

11/30/2020

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

Re: 2524433 Summit/61 Woodside

The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Builders FirstSource (Valley Center).

Pages or sheets covered by this seal: I43624412 thru I43624508

My license renewal date for the state of Missouri is December 31, 2021.

Missouri COA: Engineering 001193

November 16,2020

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Annovember 2015 States and States

16023 Swingley Ridge Rd Chesterfield, MO 63017

			RELEASE FOR	
Job	Truss	Truss Type		Summit/61 Woodside
2524433	A1	HIP GIRDER	AS NOTED ON PLANS REVIEW	143624412
			DEVELOPMENT SERVICES 3	Job Reference (optional)
Builders FirstSource (Valley Center),	Valley Center, KS - 67147,	LEE'S SUMMIT, MISSOURI 8.240 s M	ar 9 2020 MiTek Industries, Inc. Fri Nov 13 13:03:05 2020 Page 2
			ID:VPVqvFnP0P0b1j2tZ	rlOqezdKbx-abYsw35ZBR6CMrL9ohylxskdoEdgIm73wdzQEtyJb2K

NOTES-

 NOTES 11/30/2020

 7) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

8) Provide adequate drainage to prevent water ponding.

9) All plates are MT20 plates unless otherwise indicated.

10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

11) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=628, 13=683.

13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

15) Use Simpson Strong-Tie LUS26 (4-10d Girder, 3-10d Truss, Single Ply Girder) or equivalent at 4-0-0 from the left end to connect truss(es) to front face of bottom chord.

16) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent spaced at 6-0-0 oc max. starting at 6-0-0 from the left end to 36-0-0 to connect truss(es) to front face of bottom chord.

17) Fill all nail holes where hanger is in contact with lumber.

18) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 334 lb down and 58 lb up at 26-1-12, and 339 lb down and 56 lb up at 27-10-4, and 404 lb down and 142 lb up at 37-10-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-4=-51, 4-11=-61, 11-12=-51, 12-14=-51, 29-30=-20, 21-29=-20, 12-18=-20, 19-20=-20, 15-33=-20

Concentrated Loads (lb)

Vert: 27=-338(F) 21=-334(F) 18=-339(F) 23=-334(F) 12=-404(F) 25=-334(F) 24=-334(F) 42=-510(F) 43=-285(F) 44=-338(F) 45=-338(F) 46=-334(F) 47=-334(F) 47=-3 48=-334(F) 49=-339(F) 50=-339(F) 51=-300(F) 52=-298(F)

2-4-12	9-3-4	16-2-8	23-0-0	26-2	$\frac{0}{0}$ $\frac{28-0-0}{1-10-0}$ $\frac{30}{2}$	0-8-12	37-8-8	40-0-0	
Plate Offsets (X,Y) [2:0-7-4,	Edge], [3:0-5-8,0-3-12], [7	:0-5-12,0-4-0], [8:0-7-6	,0-0-1], [8:0-3-8	3,0-0-8], [9:0-8-0,0-	0-5], [19:0-3-8,0)-1-8]	0.1112	200	_
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.4/20.0 TCDL 10.0 BCLL 0.0 BCDI 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TF	2-0-0 C 1.15 T 1.15 B YES W Pl2014 M	SI. C 0.72 C 0.83 /B 0.39 latrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.46 18-19 -0.84 18-19 0.47 9	l/defl L/d >999 240 >568 180 n/a n/a	PL/ MT: MT: We	GRIP 20 197/144 20HS 148/108 ight: 207 lb FT = 20%	-
LUMBER-			F	BRACING-					-
TOP CHORD 2x6 SPF No.2 * 1-3: 2x10 SP 24 BOT CHORD 2x4 SPF No.2 * 2-20,8-17,17-20 WEBS 2x4 SPF No.2	Except* 400F 2.0E, 7-10: 2x8 SP 2 Except*): 2x4 SPF 1650F 1.5E, 8-	2400F 2.0E -11: 2x6 SPF No.2	Ē	SOP CHORD	Structural wood 2-0-0 oc purlins Rigid ceiling dire 10-0-0 oc bracir	sheathing direct (2-10-15 max.): ectly applied. Ex ng: 2-21	tly applied, excep 3-7. kcept:	ot.	
REACTIONS. (size) 1=0 Max Horz 1=-5 Max Uplift 1=-1 Max Grav 1=13	-3-8, 9=0-3-8 95(LC 14) 138(LC 16), 9=-170(LC 16 810(LC 2), 9=1866(LC 2))							
FORCES. (lb) - Max. Comp.// TOP CHORD 1-2=-801/122 7-8=-3811/42 BOT CHORD 2-21=-270/34 12-13=-278/3	Aax. Ten All forces 250 (, 2-3=-3722/420, 3-4=-475 2, 8-9=-765/131 13, 19-21=-268/3419, 18- 1495, 8-12=-280/3487	(lb) or less except when 99/538, 4-6=-4898/539, 19=-383/4799, 16-18=-	n shown. 6-7=-4898/539 278/3495, 13-1	, 6=-294/3436,					
WEBS 3-21=0/291, 7 7-18=-128/15	7-12=0/333, 3-19=-131/15 74	76, 4-19=-633/120, 6-1	8=-622/127,						
 NOTES- 1) Unbalanced roof live loads in 2) Wind: ASCE 7-16; Vult=115r II; Exp C; Enclosed; MWFRS 13-6-3, Interior(1) 13-6-3 to 3 exposed ; end vertical left an grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=25.0 p DOL=1.15); Is=1.0; Rough C 3) Unbalanced snow loads have 5) This truss has been designed non-concurrent with other live 6) Provide adequate drainage tr 7) All plates are MT20 plates ur 8) This truss has been designed 9) Bearing at joint(s) 1 consider capacity of bearing surface. 10) Provide mechanical connect 1=138, 9=170. 11) This truss is designed in ac Contralectopsbase adard ANSI/ 	ave been considered for the nph (3-second gust) Vasd (directional) and C-C Ext (30-8-12, Exterior(2R) 30-8 d right exposed;C-C for most (cof LL: Lum DOL=1.1 at C; Partially Exp.; Ce=1. sed surfaces with slopes been considered for this d for greater of min roof live loads. The provent water ponding. These otherwise indicated. If or a 10.0 psf bottom choice is parallel to grain value us the cordance with the 2018 In TPI 1.	his design. =91mph; TCDL=6.0psf erior(2E) 0-1-12 to 2-10 -12 to 34-11-11, Interio iembers and forces & N 5 Plate DOL=1.15); Pg 0; Cs=1.00; Ct=1.10, L less than 0.500/12 in an design. re load of 12.0 psf or 1. ord live load nonconcur sing ANSI/TPI 1 angle t bearing plate capable ternational Residential	; BCDL=4.2psf; 2-9, Interior(1) 2 r(1) 34-11-11 to IWFRS for read =20.0 psf; Pf=2 u=50-0-0; Min. ccordance with 00 times flat roo rent with any ot o grain formula of withstanding Code sections	: h=15ft; B=45ft; L= 2-10-9 to 9-3-4, Ext o 40-11-0 zone; car titions shown; Luml 20.4 psf (Lum DOL: flat roof snow load IBC 1608.3.4. of load of 15.4 psf of ther live loads. . Building designe 100 lb uplift at joir R502.11.1 and R8	24ft; eave=5ft; erior(2R) 9-3-4 httilever left and i ber DOL=1.60 p =1.15 Plate governs. Rain on overhangs r should verify ht(s) except (jt=lt 02.10.2 and	Cat. to right late	State	DEF MISSOLUE COTT M. SEVIER SEVIER MUMBER 0001018807	7

		RELEASE FOR			
Job Truss	Truss Type	CONSTRUCTION	Ply	Summit/61 Woodside	
2524433	Hin	AS NOTED ON PLANS REVIE	Ν,	1436	524413
		DEVELOPMENT SERVICES		Job Reference (optional)	
Builders FirstSource (Valley Center), Valley Center, K	S - 67147,	LEE'S SUMMIT, MISSOURI &	3.240 s M	ar 9 2020 MiTek Industries, Inc. Fri Nov 13 13:03:11 2020 Pag	e 2
		ID:VPVqvFnP0F	P0b1j2tZr	OqezdKbx-Okv7A69KmHtL4moJ9y29A7_h?fhyiTYxJZQkRXyJb	2E
NOTES-		11/30/2020	-		
This truss design requires that a minimum of 7/16"	structural woo	d sheathing be applied directly to the top cho	ord and 1	/2" gypsum sheetrock be applied directly to the	
bottom chord.					

bottom chord.
13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

				28-8-12	2		
2-4-12	<u>11-3-4</u>	20-0-0	23-3-3 26-	2-0 28-0-0	33-2-10	37-8-8 40-0-0	
Plate Offsets (X,Y) [3:0-4-0.0)-2-13]. [7:0-4-0.0-2-13]. [9:0-0-2.Edge].	[9:0-3-8.0-0-8], [10:0-8-	0.0-0-51	10 11000012	4014	4014 200	
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl L/d	PLATES	GRIP
ICLL (roof) 25.0	Plate Grip DOL 1.15	TC 0.77	Vert(LL)	-0.38 14-16	>999 240	MT20	197/144
Snow (Pf/Pg) 20.4/20.0	Lumber DOI 115	BC 0.95	Vert(CT)	-0.76 14-16	>628 180	MT20HS	148/108
TCDL 10.0	Rep Stress Incr YES	WB 0.86	Horz(CT)	0.45 10	n/a n/a		110/100
BCLL 0.0	Code IBC2018/TPI2014	Matrix-AS	11012(01)	0.10 10	n/a n/a	Weight: 209 lb	FT - 20%
BCDL 10.0		Matrix //O				Weight. 200 lb	11 = 2070
LUMBER-		в	RACING-				
TOP CHORD 2x4 SPE No 2 *E	-xcent*	T		Structural wood	sheathing directly an	plied except	
1-3: 2v10 SP 24	00F 2 0F 7-11: 2x8 SP 2400F 2 0F	•		$2_{-}0_{-}0$ oc purling	(2-2-0 max): 3-7	plied, except	
	50F 2.0E, 7-11. 280 SF 2400F 2.0E	P		2-0-0 00 putitis	(2-2-0 max). $3-7$.		
2 17 0 15: 2v4 SFF N0.2		В		Rigiu cenny une	ectiy applied.		
2-17,9-15:2X4 3	PF 1050F 1.5E, 9-12: 2X0 SPF N0.2						
VVEBS 2X4 SPF IN0.2							
OTHERS 2X4 SPF NO.2							
REACTIONS. (size) 1=0-3	3-8, 10=0-3-8						
Max Horz 1=-1	16(LC 14)						
Max Uplift 1=-1	38(LC 16), 10=-170(LC 16)						
Max Grav 1=18	10(LC 2), 10=1866(LC 2)						
FORCES. (lb) - Max. Comp./M	ax. Ten All forces 250 (lb) or less exce	ept when shown.					
TOP CHORD 1-2=-801/123,	2-3=-3330/373, 3-4=-3003/392, 4-6=-36	603/445, 6-7=-2990/396,					
7-8=-3417/414	·, 8-9=-4263/485, 9-10=-765/131						
BOT CHORD 2-18=-204/298	2, 16-18=-282/3545, 14-16=-281/3552,	13-14=-370/3977, 9-13=	-370/3977				
WEBS 3-18=-5/816, 7	-14=-100/1243, 4-18=-914/107, 6-14=-9	931/109, 8-14=-1245/190)				
NOTES-							
1) Unbalanced roof live loads ha	we been considered for this design.						
2) Wind: ASCE 7-16: Vult=115m	iph (3-second gust) Vasd=91mph: TCD	=6 0psf: BCDI =4 2psf:	h=15ft B=45ft I	=24ft eave=5ft (Cat		
II: Exp C: Enclosed: MWFRS	(directional) and C-C Exterior(2E) 0-1-1	2 to 2-10-9 Interior(1) 2	-10-9 to 11-3-4	-xterior(2R) 11-3-	-4 to		
15-6-3 Interior(1) 15-6-3 to 2	8-8-12 Exterior(2R) 28-8-12 to 33-2-10	Interior(1) 33-2-10 to 40)-11-0 zone: cant	ilever left and right	ht		
exposed : end vertical left and	right exposed: C-C for members and fo	rces & MWERS for reac	tions shown: Lun	ber DOI –1 60 p	lato		
arin DOI -1.60	ingin exposed, e-e for members and to	ices a months for reac			late	Junio	n n
2) TOLL: ASCE 7 16: Pr-25.0 pr	of (roof LL : Lum DOL =1 15 Plate DOL =1	1 15): Pa-20 0 paf: Pf-2		-1 15 Ploto		OF MISC	, Or
5) TOLE. ASCE 7-10, FI=25.0 p	si (1001 EL. Luiti DOL=1.15 Flate DOL=1	-1 10 Lu-50 0 0: Min f	lot roof anow loo	_=1.10 Fidle		4.10 00	O.V.
DOL=1.15); IS=1.0; Rough Ca	It C; Partially Exp.; Ce=1.0; Cs=1.00; Ct	L=1.10, Lu=50-0-0; Min. 1		a governs. Rain	6	N	N SY
surcharge applied to all expos	sed surfaces with slopes less than 0.500	0/12 in accordance with I	BC 1608.3.4.		B	SCOTT M.	12 N
4) Unbalanced snow loads have	been considered for this design.				2	SEVIER	N N
5) This truss has been designed	for greater of min roof live load of 12.0	pst or 1.00 times flat roo	f load of 15.4 pst	on overnangs	1	- 1	1+2
non-concurrent with other live	loads.				20		1 1 - 4
Provide adequate drainage to	prevent water ponding.					an TTY '2X	on I dal
All plates are MT20 plates unl	less otherwise indicated.					NUMBER	
This truss has been designed	for a 10.0 psf bottom chord live load no	onconcurrent with any oth	ner live loads.		M2	PE-200101880	0 180
Bearing at joint(s) 1 considers	parallel to grain value using ANSI/TPI '	1 angle to grain formula.	Building design	er should verify	XV.	11-200101000	158
capacity of bearing surface.					Y		NA
10) Provide mechanical connect	ion (by others) of truss to bearing plate	capable of withstanding	100 lb uplift at jo	nt(s) except (jt=lb	o)	Sour ET	A
1=138, 10=170.		Ū.				WAL D	Ą
11) This truss is designed in acc	cordance with the 2018 International Res	sidential Code sections F	R502.11.1 and R	302.10.2 and		Tours	
referenced standard ANSI/T	PI 1.					November 16.2	:020
Continued on page 2							

		RELEASE FOR			
Job Truss	Truss Type	CONSTRUCTION	Ply	Summit/61 Woodside	
2524433	Hin	AS NOTED ON PLANS REV	IEW 1		143624414
	1 lip	DEVELOPMENT SERVICE	S '	Job Reference (optional)	
Builders FirstSource (Valley Center), Valley	/ Center, KS - 67147,	LEE'S SUMMIT, MISSOU	R 8.240 s M	ar 9 2020 MiTek Industries, Inc. Fri Nov 13 13:03:14 202	20 Page 2
		ID:VPVqvFnP	0P0b1j2tZrl	DqezdKbx-pJbFp8CC3CFwyDXuq4csolcCWsgpvjpN?XeC	02syJb2B
NOTES-		11/30/2020			
This truss design requires that a minimum	of 7/16" structural wood	sheathing be applied directly to the top	chord and	1/2" gypsum sheetrock be applied directly to the	
bottom chord.					

bottom chord.
13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

	13-3-4	<u>20-1-12</u> 6-10-8	<u>26-2-0</u> 6-0-4	26 ₇ 8-12	33-2-10	40-0-0	
Plate Offsets (X,Y) [2:0-7-12	2,Edge], [3:0-5-4,Edge], [5:1-6-4,0-2-0], [18:0-1-12,0-0-0], [18:0-6-	0,0-2-8]	0012	0014	000	
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.89 BC 0.98 WB 0.65 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.36 17-21 -0.83 17-21 0.33 9	l/defl L/d >999 240 >577 180 n/a n/a	PLATES GRIP MT20 197/14 MT18HS 197/14 Weight: 199 lb FT =	14 14 = 20%
LUMBER- TOP CHORD 2x4 SPF No.2 * 1-3: 2x10 SP 24 BOT CHORD 2x4 SPF No.2 * 2-16: 2x4 SPF 1 WEBS 2x4 SPF No.2 SLIDER Right 2x4 SPF N	Except* HOF 2.0E Except* H650F 1.5E No.2 2-6-0	BF TC BC	RACING- OP CHORD OT CHORD EBS	Structural wood 2-0-0 oc purlins Rigid ceiling dir 10-0-0 oc braci 1 Row at midpt	d sheathing directly a s (2-7-10 max.): 3-5. ectly applied. Excer ng: 2-17 4-14	pplied, except t:	
REACTIONS. (size) 1=0- Max Horz 1=-1 Max Uplift 1=-1 Max Grav 1=18	3-8, 9=0-3-8 33(LC 14) 36(LC 16), 9=-170(LC 16) 814(LC 2), 9=1867(LC 2)						
FORCES. (lb) - Max. Comp.//V TOP CHORD 1-2=-802/117, 7-9=-3102/362 7-9=-3102/362 BOT CHORD 2-17=-176/275 WEBS 3-17=0/372, 3 11-14=-246/26 11-4	4ax. Ten All forces 250 (lb) or less exc 2-3=-3102/362, 3-4=-3085/423, 4-5=-27 59, 15-17=-174/2764, 14-15=-213/3085, -15=-51/611, 4-15=-274/93, 4-14=-683/5 646, 7-14=-227/253	ept when shown. 10/390, 5-7=-3097/393, 9-11=-246/2692 4, 7-11=-315/100, 5-14=-	-48/876,				
 NOTES- 1) Unbalanced roof live loads ha 2) Wind: ASCE 7-16; Vult=115n II; Exp C; Enclosed; MWFRS 17-6-3, Interior(1) 17-6-3 to 2 exposed; end vertical left and grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=25.0 p DOL=1.15); Is=1.0; Rough C; surcharge applied to all expoor 4) Unbalanced snow loads have 5) This truss has been designed non-concurrent with other live 6) Provide adequate drainage to 7) All plates are MT20 plates un 8) This truss has been designed 9) Bearing at joint(s) 1 considers capacity of bearing surface. 10) Provide mechanical connect 1=136, 9=170. 11) This truss is designed in act Contineterpressigned and ANSI/T 	ave been considered for this design. nph (3-second gust) Vasd=91mph; TCDI (directional) and C-C Exterior(2E) 0-1-1 6-8-12, Exterior(2R) 26-8-12 to 30-11-1' d right exposed;C-C for members and fo usf (roof LL: Lum DOL=1.15 Plate DOL=1 at C; Partially Exp.; Ce=1.0; Cs=1.00; Cf sed surfaces with slopes less than 0.500 a been considered for this design. d for greater of min roof live load of 12.0 a loads. b prevent water ponding. less otherwise indicated. d for a 10.0 psf bottom chord live load no s parallel to grain value using ANSI/TP1 tion (by others) of truss to bearing plate cordance with the 2018 International Res TP1 1.	L=6.0psf; BCDL=4.2psf; h 2 to 2-10-9, Interior(1) 2-1 , Interior(1) 30-11-11 to 4 rcces & MWFRS for reactiv .15); Pg=20.0 psf; Pf=20. =1.10, Lu=50-0-0; Min. ft /12 in accordance with IE psf or 1.00 times flat roof nconcurrent with any other angle to grain formula. capable of withstanding 1 sidential Code sections R	1=15ft; B=45ft; L= 10-9 to 13-3-4, E 10-11-0 zone; ca ons shown; Lum .4 psf (Lum DOL at roof snow load 3C 1608.3.4. load of 15.4 psf er live loads. Building designe 00 lb uplift at join 502.11.1 and R8	=24ft; eave=5ft; xterior(2R) 13-3 ntilever left and ber DOL=1.60 p =1.15 Plate d governs. Rain on overhangs er should verify nt(s) except (jt=1 802.10.2 and	Cat. -4 to right alate	SCOTT M. SEVIER DE-2001018807 November 16,2020	
WARNING - Verify design para Design valid for use only with Min a truss system. Before use, the b building design. Bracing indicate is always required for stability and fabrication, storage, delivery, erec Safety information available fro	meters and READ NOTES ON THIS AND INCLUDED Tel® connectors. This design is based only upon pr uiding designer must verify the applicability of desis d is to prevent buckling of individual truss web and/ d to prevent collapse with possible personal injury a ction and bracing of trusses and truss systems, see m Truss Plate Institute, 2670 Crain Highway, Suite	D MITEK REFERENCE PAGE MIL rrameters shown, and is for an ir np arameters and properly inco or chord members only. Addition nd property damage. For gener ANSI/TP11 Quality Cr 203 Waldorf, MD 20601	I-7473 rev. 5/19/2020 ndividual building cor rporate this design ir nal temporary and pe al guidance regardin iteria, DSB-89 and I	BEFORE USE. mponent, not to the overall ermanent bracing g the BCSI Building Com	ponent	16023 Swingley Ridge Rd Chesterfield, MO 63017	

		RELEASE FO	DR			
Job Truss	Truss Type	CONSTRUCT	ØN	Ply	Summit/61 Woodside	
2524433	Hip	AS NOTED ON PLANS	REVIE	W 1	14362	.4415
	l iip	DEVELOPMENT SEI	RVICES		Job Reference (optional)	
Builders FirstSource (Valley Center	r), Valley Center, KS - 67147,	LEE'S SUMMIT, MIS	SOURI	8.240 s M	ar 9 2020 MiTek Industries, Inc. Fri Nov 13 13:03:16 2020 Page	2
		ID:V	PVqvFnPC)P0b1j2tZi	rlOqezdKbx-lij0EqDSbpVeBXhHxVeKtAhV5gLmNgggSr7V7kyJb2	9
NOTES-		11/30/2020				
This truss design requires that	at a minimum of 7/16" structural wo	od sheathing be applied directly to t	the top ch	ord and 1	/2" gypsum sheetrock be applied directly to the	
bottom chord.						

bottom chord.
13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

			RELEA	SE FOR					
Job	Truss	Truss Type	CONSTR	UCTION	Ply	Summit/61 Wo	odside		
2524433	A5	HIP	AS NOTED ON DEVELOPME	PLANS REVIE	W 1	Job Reference	(optional)		143624416
Builders FirstSource (Valley	/ Center), Valley Center,	KS - 67147,	LEE'S SUMM	T, MISSOURI	8.240 s N	lar 9 2020 MiTek	Industries, Inc. Fr	i Nov 13 13:03:18 2	2020 Page 1
				ID:VPVqvFnP	0P0b1j2tZ	rlOqezdKbx-h5qr	neVFj/QIMQqrf3wl	hozbmu?T12rgZzw	9ccBdyJb27
2-4-1	12 8-9-10	15-3-4	20-0-01/20	24-8-12	25-8-8	29-7-8 31-2	-6 36-4-0	40-0-0	_
2-4-1	6-4-14	6-5-10	4-8-12	4-8-12	0-11-12	3-11-0 1-6-	14 5-1-10	3-8-0	

Scale = 1:75.6

							26-0-8		31-2-6			
1	2-4-12	8-9-10	15-3-4	20-0-0	1	24-8-12	25-8-8	29-3-8 2	29 ₁ 7 ₁ 8	36-4-0	40-0-0	1
Г	2-4-12	6-4-14	6-5-10	4-8-12		4-8-12	0-11-12	3-3-0	0-4-0	5-1-10	3-8-0	
							0-4-0		1-6-14			
Plate Offsets (X Y)	[2.0-2-4	1 Edgel										

Plate Offsets (X	,Y) [2:0-7-4,E	zagej							
LOADING (psf) TCLL (roof) Snow (Pf/Pg) 2 TCDL BCLL BCDL	25.0 20.4/20.0 10.0 0.0 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.67 BC 0.99 WB 0.30 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT	in (loc) -0.29 11-14) -0.71 11-14) 0.38 9	l/defl >999 >673 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 216 lb	GRIP 197/144 148/108 FT = 20
LUMBER- TOP CHORD BOT CHORD WEBS OTHERS WEDGE Right: 2x4 SP N	2x4 SPF No.2 *E 1-3,7-9: 2x10 SF 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 0.3	Except* 2 2400F 2.0E		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood 2-0-0 oc purlins Rigid ceiling dir 1 Row at midpt	I sheathin ; (3-6-14 r ectly appl	ng directly app max.): 4-6. lied. 3-14, 5-14	plied, except 4, 5-11, 7-11	
REACTIONS.	(size) 1=0-3 Max Horz 1=-14 Max Uplift 1=-13 Max Grav 1=18	3-8, 9=0-3-8 48(LC 14) 38(LC 16), 9=-143(LC 16) 04(LC 2), 9=1793(LC 2)							
FORCES. (Ib) TOP CHORD BOT CHORD WEBS	- Max. Comp./M 1-2=-798/113, 6-7=-2845/386 2-15=-310/330 3-14=-1133/18 7-11=-1128/18	ax. Ten All forces 250 (lb) or less ex 2-3=-3622/430, 3-4=-2846/385, 4-5=- , 7-8=-3618/431, 8-9=-793/111 8, 14-15=-308/3313, 11-14=-177/256 4, 4-14=-61/854, 5-14=-419/61, 5-11= 5	ccept when shown. 2437/378, 5-6=-2437/3 7, 10-11=-305/3307, 8 -421/61, 6-11=-61/854	378, -10=-307/3302 4,					
NOTES- 1) Unbalanced r 2) Wind: ASCE II: Exp.C: End	roof live loads ha 7-16; Vult=115m	ive been considered for this design. ph (3-second gust) Vasd=91mph; TC (directional) and C-C Exterior(2E) 0.1	DL=6.0psf; BCDL=4.2	psf; h=15ft; B=45ft; I	L=24ft; eave=5ft;	Cat.			

II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 2-10-9, Interior(1) 2-10-9 to 15-3-4, Exterior(2R) 15-3-4 to 19-6-3 to 24-8-12, Exterior(2R) 24-8-12 to 28-11-11, Interior(1) 28-11-11 to 39-10-4 zone; cantilever left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.

4) Unbalanced snow loads have been considered for this design.

5) Provide adequate drainage to prevent water ponding.

6) All plates are MT20 plates unless otherwise indicated.

7) All plates are 2x4 MT20 unless otherwise indicated.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) Bearing at joint(s) 1, 9 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify

capacity of bearing surface. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=138, 9=143.

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and Continuiterongeoing and ANSI/TPI 1.

			RELEASE FOR				
Job	Truss	Truss Type	CONSTRUCTION	F	Ply	Summit/61 Woodside	
2524433	45	нір	AS NOTED ON PLANS REV	VIEW	/ ₁	14	3624416
2024400	10		DEVELOPMENT SERVIC	CES	'	Job Reference (optional)	
Builders FirstSource (Valley	Center), Valley Center, K	S - 67147,	LEE'S SUMMIT, MISSOU	JRI 8.	240 s M	ar 9 2020 MiTek Industries, Inc. Fri Nov 13 13:03:18 2020 Pa	age 2
			ID:VPVqvF	FnP0P	0b1j2tZ	lOqezdKbx-h5qmeVFj7QIMQqrf3whozbmu?T12rgZzw9ccBdy	Jb27
NOTES-			11/30/2020				
This truss design requi	res that a minimum of 7/16" s	structural woo	d sheathing be applied directly to the to	p choi	rd and 1	/2" gypsum sheetrock be applied directly to the	
bottom chord.							

bottom chord.
13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

2-4-12	9-8-6	1/-3-4 22-	8-12 25-8	-8 29-7-8	30-3-10 36-4-0	40-0-0	
2-4-12	7-3-10	/-6-14 5-	5-8 2-11-	12 3-11-0	0-8-2 6-0-6	3-8-0	
Plate Offsets (X,Y) [2:0-7-4,E	zagej						
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.4/20.0 TCDL 10.0 BCDL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.89 BC 0.96 WB 0.44 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.29 11-12 -0.55 12-14 0.39 8	l/defl L/d >999 240 >864 180 n/a n/a	PLATES MT20 MT20HS MT18HS Weight: 220 lb	GRIP 197/144 148/108 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SPF No.2 *E 1-3,6-8: 2x10 SF BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 OTHERS 2x4 SPF No.2 WEDGE Right: 2x4 SP No.3	Except* 2400F 2.0E	BI TC BC W	RACING- DP CHORD S 2 DT CHORD F EBS 1	Structural wood s 2-0-0 oc purlins (3 Rigid ceiling direc I Row at midpt	heathing directly appli 3-6-15 max.): 4-5. ttly applied. 3-12, 4-11,	ed, except 6-11	
REACTIONS. (size) 8=0- Max Horz 1=-1 Max Uplift 8=-1 Max Grav 8=17	3-8, 1=0-3-8 67(LC 14) 43(LC 16), 1=-138(LC 16) 93(LC 2), 1=1804(LC 2)						
FORCES. (lb) - Max. Comp./M TOP CHORD 1-2=-798/113, 6-7=-3673/421	ax. Ten All forces 250 (lb) or less 2-3=-3677/420, 3-4=-2671/379, 4-5 , 7-8=-793/111	except when shown. =-2228/379, 5-6=-2671/380,					
BOT CHORD 2-14=-292/334 WEBS 3-14=0/314, 3-	9, 12-14=-290/3354, 11-12=-119/22 12=-1272/194, 4-12=-39/740, 5-11=	28, 9-11=-287/3349, 7-9=-28 -45/739, 6-11=-1265/196, 6-	39/3344 9=0/313				
 NOTES- 1) Unbalanced roof live loads ha 2) Wind: ASCE 7-16; Vult=115m II; Exp C; Enclosed; MWFRS 21-6-3, Interior(1) 21-6-3 to 2: exposed ; end vertical left and grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=25.0 p: DOL=1.15); Is=1.0; Rough Ca surcharge applied to all expose 4) Unbalanced snow loads have 5) Provide adequate drainage to 6) All plates are MT20 plates un 7) All plates are 2x4 MT20 unles 8) This truss has been designed 9) Bearing at joint(s) 8, 1 consid capacity of bearing surface. 10) Provide mechanical connect 8=143, 1=138. 11) This truss is designed in acc referenced standard ANSI/T Continued on page 2 	two been considered for this design. typh (3-second gust) Vasd=91mph; T (directional) and C-C Exterior(2E) 0 2-8-12, Exterior(2R) 22-8-12 to 26-1 d right exposed;C-C for members an sf (roof LL: Lum DOL=1.15 Plate DC at C; Partially Exp.; Ce=1.0; Cs=1.00; been considered for this design. prevent water ponding. less otherwise indicated. for a 10.0 psf bottom chord live loa- ers parallel to grain value using ANS ion (by others) of truss to bearing pl cordance with the 2018 International P1.	CDL=6.0psf; BCDL=4.2psf; 1-12 to 2-10-9, Interior(1) 2- 1-11, Interior(1) 26-11-11 to d forces & MWFRS for react iL=1.15); Pg=20.0 psf; Pf=20 ; Ct=1.10, Lu=50-0-0; Min. fl 500/12 in accordance with II d nonconcurrent with any oth iI/TPI 1 angle to grain formul ate capable of withstanding ' Residential Code sections R	h=15ft; B=45ft; L=2 10-9 to 17-3-4, Ex 39-10-4 zone; can ions shown; Lumb 0.4 psf (Lum DOL= lat roof snow load BC 1608.3.4. er live loads. a. Building design 100 lb uplift at joint 2502.11.1 and R80	24ft; eave=5ft; Ca terior(2R) 17-3-4 tilever left and rig er DOL=1.60 pla :1.15 Plate governs. Rain her should verify t(s) except (jt=lb) i2.10.2 and	at. to jht te	ATE OF MISS SCOTT M. SEVIER PE-200101880 PE-200101880 November 16,2	0 0 1 7 0 20 20

		RELEASE FOR			
Job Truss	Truss Type	CONSTRUCTION	Ply	Summit/61 Woodside	
2524433	нр	AS NOTED ON PLANS REVI	EW 1		143624417
		DEVELOPMENT SERVICE	S '	Job Reference (optional)	
Builders FirstSource (Valley Center), Valley Center	er, KS - 67147,	LEE'S SUMMIT, MISSOUR	8.240 s M	ar 9 2020 MiTek Industries, Inc. Fri Nov 13 13:03:20 2020	Page 2
		ID:VPVqvFnP	0P0b1j2tZr	lOqezdKbx-dTyX3BGzf2?3g8?2ALjG20rB1Hk3JYvGNT5jG\	√yJb25
NOTES-		11/30/2020			
12) This truss design requires that a minimum of 7/	16" structural woo	d sheathing be applied directly to the top o	hord and	/2" gypsum sheetrock be applied directly to the	
bottom chord.					

bottom chord.
13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 NITEK* 16023 Swingley Ridge Rd Chesterfield, MO 63017

November 16,2020

Design valid for use only with MTeKe connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

MiTek

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1** Quality Criteria, DSB-89 and BCSI Building Component **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek

16023 Swingley Ridge Rd Chesterfield, MO 63017

- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=163, 12=136.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

 SLIDER
 Left 2x4 SPF No.2 2-6-0

 REACTIONS.
 (size)
 8=0-3-8, 2=0-3-8

 Max Horz
 2=309(LC 13)

Max Horz 2=309(LC 13) Max Uplift 8=-83(LC 13), 2=-81(LC 16) Max Grav 8=800(LC 2), 2=867(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-1107/214, 4-6=-866/196

BOT CHORD 2-11=-394/990, 6-9=-51/453, 8-9=-307/729

WEBS 9-11=-345/948, 4-9=-307/125, 6-8=-897/282

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior(1) 2-1-0 to 17-9-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 2.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Mitek[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 November 16,2020

DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads

6) Provide adequate drainage to prevent water ponding.

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7)
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 2. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum
- sheetrock be applied directly to the bottom chord.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

	<u>5-3-10</u> 5-3-10	<u>10-3-12</u> 5-0-2	11-4-8	<u>17-11-8</u> 6-7-0				
Plate Offsets (X,Y) [2:0-4-2,0-0-4], [5:0-4-10,Edge], [6:0-3-8,Edge], [8:0-5-8,0-2-4]								
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.4/20.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.91 BC 0.60 WB 0.33	DEFL. ii Vert(LL) -0.15 Vert(CT) -0.37 Horz(CT) 0.03	n (loc) l/defl L/d 5 7-8 >999 240 7-8 >700 180 3 7 n/a n/a	PLATES GRIP MT20 197/144 MT20HS 148/108			

	Weight: 83 lb	FT = 20%
BRACING-		
TOP CHORD Structural v	wood sheathing directly applied, except end verti	cals, and
2-0-0 oc pu	urlins (2-4-4 max.): 5-6.	
BOT CHORD Rigid ceilin	ig directly applied.	
WEBS 1 Row at m	nidpt 5-7	
	BRACING- TOP CHORD Structural 2-0-0 oc p BOT CHORD Rigid ceilin WEBS 1 Row at n	BRACING- Weight: 83 lb TOP CHORD Structural wood sheathing directly applied, except end verti 2-0-0 oc purlins (2-4-4 max.): 5-6. BOT CHORD Rigid ceiling directly applied. WEBS 1 Row at midpt 5-7

REACTIONS. (size) 7=0-3-8, 2=0-3-8 Max Horz 2=173(LC 13) Max Uplift 7=-63(LC 16), 2=-85(LC 16) Max Grav 7=815(LC 2), 2=957(LC 36)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-1202/164, 4-5=-1017/176, 6-7=-328/88

BOT CHORD 2-11=-293/1075. 7-8=-245/850

WEBS 5-8=-22/484, 5-7=-912/229, 8-11=-293/1074, 4-8=-324/63

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior(1) 2-1-0 to 10-3-12, Exterior(2R) 10-3-12 to 14-6-11, Interior(1) 14-6-11 to 17-9-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

6) Provide adequate drainage to prevent water ponding.

7) All plates are MT20 plates unless otherwise indicated.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 2.

10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2.

 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

November 16,2020

13) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Continued on page 2

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH1</u> Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

November 16,2020

		RELEASE FOR	
Job Truss	Truss Type		Summit/61 Woodside
2524433	Hin Girder	AS NOTED ON PLANS REVIEW	143624430
02		DEVELOPMENT SERVICES	Job Reference (optional)
Builders FirstSource (Valley Center), Va	lley Center, KS - 67147,	LEE'S SUMMIT, MISSOURI 8.240 s M	ar 9 2020 MiTek Industries, Inc. Fri Nov 13 13:03:35 2020 Page 2
		ID:VPVqvFnP0P0b1j2tZrl0	QqezdKbx-hMMCDKSN7fuxzSewY_Un9BztsKx3KP9TqIE?H8yJb1s
		11/30/2020	
LOAD CASE(S) Standard			
1) Dead + Snow (balanced): Lumber Increa	ase=1.15, Plate Increase=1.1	15	

Uniform Loads (plf) Vert: 1-4=-51, 4-5=-61, 5-7=-51, 10-14=-20 Concentrated Loads (lb)

Vert: 9=-344 8=-344 19=-92(B) 21=117(B)

- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

November 16,2020

L	4-0-0		8-0	8-0-0			12-0-0			
1		4-0-0	4-0-0			4-0-0				
Plate Offsets (X,Y)	- [2:0-4-10,Edg	ge], [7:0-4-10,Edge]								
LOADING (psf) TCLL (roof) Snow (Pf/Pg) 20.4/2 TCDL BCLL BCDL	25.0 (20.0 10.0 0.0 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCode IRC2018/TPI2014	CSI. TC 0.57 BC 0.65 WB 0.09 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.10 0.03	(loc) 9-10 9-10 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 47 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 BOT CHORD 2x4 WEBS 2x4	SPF No.2 SPF No.2 SPF No.2		E	BRACING- OP CHORD	Structura except 2-0-0 oc	ıl wood purlins	sheathin (4-5-13 r	g directly app nax.): 4-5.	plied or 4-5-15 oc purli	ins,

2x4 SPF No.2 2-0-0 oc purlins (4-5-13 max.): 4-5. Left 2x4 SPF No.2 2-6-0, Right 2x4 SPF No.2 2-6-0 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing

REACTIONS. (size) 2=0-3-8, 7=0-3-8 Max Horz 2=-46(LC 56) Max Uplift 2=-121(LC 12), 7=-121(LC 12) Max Grav 2=1029(LC 35), 7=1029(LC 35)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- 2-4=-1431/164, 4-5=-1231/161, 5-7=-1432/164 TOP CHORD
- BOT CHORD 2-10=-90/1251. 9-10=-91/1230. 7-9=-87/1252
- WEBS 4-10=0/342, 5-9=0/351

NOTES-

SLIDER

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0 Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=121, 7=121.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 11) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 274 lb down and 47 lb up at 4-0-0, and 274 lb down and 47 lb up at 7-11-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others
- 13) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Continued on page 2

		RELEAS	E FOR			
Job Truss ⁻	Truss Type	CONSTRU	ICTION	Ply	Summit/61 Woodside	
2524433	Hin Girder	AS NOTED ON PL	.ANS REVI	EW 1	143	624432
		DEVELOPMENT	SERVICE	S .	Job Reference (optional)	
Builders FirstSource (Valley Center), Valley Center, KS	S - 67147,	LEE'S SUMMIT	, MISSOUR	8.240 s N	ar 9 2020 MiTek Industries, Inc. Fri Nov 13 13:03:37 2020 Pag	ge 2
			ID:VPVqvFn	P0P0b1j2tZ	rlOqezdKbx-elUye?UdeG8fCloJgPWFEc2Ak7buoJgmHcj6L0yJl	b1q
		11/30/2	020			
LOAD CASE(S) Standard						
 Dead + Snow (balanced): Lumber Increase=1.15, Plat 	te Increase=1	1.15				

Uniform Loads (plf) Vert: 1-4=-51, 4-5=-61, 5-8=-51, 11-15=-20

Concentrated Loads (lb)

Vert: 5=-78(B) 10=-274(B) 9=-274(B) 4=-78(B) 21=-73(B) 24=-33(B)

Plate Offsets (X,Y) [2:0-0-14		2-4-12 2-4-12 [2], [7:0-0-6,0-4-4]		<u>3-11-4</u> 1-6-8				
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.31 BC 0.52 WB 0.03 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.04 6 -0.06 6 0.03 5	l/defl >999 >794 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 13 lb	GRIP 197/144 FT = 20%
LUMBER-		BR	ACING-					

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2

REACTIONS. (size) 7=0-3-8, 5=Mechanical

Max Horz 7=90(LC 16) Max Uplift 7=-23(LC 16), 5=-58(LC 16) Max Grav 7=264(LC 2), 5=171(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 1-10-15, Interior(1) 1-10-15 to 3-11-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Refer to girder(s) for truss to truss connections.
- 7) Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 5. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 3-11-4 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

	1	2-4-12		1	3-2-3	1			
	F	2-4-12		1	0-9-7				
Plate Offsets (X,Y) [2:0-0-14	4,0-1-12], [3:0-1-4,Edge], [7:0-0-14,0-1-1	2], [7:0-0-6,0-4-4]							
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.13 BC 0.28 WB 0.03 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.01	(loc) 10 10 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 11 lb	GRIP 197/144 FT = 20%
BRACING-									

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2

REACTIONS. (size) 7=0-3-8, 5=Mechanical

Max Horz 7=74(LC 16) Max Uplift 7=-23(LC 16), 5=-42(LC 16) Max Grav 7=249(LC 21), 5=146(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 1-10-15, Interior(1) 1-10-15 to 3-2-3 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Refer to girder(s) for truss to truss connections.
- 7) Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 5. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 3-2-3 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

16023 Swingley Ridge Rd Chesterfield, MO 63017

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No.2 2x4 SPF No.2 BOT CHORD

WEBS 2x4 SPF No.2

REACTIONS. (size) 3=Mechanical, 4=0-3-8 Max Horz 4=33(LC 13) Max Uplift 3=-16(LC 13)

Max Grav 3=73(LC 27), 4=70(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 1-10-3 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing

except end verticals

 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

			RELEASE FO	DR			
Job	Truss	Truss Type	CONSTRUCT	ØN	Ply	Summit/61 Woodside	
2524433	145		AS NOTED ON PLANS	REVIE	W 1		143624437
2324433	5		DEVELOPMENT SEI	RVICES	' '	Job Reference (optional)	
Builders FirstSource (Valley Center), Valley Center, KS - 67147,			LEE'S SUMMIT, MIS	SOURI	8.240 s M	ar 9 2020 MiTek Industries, Inc. Fri Nov 13 13:03:48 20	20 Page 2
			ID:VF	PVqvFnP0	P0b1j2tZr	IOqezdKbx-pse6xmcX3eX51R7QpDDqAw01IZH4tFdOpc	tBEtyJb1f
			11/30/2020				
LOAD CASE(S) Standa	rd						
1) Dead + Snow (balance	ed): Lumber Increase=1.15, PI	ate Increase=	1.15				
Uniform Loads (nlf)							

Uniform Loads (plf) Vert: 1-2=-51, 2-3=-51, 3-4=-51, 4-5=-61, 3-8=-20, 3-6=-20 Concentrated Loads (lb)

Vert: 7=-207(B) 10=-146(B)

Scale = 1:15.7

	1-11-4			7-3-4				
Plate Offsets (X,Y) [4:0-3-8,E	Edge], [5:Edge,0-3-8]			3-4-0				
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2018/TPI2014	CSI. TC 0.51 BC 0.47 WB 0.02 Matrix-MR	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.09 5-6 -0.14 5-6 0.00 5	l/defl >948 >609 5 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 21 lb	GRIP 197/144 148/108 FT = 20%
LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2		BR TO BO	ACING- P CHORD T CHORD	Structural woo except end ve Rigid ceiling d	d sheathin rticals, and irectly appl	g directly ap 2-0-0 oc pu ied or 10-0-0	plied or 6-0-0 oc purlir rlins (6-0-0 max.): 3-4.) oc bracing.	S,
REACTIONS. (size) 5=Mt Max Horz 7=51 Max Uplift 5=-12 Max Grav 5=42	echanical, 7=0-3-8 (LC 11) 22(LC 9), 7=-147(LC 12) 4(LC 31), 7=474(LC 2)							
FORCES. (lb) - Max. Comp./M TOP CHORD 2-3=-397/142, BOT CHORD 6-7=-129/329,	ax. Ten All forces 250 (lb) or less exce 3-4=-331/118, 4-5=-277/66, 2-7=-361/13 5-6=-125/328	ept when shown. 31						
 NOTES- 1) Unbalanced roof live loads ha 2) Wind: ASCE 7-16; Vult=115m II; Exp C; Enclosed; MWFRS plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=25.0 pp DOL=1.15); Is=1.0; Rough Ca surcharge applied to all expose 4) Unbalanced snow loads have 5) This truss has been designed non-concurrent with other live 6) Provide adequate drainage to 7) All plates are MT20 plates unil 8) This truss has been designed 9) Refer to girder(s) for truss to to 10) Provide mechanical connect 5=122, 7=147. 11) This truss is designed in acc referenced standard ANSI/T 12) Graphical purlin representati 13) "NAILED" indicates 3-10d (0) 14) In the LOAD CASE(S) sector 	ve been considered for this design. ph (3-second gust) Vasd=91mph; TCDL (directional); cantilever left and right exp sf (roof LL: Lum DOL=1.15 Plate DOL=1 tt C; Partially Exp.; Ce=1.0; Cs=1.00; Ct- sed surfaces with slopes less than 0.500 been considered for this design. for greater of min roof live load of 12.0 p loads. prevent water ponding. ess otherwise indicated. for a 10.0 psf bottom chord live load non russ connections. ion (by others) of truss to bearing plate of ordance with the 2018 International Res Pl 1. on does not depict the size or the orient. .148"x3") or 2-12d (0.148"x3.25") toe-na in, loads applied to the face of the truss	=6.0psf; BCDL=4.2psf; h: losed ; end vertical left an .15); Pg=20.0 psf; Pf=20. =1.10, Lu=50-0-0; Min. fla /12 in accordance with IB psf or 1.00 times flat roof I inconcurrent with any other capable of withstanding 10 idential Code sections R5 ation of the purlin along th ils per NDS guidlines. are noted as front (F) or b	=15ft; B=45ft; La d right exposed 4 psf (Lum DOL tt roof snow load C 1608.3.4. load of 15.4 psf er live loads. 00 lb uplift at join 502.11.1 and R8 he top and/or bo back (B).	=24ft; eave=4ft ; Lumber DOL= _=1.15 Plate d governs. Rai on overhangs nt(s) except (jt= 302.10.2 and ottom chord.	; Cat. -1.60 n -lb)		STATE OF MIS SCOTT M. SEVIER PE-20010188	SOUPL *
LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lur	nber Increase=1.15, Plate Increase=1.15	5					NONAL P	

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

November 16,2020

			RELEASE I	FOR			
Job	Truss	Truss Type	CONSTRUC	TIØN	Ply	Summit/61 Woodside	
2524433	.1A6	Half Hip Girde	AS NOTED ON PLAN		W 1	143624	438
2021100		rian riip en de	DEVELOPMENT S	ERVICES		Job Reference (optional)	
Builders FirstSource (Valley	Center), Valley Center, K	S - 67147,	LEE'S SUMMIT, M	ISSOURI	8.240 s M	ar 9 2020 MiTek Industries, Inc. Fri Nov 13 13:03:49 2020 Page 2	
				ID:VPVqvFn	P0P0b1j2	tZrlOqezdKbx-H2CU96d9qyfyebidNwk3j8YEjzkPclcX2UdlmKyJb1e	
LOAD CASE(S) Standard			11/30/2020	0			
Uniform Loads (plf)							

Vert: 1-2=-51, 2-3=-51, 3-4=-61, 5-7=-20 Concentrated Loads (lb) Vert: 6=-70(F) 9=-40(F) 10=-40(F)

November 16,2020

DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) Refer to girder(s) for truss to truss connections.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 2.
 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

November 16,2020

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 , ___

- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

November 16,2020

16023 Swingley Ridge Rd Chesterfield, MO 63017

TCLL (roof) Snow (Pf/Pg) TCDL	25.0 15.4/20.0 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.08 BC 0.02 WB 0.00	DEFL. Vert(LL) 0. Vert(CT) 0. Horz(CT) -0.	in (loc) .00 5 .00 5 .00 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCDL	0.0 10.0	Code IRC2018/TPI2014	Matrix-MR					Weight: 4 lb	FT = 20%

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF No.2

BRACING-TOP CHORD

Structural wood sheathing directly applied or 1-2-3 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-3-8, 3=Mechanical, 4=Mechanical Max Horz 5=48(LC 16) Max Uplift 5=-35(LC 16), 3=-9(LC 20), 4=-1(LC 13) Max Grav 5=159(LC 2), 3=11(LC 28), 4=16(LC 7)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3, 4.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Fiale Olisels (7,1) [2.0-0-14	i,0-1-12j, [0.0-2-10,0-0-12j, [0.0-0-0,0-1	-12]							
LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL BCLL	f) 25.0 15.4/20.0 10.0 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.22 BC 0.18 WB 0.00	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (l 0.01 -0.00 0.00	loc) 4-5 > 4-5 >	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code IRC2018/1PI2014	Matrix-MR						Weight: 6 lb	FI = 20%
LUMBER- TOP CHORD	2x4 SPF No.2		B T	RACING- OP CHORD	Structural	wood s	sheathir	ng directly a	applied or 1-11-4 oc pu	urlins,
WEBS	2x4 SPF No.2 2x4 SPF No.2		В	OT CHORD	Rigid ceilir	ng direc	ctly app	lied or 10-0)-0 oc bracing.	

REACTIONS. (size) 5=0-3-8, 4=Mechanical

Max Horz 5=78(LC 16) Max Uplift 5=-75(LC 16), 4=-53(LC 16)

Max Grav 5=182(LC 21), 4=60(LC 21)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Refer to girder(s) for truss to truss connections.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 4.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

November 16,2020

Plate Offsets (X,Y) [2:0-0-12	I,0-1-12], [5:0-2-13,0-0-12], [5:0·	0-0,0-1-12]							
LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	of) 25.0 15.4/20.0 10.0 0.0 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.22 BC 0.18 WB 0.00 Matrix-MR	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.00 0.00	(loc) 4-5 4-5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 6 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2			BRACING- TOP CHORD BOT CHORD	Structur except e Rigid ce	al woo end ver eiling di	d sheathi ticals. rectly apj	ng directly blied or 10-	applied or 1-11-4 oc pr 0-0 oc bracing.	urlins,

WEBS 2x4 SPF No.2

REACTIONS. (size) 5=0-3-8, 4=Mechanical

Max Horz 5=78(LC 16) Max Uplift 5=-75(LC 16), 4=-53(LC 16) Max Grav 5=182(LC 21), 4=60(LC 21)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) Refer to girder(s) for truss to truss connections.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 4.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.08 BC 0.02 WB 0.00 Matrix-MR	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 -0.00	(loc) 5 5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 5 lb	GRIP 197/144 FT = 20%
--	---	---	---	-----------------------------	----------------------	-------------------------------	--------------------------	--------------------------------	------------------------------------

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF No.2

BRACING-TOP CHORD

Structural wood sheathing directly applied or 1-2-3 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (size) 5=0-3-8, 3=Mechanical, 4=Mechanical Max Horz 5=49(LC 16) Max Uplift 5=-33(LC 16), 3=-9(LC 20), 4=-2(LC 13) Max Grav 5=159(LC 2), 3=11(LC 28), 4=16(LC 7)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3, 4.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOADING (psf) TCLL (roof) SPACING- 25.0 Snow (Pf/Pg) 2-0-0 15.4/20.0 TCDL CSI. DEFL. in (loc) I/defl L/d PLATES GRIP Now (Pf/Pg) 15.4/20.0 TCDL Plate Grip DOL 1.15 TC 0.08 Vert(LL) -0.00 4-5 >999 240 MT20 197/144 Now (Pf/Pg) 10.0 Rep Stress Incr YES WB 0.00 Horz(CT) -0.00 3 n/a n/a NCPL 0.0 Code IRC2018/TPI2014 Matrix-MR Weight: 8 lb FT = 20%			2-6-3									
	LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.08 BC 0.05 WB 0.00 Matrix-MR	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.00 -0.00 -0.00	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 8 lb	GRIP 197/144 FT = 20%		

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF No.2

BRACING-TOP CHORD

Structural wood sheathing directly applied or 2-6-3 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-3-8, 3=Mechanical, 4=Mechanical Max Horz 5=65(LC 16) Max Uplift 5=-30(LC 16), 3=-23(LC 16)

Max Grav 5=206(LC 21), 3=69(LC 21), 4=42(LC 7)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior(1) 2-1-0 to 2-5-7 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

BRACING-

TOP CHORD

BOT CHORD

11	IM	RF	R.	-	

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF No.2SLIDERLeft 2x4 SPF No.2

 SLIDER
 Left 2x4 SPF No.2 2-0-0

 REACTIONS.
 (size)
 2=0-4-9, 7=0-4-15

 Max Horz
 2=85(LC 12)

Max Holz 2=85(LC 12) Max Uplift 2=-46(LC 12), 7=-56(LC 12) Max Grav 2=361(LC 2), 7=372(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-273/63

WEBS 4-7=-263/77

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 7.
 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (plf)

Vert: 1-5=-51, 6-8=-20 Concentrated Loads (lb)

Vert: 14=-5(B) 15=-60(F) 16=0(F) 17=-1(B) 18=-18(F)

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

16023 Swingley Ridge Rd Chesterfield, MO 63017

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. TC 0.08 BC 0.03 WB 0.00 Matrix-MR	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.00 -0.00 -0.00	(loc) 5 5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 6 lb	GRIP 197/144 FT = 20%
--	--	---	---	-------------------------------	----------------------	-------------------------------	--------------------------	--------------------------------	------------------------------------

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF No.2

BRACING-TOP CHORD

Structural wood sheathing directly applied or 1-9-3 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-3-8, 3=Mechanical, 4=Mechanical Max Horz 5=56(LC 16) Max Uplift 5=-32(LC 16), 3=-14(LC 16)

Max Grav 5=175(LC 21), 3=38(LC 21), 4=28(LC 7)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

	ł		3-9-3						
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.19 BC 0.12 WB 0.00 Matrix-MR	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 -0.01	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 11 lb	GRIP 197/144 FT = 20%

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2

WEBS 2x4 SPF No.2

BRACING-TOP CHORD

Structural wood sheathing directly applied or 3-9-3 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-3-8, 3=Mechanical, 4=Mechanical Max Horz 5=83(LC 16) Max Uplift 5=-29(LC 16), 3=-36(LC 16) Max Grav 5=271(LC 21), 3=121(LC 21), 4=67(LC 7)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior(1) 2-1-0 to 3-8-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

November 16,2020

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing

BOT CHORD2x4 SPF No.2WEBS2x4 SPF No.2SLIDERLeft 2x4 SPF No.2 2-0-0

REACTIONS. (size) 2=0-4-9, 8=Mechanical Max Horz 2=83(LC 11) Max Uplift 2=-60(LC 12), 8=-19(LC 12) Max Grav 2=339(LC 2), 8=270(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 4-8=-285/30

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-5=-51, 5-6=-51, 7-10=-20

Concentrated Loads (lb) Vert: 9=-2(F=-1, B=-1)

November 16,2020

16023 Swingley Ridge Rd Chesterfield, MO 63017

	F		4-0-0					
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.22 BC 0.15 WB 0.00 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.02 5-8 -0.03 5-8 0.01 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 13 lb	GRIP 197/144 FT = 20%

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2SLIDERLeft 2x4 SPF No.2 2-0-0

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied. Rigid ceiling directly applied.

REACTIONS. (size) 4=Mechanical, 2=0-3-8, 5=Mechanical Max Horz 2=74(LC 16) Max Uplift 4=-37(LC 16), 2=-25(LC 16) Max Grav 4=134(LC 21), 2=276(LC 21), 5=69(LC 7)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior(1) 2-1-0 to 3-11-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60
- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

16023 Swingley Ridge Rd Chesterfield, MO 63017

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2SLIDERLeft 2x4 SPF No.2 2-0-0

LIDER Left 2x4 SFF No.2 2-0-0

REACTIONS.

Max Horz 2=46(LC 16) Max Uplift 2=-27(LC 16), 3=-18(LC 16)

Max Grav 2=170(LC 21), 5=29(LC 7), 3=57(LC 21)

(size) 2=0-3-8, 5=Mechanical, 3=Mechanical

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 3.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 1-10-15 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

November 16,2020

LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.09 BC 0.06 WB 0.00 Matrix-MR	DEFL. Vert(LL) -0 Vert(CT) -0 Horz(CT) -0	in (loc) 0.00 3-4 0.00 3-4 0.00 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 7 lb	GRIP 197/144 FT = 20%
--	---	--	--	--	-------------------------------	--------------------------	--------------------------------	------------------------------------

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 2-7-11 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 4=0-3-8, 2=Mechanical, 3=Mechanical Max Horz 4=45(LC 16) Max Uplift 2=-27(LC 16)

Max Grav 4=111(LC 20), 2=80(LC 20), 3=47(LC 7)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

November 16,2020

REACTIONS. (size) 7=0-4-9, 5=Mechanical Max Horz 7=93(LC 31) Max Uplift 7=-72(LC 12), 5=-38(LC 9)

Max Uplift 7=-72(LC 12), 5=-38(LC 9) Max Grav 7=379(LC 2), 5=269(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-7=-326/79, 2-3=-307/24

WEBS 3-5=-262/43

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 5.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-51, 2-4=-51, 5-7=-20 Concentrated Loads (lb) Vert: 8=-12(B) 9=-24(F) 10=-6(B) 11=-9(F)

16023 Swingley Ridge Rd Chesterfield, MO 63017

BRACING-

TOP CHORD

BOT CHORD

Matrix-MP

FORCES.	(lb) - Max. Comp./Max	. Ten All forces 250 (Il	b) or less except when shown.
---------	-----------------------	--------------------------	-------------------------------

BCLL

BCDL

LUMBER-

SLIDER

TOP CHORD

BOT CHORD

REACTIONS.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior(1) 2-1-0 to 2-11-7 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

Max Uplift 4=-28(LC 16), 2=-26(LC 16)

- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Code IRC2018/TPI2014

4=Mechanical, 2=0-3-8, 5=Mechanical

Max Grav 4=96(LC 21), 2=223(LC 21), 5=49(LC 7)

Refer to girder(s) for truss to truss connections.

0.0

10.0

2x4 SPF No.2

2x4 SPF No.2

(size) Max Horz 2=60(LC 16)

Left 2x4 SPF No.2 2-6-0

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Weight: 11 lb

Structural wood sheathing directly applied or 3-0-3 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

FT = 20%

👠 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid to use only design parameters and READ NOTES ON THIS AND INCLUDED WITH REPORT PAGE MIT 473 1647 301 192/2020 DEFORE USE. Design valid for use only with MITEK connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			-	1 4 0						
		1	4	-4-0			1			
LOADING (psf) SPAC TCLL (roof) 25.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	CING- 2-0-0 Grip DOL 1.15 ver DOL 1.15 Stress Incr YES IRC2018/TPI2014	0 CSI. 5 TC 5 BC 6 WB Matri	0.26 0.15 0.00 x-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.03 0.01	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 12 lb	GRIP 197/144 FT = 20%

BRACING-

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF No.2

TOP CHORD BOT CHORD Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied.

REACTIONS. (size) 5=0-3-8, 3=Mechanical, 4=Mechanical Max Horz 5=90(LC 16) Max Uplift 5=-29(LC 16), 3=-42(LC 16) Max Grav 5=283(LC 21), 3=147(LC 21), 4=77(LC 7)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-5=-251/148

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior(1) 2-1-0 to 4-3-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.

 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

TOP CHORD

BOT CHORD

2-0-0 oc purlins: 1-2.

Rigid ceiling directly applied.

LUMBER-

2x4 SPF No.2 *Except* TOP CHORD 2-3: 2x6 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2

REACTIONS. (size) 6=Mechanical, 4=Mechanical Max Horz 6=47(LC 13) Max Uplift 6=-24(LC 12), 4=-21(LC 13)

Max Grav 6=247(LC 34), 4=213(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 4-10-7 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.

- 3) Unbalanced snow loads have been considered for this design.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 4.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Structural wood sheathing directly applied, except end verticals, and

November 16,2020

		<u>3-1-15</u> 3-1-15		3-2 ₁ 8 0-0-9			
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.10 BC 0.06 WB 0.00 Matrix-MR	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.00 3-4 -0.01 3-4 -0.00 3	l/defl L/d >999 240 >999 180 n/a n/a	PLATES MT20 Weight: 11 lb	GRIP 197/144 FT = 20%

BRACING-

TOP CHORD

BOT CHORD

2-0-0 oc purlins: 1-2, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF No.2

WEBS 2x4 SPF No.

REACTIONS. (size) 4=Mechanical, 3=Mechanical Max Horz 4=-59(LC 10)

Max Uplift 4=-33(LC 10), 3=-33(LC 11)

Max Grav 4=129(LC 2), 3=129(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Corner(3) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 3.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Continued on page 2

			RELEASE F	OR			
Job	Truss	Truss Type	CONSTRUCT	ION	Ply	Summit/61 Woodside	
2524433	IM7		AL GIRAS NOTED ON PLAN	S REVIE	w		143624464
2024400	51017		DEVELOPMENT SE	RVICES	2	Job Reference (optional)	
Builders FirstSource (Valle	y Center), Valley Center,	KS - 67147,	LEE'S SUMMIT, MI	SSOURI	8.240 s M	ar 9 2020 MiTek Industries, Inc. Fri Nov 13 13:04:10 2020	Page 2
			11):VPVqvFn	P0P0b1j2	tZrlOqezdKbx-A5zQZHtKtPIzfqpf6rc_3ZwqhRsb18FdtFCM	0cyJb1J
			11/30/2020				
LOAD CASE(S) Standa	rd						
1) Dead + Snow (balance	ed): Lumber Increase=1.15, F	late Increase=	1.15				
Uniform Loads (nlf)							

Uniform Loads (plf) Vert: 1-3=-51, 1-6=-81, 1-4=-20 Concentrated Loads (lb)

Vert: 1=-1370(B) 10=-1386(B) 11=-1386(B)

Continued on page 2

			RELEASE FOR	R			
Job	Truss	Truss Type	CONSTRUCTIO)N	Ply	Summit/61 Woodside	
2524433	IM8		AS NOTED ON PLANS	REVIE	Ν,		143624465
2324433	3000	DIAGONALT	DEVELOPMENT SERV	/ICES		Job Reference (optional)	
Builders FirstSource (Valley	Center), Valley Center, K	(S - 67147,	LEE'S SUMMIT, MISS	OURI 8	3.240 s M	ar 9 2020 MiTek Industries, Inc. Fri Nov 13 13:04:11 20	20 Page 2
			ID:VP	PVqvFnF	0P0b1j2	ZrlOqezdKbx-eHXpmduyejQqH_OrfY7DcnTz1q9jmfim6v	/yvY2yJb1I
			11/30/2020				
LOAD CASE(S) Standard	l						
1) Dead + Snow (balanced	l): Lumber Increase=1.15, Pla	ate Increase=	1.15				

Uniform Loads (plf) Vert: 1-2=-51, 2-4=-51, 5-7=-20

Concentrated Loads (lb)

Vert: 6=-9(B) 9=-12(F) 10=-6(F) 11=-170(F) 12=-210(B)

		000						
Plate Offsets (X,Y) [2	Edge,0-0-0]							
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0 BCDI 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. DEFI TC 0.36 Vert(BC 0.24 Vert(WB 0.00 Horz Matrix-AS Horz Horz	ir .L) 0.04 CT) -0.06 CT) 0.02	(loc) 5-8 5-8 2	l/defl >999 >942 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 19 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SPF	No.2	BRACING- TOP CHORD	Structu	ral wood	l sheathir	g directly ap	oplied, except end vert	icals.

BOT CHORD

Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied.

REACTIONS. (size) 5=Mechanical, 2=0-3-8 Max Horz 2=102(LC 15) Max Uplift 5=-28(LC 13), 2=-44(LC 16) Max Grav 5=238(LC 21), 2=294(LC 21)

Left 2x4 SPF No.2 2-6-0

2x4 SPF No.2

2x4 SPF No.2

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

BOT CHORD

WEBS

SLIDER

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior(1) 2-1-0 to 4-10-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	f) 25.0 15.4/20.0 10.0 0.0 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TPI	2-0-0 CSI. 1.15 TC 1.15 BC YES WB 2014 Matri	0.42 0.26 0.00 x-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (l -0.04 -0.09 0.00	oc) l/defl 4-5 >999 4-5 >818 4 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 21 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2			BI TC BC	Racing- DP Chord DT Chord	Structural w Rigid ceiling	vood sheathir g directly app	ng directly appl lied.	lied, except end verti	cals.
REACTIONS.	(size) 5=0- Max Horz 5=12 Max Uplift 5=-5 Max Grav 5=35	3-8, 4=Mechanical 9(LC 13) 1(LC 16), 4=-35(LC 13) 3(LC 2), 4=292(LC 21)								
FORCES. (Ib TOP CHORD) - Max. Comp./M 2-5=-313/198	ax. Ten All forces 250 (Il	b) or less except when sh	iown.						

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior(1) 2-1-0 to 6-2-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60
- 2) TCLE: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 4.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

BRACING-

TOP CHORD

BOT CHORD

2-0-0 oc purlins: 1-2.

Rigid ceiling directly applied.

	18	A 1	Þ	-	D	

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2

WEBS 2x4 SPF No.2

REACTIONS. (size) 5=0-3-8, 4=Mechanical

Max Horz 5=89(LC 13) Max Uplift 5=-24(LC 12), 4=-33(LC 13)

Max Grav 5=205(LC 34), 4=198(LC 35)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 2-5-4, Interior(1) 2-5-4 to 4-5-15 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 3) Unbalanced snow loads have been considered for this design.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 4.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Structural wood sheathing directly applied, except end verticals, and

16023 Swingley Ridge Rd Chesterfield, MO 63017

BCLL 0.0 BCDL 10.0	Code IRC2018/TPI2014	Matrix-MR					Weight: 7 lb	FT = 20%
TCDL 10.0	Lumber DOL 1.15 Rep Stress Incr YES	BC 0.04 WB 0.00	Vert(CT) -0.00 Horz(CT) -0.00	4-5 3	>999 n/a	180 n/a		
TCLL (roof) 25.0 Snow (Pf/Pg) 15 4/20 0	Plate Grip DOL 1.15	TC 0.08	Vert(LL) -0.00	(IOC) 5	1/defi >999	240	MT20	GRIP 197/144
 (pol)			DEEI in		I/dofl			CDID

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF No.2

BRACING-TOP CHORD

Structural wood sheathing directly applied or 2-0-15 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 4=Mechanical, 5=0-3-8 Max Horz 5=60(LC 16) Max Uplift 3=-18(LC 16), 5=-30(LC 16)

Max Grav 3=50(LC 21), 4=34(LC 7), 5=186(LC 21)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 5.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior(1) 2-1-0 to 7-9-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

November 16,2020

- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
 Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 2.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum
- 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

November 16,2020

LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL BCLL	f) 25.0 20.4/20.0 10.0 0.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCode IRC2018/TPI2014	CSI. TC 0.41 BC 0.64 WB 0.25 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (lo -0.06 6 -0.10 6 0.03	oc) I/defl 6-7 >999 6-7 >928 6 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 30 lb	GRIP 197/144 FT = 20%
BCDL	10.0							5	
LUMBER- TOP CHORD BOT CHORD WEBS SLIDER	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Left 2x4 SPF No	.2 2-2-15	BF TC BC	≀ACING-)P CHORD)T CHORD	Structural w except end Rigid ceiling	vood sheathing verticals, and g directly appli	g directly appl 2-0-0 oc purli ed or 10-0-0	lied or 4-11-1 oc purli ins (6-0-0 max.): 4-5. oc bracing.	ns,

REACTIONS. (size) 2=0-3-8, 6=0-3-8 Max Horz 2=66(LC 9) Max Uplift 2=-79(LC 12), 6=-82(LC 9) Max Grav 2=616(LC 32), 6=575(LC 31)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-4=-1288/158

BOT CHORD 2-7=-178/1162, 6-7=-133/822

WEBS 4-7=-64/551, 4-6=-882/132

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 258 lb down and 112 lb up at 4-2-0 on top chord, and 65 lb down and 33 lb up at 4-2-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

CARE (S)geStandard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

November 16,2020

			RELEASE	FOR			
Job	Truss	Truss Type	CONSTRUC	TION	Ply	Summit/61 Woodside	
2524433	IM16	Half Hin Girde	AS NOTED ON PLA	NS REVIE	W 1		143624472
			DEVELOPMENT	SERVICES		Job Reference (optional)	
Builders FirstSource (Valley C	Center), Valley Center, K	S - 67147,	LEE'S SUMMIT, I	AISSOURI	8.240 s N	ar 9 2020 MiTek Industries, Inc. Fri Nov 13 13:04:03 2020) Page 2
				D:VPVqvFnP0)P0b1j2tZ	rlOqezdKbx-tl2n5uoxXFQzKlnJBt_LH57fmcT?u1VbGf0UG	WyJb1Q
			11/30/202	20			
LOAD CASE(S) Standard							
1) Dead + Snow (balanced):	: Lumber Increase=1.15, Pla	ate Increase=	1.15				
Lington and the state (mith)							

Uniform Loads (plf) Vert: 1-4=-51, 4-5=-61, 7-8=-20, 6-7=-20 Concentrated Loads (lb)

Vert: 4=-220(F) 12=-43(F) 14=-65(F) 15=-65(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	1	4-6-6		5-9-3	1
	Γ	4-6-6		1-2-14	I
Plate Offsets (X,Y) [2:0-1-12	,0-3-4]				
LOADING (psf) TCLL (roof) 25.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.61	DEFL. in (loc) Vert(LL) -0.08 7-10	l/defl L/d >872 240	PLATES GRIP MT20 197/144

LUMBER- BRACING- TOP CHORD 2x4 SPF No.2 TOP CHORD Structural wood she	athing directly an	polied or 5-9-3 oc purling	5.
Now (Pf/Pg) 15.4/20.0 Plate Grip DOL 1.15 TC 0.61 Vert(LL) -0.08 7-10 >8 TCDL 10.0 Lumber DOL 1.15 BC 0.46 Vert(CT) -0.13 7-10 >5 BCLL 0.0 Rep Stress Incr NO WB 0.03 Horz(CT) 0.03 2 BCDL 10.0 Code IRC2018/TPI2014 Matrix-MP Matrix-MP	72 240 08 180 n/a n/a	MT20 Weight: 19 lb	197/144 FT = 20%

BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 SLIDER Left 2x4 SPF No.2 2-6-0 BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing

REACTIONS. (size) 5=Mechanical, 2=0-3-7, 6=Mechanical Max Horz 2=75(LC 12) Max Uplift 5=-37(LC 12), 2=-49(LC 12) Max Grav 5=252(LC 17), 2=357(LC 2), 6=23(LC 7)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-5=-51, 7-8=-20, 6-7=-20 Concentrated Loads (lb) Vert: 13=0(F=0, B=0)

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid to use only design parameters and READ NOTES ON THIS AND INCLUDED WITH REPORT PAGE MIT 473 1647 301 192/2020 DEFORE USE. Design valid for use only with MITEK connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYES	CSI. TC 0.22 BC 0.15 WB 0.01	DEFL. in Vert(LL) -0.02 Vert(CT) -0.03 Horz(CT) 0.01	(loc) 6-7 > 6-7 > 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCDL 10.0	Code IRC2018/TPI2014	Matrix-AS					Weight: 13 lb	FT = 20%

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied.

REACTIONS. (size) 4=Mechanical, 5=Mechanical, 7=0-3-8 Max Horz 7=89(LC 16) Max Uplift 4=-15(LC 16), 5=-18(LC 16), 7=-28(LC 16) Max Grav 4=103(LC 21), 5=85(LC 21), 7=280(LC 21)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior(1) 2-1-0 to 4-1-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60
- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5, 7.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y) [2:0-2-8,0	J-U-1]								
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO	CSI. TC 0.17 BC 0.10 WB 0.00	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.01 0.00	(loc) 5-8 5-8 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCDL 0.0	Code IRC2018/TPI2014	Matrix-MP	. ,					Weight: 12 lb	FT = 20%
LUMBER-		BR	ACING-						

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 SLIDER

Left 2x4 SPF No.2 2-0-0

REACTIONS.

Max Horz 2=54(LC 12) Max Uplift 4=-24(LC 12), 2=-48(LC 12)

Max Grav 4=105(LC 17), 2=280(LC 17), 5=59(LC 7)

(size) 4=Mechanical, 2=0-4-3, 5=Mechanical

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.
- 9) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

- Vert: 1-4=-51, 5-6=-20 Concentrated Loads (lb)
 - Vert: 11=0(B)

Structural wood sheathing directly applied or 3-6-11 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

November 16,2020

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid to use only design parameters and READ NOTES ON THIS AND INCLUDED WITH REPORT PAGE MIT 473 1647 301 192/2020 DEFORE USE. Design valid for use only with MITEK connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL	f) 25.0 15.4/20.0 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYES	CSI. TC 0.08 BC 0.03 WB 0.00	DEFL. Vert(LL) - Vert(CT) - Horz(CT) -	in (loc) -0.00 5 -0.00 5 -0.00 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code IRC2018/TPI2014	Matrix-MR					Weight: 6 lb	FT = 20%

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF No.2

BRACING-TOP CHORD

Structural wood sheathing directly applied or 1-9-3 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-3-8, 3=Mechanical, 4=Mechanical Max Horz 5=56(LC 16) Max Uplift 5=-32(LC 16), 3=-14(LC 16)

Max Grav 5=175(LC 21), 3=38(LC 21), 4=28(LC 7)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y) [3:0-2-10,E	dge], [14:0-2-10,Edge]								
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.06 BC 0.03 WB 0.05 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 16	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 106 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPE No.2		BR TC	ACING- P CHORD	Structura	l wood	sheathin	g directly app	blied or 6-0-0 oc purlins	, except

25-2-1 25-2-1

 BOT CHORD
 2x4 SPF No.2
 2-0-0 oc purlins (6-0-0 max.): 3-14.

 OTHERS
 2x4 SPF No.2
 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

 REACTIONS.
 All bearings 25-2-1.
 All bearings 25-2-1.
 All bearings 25-2-1.

REACTIONS. All bearings 25-2-1. (lb) - Max Horz 1=-107(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 1, 22, 23, 25, 26, 28, 21, 20, 19, 17

Max Grav All reactions 250 lb or less at joint(s) 1, 16, 22, 23, 25, 26, 27, 21, 20, 19, 18, 17 except 28=253(LC 23)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-3-15 to 3-3-15, Interior(1) 3-3-15 to 4-0-1, Exterior(2R) 4-0-1 to 8-3-0, Interior(1) 8-3-0 to 21-1-15, Exterior(2E) 21-1-15 to 24-10-2 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 22, 23, 25, 26, 28, 21, 20, 19, 17.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. All bearings 17-2-1.

(lb) - Max Horz 1=-235(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 1, 9, 14, 15, 12, 11 except 17=-102(LC 14), 10=-102(LC 14) Max Grav All reactions 250 lb or less at joint(s) 1, 9, 13, 14, 15, 12, 11 except 17=256(LC 23), 10=256(LC 24)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-3-15 to 3-3-15, Interior(1) 3-3-15 to 8-7-0, Exterior(2R) 8-7-0 to 11-7-0, Interior(1) 11-7-0 to 16-10-2 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9, 14, 15, 12, 11 except (jt=lb) 17=102, 10=102.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3, 4.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. TC 0.25 BC 0.25 WB 0.04 Matrix-R	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) n/a - n/a - 0.00 5	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES MT20 Weight: 20 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SPF No.2		BRA TOP	CING- CHORD Sti	ructural wood	sheathing directly app	blied or 3-1-0 oc purlin	IS,

BOT CHORD2x4 SPF No.2except end verticals, and 2-0-0 oc purlins: 2-4.WEBS2x4 SPF No.2BOT CHORDRigid ceiling directly applied or 8-8-3 oc bracing.OTHERS2x4 SPF No.2CHORDRigid ceiling directly applied or 8-8-3 oc bracing.

REACTIONS. All bearings 3-1-0.

(lb) - Max Horz 8=123(LC 11)

5-6=-418/432

Max Uplift All uplift 100 lb or less at joint(s) 8 except 5=-291(LC 11), 6=-316(LC 12), 7=-137(LC 11) Max Grav All reactions 250 lb or less at joint(s) 8, 7 except 5=271(LC 12), 6=338(LC 11)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

BOT CHORD

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
 4) Provide adequate drainage to prevent water ponding.
- Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8 except (jt=lb) 5=291, 6=316, 7=137.
- 8) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 5.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

3) Provide adequate drainage to prevent water ponding.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6 except (jt=lb) 4=248, 5=190.

7) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 4.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		Γ	RELEAS	E FOR						
Job	Truss	Truss Type	CONSTRU AS NOTED ON PL		Ply V	Summit/6	1 Woodsi	de		143624482
2524433	LG7	GABLE	DEVELOPMENT	SERVICES	1	Job Refer	ence (opti	ional)		
Builders FirstSource (Valley	Center), Valley Center, K	S - 67147,	LEE'S SUMMIT ↓ 11/30/2 2x4	MISSOURI 8. ID:VPVqvFnP0P(020	240 s Ma 0b1j2tZrlC ⊣	r 9 2020 DqezdKbx-	MiTek Ind pPiz4O0s	ustries, Inc. s25pG6gkyp	Fri Nov 13 13:04:22 20 MqoZ5Qw3G6lrgTOe66	020 Page 1 6?RvyJb17 Scale = 1:37.8
		Г-1-9 -	7 6 2x4 2x4 5-5-4	2x4 3 2x4 3 4 5 2x4 2x4						
LOADING (psf)	SPACING-	2-0-0	CSI	DEEL	in	(loc)	/defl	L/d		GRIP
TCLL (roof) 25.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC 0.27 BC 0.05	Vert(LL) Vert(CT)	n/a n/a	-	n/a n/a	999 999	MT20	197/144
BCLL 0.0 BCDL 10.0	Code IRC2018/	TPI2014	Matrix-P	HOI2(CT)	0.00	4	n/a	n/a	Weight: 26 lb	FT = 20%
LUMBER- TOP CHORD 2x4 SPF N BOT CHORD 2x4 SPF N WEBS 2x4 SPF N OTHERS 2x4 SPF N	0.2 0.2 0.2 0.2		BR TO BO	ACING- P CHORD	Structura except er Rigid ceil	l wood sh nd vertica ing direct	neathing o Is. Iy applied	directly app d or 10-0-0	lied or 5-5-4 oc purlins oc bracing.	5,
REACTIONS. All bearin (lb) - Max Horz Max Uplift Max Grav	igs 5-5-4. 7=-194(LC 10) All uplift 100 lb or less at jo All reactions 250 lb or less	int(s) 7, 4, 6, 5 at joint(s) 7, 4,	6, 5							
FORCES. (lb) - Max. Con TOP CHORD 2-3=-291. BOT CHORD 6-7=-265.	np./Max. Ten All forces 25(/296, 3-4=-391/391 /274, 5-6=-265/274, 4-5=-265) (lb) or less ex 5/274	cept when shown.							
NOTES- 1) Wind: ASCE 7-16: Vult=	115mph (3-second gust) Vas	d=91mph: TCE	DL=6.0psf: BCDL=4.2psf: h	=15ft: B=45ft: L=	24ft: eav	e=4ft: Ca	t.			

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 4-4-11, Interior(1) 4-4-11 to 5-1-6 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 4, 6, 5.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

All Tota Tota Specific All A						RELE	ASE FOR]	
Parkets on Aller Construction of the Constr	Job	Т	russ		Truss Type	CONST		Ply	Summit/61 Woodside	143624483
Luces Finitude (notify Calut, Vary Conct R) of 117 at 11 and 11 a	2524433	L	.G8		GABLE		N PLANS REVIE	W 1		143024403
Definition of the production of the prod	Builders FirstSource	(Valley C	enter),	Valley Center, K	(S - 67147,	LEE'S SUM	MIT, MISSOURI	8.240 s N	Job Reference (optional) ar 9 2020 MiTek Industries, Inc	c. Fri Nov 13 13:04:23 2020 Page 1
Algorithm and the set of the s						1-11-12 11/	ID:VPVqvFnP0 30/2028 ⁸⁻⁰	P0b1j2tZr	nOqezdKbx-HbGLlk1UpPx7jqJ9	M3L15ly33gQCa3aXsmsYzMyJb16
Sect = 18.7 Sect						1-11-12	8-8-4			
<complex-block> Image: State State</complex-block>						3x6]	Scale = 1:61.7
Image: State of the state					13 /2 1	2				
Image: State of the state					13.42 1	2 3 ♠				
Image: State of the state is a state of the state of					3x4	2 4				
Here the set of the set o					T					
How we have been determined by the second part of the second p							5			
Here Greek (X,Y) = [SEdep-0.43] Generation (Section (S							B			
Image: Second					6-8- 6		6			
Line of the second s					0-9-Z		II B			
Line of the second sec								7		
Image: Second								β. ε	3	
Explanation Explanation 14 13 12 11 10 9 344 1 16 13 12 11 10 9 344 1 10 48 10 10 9 344 1 10 9 344 1 Explore 10 49 10 9 344 1 10 9 344 1 10 9 344 1 10 9 344 1 10 9 344 1 10 9 344 1 10 9 344 1 10 9 344 1 10 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>À</td> <td></td>									À	
14 13 2 2 11 10 9 34 II 1984 0 Plate Offsets (X/Y)- [3Edga,01-3] 1984 0 Colspan="2">1984 0 TCL (roch 2.0.0 Factor (roch 2.0.0 TCL (roch 2.0.0 TCL (roch 2.0.0 Colspan="2">Not (Colspan="2">Colspan="2" <colspan="2">Colspan="2"<colspan="2">Colspan="2"<colspan="2"<colspan="2">Colspan="2"<colspan="2">Colspan="2"<colspan="2"<colspan="2">Colspan="2"<colspan="2"<colspan="2">Colspan="2"<colspan="2">Colspan="2"<colspan="2"<colspan="2"<colspan="2"<colspan="2"<colspan="2"<colspan="2"<colspan="2"<colspan="2"<< td=""><td></td><td></td><td></td><td></td><td>1 1</td><td></td><td>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td><td>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td><td>≦3 x4 \\</td><td></td></colspan="2"<colspan="2"<colspan="2"<colspan="2"<colspan="2"<colspan="2"<colspan="2"<colspan="2"<<></colspan="2"></colspan="2"<colspan="2"></colspan="2"<colspan="2"></colspan="2"></colspan="2"<colspan="2"></colspan="2"></colspan="2">					1 1		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	≦3 x4 \\	
Plate Olfseis (X Y)- [3Edge.01-8] Local Mig (pri) 54.250 SPACING- 2-0-0 CSL in (bc) Vert(CT) in (bc) Videt L/d Mid2 197/144 SCLL (not) 0.0 Rep Stress Into TYES BC 0.16 Vert(CT) in (bc) Vert(CT) in a in d in d <td></td> <td></td> <td></td> <td></td> <td></td> <td>14 13 12 3x4 </td> <td>11 10</td> <td>9</td> <td></td> <td></td>						14 13 12 3x4	11 10	9		
Place Offsets (X/Y)- [3:Edge_0-1:4] LOADING (psi) TCLL (cot) SSACING- 2:00 2:00 CSL Lumber DOL 11:5 CSL Cot 0:9 Vert(C1) nin (no.) Udenti Lud PLATES GRP MT20 197/144 CDL 0:00 Rep Stress Did 11:5 CO 0:6 Vert(C1) nin nin 0:8 999 MT20 197/144 BCLL 0:00 Code IRC2018/TPI2014 Matrix-S WB 0:31 Horz(C1) nin nin 0:00 Meight: 70 Ib FT = 20% LUMBER TOP CHORD Structural word sheathing directly applied or 60-0 oc purlins. Structural word sheathing directly applied or 60-0 oc purlins. Structural word sheathing directly applied or 10-0 oc bracing. 0THER 2:4 SPF No.2 BT CHORD Structural word sheathing directly applied or 60-0 oc purlins. 0THER 2:4 SPF No.2 BT CHORD Structural word sheathing directly applied or 10-0-0 oc bracing. 0THER 2:4 SPF No.2 BT CHORD Structural word sheathing directly applied or 10-0-0 oc bracing. 0THER 2:4 SPF No.2 BT CHORD Structu							10-8-0			
LODDING (p) Description SPACING- 2-0-0 Plate Grp DOL 1.15 Rep Bress Incr VES CSI. TC 0.38 Weight: 10 0 BCOL 100 DEFL veit(L) in (too) I/deft L/d Veit(L) PLATES veit(L) GRIP MT20 UNDERCOL DCOL 100 0.0 Provide Grp DOL 1.15 Rep Bress Incr VES TC 0.38 Weight: 70 to Code (RC2010TPI2014 DEFL Weight: 70 to Code (RC2010TPI2014 PLATES GRIP Weight: 70 to Code (RC2010TPI2014 PLATES GRIP Weight: 70 to Code (RC2010TPI2014 UMBERF. DCD CHORD 244 SPF No.2 Structural wood sheathing directly applied or 6-0-0 oc purifies. ercopt and verticals. Structural wood sheathing directly applied or 6-0-0 oc purifies. ercopt and verticals. UMBERF. DCD CHORD 244 SPF No.2 BOT CHORD WEIGS Structural wood sheathing directly applied or 6-0-0 oc purifies. ercopt and verticals. Rigid celling directly applied or 6-0-0 oc purifies. ercopt and verticals. WEIGS 244 SPF No.2 BOT CHORD 11.8 Structural wood sheathing directly applied or 6-0-0 oc purifies. ercopt and verticals. Rigid celling directly applied or 10-0-0 oc bracing. (Ib) Max Upit All upit 100 to or less at joint(s) 13. 10.9 except 14=-115(LC 14), 8=-172(LC 13), 12=-147(LC 12), 11=-1373(24), 12=-315(23, 11, 14, 315(24), 15=-353(26, 67=-353(25), 67=-353(25), 67=-353(25), 67=-353(25), 67=-353(25), 67=-353(25), 67=-353(25), 67=-353(25), 68=-35=-273(25), 68=-35=-273(25), 11=-315(22), 11=-315(22), 11=-315(22), 11=-315(22), 11=-315(22), 11=-315(22), 11=-315(22), 11=-315(22), 11=-315(22), 11=-315(22), 11=-315(22), 12	Plate Offsets (X Y)-	- [3·Fd	ae 0-1-81				10-8-0			
TCLL (root) 25.0 Plane Grip DOL 1.15 TC 0.39 VertLU no. (bV) no. (b	LOADING (psf)	10.20	3-,1	SPACING.	2-0-0	CSI	DEEL	in	(loc) l/defl l/d	
TCDL 10.0 Lumber JOL 1.15 BC 0.16 Ver(C1) 0.0 8 na Ma Weight: 70 lb FT = 20% BCDL 10.0 Code IRC2016/TPI2014 Matrix-S Matrix-S BCRCL 0.0 8 na na Meight: 70 lb FT = 20% BCDL 10.0 Code IRC2016/TPI2014 Matrix-S BCRCL Surface Sur	TCLL (roof) Snow (Pf/Pa) 15.4	25.0 /20.0		Plate Grip DOL	1.15	TC 0.39	Vert(LL)	n/a	a - n/a 999	MT20 197/144
BCDL 00 Code IRC2018/TPI2014 Matrix-S Weight: 70 lb FT = 20% LUMBER- TOP CHORD 2x4 SPF No.2 BRACING- TOP CHORD Structural wood sheathing directly applied or 60-0 oc purlins, except end verticals. except end verticals. except end verticals. WEBS 2x4 SPF No.2 BOT CHORD WEBS Revented verticals. except end verticals. 0THERS 2x4 SPF No.2 BOT CHORD WEBS 1Row at midpt 4-12 REACTIONS. All bearings 10-8-0. (II) Max horz 14=307(LC 12) Revented verticals. except end verticals. Max Gury Advance Top CHORD Artis 200 bor less at joint(s) 13, 10, 9 except 14=-115(LC 14), 8=-172(LC 13), 12=-147(LC 12), 14=-1150(LC 14) 4-12 Max Gury Advance Top Advance Top Advance Top Advance 4-12 FORCES. Nax Comp. Max. TonM forces 250 (Ib) or less except when shown. TOP CHORD 1-14=-315/326, 12-13	TCDL	10.0		Lumber DOL Rep Stress Incr	1.15 YES	BC 0.16 WB 0.31	Vert(CT) Horz(CT	n/a) 0.00	a - n/a 999) 8 n/a n/a	
LUMBER I TOP CHORD 244 SPF No.2 Second Part of Vertical 244 SPF No.2 VERS 244 SPF No.2 245 SPF No.2 CHORD 244 SPF No.2 245 SPF No.2 CHORD 244 SPF NO.2 CHORD 2	BCDL	10.0		Code IRC2018/	TPI2014	Matrix-S				Weight: 70 lb FT = 20%
 BOT CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 BOT CHORD Rigid celling directly applied or 10-0-0 oc bracing. OTHERS 2x4 SPF No.2 BOT CHORD Rigid celling directly applied or 10-0-0 oc bracing. I Row at midpt 4-12 REACTIONS. All bearings 10-8-0. (ib) - Max Hor: 14-a307LC 12) Max Upit: All upitin 100 b or less at joint(s) 13, 10, 9 except 14=-115(LC 14), 8=-172(LC 13), 12=-147(LC 12), 11=-130(LC 14) Max Grav All reactions 250 b or less at joint(s) 14, 8, 13, 11, 10, 9 except 12=257(LC 24) FORCES. (ib) - Max. Comp.Max. Ten - All forces 250 (ib) or less except when shown. T0P CHORD 13-14=-323743, 12-3315/326, 11-12=-315/326, 0-13=-315/326, 8-458/435 BOT CHORD 13-14=-323743, 12-3-315/326, 11-12=-315/326, 0-13=-315/326, 8-458/435 BOT CHORD 13-14=-32374, 12-3-315/326, 11-12=-315/326, 0-13=-315/326, 8-458/435 BOT CHORD 13-14=-32374, 12-3-315/326, 11-12=-315/326, 0-13=-315/326, 8-458/435 BOT CHORD 13-14=-32374, 12-3-315/326, 11-12=-315/326, 0-13=-315/326, 0-14=-316/326,	LUMBER- TOP CHORD 2x4	SPF No	2				BRACING- TOP CHORD	Structu	ral wood sheathing directly ap	pplied or 6-0-0 oc purlins
 NESS 2A4 SPF No.2 WEBS 1R04 Piglo Emilphic Unit (Voto Octoriality). WEBS 1R04 at midpt 4-12 REACTIONS. All bearings 10-8-0. ((b) - Max Horz 14-307(LC 12) Max Holit All uplif 100 for less at joint(s) 13, 10, 9 except 14=-115(LC 14), 8=-172(LC 13), 12=-147(LC 12), 11=-130(LC 14) War Grav All reactions 250 lb or less at joint(s) 14, 8, 13, 11, 10, 9 except 12=257(LC 24) FORCES. ((b) - Max. Comp.Max. Ten All forces 250 ((b) or less except when shown. TOP CHORD 1.14=-323/349, 12=-315/326, 12-13=-315/326, 10-11=-315/326, 9-10=-315/326, 9-10=-315/326, 8-9=-315/326 BOT CHORD 1.14=-323/349, 12=-315/326, 10-11=-315/326, 9-10=-315/326, 9-10=-315/326, 8-9=-315/326 WEBS 2-13=-277/208 MOTES 1) Unbalanced roof live loads have been considered for this design. 1) Unbalanced roof live loads have been considered for this design. 1) Unbalanced roof live loads have been considered for this design. 1) Unbalanced roof live loads have been considered for this design. 1) Unbalanced roof live loads have been considered for this design. 1) Unbalanced roof live loads have been considered for this design. 1) Unbalanced roof live loads have been considered for this design. 1) Unbalanced roof live loads have been considered for this design. 1) Unbalanced roof live loads have been considered for this design. 1) Unclass charmed and fight exposed: end vertical left and right exposed left and right exposed left and right exposed left and right exposed l	BOT CHORD 2x4	SPF No.	.2					except	end verticals.	0 oo brooing
 REACTIONS. All bearings 10-8-0. (b): Max Horz 14-307(LC12) Max Uplit 140 lpit 10b or less at joint(s) 13, 10, 9 except 14=-115(LC 14), 8=-172(LC 13), 12=-147(LC 12), 11=-130(LC 14) Max Grav All reactions 250 lb or less at joint(s) 14, 8, 13, 11, 10, 9 except 12=257(LC 24) FORCES. (b): Max. Comp.Max. Ten All forces 250 (b) or less except when shown. TOP CHCRD 1-14=-323/349, 12=-315/347, 56=-254/245, 6-7=-353/355, 7-8=-458/453 B0T CHCRD 13-14=-315/326, 12-13=-315/326, 10-11=-315/326, 9-10=-315/326, 8-10=-315/326, 8-10=-315/326, 8-3=-315/326 WEBS 2-13=-277/208 MOTES 1) Unbalanced roof live loads have been considered for this design. 2) Winch ASCE 7-16; Vul-11:Bromph (3-second ugsl) Vasc4-9imph; TCDL=6.0pd; BCDL=4.2pd; h=15f; B=45f; L=24f; eave=4f; Cat. It Exp C: Enclosed: MWFRS (directional) and C-C Extenior(2E) 0-1-12 to 1-11-12, Exterior(2R) 1-11-12 to 4-9-12, Interior(1) 4-9-12 to 10-42 zone; cantillever left and right exposed. C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=-1.50 3) TCLL: ASCE 7-16; Pr=230.pt at (cold LL: Lum DOL=1.15); Pg=20.0 pt; Pt=15.4 pt f(Lum DOL=1.15 Plate DOL=1.15; N=1.0, Rough C-C. Paratial pt Exp. Ce=-1.0, CE=1.10; Pg=20.0 pt; Pt=15.4 pt f(Lum DOL=1.15 Plate DOL=1.15; N=1.0, Rough C-C. Paratial pt Exp. Ce=-1.0, CE=1.10; Pg=20.0 pt; Pt=15.4 pt f(Lum DOL=1.15 Plate DOL=1.15; N=1.0, Rough C-C. Paratial Pt Exp. Ce=-1.0, CE=1.00; Dut Pt Til ta 10(1)(5) 13, 10, 9 except (jE=1b) 14=15, 8=172, 12=147, 11=130. 3) This truss has been designed for a 10.0 pt blottom chord live load nonconcurrent with any other live loads. 6) This truss designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANS/JTP1 1. YUME MSCL, TER, MSCL, T	OTHERS 2x4	SPF No.	.2				WEBS	1 Row a	at midpt 4-12	o oc bracing.
 (b) - Max Holt 14-307(LC 12) Max Upilt All upilit 100 bor less at joint(s) 13, 10, 9 except 14=115(LC 14), 8=-172(LC 13), 12=-147(LC 12), 11=-130(LC 14) Max Grav All reactions 250 bor less at joint(s) 14, 8, 13, 11, 10, 9 except 12=257(LC 24) FORCES. (b) - Max. Comp.Max. Ten All forces 250 (b) or less except when shown. TOP CHORD 1-14=-323/249, 1-2=-315/326, 11-12=-315/326, 9-10=-315/326, 9-10=-315/326, 8=-458/453 BOT CHORD 13-14=-315/326, 12-13=-315/326, 10-11=-315/326, 9-10=-315/326, 9-10=-315/326, 8=-458/453 BOT EX NOTES 1) Unbalanced root live loads have been considered for this design. 2) Wind: ASCE 7-16; Vull=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. It; Exp C; faclosed; MMFRS (directional) and C-C Exterior(ZE) 0+1-11-12, thetrior(1)+0+12; to 10-4-2 zone; cantilever left and right exposed; c-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.50 plate grip DOL=1.00 3) TCLL: ASC prife; Nort Lum DOL=1.51 FAIte DOL=1.15; Pig=20.0 psf; PI=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=-10, Rough Cat C; Partially Exp; Ce=1.0; Cs=1.00; Cl=1.10 3) All plates are 2Ad MT20 und bot thord bearing. 6) This truss has been desing for a 10.10 ps totom chord live load nonconcurrent with any other live loads. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb upilit at joint(s) 13, 10, 9 except (ft=b) 14-116, 8=172, 12-477, 11=30. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. 9) Convert 16, 2020 	REACTIONS. AI	ll bearing	s 10-8-0.							
11=-130(LC 14) The t	(lb) - Ma Ma	x Horz 1 x Uplift	4=-307(L) All uplift 1	C 12) 00 lb or less at jo	oint(s) 13, 10, 9	9 except 14=-115(LC 14	l), 8=-172(LC 13), 1	2=-147(L	-C 12),	
 FORCES. (ib) - Max. Comp./Max. Ten All forces 250 (ib) or less except when shown. TOP CHORD 1144-323349, 1-2-315/326, 12-13-315/326, 10-11=-315/326, 9-10=-315/326, 8-9-316/326, 8-9-316/326	Ma	່ 1 x Grav	1=-130(L)	C 14)	at ioint(s) 14	8 13 11 10 9 except	12-257(I C 24)	,	<i>,,</i>	
 PORCES. (b) - Max Comp./Max 1en All forces 220 (ii) or less except when snown. TOP CHORD 1-14-8/323/49, 1/2-315/326, 12-13=-315/326, 10-11=-315/326, 9-10=-315/326, 8-9=-315/326, 8-9=-315/326, 12-13=-315/326, 10-11=-315/326, 9-10=-315/326, 8-9=-315/326, 8-9=-315/326, 8-9=-315/326, 8-9=-315/326, 8-9=-315/326, 8-9=-315/326, 8-9=-315/326, 8-9=-315/326, 8-9=-315/326, 8-9=-315/326, 8-9=-315/326, 8-9=-315/326, 12-13=-315/326, 10-11=-315/326, 9-10=-315/326, 8-9=-315/326, 8-9=-315/326, 8-9=-315/326, 12-13=-315/326, 10-11=-315/326, 9-10=-315/326, 8-9=-315/326, 8-9=-315/326, 8-9=-315/326, 8-9=-315/326, 12-13=-315/326, 10-11=-315/326, 9-10=-315/326, 8-9=-315/326, 8-9=-315/326, 2-10=-315/326, 2			/ III TO LOUIC		ar joint(3) 14,	о, то, тт, то, о схоорг	12=237 (20 24)			
BOT CHORD 13-14-315/326, 12-13315/326, 11-12315/326, 9-10315/326, 8-9315/326, 8-9315/326, 8-9315/326, 2-13277/208 WEBS 2-13277/208 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Viti-115mph (3-second gust) Vaad=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 1-11-12, Exterior(2R) 1-11-12 to 4-9-12, Interior(1) 4-9-12 to 10-4-2 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) ToCLL: ASCE 7-16; Viti-25, 0 plate grip DOL=1.60 3) ToCLL: ASCE 7-16; Viti-20; Polate grip DOL=1.60; Polate grip DOL=1.60 3) ToCLL: ASCE 7-16; Viti-20; Polate grip DOL=1.60; Polate grip DOL=1.60 3) ToCLL: ASCE 7-16; Viti-20; Polate grip DOL=1.60; Polate grip DOL=1.60 3) ToCLL: ASCE 7-16; Viti-20; Polate grip DOL=1.60; Polate grip DOL=1.60 3) ToCLL: ASCE 7-16; Viti-20; Polate grip DOL=1.60; Polate grip DOL=1.60 3) ToCLL: ASCE 7-16; Viti-20; Polate grip DOL=1.60; Polate grip DOL=0; Polate grip	TOP CHORD 1-	ax. Comp 14=-323/	o./Max. Te /349, 1-2=	en All forces 25 -315/347, 5-6=-2	0 (Ib) or less e 54/245, 6-7=-3	at the second seco				
 WEBS 2:13=277/208 POTESE 9. Unbalanced roll live loads have been considered for this design. 9. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15f; B=45f; L=24f; eave=4f; Cat. II; Exp c; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-1:12 to 1:11:12 to 4:9:12, Interior(1) 4:9:12 to 1:0-4:2 zone; cantillever left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60. 0. TCLL: ASCE 7-16; Pr=25.0 psf (rod LL: Lum DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15) Plate DOL=1.01; Pg=20.0 psf; Pf=20.0 psf; Pf=10; Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15) Plate DOL=1.01; Pg=20.0 psf; Pf=10; Pg=20.0 psf; Pg=20.0 psf; Pf=10; Pg=20.0 psf; Pf=10; Pg=20.0 psf; Pg=20.	BOT CHORD 13 8-	3-14=-315 9=-315/3	5/326, 12- 26	·13=-315/326, 11-	-12=-315/326,	10-11=-315/326, 9-10=	-315/326,			
 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 1-11-12, Exterior(2R) 1-11-12 to 4-9-12, Interior(1) 4-9-12 to 10-4-2 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; LumDer DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Pis=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Pi	WEBS 2-	13=-277/	208							
 1) Onloading the been considered on into design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 1-11-12, Exterior(2R) 1-11-12 to 4-9-12, Interior(1) 4-9-12 to 10-4-2 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); B=1-0; Rough Cat C; Partially Exp; Ce-1.0; Cs=1.00; Ct=1.10 4) All plates are 2x4 MT20 unless otherwise indicated. 5) Gable requires continuous bottom chord bearing. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 13, 10, 9 except (jt=lb) 14=115, 8=172, 12=147, 11=130. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 	NOTES-	live lead	e have he	on considered for	this docian					
 It: Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 1-11-12; Exterior(2K) 1-11-12 to 4-9-12; Interior(1) 4-9-12 to 1-9-4-2 zone; cantilever left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1-10; Rough Cat C; Partially Exp.; Cs=1.00; Ct=1.10 4) All plates are 2x4 MT20 unless otherwise indicated. 5) Gable requires continuous bottom chord bearing. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 13, 10, 9 except (jt=lb) 14=115, 8=172, 12=147, 11=130. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. NUMBER PE-2001018807 November 16,2020 	2) Wind: ASCE 7-16	6; Vult=1	15mph (3-	-second gust) Vas	sd=91mph; TC	CDL=6.0psf; BCDL=4.2p	osf; h=15ft; B=45ft; L	_=24ft; ea	ave=4ft; Cat.	
reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) All plates are 2x4 MT20 unless otherwise indicated. 5) Gable requires continuous bottom chord bearing. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 13, 10, 9 except (jt=lb) 14=115, 8=172, 12=147, 11=130. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and 10 Signal Entry is the section of the se	to 10-4-2 zone; c	antilever	left and ri	ight exposed ; end	d vertical left a	and right exposed;C-C for	r(2R) 1-11-12 to 4-9 or members and for	ces & MV	VFRS for	
 DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) All plates are 2x4 MT20 unless otherwise indicated. 5) Gable requires continuous bottom chord bearing. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 13, 10, 9 except (jt=lb) 14=115, 8=172, 12=147, 11=130. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. NUMBER OF MISS OF	reactions shown; 3) TCLL: ASCE 7-1	; Lumber 6; Pr=25.	DOL=1.60 .0 psf (roc	0 plate grip DOL= of LL: Lum DOL=1	:1.60 ⊡15 Plate DOI	L=1.15); Pg=20.0 psf; P	f=15.4 psf (Lum DO	L=1.15 P	Plate	Aller
 1) Gable requires continuous bottom chord bearing. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 13, 10, 9 except (jt=lb) 14=115, 8=172, 12=147, 11=130. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. NUMBSR PROVIDE THE CONTRACT OF THE C	DOL=1.15); Is=1 4) All plates are 2x4	.0; Rough 4 MT20 u	n Cat C; P	Partially Exp.; Ce=	1.0; Cs=1.00;	Ct=1.10				OF MISS
 a) This truss has been designed to a 10.0 ps bottom child live load inforcement with any other loads. b) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 13, 10, 9 except (jt=lb) 14=115, 8=172, 12=147, 11=130. c) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. c) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. c) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 	5) Gable requires of	ontinuous	s bottom o	chord bearing.	bord live lood	nonconcurrent with on	athor live loods		E E	A DI
(jt=lb) 14=115, 8=172, 12=147, 11=130. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. NUMBER OF A DESIGN OF A DES	7) Provide mechani	ical conne	ection (by	others) of truss to	bearing plate	e capable of withstandin	g 100 lb uplift at joir	nt(s) 13, 1	10, 9 except	SEVIER SEVIER
referenced standard ANSI/TPI 1.	(jt=lb) 14=115, 8= 8) This truss is desi	=172, 12= gned in a	=147, 11= accordanc	:130. e with the 2018 Ir	nternational Re	esidential Code sections	s R502.11.1 and R8	02.10.2 a	and 80	
PE-2001018807 SONAL ENGLASSIONAL ENGLASSION	referenced stand	lard ANS	I/TPI 1.							att Servin
November 16,2020									×X	PE-2001018807
November 16,2020									Ŷ	THE OT
November 16,2020										ONAL EN
										November 16.2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y) [7:0-0-10,	0-1-8]								
LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	sf) 25.0 20.4/20.0 10.0 0.0 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.47 BC 0.22 WB 0.09 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 71 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2		BR TO BC WE	ACING- P CHORD 2 IT CHORD 1 EBS	2-0-0 oc⊺ Rigid ceil 1 Row at	purlins ling dire midpt	(6-0-0 m ctly appl	ax.): 1-7, ex ied or 6-0-0 1-14, 2-1	cept end verticals. oc bracing. 3, 3-11	

REACTIONS. All bearings 10-6-10.

2x4 SPF No.2

(lb) - Max Horz 14=-235(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 14, 11, 10, 9, 8 except 7=-121(LC 14), 12=-151(LC 12), 13=-115(LC 14)

Max Grav All reactions 250 lb or less at joint(s) 14, 7, 12, 13, 11, 10, 9, 8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

BOT CHORD 11-12=-254/242

NOTES-

OTHERS

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Corner(3) 0-1-12 to 3-1-12, Exterior(2) 3-1-12 to 7-2-11, Corner(3) 7-2-11 to 10-2-11 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.

- Provide adequate drainage to prevent water ponding.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 11, 10, 9, 8 except (jt=lb) 7=121, 12=151, 13=115.
- 8) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 7, 11, 10, 9, 8.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

9-4-9

5-4-9										
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.07 BC 0.04 WB 0.03 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 37 lb	GRIP 197/144 FT = 20%	
LUMBER-	I	BE	ACING-							

TOP CHORD

BOT CHORD

2x4 ||

2x4 ||

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x4 SPF No.2

REACTIONS. All bearings 9-4-9.

Max Horz 1=-124(LC 12) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 1 except 8=-109(LC 14), 6=-109(LC 14)

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=276(LC 23), 6=275(LC 24)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-3-15 to 3-3-15, Interior(1) 3-3-15 to 4-8-4, Exterior(2R) 4-8-4 to 7-8-4, Interior(1) 7-8-4 to 9-0-10 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=109 6=109
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	F	7-	8-9	17-5-6	6				
	1	7-	8-9	9-8-13	3	1			
Plate Offsets (X,Y) [6:0-2-10,Edge], [10:0-0-10,0-1-8]									
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.4/20.0 TCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Inc	2-0-0 - 1.15 1.15 r YES	CSI. TC 0.11 BC 0.04 WB 0.16	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) n/a - n/a - -0.00 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 197/144
BCLL 0.0	Code IRC2018	3/TPI2014	Matrix-S					Weight: 91 lb	FT = 20%

BCDL

LUMBER-		BRACING-	
TOP CHORD	2x4 SPF No.2	TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins, except
BOT CHORD	2x4 SPF No.2		2-0-0 oc purlins (6-0-0 max.): 6-10.
OTHERS	2x4 SPF No.2	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 17-5-6.

10.0

(lb) -Max Horz 1=293(LC 14)

1-2=-379/345

Max Uplift All uplift 100 lb or less at joint(s) 1, 10, 15, 14, 16, 17, 13, 12, 11 except 18=-108(LC 14) Max Grav All reactions 250 lb or less at joint(s) 1, 10, 15, 14, 16, 17, 13, 12, 11 except 18=267(LC 23)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-3-15 to 3-3-15, Interior(1) 3-3-15 to 9-8-13, Exterior(2R) 9-8-13 to 12-8-11, Interior(1) 12-8-11 to 17-1-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Provide adequate drainage to prevent water ponding.
- All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7)
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 10, 15, 14, 16, 17, 13, 12, 11 except (jt=lb) 18=108.
- 9) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 10, 14, 13, 12, 11.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with ever connectors. This besign is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-

TOP CHORD

BOT CHORD

BCDL

LUMBER-

OTHERS

BOT CHORD

REACTIONS.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

Code IRC2018/TPI2014

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-3-15 to 3-3-15, Interior(1) 3-3-15 to 6-0-9, Exterior(2R) 6-0-9 to 9-0-9, Interior(1) 9-0-9 to 13-1-11 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-S

3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.

Max Uplift All uplift 100 lb or less at joint(s) 1, 8, 11, 12, 13, 10, 9 except 14=-111(LC 14) Max Grav All reactions 250 lb or less at joint(s) 1, 8, 11, 12, 13, 10, 9 except 14=271(LC 23)

4) Provide adequate drainage to prevent water ponding.

- 5) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.

10.0

2x4 SPF No.2

2x4 SPF No.2

All bearings 13-5-9.

Max Horz 1=179(LC 14)

TOP CHORD 2x4 SPF No.2

(lb) -

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 8, 11, 12, 13, 10, 9 except (it=lb) 14=111.

- 9) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 8, 10, 9.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017 FT = 20%

Weight: 60 lb

Structural wood sheathing directly applied or 6-0-0 oc purlins, except

2-0-0 oc purlins (6-0-0 max.): 4-8.

Rigid ceiling directly applied or 10-0-0 oc bracing

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2OTHERS2x4 SPF No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-8-9 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=3-8-1, 3=3-8-1, 4=3-8-1 Max Horz 1=-44(LC 12) Max Uplift 1=-16(LC 14), 3=-16(LC 14) Max Grav 1=86(LC 2), 3=86(LC 2), 4=104(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right

exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and

referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	4-5-12	7-4-10	10-3-8	12-5-12	16-5-12	21-3-12		25-1	0-4	28-1-12	32-4-0	
	4-5-12	2-10-14	2-10-14	2-2-4	4-0-0	4-10-0	2 0 0 2 01	4-6	-8	2-3-8		
Flate Offsets (7	(, f) [4. 1-3-4,	<u>-2-0], [0.0-11-0,0-4-1</u>	2], [7.0-0-0,0-	1-13], [9.0-3	-5,Eugej, [10.0	-4-0,0-2-0], [13.0-	3-0,0-3-0]	, [15.0-3	-0,0-1-0],	[17.0-5-6,0-4	Foj, [19.0-6-12,0-5-0]	
LOADING (psf TCLL (roof) Snow (Pf/Pg) TCDL BCLL	5) 25.0 20.4/20.0 10.0 0.0	SPACING- Plate Grip DOI Lumber DOL Rep Stress Inc Code IRC2018	2-0-0 - 1.15 1.15 r NO 3/TPI2014	C T B V M	SI. C 1.00 C 1.00 VB 0.93 1atrix-MS	DEFL. Vert(LL) Vert(CT Horz(CT	in -0.66) -1.11) 0.22	(loc) 18 18 12	l/defl >578 >346 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS MT18HS Weight: 331 lb	GRIP 197/144 148/108 197/144 FT = 20%
BCDL	10.0											
LUMBER- TOP CHORD BOT CHORD WEBS OTHERS SLIDER	UMBER- OP CHORD 2x4 SPF No.2 *Except* 4-6: 2x6 SPF 2100F 1.8E, 6-7: 2x6 SPF No.2 TOP CHORD Structural wood sheathing directly applied, except end verticals, and 2-0-0 oc purlins (3-8-11 max.): 4-6, 7-9, 10-11. OT CHORD 2x6 SPF 2100F 1.8E *Except* 2-20: 2x4 SPF 1650F 1.5E, 12-16: 2x6 SPF No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. VEBS 2x4 SPF No.2 *Except* 5-20, 19-21,4-19: 2x4 SPF 1650F 1.5E BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. ITHERS 2x4 SPF No.2 Etf 2x4 SPF No.2 2-6-0 Etf 2x4 SPF No.2 2-6-0											
REACTIONS.	EACTIONS. (size) 12=0-3-8, 2=0-3-8 Max Horz 2=115(LC 72) Max Uplift 12=-454(LC 12), 2=-418(LC 12) Max Grav 12=3462(LC 41), 2=2923(LC 2)											
FORCES. (Ib) TOP CHORD BOT CHORD WEBS	ORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. OP CHORD 2-4=-5250/722, 4-5=-15675/2194, 5-6=-16225/2265, 6-7=-9506/1343, 7-8=-8661/1244, 8-9=-7871/114, 9-10=-6323/899, 10-11=-5065/706, 11-12=-3273/448 OT CHORD 2-21=-6323/4608, 20-21=-110/828, 18-19=-2383/17192, 17-18=-3273/448 OT CHORD 2-21=-6323/608, 20-21=-110/828, 18-19=-2383/17192, 17-18=-3273/448 OT CHORD 2-21=-632/3608, 14-15=-723/5605, 13-14=-682/5257 /EBS 5-19=-699/150, 4-21=-516/144, 19-21=-530/3871, 4-19=-1584/11394, 6-19=-1241/173, 6-18=-715/109, 6-17=-9110/1304, 7-17=-525/3948, 8-17=-163/1132, 8-15=-1085/184, 9-15=-385/2859, 9-14=-123/962, 10-14=-126/639, 10-13=-3247/471, 11-13=-765/5692											
NOTES- 1) 2-ply truss to Top chords of Bottom chorn Webs conner 2) All loads are ply connection 3) Unbalanced 4) Wind: ASCE II; Exp C; En plate grip DO 5) TCLL: ASCE DOL=1.15); surcharge ag 6) Unbalanced 7) This truss ha non-concurrer (3) Intruside adde	6-18=-715/109, 6-17=-9110/1304, 7-17=-525/3948, 8-17=-163/1132, 8-15=-1085/184, 9-15=-385/2859, 9-14=-123/962, 10-14=-126/639, 10-13=-3247/471, 11-13=-765/5692 DTES- 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 2 rows staggered at 0-2-0 oc, 2x6 - 2 rows staggered at 0-7-0 oc. Bottom chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc. All loads are considered equally applied to all piles, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; VIII-115mpl (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 TCLL: ASCE 7-16; VIII-115mpl (3-second gust) Vasd=91mph; TCDL=6.0psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15; Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Ct=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4. Unbalanced snow loads have been considered for this design. This truss has been designed tor greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. Iffwedwadesavete drainage to prevent water ponding.											
WARNIN Design valic a truss syste building des is always re fabrication, s Safety Infor	G - Verify design para I for use only with MiT em. Before use, the b ign. Bracing indicate quired for stability an storage, delivery, erer mation available fro	meters and READ NOTES C Fek® connectors. This desig uilding designer must verify d is to prevent buckling of ir d to prevent collapse with po tion and bracing of trusses om Truss Plate Institute, 267	N THIS AND INCL n is based only up the applicability or dividual truss web ssible personal in and truss systems 0 Crain Highway,	UDED MITEK R pon parameters f design parameters o and/or chord n jury and proper s, see Suite 203 Wald	EFERENCE PAGE shown, and is for iters and properly nembers only. Add y damage. For ge ANSI/TP11 Quality orf, MD 20601	MII-7473 rev. 5/19/202 an individual building c incorporate this design ditional temporary and neral guidance regard y Criteria, DSB-89 and	20 BEFORE L omponent, no into the over permanent br ing the d BCSI Build	JSE. ot all racing ing Comp	onent		NITEK° 16023 Swingley Ridge Rd Chesterfield, MO 63017	

		RELEASE FOR			
Job Truss	Truss Type	CONSTRUCTION	Ply	Summit/61 Woodside	110001100
2524433 M1	ROOF SPECIA	AL GIRDER NOTED ON PLANS REVIE	w _		143624490
		DEVELOPMENT SERVICES	2	Job Reference (optional)	
Builders FirstSource (Valley Center), Valley Cent	er, KS - 67147,	LEE'S SUMMIT, MISSOURI	8.240 s N	ar 9 2020 MiTek Industries, Inc. Fri Nov 13 1	3:04:28 2020 Page 2
		ID:VPVavEnP0P)b1i2tZrld	aezdKbx-eZ3ELR5dexZQabB69dxCoManFhy	vIFABH02ZJeZvJb11

11/30/2020

NOTES-

9) All plates are MT20 plates unless otherwise indicated.

10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 12=454, 2=418.
 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 14) Use Simpson Strong-Tie TJC37 (6 nail, 30-90) or equivalent at 4-4-0 from the left end to connect truss(es) to front face of bottom chord, skewed 45.0 deg.to the left, sloping 0.0 deg. down.
- 15) Use Simpson Strong-Tie SUL26 (6-10d Girder, 6-10dx1 1/2 Truss) or equivalent at 16-4-0 from the left end to connect truss(es) to front face of bottom chord, skewed 45.0 deg.to the left, sloping 0.0 deg. down.
- 16) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 17-2-0 from the left end to 25-2-0 to connect truss(es) to front face of bottom chord.
- 17) Use Simpson Strong-Tie SUR26 (6-10d Girder, 6-10dx1 1/2 Truss) or equivalent at 26-0-0 from the left end to connect truss(es) to front face of bottom chord, skewed 45.0 deg.to the right, sloping 0.0 deg. down.
- 18) Fill all nail holes where hanger is in contact with lumber.
- 19) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf) Vert: 1-4=-51, 4-6=-61, 6-7=-51, 7-9=-61, 9-10=-51, 10-11=-61, 20-22=-20, 12-19=-20
- Concentrated Loads (lb)

Vert: 21=-241(F) 17=-664(F) 15=-272(F) 14=-664(F) 26=-88(F) 29=-86(F) 30=-86(F) 38=-31(F) 39=-31(F) 40=-31(F) 41=-178(F) 42=-96(F) 43=-272(F) 44=-272(F) 4 45=-272(F) 46=-272(F)

			R	ELEASE FOF	र				
Job	Truss	Truss Type	CO	NSTRUCTIO	N Ply	Summit/61 Woodside			
2524433	M2	Roof Special	AS NOT	ED ON PLANS	REVIEW				143624491
2024400			DEVEL	OPMENT SERV	ICES	Job Reference (optiona	al)		
Builders FirstSource (Valley	Center), Valley Ce	enter, KS - 67147,	LEE'S	SUMMIT, MISS	OURI 8.240 s N	ar 9 2020 MiTek Indust	ries, Inc. Fri Nov 1	3 13:04:30 20	20 Page 1
				ID:VPV	qvFnP0P0b1j2tZ	lOqezdKbx-axB_m77tA	q83vLVH2zhtnlC	3VeDj5QZTM2	2QjSyJb1?
-0-11-0	6-5-10	10-3-8	14-5-10	11/3 <u>8/20</u> 20	23-10-6	26-1-14	31-3-8	32-4-0 32-0-8	
0-11-0'	6-5-10	3-9-14	4-2-2	4-0-0	5-4-12	2-3-8	5-1-10	0-9-0' '	
		L				1		0-3-8	Scale = 1:60.9

	6-	-5-10 I	10-3-8	14-5-10	1 1	18-5-10		23-10-6		1	31-3-8	32-4-0	
	6-	-5-10	3-9-14	4-2-2	1	4-0-0		5-4-12			7-5-2	1-0-81	
Plate Offsets (X.	Y) [7:0-3-5.]	Edae]. [10:Edae.0-1-8	31. [11:Edae.0-1-8]	. [13:0-3-8.0	-2-0]. [15:	0-5-12.0-3-0	. [17:0-	-3-8.0-2-0	D1				
LOADING (psf)		SPACING-	2-0-0	CSI			FI	in	(loc)	l/defl	l /d	PLATES	GRIP
TCLL (roof)	25.0	Ploto Grip DO	1 1 15	TC	0.66	Ve		0.21	12 15	> 000	240	MT20	107/144
Snow (Pf/Pg) 2	0.4/20.0		L 1.15		0.00			-0.31	10-10	>999	240	MTANIO	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.84	Ve		-0.65	13-15	>592	180	MITTERS	197/144
BCLI	0.0	Rep Stress In	or YES	WB	0.88	H	orz(CT)	0.18	11	n/a	n/a		
BCDI	10.0	Code IRC201	8/TPI2014	Matri	x-AS							Weight: 141 lb	FT = 20%
DODL	10.0												
LUMBER-						BRACING-							
TOP CHORD	2x4 SPF No.2					TOP CHOR	D	Structur	al wood	sheathin	a directly app	blied, except end vertic	als, and
BOT CHORD	2x4 SPF No 2 *F	Excent*						2-0-0 00	nurlins	(2-6-4 m	ax) 4-6 7-8	9-10	
BOT ONORD 2	14 15 11 14.2						П	Digid oc	ilina dir		iod	, 5 10.	
	14-15,11-14. ZX	4 SFF 1030F 1.3E					D		anng une	ectiy appi			
WEBS A	2X4 SPF NO.2					WEBS		1 ROW a	at midpt		9-11		
OTHERS 2	2x4 SPF No.2												
SLIDER I	Left 2x4 SPF No	o.2 2-6-0											
REACTIONS.	(size) 2=0-	3-8 11=0-3-8											
	Max Horz 2-15	53(I C 15)											
	Max Holift 2- 1	$\frac{12}{12}$	C 16)										
		43(LC 10), 11=-119(1)	-0 10)										
	Max Grav 2=15	507(LC 2), 11=1446(L	_C 45)										
FORCES. (lb)	 Max. Comp./M 	lax. Ten All forces 2	250 (lb) or less exe	ept when sh	own.								
TOP CHORD	2-4=-2398/337	7, 4-5=-3937/566, 5-6	=-4025/575, 6-7=-	2902/427, 7-	8=-1935/	317,							
	8-9=-2228/339	9, 10-11=-268/61											
BOT CHORD	2-17=-419/208	3 5-15=-525/95 13-	15=-751/4416 12	13=-429/25	11 11-12	348/2033							
WERS	4-17-462/136	3 15-17-378/1085	1-15200/2200 6	15-157/03	6-1322	2/8/381							
WLDO	7 12 154/130	0, 10-17-010/1000, -	12 69/720 0 11	2250/267	0-10-22	40/301,							
	7-13=-154/158	94, 7-12=-014/134, 0-	12=-00/720, 9-11=	-2259/307									
NOTES-													
 Unbalanced r 	oof live loads ha	ave been considered	for this design.										
Wind: ASCE 7	7-16; Vult=115m	nph (3-second gust) \	/asd=91mph; TCE	L=6.0psf; B0	CDL=4.2p	sf; h=15ft; B=	:45ft; L	=24ft; ea	ve=4ft; (Cat.			
II: Exp C: End	losed: MWFRS	(directional) and C-C	Exterior(2E) -0-1	1-0 to 2-1-0.	Interior(1)	2-1-0 to 6-5-	10. Ex	terior(2R) 6-5-10	to			
9-5-10 Interio	or(1) 9-5-10 to 1	8-5-10 Exterior(2R)	18-5-10 to 21-5-10	Interior(1)	21-5-10 to	23-10-6 Ext	erior(2	F) 23-10	-6 to 26-	1-14			
Interior(1) 26-	1_1/ to 31_10_1	2 zone: cantilever lef	and right expose	t : end vertic	al loft and	Light expose	4.C-C	for memb	here and	,		Sund	n
forces & MIN/E	EDS for reaction	2 2011e, cantilever ler	1 and fight expose			i ngin expose	u,0-0					OF MIS	, Ch
		IS SHOWN, LUMBER DC		DOL=1.60			501				4	A LE SO	N.O.
3) TOLL: ASCE	7-16; Pr=25.0 p	st (root LL: Lum DOL	=1.15 Plate DOL=	1.15); Pg=20	0.0 pst; Pt	=20.4 pst (Lu	m DOL	_=1.15 PI	late		B	1	N.V.
DOL=1.15); Is	s=1.0; Rough Ca	at C; Partially Exp.; C	e=1.0; Cs=1.00; C	t=1.10, Lu=5	50-0-0; Mi	n. flat roof sn	ow loa	d govern:	s. Rain		a c	SCOTT M.	N.S.
surcharge app	plied to all expos	sed surfaces with slo	pes less than 0.50	0/12 in acco	dance wit	th IBC 1608.3	3.4.				И	SEVIED	1 1
Unbalanced s	snow loads have	e been considered for	this design.								8		1.4
5) This truss has	s been desianed	for greater of min ro	of live load of 12.0	psf or 1.00 t	imes flat i	roof load of 1	5.4 psf	on overh	nangs		WOK		
non-concurre	nt with other live	loads	0	per er 1100 i	intee nat i		o po.	0.1.01.01.	lange			- the X	
6) Drovido odogi	uoto droinogo to	nouus.	20										eng
6) Provide adeq	uate drainage to	prevent water pond	ng.								63	NUMBER	1EN
 All plates are 	M120 plates un	less otherwise indica	ted.								W.2	>> PE-200101880	7 15 9
8) This truss has	s been designed	for a 10.0 psf botton	n chord live load n	onconcurren	t with any	other live loa	ds.				N.		158
Provide mech	nanical connection	on (by others) of truss	s to bearing plate of	apable of wi	thstanding	g 100 lb uplift	at join	t(s) exce	pt (jt=lb)		<i>W</i>	1 Co	NA
2=143, 11=11	19.										1	A STONE ET	A
10) This truss is	designed in acc	cordance with the 20°	8 International Re	sidential Co	de section	s R502.11.1	and R	302.10.2	and			WAL P	8
referenced s	standard ANSI/T	TPI 1							-			anos	
11) This truce de		not a minimum of 7/1/	S" etructural wood	choothing he	onnlind a	diractly to the	ton ch	ord and a	1/2" aver			November 16	000
	esign requires tr	ia. a 1111111111111111111111111111111111	sinuciural wood	snearning be	applied	inectly to the	top ch	ord and	i/z yyp	Sulli		November 10,2	020
Contrineeroorpa	geapplied directly	y to the bottom chord											
A													
WARNING	For the second s	meters and READ NOTES (ON THIS AND INCLUDE	D MITEK REFE	RENCE PAG	E MII-7473 rev.	5/19/2020) BEFORE (USE.				
Design valid f	for upp only with MiT	Tak@ aannaatara Thia daai	an in honord only yoon a	oromotoro obou	m and in far	ببط امتدامت مم			a4				

16023 Swingley Ridge Rd Chesterfield, MO 63017

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			RELEASE FOR			
Job	Truss	Truss Type	CONSTRUCTION	Ply	Summit/61 Woodside	
2524433	M2	Roof Special	AS NOTED ON PLANS REVIE	N 1	143	624491
2024400	IVIZ		DEVELOPMENT SERVICES		Job Reference (optional)	
Builders FirstSource (Valley 0	Center), Valley Center, K	S - 67147,	LEE'S SUMMIT, MISSOURI &	8.240 s M	ar 9 2020 MiTek Industries, Inc. Fri Nov 13 13:04:30 2020 Pag	ge 2
			ID:VPVqvFnP0F	P0b1j2tZr	IOqezdKbx-axB_m77tAYq83vLVH2zhtnIC3VeDj5QZTM2QjSyJ	b1?
NOTES-	antation does not denist the	aiza ar tha ari	11/30/2020	ttom oho	rd	
12) Graphical putilit represe				ntom cho	iu.	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			R	ELEASE FOR					
Job	Truss	Truss Type	CO	NSTRUCTION	Ply	Summit/6	1 Woodside		
2524433	M3	Roof Special	AS NOTE	ED ON PLANS REVIE	W 1				143624492
2024400	M5		DEVEL	OPMENT SERVICES	i '	Job Refere	ence (optional)		
Builders FirstSource (Valley	Center), Valley Center, H	(S - 67147,	LEE'S	SUMMIT, MISSOURI	8.240 s N	ar 9 2020 N	/liTek Industries, In	c. Fri Nov 13 13:04:3	3 2020 Page 1
				ID:VPVqvFnP0P0	b1j2tZrlO	qezdKbx-?W	/s7O99mSTCjwM4	4yAXOVPNilig6wSY0	AKH4JmyJb0y
-Q-11-Q 4-	4-10 8-5-12	10-3-8	16-5-12	11/30/2020-5-12	21-10-4	24-1-12	27-11-6	32-4-0	
0-11-0 4-	4-10 4-1-2	1-9-12	6-2-4	4-0-0	1-4-8	2-3-8	3-9-10	4-4-10	

Scale = 1:61.0

		8-5-12	10-3-8	16-5-12	20-5-12	21-10-4 24-1-12	32-3	3-15 32-4-0			
Plate Offsets (X,	Y) [2:0-4-10	Edge], [5:0-4-10,Edge],	[10:0-3-6,Edge	, [13:0-1-12,0-1-8]	4-0-0	1-4-0 2-3-0	0-2	2-3 0-0-1			
LOADING (psf) TCLL (roof) Snow (Pf/Pg) 20 TCDL BCLL BCDL	25.0 0.4/20.0 10.0 0.0 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/T	2-0-0 1.15 1.15 YES PI2014	CSI. TC 0.76 BC 0.83 WB 0.85 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT	in (loc) //de -0.22 17-18 >99 -0.43 17-18 >90) 0.14 13 n/	fl L/d 9 240 2 180 a n/a	PLATES MT20 Weight: 162 lb	GRIP 197/144 FT = 20%		
LUMBER-					BRACING-						
TOP CHORD 2 BOT CHORD 2 WEBS 2 OTHERS 2 SLIDER 1 REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Left 2x4 SPF No.2 (size) 2=0-	0.2 2-6-0 3-8 13=0-3-8			TOP CHORD BOT CHORD WEBS	Structural wood sheat 2-0-0 oc purlins (2-4- Rigid ceiling directly a 1 Row at midpt	thing directly app 13 max.): 5-7, 8-9 pplied. 11-13	ilied, except end vertic 9, 10-12.	als, and		
	Max Horz 2=18 Max Uplift 2=-1 Max Grav 2=15	8(LC 15) 43(LC 16), 13=-120(LC 907(LC 2), 13=1431(LC 2	16) ?)								
FORCES. (Ib) TOP CHORD	- Max. Comp./M 2-4=-2381/327 8-91932/324	ax. Ten All forces 250 7, 4-5=-2254/313, 5-6=-2 1, 9-102208/340, 10-11	(lb) or less exce 838/426, 6-7=-2 1984/285	ept when shown. 906/438, 7-8=-2253/3	334,						
BOT CHORD	2-20=-473/206	63, 6-18=-548/117, 17-18	=-559/3266, 15	-17=-557/3271, 14-15	5=-327/1800,						
WEBS	13-14=-225/1183 'EBS 5-20=-918/225, 18-20=-395/2165, 5-18=-304/1923, 7-18=-421/29, 7-15=-1799/267, 8-15=-93/798, 9-15=-125/587, 9-14=-59/448, 10-14=-1127/200, 11-14=-157/1193, 11-13=-1679/286										
NOTES- 1) Unbalanced re 2) Wind: ASCE 7 II; Exp C; Enc 11-5-12, Interi exposed ; enc grip DOL=1.61 3) TCLL: ASCE 1 DOL=1.15); Is surcharge app 4) Unbalanced s 5) This truss has as non-concurrer 6) Provide adeqr 7) This truss has 8) Provide mech 2=143, 13=12 9) This truss is doreferenced sta 10) This truss de Contribuedrocida	oof live loads ha 7-16; Vult=115m losed; MWFRS ior(1) 11-5-12 to 4 vertical left and 0 7-16; Pr=25.0 p i=1.0; Rough Ca blied to all exposi- inow loads have been designed in with other live uate drainage to been designed anical connector 0. lesigned in acco andard ANSI/TF sign requires th applied directly	ave been considered for ph (3-second gust) Vas; (directional) and C-C Ex p 20-5-12, Exterior(2E) 2 d right exposed;C-C for r sf (roof LL: Lum DOL=1. at C; Partially Exp.; Ce=1 sed surfaces with slopes been considered for this p revent water ponding. for a 10.0 psf bottom ch on (by others) of truss to ordance with the 2018 Int 1 1. at a minimum of 7/16" s y to the bottom chord.	this design. J=91mph; TCDI terior(2E) -0-11 D-5-12 to 24-1-1 nembers and fo 15 Plate DOL=1 .0; Cs=1.00; Ot less than 0.500 s design. ve load of 12.0 ord live load no bearing plate ca ernational Resident tructural wood s	=6.0psf; BCDL=4.2p; 0 to 2-1-0, Interior(1) 2, Interior(1) 24-1-12 rcces & MWFRS for re .15); Pg=20.0 psf; Pf; =1.10, Lu=50-0-0; Mir /12 in accordance wit psf or 1.00 times flat r nconcurrent with any apable of withstanding dential Code sections heathing be applied c	sf; h=15ft; B=45ft; I 2-1-0 to 8-5-12, E: to 31-10-12 zone; actions shown; Lur =20.4 psf (Lum DO n. flat roof snow loa th IBC 1608.3.4. roof load of 15.4 ps other live loads. g 100 lb uplift at join R502.11.1 and R8 tirectly to the top ch	L=24ft; eave=4ft; Cat. kterior(2R) 8-5-12 to cantilever left and right nber DOL=1.60 plate L=1.15 Plate Id governs. Rain f on overhangs ht(s) except (jt=lb) 02.10.2 and hord and 1/2" gypsum		DE COF MISS SCOTT M. SEVIER PE-200101880 PE-200101880 November 16,2			
WARNING Design valid fi a truss system building desig is always requ fabrication, st Safety Inform	- Verify design parar or use only with MiT n. Before use, the bu n. Bracing indicate uired for stability and orage, delivery, erec nation available fro	meters and READ NOTES ON T iek® connectors. This design is aliding designer must verify the d is to prevent buckling of indivi to prevent collapse with possii tion and bracing of trusses and m Truss Plate Institute, 2670 C	HIS AND INCLUDED based only upon pa applicability of desig dual truss web and// ble personal injury a truss systems, see rain Highway, Suite	MITEK REFERENCE PAG rameters shown, and is for in parameters and properly or chord members only. Ad nd property damage. For g ANS//TPI1 Qualit 203 Waldorf, MD 20601	E MII-7473 rev. 5/19/202 an individual building co incorporate this design iditional temporary and p general guidance regardi ty Criteria, DSB-89 and	0 BEFORE USE. mponent, not into the overall permanent bracing ng the BCSI Building Component		MITEK [®] 16023 Swingley Ridge Rd Chesterfield, MO 63017			

			RELEASE FOR			
Job	Truss	Truss Type	CONSTRUCTION	Ply	Summit/61 Woodside	
2524433	M3	Roof Special	AS NOTED ON PLANS REVI	EW 1	1436	24492
2024400			DEVELOPMENT SERVICE	S '	Job Reference (optional)	
Builders FirstSource (Valley	Center), Valley Center, K	S - 67147,	LEE'S SUMMIT, MISSOUR	8.240 s N	ar 9 2020 MiTek Industries, Inc. Fri Nov 13 13:04:34 2020 Pag	e 2
			ID:VPVqvFnP0	P0b1j2tZrl	DqezdKbx-TiQVbVAODnKZYWfGWt2d2dwtV60Lfvo9O_0drDyJb	0x
NOTES-			11/30/2020			
11) Graphical purlin repres	entation does not depict the	size or the ori	entation of the purlin along the top and/or	bottom cho	prd.	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	5-4-10	10-3-8		18-5-12	22-1-	12	27-1-2		32-4-0	
	5-4-10	4-10-14	1 10 0 0 0 0	8-2-4	3-8-	0 '	4-11-6	1	5-2-14	
Plate Offsets ((X,Y) [2:0-0-0,0	0-0-11], [4:0-4-9,0-3-0], [5	:0-6-0,0-2-0 <u>]</u> , [7:0-3-6,Edge], [15:0-	-2-12,Edgej					
LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL BCLL	sf) 25.0 20.4/20.0 10.0 0.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code JBC2018/TE	2-0-0 1.15 1.15 YES 212014	CSI. TC 0.62 BC 0.75 WB 0.91 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (I -0.18 13 -0.43 13 0.12	oc) l/defl -15 >999 -15 >909 22 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 177 lb	GRIP 197/144 FT = 20%
BCDL	10.0		12011	Mathx / 10					Wolght. Willio	
LUMBER- TOP CHORD BOT CHORD WEBS OTHERS WEDGE Left: 2x4 SP N	2x4 SPF No.2 *I 1-4,4-5: 2x6 SPI 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2	Except* F No.2			BRACING- TOP CHORD BOT CHORD WEBS	Structural v 2-0-0 oc pu Rigid ceiling 1 Row at m	vood sheathir Irlins (3-9-5 m g directly app idpt	ng directly app nax.): 4-5, 7-9 lied. 5-15, 8-10	blied, except end vertic)	als, and
REACTIONS.	(size) 2=0- Max Horz 2=16 Max Uplift 2=-1 Max Grav 2=15	3-8, 22=0-3-8 58(LC 16) 29(LC 16), 22=-132(LC 1 513(LC 2), 22=1467(LC 4	6) 3)							
FORCES. (II TOP CHORD BOT CHORD WEBS	ORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. OP CHORD 2-3=-2505/276, 3-4=-2647/364, 4-5=-2365/369, 5-6=-1913/273, 6-7=-2068/314, 7-8=-1210/160, 10-18=-151/1287, 9-18=-151/1287 JOT CHORD 2-17=-414/2125, 4-15=-6/574, 13-15=-389/2527, 12-13=-387/2531, 11-12=-284/1844, 10-11=-173/1207 VEBS 3-17=-375/128, 15-17=-377/2075, 3-15=-10/407, 5-15=-285/47, 5-13=0/287, 5-12=-1519/224, 6-12=-230/1783, 7-12=-530/81, 7-11=-966/164, 8-11=-69/815, 8-10=-1654/221, 9-22=-1471/186									
NOTES- 1) Unbalancee 2) Wind: ASC II; Exp C; E 13-3-8, Inte exposed ; e grip DOL=1 3) TCLL: ASC DOL=1.15) surcharge a 4) Unbalancee 5) This truss h non-concur 6) Provide add 7) This truss h 8) Bearing at j capacity of me Continticed add to 9) Provide me	d roof live loads ha E 7-16; Vult=115m inclosed; MWFRS rior(1) 13-3-8 to 2 end vertical left and 1.60 E 7-16; Pr=25.0 p ; Is=1.0; Rough Ca applied to all expose d snow loads have has been designed you the other live equate drainage to has been designed joint(s) 22 conside bearing surface. chanical connection in 22 conside	ave been considered for the hph (3-second gust) Vasd (directional) and C-C Ext 1-2-0, Exterior(2E) 21-2-0 dright exposed;C-C for most (roof LL: Lum DOL=1.1 at C; Partially Exp.; Ce=1. sed surfaces with slopes be been considered for this be been considered for this at for greater of min roof live a loads.	his design. =91mph; TCDI erior(2E) -0-11) to 22-1-12, In embers and fo 5 Plate DOL=1 0; Cs=1.00; Ct less than 0.500 design. re load of 12.0 ord live load no using ANSI/TPI bearing plate ca	L=6.0psf; BCDL=4.2 -0 to 2-1-0, Interior(1 terior(1) 22-1-12 to 3 rces & MWFRS for r I.15); Pg=20.0 psf; P =1.10, Lu=50-0-0; M /12 in accordance w psf or 1.00 times flat nconcurrent with any 1 angle to grain forr apable of withstandir	psf; h=15ft; B=45ft; L I) 2-1-0 to 10-3-8, Ex 31-10-12 zone; cantili reactions shown; Lurr Pf=20.4 psf (Lurn DOI tin. flat roof snow loa ith IBC 1608.3.4. roof load of 15.4 psf y other live loads. mula. Building design ng 100 lb uplift at join	=24ft; eave= terior(2R) 10 ever left and iber DOL=1. _=1.15 Plate d governs. F on overhang her should w t(s) except (j	e4ft; Cat.)-3-8 to right 60 plate Rain gs erify it=lb)		November 16,2	
WARNI	NG - Verify design parar	meters and READ NOTES ON TH	IS AND INCLUDED	D MITEK REFERENCE PA	GE MII-7473 rev. 5/19/2020	BEFORE USE				

Design valid for use only with MiTeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			OR	RELEASE FO				
	Summit/61 Woodside	Ply	FION	CONSTRUCT	Truss Type	SS	b	Job
143624493		W 1	SREVIE	AS NOTED ON PLANS	Roof Special		24433	25244
	Job Reference (optional)		ERVICES	DEVELOPMENT SE	Ttool Opecial		24400	2524433
nc. Fri Nov 13 13:04:36 2020 Page 2	ar 9 2020 MiTek Industries, Inc.	8.240 s M	SSOURI	LEE'S SUMMIT, MIS	(S - 67147,	ter), Valley Center, K	Builders FirstSource (Valley 0	Build
InqofdI4572?E4vj07oTSsIVkw5yJb0v	ZrlOqezdKbx-P5YF0ABelOaHnq	POPOb1j2t	D:VPVqvFnF	ID:				
				11/20/2020			IOTES-	NOT

 11/30/2020

 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the

bottom chord.

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

5-	3-8 10-3-8	12-5-12 20-5-12	2 22-	2-4 27-1-6	32-4-0				
5-	3-8 5-0-0	2-2-4 8-0-0	' 1-8	8-8 4-11-2	5-2-10				
Plate Offsets (X,Y) [6:0-4-10	0,Edge], [7:0-6-0,0-2-0], [15:0-5-8,0-	3-0]							
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.4/20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.63 BC 0.91 WB 0.91	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl -0.30 13-15 >999 -0.67 13-15 >578 0.08 23 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144		
BCLL 0.0	Code IRC2018/TPI2014	Matrix-AS				Weight: 173 lb	FT = 20%		
BCDL 10.0									
LUMBER- TOP CHORD 2x4 SPF No.2 * 6-7: 2x6 SPF N BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 OTHERS 2x4 SPF No.2 SLIDER Left 2x4 SPF N	Except* o.2 o.2 2-6-0	B W	RACING- OP CHORD S 2 OT CHORD F /EBS 1	Structural wood sheathi 2-0-0 oc purlins (3-11-4 Rigid ceiling directly ap 1 Row at midpt	ing directly applied, max.): 6-7, 8-10. plied. 6-13, 9-11	except end vertic	als, and		
EACTIONS. (size) 2=0-3-8, 23=0-3-8 Max Horz 2=193(LC 16) Max Uplift 2=-123(LC 16), 23=-138(LC 16) Max Grav 2=1513(LC 2), 23=1491(LC 41)									
FORCES. (lb) - Max. Comp.//i TOP CHORD 2-4=-2405/26 8-9=-1605/23 8-9=-1605/23 BOT CHORD 2-17=-407/20 WEBS 4-17=-397/12 8-12=-61/657 8-12=-61/657	Aax. Ten All forces 250 (lb) or less 3, 4-5=-2598/336, 5-6=-2537/377, 6 6, 11-18=-166/1306, 10-18=-166/13 86, 5-15=-278/86, 13-15=-368/2001 1, 15-17=-363/2094, 4-15=-9/319, 6 , 9-12=-121/1004, 9-11=-1515/255,	except when shown. -7=-1986/269, 7-8=-1852/262 06 12-13=-296/1990, 11-12=-1 -15=-106/899, 7-12=-1380/21 10-23=-1493/197	2, 61/1008 5,						
 NOTES- 1) Unbalanced roof live loads in 2) Wind: ASCE 7-16; Vult=115r II; Exp C; Enclosed; MWFRS 15-5-12, Interior(1) 15-5-12 th exposed ; end vertical left an grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=25.0 p DOL=1.15); Is=1.0; Rough C 3) Unbalanced snow loads have 5) This truss has been designed non-concurrent with other live 6) Provide adequate drainage tr 7) This truss has been designed aparing at joint(s) 23 conside capacity of bearing surface. 9) Provide mechanical connecti 2=123, 23=138. 10) This truss is designed in ac 	ave been considered for this design nph (3-second gust) Vasd=91mph; (directional) and C-C Exterior(2E) · o 22-2-4, Exterior(2R) 22-2-4 to 25- d right exposed;C-C for members a osf (roof LL: Lum DOL=1.15 Plate D at C; Partially Exp.; Ce=1.0; Cs=1.0; sed surfaces with slopes less than i a been considered for this design. d for greater of min roof live load of e loads. o prevent water ponding. d for a 10.0 psf bottom chord live loa ers parallel to grain value using ANS on (by others) of truss to bearing pla	CDL=6.0psf; BCDL=4.2psf; 0-11-0 to 2-1-0, Interior(1) 2- 2-4, Interior(1) 25-2-4 to 31-1 ad forces & MWFRS for react DL=1.15); Pg=20.0 psf; Pf=2(0; Ct=1.10, Lu=50-0-0; Min. f 0.500/12 in accordance with I 12.0 psf or 1.00 times flat roo d nonconcurrent with any oth //TPI 1 angle to grain formula the capable of withstanding 1	h=15ft; B=45ft; L=2 1-0 to 12-5-12, Ext 0-12 zone; cantilev ions shown; Lumb 0.4 psf (Lum DOL= lat roof snow load BC 1608.3.4. f load of 15.4 psf o her live loads. be live loads. Building designe 00 lb uplift at joint(s	24ft; eave=4ft; Cat. terior(2R) 12-5-12 to ver left and right er DOL=1.60 plate e1.15 Plate governs. Rain in overhangs er should verify s) except (jt=lb)		E OF MISS SCOTT M. SEVIER PE-200101880 SIONAL EN	CULLE *		

10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 November 16,2020

		RELEASE FOR			
Job Truss	Truss Type		Ply	Summit/61 Woodside	
2524433 M5	Roof Special	AS NOTED ON PLANS REV	IEW 1	143	624494
		DEVELOPMENT SERVIC	ES	Job Reference (optional)	
Builders FirstSource (Valley Center),	Valley Center, KS - 67147,	LEE'S SUMMIT, MISSOU	RI 8.240 s M	ar 9 2020 MiTek Industries, Inc. Fri Nov 13 13:04:38 2020 Pag	ge 2
		ID:VPV	qvFnP0P0b1	2tZrlOqezdKbx-LUg0RsDuH0q?07y1lj6ZCT4aTjL2bhslJb_ry.	Jb0t
NOTES-		11/30/2020			
This truss design requires that a 	minimum of 7/16" structural woo	d sheathing be applied directly to the top	chord and	1/2" gypsum sheetrock be applied directly to the	
bottom chord.					

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y)-	- [2:0-0-0,0)-0-11], [6:0-5-4,Edge], [7	7:0-10-8,0-2-0],	[16:0-2-12,0-2-12], [18:0-3-8,0-2-0]					
LOADING (psf) TCLL (roof) Snow (Pf/Pg) 20.4, TCDL BCLL BCDL	25.0 /20.0 10.0 0.0 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TI	2-0-0 1.15 1.15 YES Pl2014	CSI. TC 0.89 BC 0.70 WB 0.49 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.13 13-15 -0.31 13-15 0.08 23	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 191 lb	GRIP 197/144 197/144 FT = 20%
LUMBER-					BRACING-					
TOP CHORD 2x6 6-7: BOT CHORD 2x4 WEBS 2x4 OTHERS 2x4 WEDGE Left: 2x4 SP No.3	SPF No.2 *E 2x4 SPF 16 SPF No.2 SPF No.2 SPF No.2 SPF No.2	Except* 50F 1.5E, 7-8,8-10: 2x4	SPF No.2		TOP CHORD BOT CHORD WEBS	Structural wood 2-0-0 oc purlins Rigid ceiling dire 1 Row at midpt	sheathing (2-2-0 ma ectly appli	g directly appl (x.): 6-7, 8-10 ed. 6-13, 7-12,	lied, except end vertic). , 9-11, 10-23	als, and
REACTIONS. (Ma Ma Ma	(size) 2=0-3 x Horz 2=22 x Uplift 2=-11 x Grav 2=15	3-8, 23=0-3-8 3(LC 16) 16(LC 16), 23=-144(LC 1 13(LC 2), 23=1430(LC 4	16) 11)							
FORCES. (Ib) - M	ax. Comp./M	ax. Ten All forces 250	(lb) or less exce	ept when shown.						
TOP CHORD 2-	3=-2519/241	, 3-5=-2606/328, 5-6=-2	578/395, 6-7=-1	618/220, 7-8=-1432/	/206,					
BOT CHORD 2-	·9=-1206/184 .18426/214	, 11-19=-183/1302, 10-1 1 5-16=-384/105 15-16	9=-183/1302 349/1876 13	-15348/1880 12-1	3265/1623					
11	1-12=-125/70	1	- 545/1070, 15	10= 040/1000, 12 1	5= 200/1020,					
WEBS 3- 7- 10	18=-358/134 13=-25/337, 0-23=-1432/2	, 16-18=-419/2010, 6-16 7-12=-1378/233, 8-12=-/ 07	i=-184/974, 6-15 48/536, 9-12=-1	5=0/303, 6-13=-423/ 46/1039, 9-11=-1378	105, 8/240,					
NOTES-										
 Unbalanced roof Wind: ASCE 7-10 II; Exp C; Encloss 17-0-12, Interior(exposed; end ve grip DOL=1.60 TCLL: ASCE 7-1 DOL=1.15); Is=1 surphare applie 	live loads ha 6; Vult=115m ed; MWFRS 1) 17-0-12 to ertical left and 6; Pr=25.0 ps .0; Rough Ca d to all expos	ve been considered for t ph (3-second gust) Vasc (directional) and C-C Ex 24-2-4, Exterior(2R) 24- right exposed;C-C for n sf (roof LL: Lum DOL=1. t C; Partially Exp.; Ce=1	this design. d=91mph; TCDL terior(2E) -0-11- -2-4 to 27-2-4, li nembers and for 15 Plate DOL=1 .0; Cs=1.00; Ct: Jess than 0.500	=6.0psf; BCDL=4.2p 0 to 2-1-0, Interior(1 nterior(1) 27-2-4 to 3 cces & MWFRS for re .15); Pg=20.0 psf; P =1.10, Lu=50-0; M (12) in accordance w	osf; h=15ft; B=45ft; L=) 2-1-0 to 14-0-12, E3 1-10-12 zone; cantile eactions shown; Lum f=20.4 psf (Lum DOL in. flat roof snow load ith IBC 1668 3.4	=24ft; eave=4ft; (kterior(2R) 14-0- ever left and right ber DOL=1.60 pl =1.15 Plate I governs. Rain	Cat. 12 to ate		SCOTT M. SEVIER	HOURI *
4) Unbalanced snov5) This truss has be non-concurrent w	w loads have en designed vith other live	been considered for this for greater of min roof liv loads.	s design. ve load of 12.0 p	osf or 1.00 times flat	roof load of 15.4 psf	on overhangs		A Res	PE-200101880	n El
6) Provide adequate	e drainage to	prevent water ponding.						N.	1 Sec	ST A
 All plates are MT The Eabrication 	20 plates unl	ess otherwise indicated.							ONAL ET	A
9) This truss has be	en designed	for a 10.0 psf bottom ch	ord live load no	nconcurrent with any	other live loads.				Com	9
10) Bearing at joint((s) 23 conside	ers parallel to grain value	e using ANSI/TF	PI 1 angle to grain for	rmula. Building desig	ner should verify	/		November 16,2	:020
Continanactin pagea	ring surface.							1		
WARNING - Ve Design valid for u a truss system. Be building design. E	erify design paran se only with MiTe efore use, the bu Bracing indicated	neters and READ NOTES ON T ek® connectors. This design is ilding designer must verify the i is to prevent buckling of indivi-	HIS AND INCLUDED based only upon pa applicability of desig dual truss web and/d	MITEK REFERENCE PAG arameters shown, and is fo in parameters and properly or chord members only. A	GE MII-7473 rev. 5/19/2020 or an individual building cor y incorporate this design in dditional temporary and pe	BEFORE USE. nponent, not to the overall ermanent bracing a tho			MiTek [°]	

16023 Swingley Ridge Rd Chesterfield, MO 63017

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			RELEASE FOR	
Job	Truss	Truss Type	CONSTRUCTION Ply	Summit/61 Woodside
2524433	M6	Roof Special	AS NOTED ON PLANS REVIEW	143624495
2524433	NIO NIO		DEVELOPMENT SERVICES	Job Reference (optional)
Builders FirstSource ((Valley Center),	Valley Center, KS - 67147,	LEE'S SUMMIT, MISSOURI 8.240 s M	ar 9 2020 MiTek Industries, Inc. Fri Nov 13 13:04:40 2020 Page 2
			ID:VPVqvFnP0P0b1j	tZrlOqezdKbx-IsnmsYE9pd4jGR6Qs891Hu9sqX5r3iv2nvTy3tyJb0r
NOTES-			11/30/2020	

- 11/30/2020
 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=116, 23=144.
 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 13) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

3x4 =

5x8 =

3x4 ||

		5-3-8		10-3-8	12-0-12	20-0-12		26-2-4			32-3-8		
Plate Offsets (2	X,Y) [6:0-4	-10,Edge], [7:	0-6-0,0-2-0],	[9:0-1-8,Ed	ge], [16:0-3-8,0-2	2-0]		0.0			0.11		
LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	f) 25.0 20.4/20.0 10.0 0.0 10.0	SP/ Pla Lun Rep Coo	ACING- te Grip DOL nber DOL o Stress Incr de IRC2018/	2-0-0 1.15 1.15 YES TPI2014	CSI. TC BC WB Matri	0.64 0.83 0.58 x-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.28 -0.63 0.10	(loc) 12-14 12-14 22	l/defl >999 >617 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 175 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS OTHERS SLIDER	2x4 SPF No. 6-7: 2x6 SPF 2x4 SPF No. 2x4 SPF No. 2x4 SPF No. Left 2x4 SPF	2 *Except* No.2 2 2 2 No.2 2-6-0				E T E V	BRACING- TOP CHORD BOT CHORD VEBS	Structura 2-0-0 oc Rigid ce 1 Row a	al wood purlins iling dire t midpt	sheathin (4-0-8 m ectly appl	ng directly ap ax.): 6-7, 8-4 lied. 6-12, 7-1	oplied, except end vertie 9. 11, 8-11, 9-22	cals, and
REACTIONS.	(size) 2: Max Horz 2: Max Uplift 2: Max Grav 2:	=0-3-8, 22=0- =249(LC 16) =-109(LC 16) =1512(LC 2),	3-0 , 22=-152(LC 22=1419(LC	: 16) 2)									

4x6 =

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-4=-2403/225, 4-5=-2594/309, 5-6=-2519/350, 6-7=-2097/219, 7-8=-1080/125, 8-9=-879/147 BOT CHORD 2-16=-446/2085, 5-14=-266/84, 12-14=-416/2053, 11-12=-336/2101 4-16=-396/128, 14-16=-403/2086, 4-14=-14/284, 6-14=-108/870, 7-12=0/316, WFBS 7-11=-1644/238, 9-11=-241/1412, 9-22=-1420/218

16

6x6 ||

4x8 =

15

3x4 ||

NOTES-

1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior(1) 2-1-0 to 12-0-12, Exterior(2R) 12-0-12 to 15-0-12, Interior(1) 15-0-12 to 26-2-4, Exterior(2R) 26-2-4 to 29-2-4, Interior(1) 29-2-4 to 31-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4. 4) Unbalanced snow loads have been considered for this design.

- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

6) Provide adequate drainage to prevent water ponding.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) Bearing at joint(s) 22 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=109. 22=152.

10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Continued on page 2

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not Lessign value use only winn win exec connectors. Inis design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporely incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

November 16,2020

			RELEASE F	OR			
Job	Truss	Truss Type	CONSTRUCT	ION	Ply	Summit/61 Woodside	
2524433	M7	Roof Special	AS NOTED ON PLAN	S₁REVIE	W 1	143624	496
2524433		rtoor opeolar	DEVELOPMENT SE	RVICES	; 	Job Reference (optional)	
Builders FirstSource (Valley C	Center), Valley Center, K	S - 67147,	LEE'S SUMMIT, MI	SSOURI	8.240 s M	ar 9 2020 MiTek Industries, Inc. Fri Nov 13 13:04:42 2020 Page 2	
			ID:VPV	qvFnP0P0l	b1j2tZrlOo	ezdKbx-EFvXHEGPLEKRVIGo_ZBVMJFGKKIDXa?KEDy27lyJb0p	
NOTES-			11/30/2020				
This truss design require	es that a minimum of 7/16" s	structural woo	d sheathing be applied directly to	the top ch	nord and	I/2" gypsum sheetrock be applied directly to the	
bottom chord.							

bottom chord.
12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

beight valid for dise only with with with sets of the design is based only door parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual russ web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			RELEASE FO	DR			
Job T	russ	Truss Type	CONSTRUCT	ØN	Ply	Summit/61 Woodside	
2524433	18	Roof Special	AS NOTED ON PLANS	REVIE	W 1		43624497
2324433		rtoor opeoidi	DEVELOPMENT SE	RVICES		Job Reference (optional)	
Builders FirstSource (Valley C	enter), Valley Center, K	S - 67147,	LEE'S SUMMIT, MIS	SOURI	8.240 s M	ar 9 2020 MiTek Industries, Inc. Fri Nov 13 13:04:45 2020 F	Page 2
			ID:V	PVqvFnP0)P0b1j2tZ	rlOqezdKbx-eqbfvFlHe9j0MC_NfhkC_xtmmYmJkzxnwBBik4y	/Jb0m
NOTES-			11/30/2020				
This truss design require	es that a minimum of 7/16" s	tructural woo	d sheathing be applied directly to	the top ch	ord and 1	/2" gypsum sheetrock be applied directly to the	
bottom chord.							

bottom chord.
12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oullapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses saft truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

MiTek

			RELEASE FO	DR			
Job	Truss	Truss Type	CONSTRUCT	ØN	Ply	Summit/61 Woodside	
2524433	MQ	Roof Special	AS NOTED ON PLANS	REVIE	W 1	12	13624498
2024400			DEVELOPMENT SEI	RVICES		Job Reference (optional)	
Builders FirstSource (Valley	Center), Valley Center, K	S - 67147,	LEE'S SUMMIT, MIS	SOURI	8.240 s N	ar 9 2020 MiTek Industries, Inc. Fri Nov 13 13:04:49 2020 P	age 2
			ID	:VPVqvFn	P0P0b1j2	tZrlOqezdKbx-XbqAldLohODRrpI9uXp89n1SS96EgiKMrp9wt	ryJb0i
NOTES-	entetion does not denist the		11/30/2020	ond/orbo	the mean had		
13) Graphical punin repres	entation does not depict the	size or the on	entation of the putlin along the top	and/or bo	cuorn cho	ia.	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			RELEASE FO	DR			
Job	Truss	Truss Type	CONSTRUCT	ØN	Ply	Summit/61 Woodside	
2524433	P1	Hin Girder	AS NOTED ON PLANS	REVIE	W 1		143624499
2324433			DEVELOPMENT SEF	VICES		Job Reference (optional)	
Builders FirstSource (Valley	Center), Valley Center, k	KS - 67147,	LEE'S SUMMIT, MIS	SOURI	8.240 s M	ar 9 2020 MiTek Industries, Inc. Fri Nov 13 13:04:51 2020	Page 2
			ID:V	PVqvFnP()P0b1j2tZ	rlOqezdKbx-T_ywAJN2D?T947SX?yrcEC7way_K8o5fl7e1xł	kyJb0g
			11/30/2020				
LOAD CASE(S) Standard							
Concentrated Loads (lb)							

Concentrated Loads (lb) Vert: 3=-30(B) 4=-30(B) 8=-14(B) 7=-14(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

- II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-7-8 to 2-4-8, Interior(1) 2-4-8 to 3-2-8, Exterior(2R) 3-2-8 to 6-5-Interior(1) 6-5-0 to 7-0-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

MITEK 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	3-2-8		3-9-12	6-5-0			
	3-2-8		0-7-4	2-7-4			
Plate Offsets (X,Y) [2:0-3-0,0)-1-2], [4:0-3-0,0-1-2], [5:Edge,0-1-8]						
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.4/20.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.24 BC 0.29 WB 0.02 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl -0.04 7 >999 -0.07 7 >999 0.00 6 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCDL 10.0		Matrix-AS				Weight. 20 lb	11 = 2070
LUMBER-		BI	RACING-				

BOT CHORD

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF No.2

REACTIONS. (size) 8=0-3-8, 6=0-3-8

Max Horz 8=54(LC 15) Max Uplift 8=-28(LC 12), 6=-28(LC 13)

Max Grav 8=294(LC 40), 6=294(LC 40)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 2-7-4, Interior(1) 2-7-4 to 3-2-8, Exterior(2E) 3-2-8 to 3-9-12, Interior(1) 3-9-12 to 6-3-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.

5) Provide adequate drainage to prevent water ponding.

- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6.
 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Structural wood sheathing directly applied, except end verticals, and

2-0-0 oc purlins (6-0-0 max.): 1-2, 4-5.

Rigid ceiling directly applied

November 16,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2x4 💋

3x4 ||

<u> </u>	<u>5-9-12</u> 5-9-12								
Plate Offsets (X,Y) [2:0-3-0,E	dge], [3:Edge,0-1-8]								
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.22 BC 0.19 WB 0.00 Matrix-R	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 14 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2		BR TO BO	ACING- P CHORD T CHORD	Structura except er Rigid ceil	I wood nd verti ling dire	sheathin cals, and ectly appl	g directly ap 2-0-0 oc pu ied or 10-0-0	plied or 5-9-12 oc purl rlins: 2-3.) oc bracing.	ins,

REACTIONS. (size) 1=5-9-4, 4=5-9-4

Max Horz 1=36(LC 15) Max Uplift 1=-18(LC 16), 4=-23(LC 13)

Max Grav 1=227(LC 35), 4=240(LC 34)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) Provide adequate drainage to prevent water ponding.
- 6) Gable requires continuous bottom chord bearing.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 4.
 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.4/20.0 TCDL 10.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.79 BC 0.42 WB 0.00 Matrix-R	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 MT20HS Weight: 21 lb	GRIP 197/144 148/108 FT = 20%
		DD	ACINC						

BOT CHORD

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2

REACTIONS. (size) 1=7-9-4, 4=7-9-4 Max Horz 1=106(LC 15)

Max Uplift 1=-22(LC 16), 4=-29(LC 13) Max Grav 1=376(LC 35), 4=337(LC 35)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-7-9 to 3-7-9, Interior(1) 3-7-9 to 6-11-0, Exterior(2E) 6-11-0 to 7-8-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- Unbalanced snow loads have been considered for this design.

5) Provide adequate drainage to prevent water ponding.

- All plates are MT20 plates unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 4. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 2-3.

Rigid ceiling directly applied or 10-0-0 oc bracing

🗼 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 OTHERS 2x4 SPF No.2

REACTIONS.

(size) 1=9-9-4, 4=9-9-4, 5=9-9-4 Max Horz 1=158(LC 13)

Max Uplift 4=-23(LC 13), 5=-81(LC 16) Max Grav 1=189(LC 2), 4=141(LC 20), 5=512(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. 2-5=-386/243WEBS

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-7-9 to 3-7-9, Interior(1) 3-7-9 to 9-8-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 DOLL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.19 BC 0.10 WB 0.00	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 197/144
BCDL 0.0 BCDL 10.0	Code IRC2018/TPI2014	Matrix-P						Weight: 10 lb	FT = 20%
		BD	ACING.						

BOT CHORD

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2

WEBS 2x4 SPF No.2

REACTIONS. 1=3-10-8, 3=3-10-8 (size) Max Horz 1=55(LC 13) Max Uplift 1=-10(LC 16), 3=-14(LC 13) Max Grav 1=147(LC 20), 3=147(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and

referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 3-11-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

November 16,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

