=6 s 250 (lb) or less except when sho =-409/386	02(LC 12), 10=274(LC 19)		5 19)	
MWFRS (envelope) exposed ; end vertic DOL=1.60) All plates are 2x4 M) Gable requires cont) This truss has been)* This truss has bee will fit between the t) Provide mechanical 1=248, 11=147, 10=	gable end zone and C-C Cc al left exposed;C-C for mem T20 unless otherwise indicat inuous bottom chord bearing designed for a 10.0 psf botto n designed for a live load of oottom chord and any other r connection (by others) of tru 178, 9=178, 8=158. ad in accordance with the 20	om chord live load nonconcurrent v 20.0psf on the bottom chord in all) 4-6-4 to 8-7-3 zone; cant ctions shown; Lumber DO with any other live loads. areas where a rectangle 3 istanding 100 lb uplift at joi	ilever left a L=1.60 pla -6-0 tall by int(s) 7 exc	nd right te grip 2-0-0 wide ept (jt=lb)	STE OF MISSOL



NL

All sold and a second

PE-2001018807

December 4,2020

Max Uplift All uplift 100 lb or less at joint(s) 1, 13, 12, 10 except 9=-101(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 8, 13, 12, 11, 10 except 9=285(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

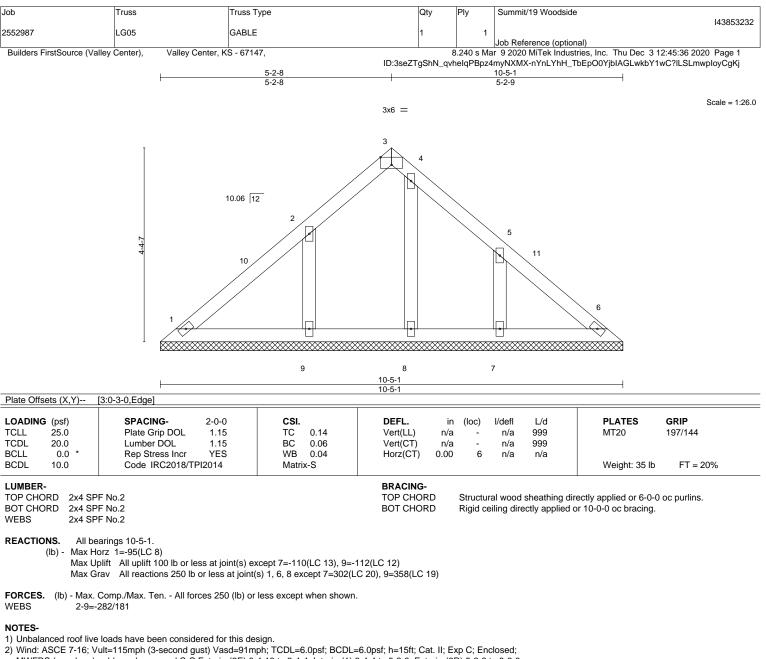
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-4-13 to 3-4-13, Interior(1) 3-4-13 to 6-3-3, Exterior(2R) 6-3-3 to 9-3-3, Interior(1) 9-3-3 to 12-1-9 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are 2x4 MT20 unless otherwise indicated.

4) Gable requires continuous bottom chord bearing.

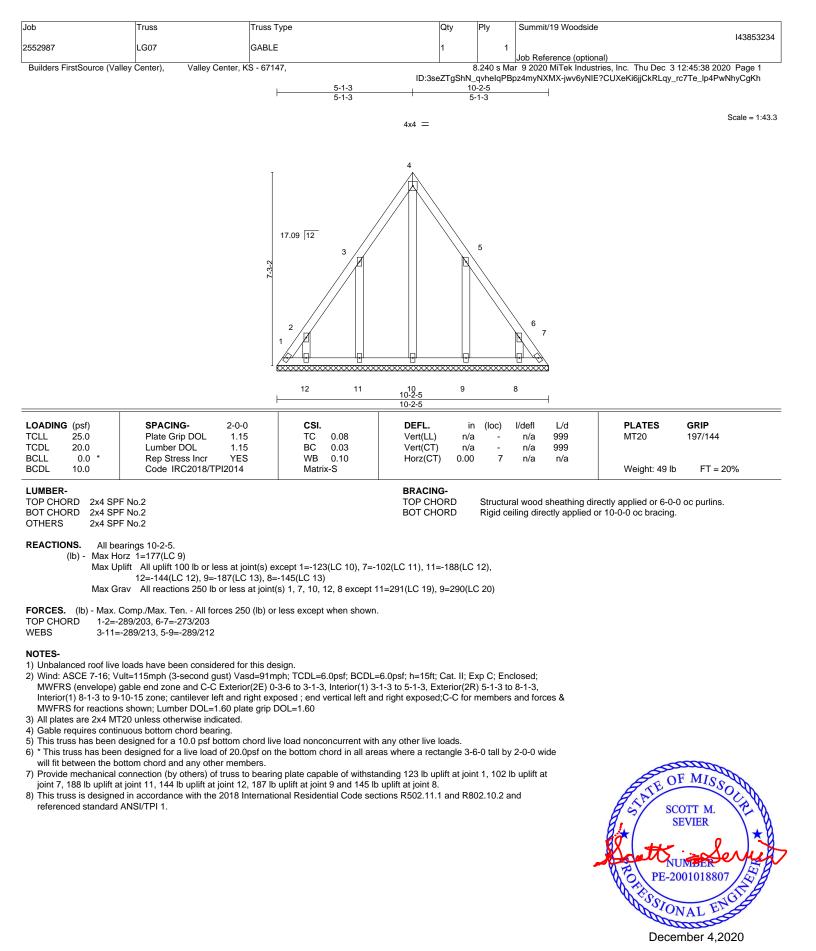
5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

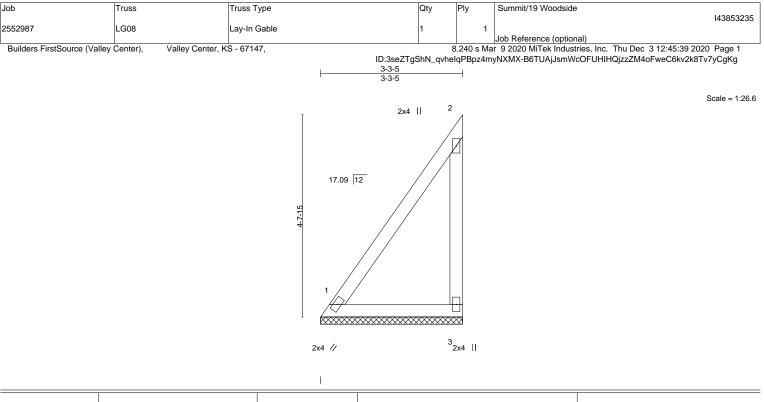

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 13, 12, 10 except (jt=lb) 9=101.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

- MWFRS (envelope) gable and zone and C-C Exterior(2E) 0-4-13 to 3-4-4, Interior(1) 3-4-4 to 5-2-8, Exterior(2R) 5-2-8 to 8-2-8, Interior(1) 8-2-8 to 10-0-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 110 lb uplift at joint 7 and 112 lb uplift at joint 9.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.




Job	Truss	Truss Type	Qty	Ply	Summit/19 Woodside	
2552987	LG06	GABLE	1	1		143853233
Builders FirstSource (Vall			!		Job Reference (optional) ar 9 2020 MiTek Industries	, Inc. Thu Dec 3 12:45:37 2020 Page 1
						A7v90hVu8Hm_RF9k9bcaQfMqEyCgKi
			9-3-3	-		
		I T				Scale = 1:67.7
				6 ×4 \\		
			9-3-3	_1		
			9-3-3	1		
LOADING(psf)TCLL25.0	SPACING-2-0-0Plate Grip DOL1.15	5 TC 0.16	DEFL. ir Vert(LL) n/a	ı -	l/defl L/d n/a 999	PLATES GRIP MT20 197/144
TCDL 20.0 BCLL 0.0 *	Lumber DOL 1.1 Rep Stress Incr YES		Vert(CT) n/a Horz(CT) 0.01		n/a 999 n/a n/a	
BCDL 10.0	Code IRC2018/TPI2014	Matrix-S				Weight: 68 lb FT = 20%
LUMBER- TOP CHORD 2x4 SPF BOT CHORD 2x4 SPF WEBS 2x4 SPF OTHERS 2x4 SPF	No.2 No.2		BRACING- TOP CHORD BOT CHORD WEBS	except e	end verticals. eiling directly applied or 9-	y applied or 6-0-0 oc purlins, 3-15 oc bracing. 2-10
(Ib) - Max Ho Max Up	8=-181(LC 13), 7=-148(LC	int(s) 11 except 6=-259(LC 11), 10= 13) at joint(s) 11, 7 except 6=565(LC 13			20),	
TOP CHORD 2-3=-2 BOT CHORD 10-11=	58/260, 3-4=-431/418, 4-5=-61	-405/442, 7-8=-405/442, 6-7=-405/4	442			
MWFRS (envelope) g right exposed ; end ve DOL=1.60 2) All plates are 2x4 MT: 3) Gable requires contin 4) This truss has been d 5) * This truss has been will fit between the bo 6) Provide mechanical c 6=259, 10=110, 9=16	able end zone and C-Č Exterio ertical right exposed;C-C for me 20 unless otherwise indicated. uous bottom chord bearing. esigned for a 10.0 psf bottom of designed for a live load of 20.0 ttom chord and any other mem onnection (by others) of truss t 1, 8=181, 7=148.	sd=91mph; TCDL=6.0psf; BCDL=6. r(2E) 0-1-12 to 4-4-11, Interior(1) 4- embers and forces & MWFRS for rea whord live load nonconcurrent with an upsf on the bottom chord in all areas bers. b bearing plate capable of withstand international Residential Code sectio	4-11 to 8-11-13 zone: actions shown; Lumbe ny other live loads. where a rectangle 3- ling 100 lb uplift at joir	cantileve or DOL=1 6-0 tall by nt(s) 11 ex	er left and .60 plate grip r 2-0-0 wide xcept (jt=lb)	SCOTT M. SEVIER
						PE-2001018807 PE-200101807 PE-200101807 PE-200101807 PE-200101807 PE-200101807 PE-200101807 PE-200101807 PE-200101807 PE-200101807 PE-200101807 PE-200101807 PE-200101807 PE-200101807 PE-200101807 PE-200101807 PE-20010

December 4,2020

16023 Swingley Ridge Rd Chesterfield, MO 63017

LOADING TCLL TCDL BCLL	25.0 20.0 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.26 BC 0.08 WB 0.00	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) n/a - n/a - 0.00 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code IRC2018/TPI2014	Matrix-P					Weight: 14 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF No.2

 WEBS
 2x4 SPF No.2

 REACTIONS.
 (size)
 1=3-3-5, 3=3-3-5

 Max Harr
 1=1440 C 11

Max Horz 1=144(LC 11) Max Uplift 1=-30(LC 8), 3=-97(LC 9) Max Grav 1=205(LC 20), 3=209(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-228/254, 2-3=-284/214

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

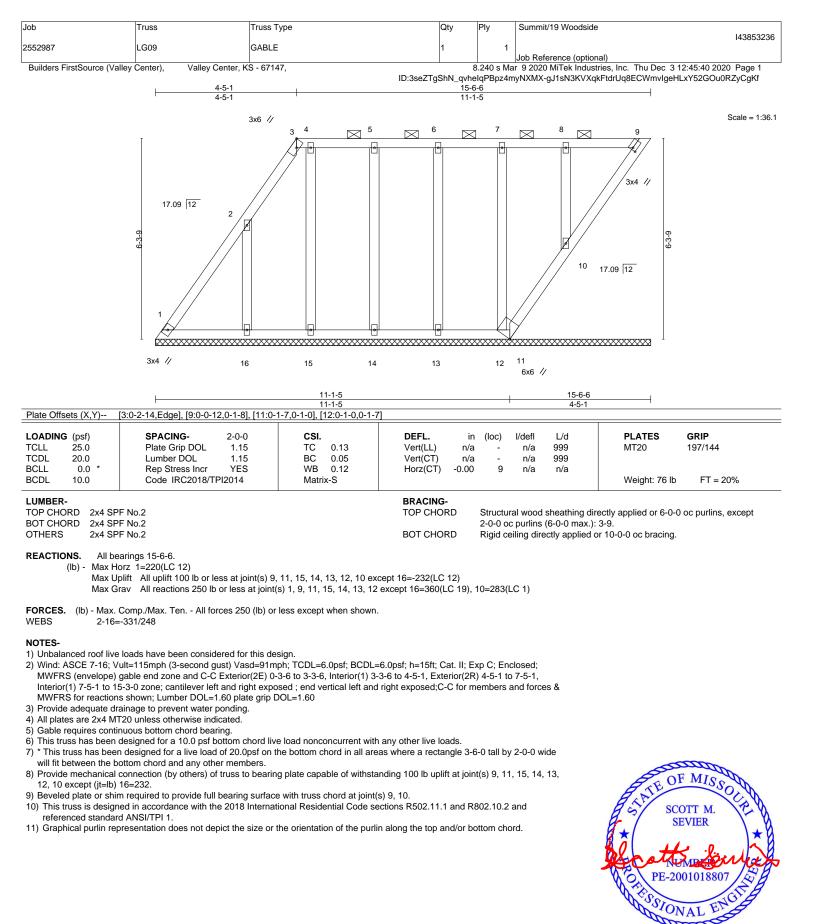
2) Gable requires continuous bottom chord bearing.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 30 lb uplift at joint 1 and 97 lb uplift at joint 3.

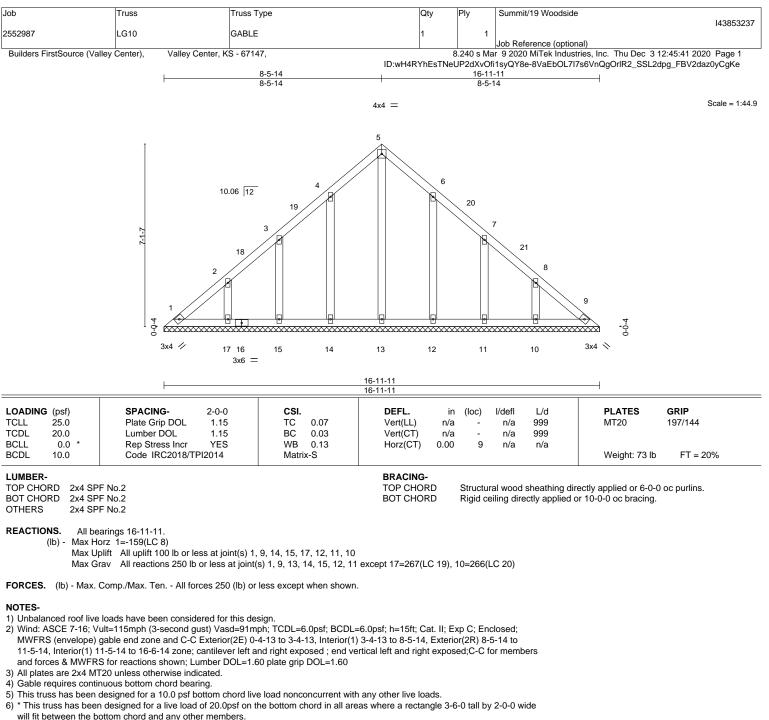
6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



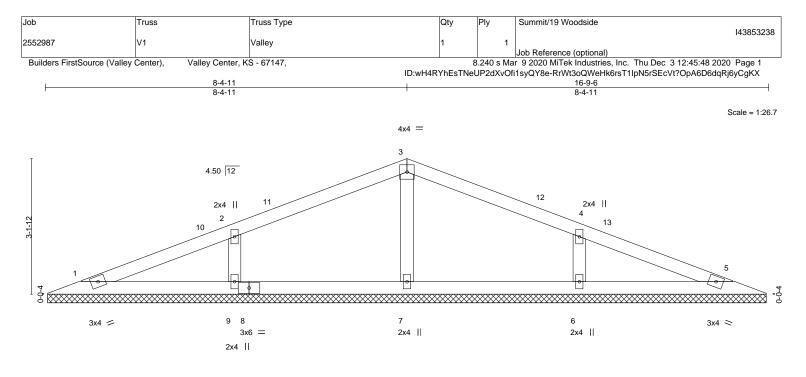
Structural wood sheathing directly applied or 3-3-5 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


December 4,2020

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9, 14, 15, 17, 12, 11, 10.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOADING (psf) SPACING- 2-0-0	CSI.							
CLL 25.0 Plate Grip DOL 1.15 CDL 20.0 Lumber DOL 1.15	TC 0.27 BC 0.10	DEFL. Vert(LL) Vert(CT)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 197/144
CLL 0.0 * Rep Stress Incr YES CDL 10.0 Code IRC2018/TPI2014	WB 0.05 Matrix-S	Horz(CT)	0.00	5	n/a	n/a	Weight: 43 lb	FT = 20%

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF No.2

REACTIONS.

All bearings 16-8-1. (lb) - Max Horz 1=45(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 9, 6

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=379(LC 1), 9=494(LC 25), 6=494(LC 26)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. 3-7=-305/66, 2-9=-402/150, 4-6=-402/150 WEBS

NOTES-

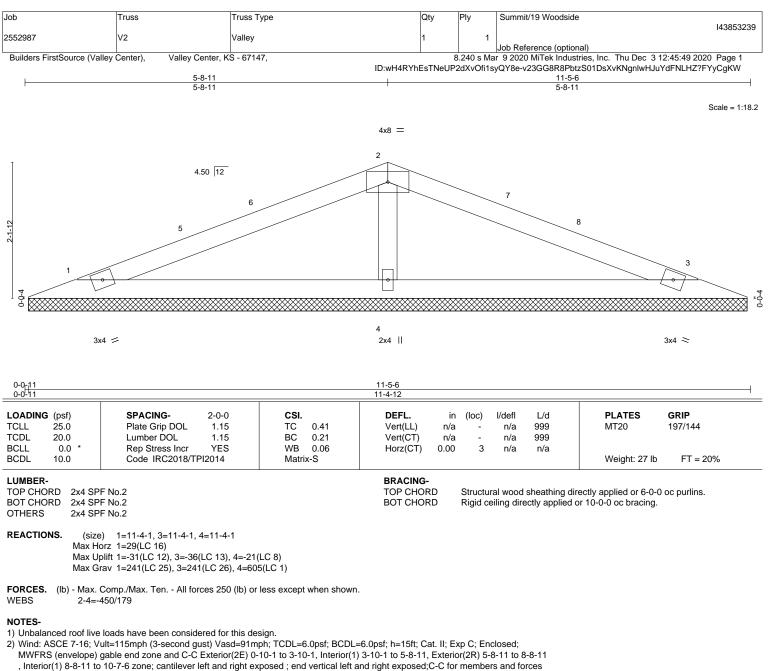
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-10-1 to 3-10-1, Interior(1) 3-10-1 to 8-4-11, Exterior(2R) 8-4-11 to 11-4-11, Interior(1) 11-4-11 to 15-11-6 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5) will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 9, 6.


7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

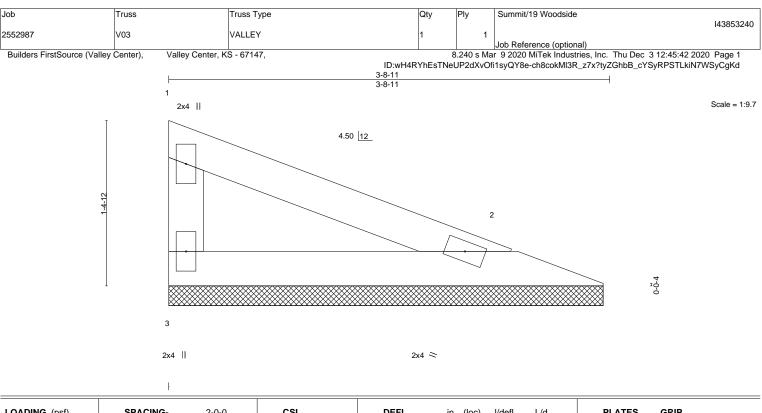
Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

& MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOADING(psf)TCLL25.0TCDL20.0BCLL0.0BCDL10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.17 BC 0.07 WB 0.00 Matrix-P	DEFL. ir Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	a - n/a 999 a - n/a 999	PLATES GRIP MT20 197/144 Weight: 9 lb FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF			BRACING- TOP CHORD	Structural wood sheathing di except end verticals.	rectly applied or 3-8-11 oc purlins,

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing

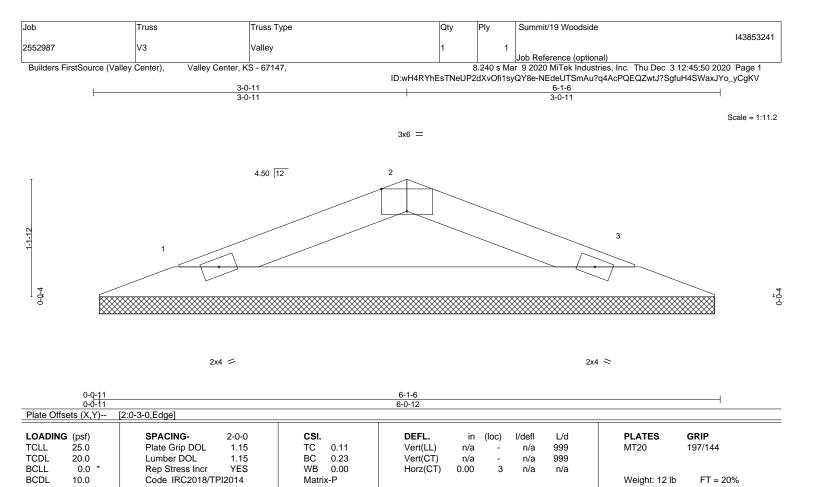
WEBS 2x4 SPF No.2

REACTIONS. 3=3-8-0, 2=3-8-0 (size) Max Horz 3=-42(LC 8) Max Uplift 3=-21(LC 13), 2=-14(LC 13)

Max Grav 3=151(LC 1), 2=151(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-


1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No.2 2x4 SPF No.2 BOT CHORD

REACTIONS. 1=6-0-1, 3=6-0-1 (size) Max Horz 1=-13(LC 17) Max Uplift 1=-18(LC 12), 3=-18(LC 13) Max Grav 1=244(LC 1), 3=244(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. 1-2=-309/179, 2-3=-309/185

TOP CHORD BOT CHORD 1-3=-143/263

NOTES-

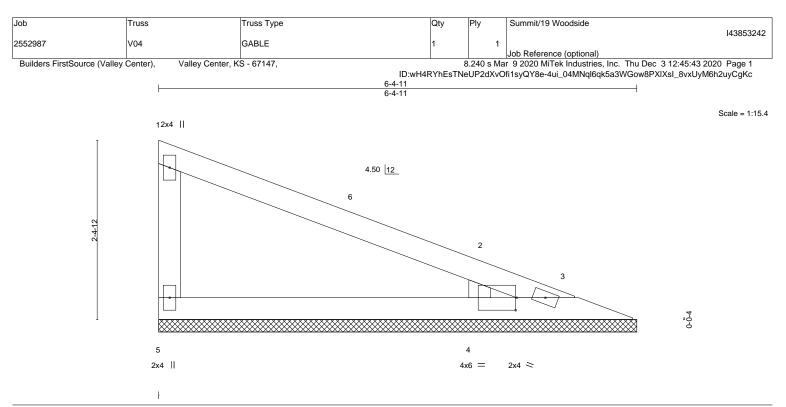
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5) will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.


7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Plate Offsets (X,Y)-- [2:0-1-12,0-0-10], [4:0-0-2,0-2-0], [4:0-1-12,0-0-0]

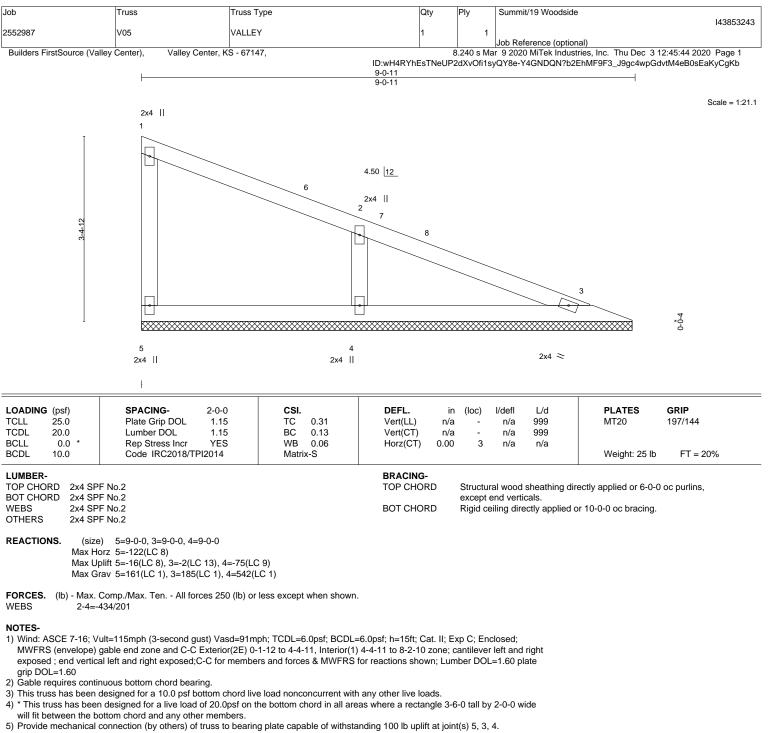
LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.28 BC 0.12 WB 0.05 Matrix-P	DEFL. i Vert(LL) n/ Vert(CT) n/ Horz(CT) 0.0	a - n/a	a 999 a 999	PLATES MT20 Weight: 16 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP	F No.2		BRACING- TOP CHORD	except end v	erticals.	ectly applied or 6-0-0	oc purlins,
WEBS 2x4 SP	F No.2		BOT CHORD	Rigid ceiling	directly applied o	or 10-0-0 oc bracing.	

OTHERS 2x4 SPF No.2 **REACTIONS.** (size) 5=6-4-11, 3=6-4-11, 4=6-4-11 Max Horz 5=-82(LC 8) Max Uplift 5=-24(LC 13), 3=-78(LC 1), 4=-80(LC 13)

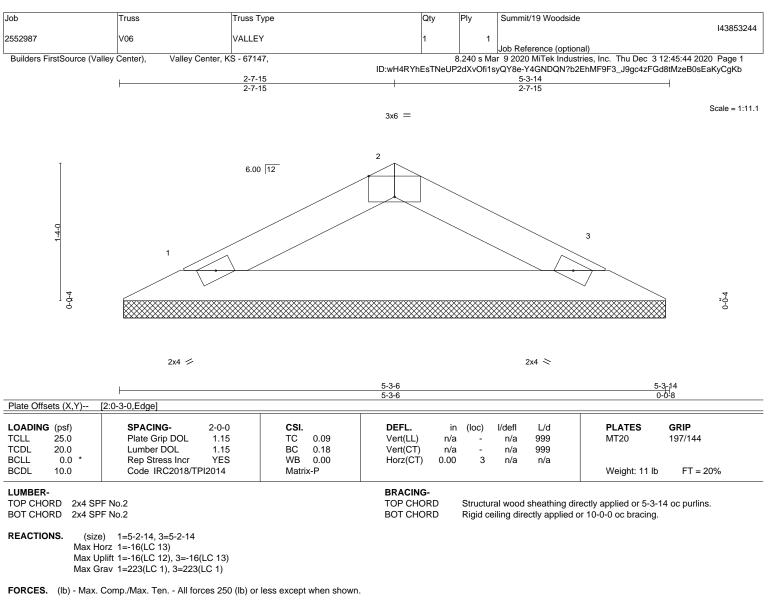
Max Grav 5=183(LC 1), 3=36(LC 1), 4=80(LC 1)Max Grav 5=183(LC 1), 3=36(LC 13), 4=489(LC 1)

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-1-12 to 4-3-8, Interior(1) 4-3-8 to 5-6-10 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3, 4.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-4=-400/244

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed;

- MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right
- exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.

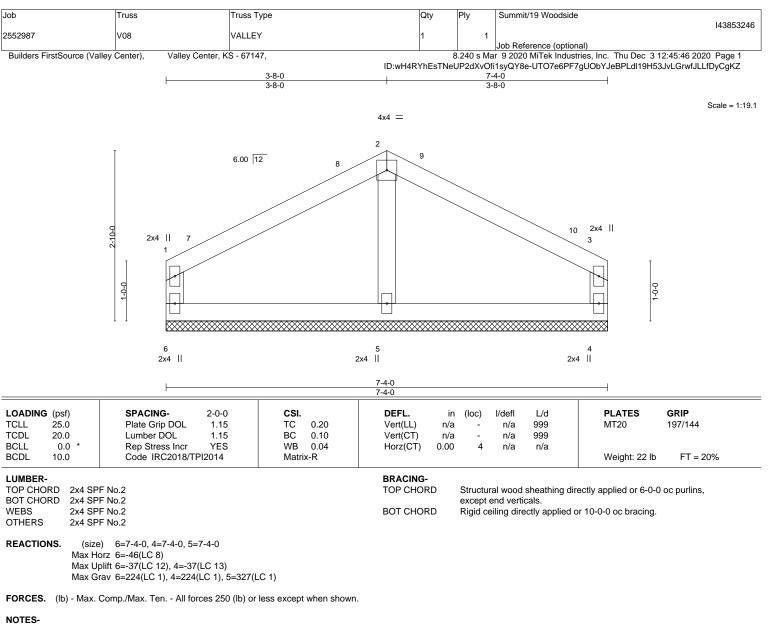
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

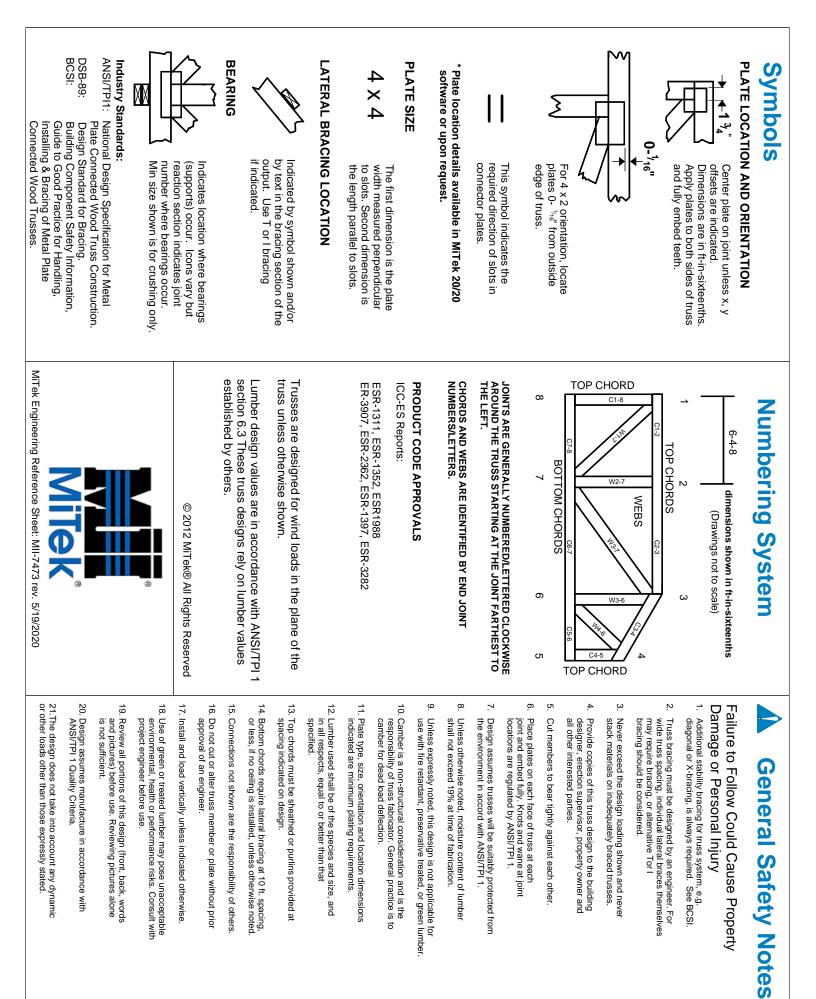
December 4,2020


16023 Swingley Ridge Rd Chesterfield, MO 63017

December 4,2020

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 3-8-0, Exterior(2R) 3-8-0 to 6-8-0, Interior(1) 6-8-0 to 7-2-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 4.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

