

11/30/2020

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

Re: 2523907

The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Builders FirstSource (Valley Center).

Pages or sheets covered by this seal: I43654583 thru I43654663

My license renewal date for the state of Missouri is December 31, 2021.

Missouri COA: Engineering 001193

November 17,2020

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the $\ensuremath{\mathsf{jurisdiction}}(s)$ identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

,Engineer

		F	RELEASE FO	R				
Job Truss	Truss Type	C	ONSTRUCTIO	DN Ply				140054500
2523907 A01	HIP GIRDER	AS NO DEVE	TED ON PLANS	REVIEW 1 VICES	Job Refe	rence (optional)		143654583
Builders FirstSource (Valley Center),	Valley Center, KS - 67147,	LEE'	S SUMMIT, MISS	OUR8.240 s Ma	r 9 2020 N	ITek Industries, Inc.	Tue Nov 17 10:03:15	2020 Page 1
			ID:wH4F	RYhEsTNeUP2dX	vOfi1syQY	8e-SX4rCDz7ypeZsyq	zNmfxZWYFLApsrtT	9NTf5TnylJlw
T0-10-8 2-11-12	5-8-0	10-4-0	11/30/2020	15-0-0		17-8-4	20-8-0	21-6-8
0-10-8 2-11-12	2-8-4	4-8-0	11/00/2020	4-8-0		2-8-4	2-11-12	0-10-8

Scale = 1:37.1

ŀ	2-11-12	5-8-0	1	10-4-0			15-0-0			17-8-4 20-8-0		20-8-0	
Plate Offsets (X	(,Y) [2:0-0-0,0	-6-3], [8:0-0-0,0-6-3]		4-8-0			4-8	3-0			2-8-4	2-11-12	
LOADING (psf TCLL (roof) Snow (Pf/Pg) 2 TCDL BCLL BCDI) 25.0 20.4/20.0 20.0 0.0 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TP	2-0-0 1.15 1.15 NO I2014	CSI. TC BC WB Matri:	0.99 0.80 0.28 x-MS		DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.33 0.08	(loc) 11 11 8	l/defl >999 >743 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 77 lb	GRIP 197/144 148/108 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS WEDGE Left: 2x4 SPF N REACTIONS.	2x4 SPF No.2 2x4 SPF 1650F 2x4 SPF No.2 lo.2, Right: 2x4 Sl (size) 2=0-4	1.5E PF No.2 I-0, 8=0-4-0				BRA TOP BOT	CING- CHORD	Structura except 2-0-0 oc Rigid cei	al wood purlins iling dire	sheathir (2-0-5 m ectly app	ng directly a nax.): 4-6. Ilied or 10-0	pplied or 2-8-15 oc purli	ins,
FORCES. (Ib) TOP CHORD BOT CHORD	Max Horz 2=-34 Max Uplift 2=-19 Max Grav 2=173 - Max. Comp./Ma 2-3=-3140/341, 7-8=-3140/341 2-13=-275/2844	(LC 10))7(LC 12), 8=-197(LC 12) 36(LC 35), 8=1736(LC 35 ax. Ten All forces 250 (I , 3-4=-3094/345, 4-5=-39) 6, 11-13=-267/2916, 10-1) b) or less exce 27/434, 5-6=-3 1=-267/2916, 8	pt when sh 927/434, 6- 3-10=-275/2	own. 7=-3094/ 2846	345,							
 WEBS NOTES- Uhbalanced Wind: ASCE Exp C; Enplate grip DC TCLL: ASCE DCL=1.15); Isurfaces with Uhbalanced This truss ha non-concurre This truss ha Provide mect 2=197, 8=19 This truss is referenced Graphical p 	4-11=-108/112i roof live loads har 7-16; Vult=115m closed; MWFRS (JL=1.60 7-16; Pr=25.0 ps Is=1.0; Rough Ca a slopes less than snow loads have is been designed hanical connectio 7. s designed in acco standard ANSI/TF urlin representation	8, 5-11=-841/172, 6-11=- ve been considered for th ph (3-second gust) Vasd= (directional); cantilever lef if (roof LL: Lum DOL=1.1! t C; Partially Exp.; Ce=1.0 0.500/12 in accordance to been considered for this of for greater of min roof live loads. prevent water ponding. ess otherwise indicated. for a 10.0 psf bottom cho n (by others) of truss to b prdance with the 2018 Int Pl 1. on does not depict the siz	108/1128 is design. -91mph; TCDL t and right exp 5 Plate DOL=1); Cs=1.00; Ct- with IBC 1608. design. ⇒ load of 12.0 p rd live load nor earing plate ca ernational Res e or the orienta	=6.0psf; BC osed ; end 15); Pg=20 =1.10, Lu=5 3.4. osf or 1.00 t nconcurrent pable of wil idential Coc ation of the	CDL=4.2p vertical le 0.0 psf; Pf 0-0-0 Ra imes flat i with any thstanding de sectior purlin alo	sf; h= ft and '=20.4 ain sur roof lo other g 100 ns R50 ng the	15ft; B=45ft; L= right exposed psf (Lum DOL charge applied ad of 15.4 psf live loads. lb uplift at joint 02.11.1 and R8 o top and/or bo	=24ft; eav ; Lumber =1.15 Pla t to all ex on overha (s) excep 02.10.2 a ttom choi	ve=4ft; (DOL=1 ate posed angs ot (jt=lb) and rd.	Cat. .60		STATE OF MIS ANDREW THOMAS JOHNSON NUMBER PE-20170189	SOLINI SOLINI

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

NITEK* 16023 Swingley Ridge Rd Chesterfield, MO 63017

November 17,2020

			RELEASE FOR	
Job	Truss	Truss Type		140054500
2523907	A01		AS NOTED ON PLANS REVIEW	143654583
2020001		I'M ONOEN	DEVELOPMENT SERVICES	Job Reference (optional)
Builders FirstSource (Valley	Center), Valley Center, K	S - 67147,	LEE'S SUMMIT, MISSOURB.240 s Ma	r 9 2020 MiTek Industries, Inc. Tue Nov 17 10:03:15 2020 Page 2
			ID:wH4RYhEsTNeUP2dX	VOfi1svQY8e-SX4rCDz7vpeZsvazNmfxZWYFLApsrtT9NTf5TnvIJIw

NOTES-

NOTES-12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 72 lb down at 2-Q-12, 54 lb down and 36 lb up at 4-0-12, 115 lb down and 62 lb up at 6-0-12, 115 lb down and 61 lb up at 8-0-12, 115 lb down and 61 lb up at 10-0-12, 115 lb down and 61 lb up at 10-7-4, 115 lb down and 61 lb up at 12-7-4, 115 lb down and 62 lb up at 14-7-4, and 54 lb down and 36 lb up at 16-7-4, and 72 lb down at 18-7-4 on top chord, and 125 lb down and 42 lb up at 2-0-12, 82 lb down and 36 lb up at 4-0-12, 35 lb down at 6-0-12, 35 lb down at 8-0-12, 35 lb down at 10-7-4, 35 lb down at 12-7-4, 35 lb down at 14-7-4, and 82 lb down and 36 lb up at 16-7-4, and 125 lb down and 42 lb up at 18-7-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

13) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-4=-71, 4-6=-81, 6-9=-71, 14-17=-20

Concentrated Loads (lb)

Vert: 11=-56(F) 5=-167(F) 20=-15(F) 21=-19(F) 22=-86(F) 25=-83(F) 26=-83(F) 29=-86(F) 30=-19(F) 31=-15(F) 32=-125(F) 33=-73(F) 34=-28(F) 35=-28(F) 36=-28(F) 37=-28(F) 38=-73(F) 39=-125(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			RELEASE FOR			
Job	Truss	Truss Type	CONSTRUCTION Ply	/		
2523907	A02	нр	AS NOTED ON PLANS REVIEW	1		143654584
2020001			DEVELOPMENT SERVICES	Job Reference	(optional)	
Builders FirstSource (Val	ley Center),	Valley Center, KS - 67147,	LEE'S SUMMIT, MISSOUR _{8.240}) s Mar 9 2020 MiTek	Industries, Inc. Tue Nov 17 10:0	3:17 2020 Page 1
			ID:wH4RYhEsTNeUP2	dXvOfi1syQY8e-OwBo	cdv_NURuH5G_LUBiPexdko_XA	Jp3Sqm8BYfylJlu
₁ 0-10-8	4-3-12	8-4-0	11/00/2020	16-4-4	20-8-0	21-6-8
0-10-8	4-3-12	4-0-4	4-0-0	4-0-4	4-3-12	0-10-8
						Scale = 1:37.1

L		8-4-0	1	2-4-0			20-8-0		
		8-4-0	· · · · · ·	4-0-0			8-4-0		
Plate Offsets (X,Y)	[2:0-0-0,0-6	ö-3], [2:0-3-8,Edge], [7:0-0-0,0-6-3], [7	::0-3-8,Edge]						
LOADING (psf) TCLL (roof) 2 Snow (Pf/Pg) 20.4/2 TCDL 2 BCLL BCDL 1	25.0 20.0 20.0 0.0 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.42 BC 0.69 WB 0.14 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT	in (loc) -0.16 11-14 -0.27 11-14) 0.06 7	l/defl >999 >929 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 69 lb	GRIP 197/144 FT = 20%
				DDACING					
TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S WEDGE Left: 2x4 SPF No.2, R	SPF No.2 SPF No.2 SPF No.2 Right: 2x4 SP	F No.2		BRACING- TOP CHORD BOT CHORD	Structural wood 2-0-0 oc purlins Rigid ceiling dire	sheathing (4-4-1 ma: ectly applie	directly apţ ĸ.): 4-5. d.	olied, except	
REACTIONS. (si Max Max Max	ize) 2=0-4- Horz 2=-49(Uplift 2=-102 Grav 2=1249	0, 7=0-4-0 LC 14) 2(LC 16), 7=-102(LC 16) 9(LC 39), 7=1249(LC 39)							
FORCES.(lb) - MaxTOP CHORD2-33BOT CHORD2-11WEBS3-11	x. Comp./Max =-2222/313, 3 1=-241/2007, 1=-416/103, 4	x. Ten All forces 250 (lb) or less exc 3-4=-1874/261, 4-5=-1713/263, 5-6=- , 9-11=-154/1713, 7-9=-247/2007 4-11=0/288, 5-9=0/288, 6-9=-416/103	ept when shown. 1874/261, 6-7=-2222/	313					
 NOTES- 1) Unbalanced roof lin 2) Wind: ASCE 7-16; II; Exp C; Enclosed 12-4-0, Exterior(2R- exposed;C-C for m 3) TCLL: ASCE 7-16; DOL=1.15); Is=1.0 surcharge applied 4) Unbalanced snow 5) This truss has been non-concurrent wit 6) Provide adequate of 7) This truss has been 8) Provide mechanica 2=102, 7=102. 9) This truss is design referenced standar 10) This truss design sheetrock be app 11) Graphical purlin r 	ive loads have ; Vult=115mpl d; MVFRS (c R) 12-4-0 to 1 nembers and ; Pr=25.0 psf ; Rough Cat to all expose loads have b an designed for al connection ned in accoror ned in accoror ned in accoror ned in accoror ned in accoror ned in accorot representation	e been considered for this design. h (3-second gust) Vasd=91mph; TCD lirectional) and C-C Exterior(2E) -0-10 6-6-9, Interior(1) 16-6-9 to 21-6-8 zon forces & MWFRS for reactions showr (roof LL: Lum DOL=1.15 Plate DOL= C; Partially Exp.; Ce=1.0; C s=-1.00; C d surfaces with slopes less than 0.500 een considered for this design. or greater of min roof live load of 12.0 bads. revent water ponding. or a 10.0 psf bottom chord live load no (by others) of truss to bearing plate c fance with the 2018 International Resi 1. t a minimum of 7/16" structural wood s o the bottom chord. n does not depict the size or the orien	L=6.0psf; BCDL=4.2p 0-8 to 2-1-8, Interior(1) e; cantilever left and r t; Lumber DOL=1.60 p 1.15); Pg=20.0 psf; Pf t=1.10, Lu=50-0-0; Mi 0/12 in accordance wi psf or 1.00 times flat r onconcurrent with any apable of withstanding dential Code sections sheathing be applied of tation of the purlin alo	sf; h=15ft; B=45ft; I 2-1-8 to 8-4-0, Ext ight exposed ; end late grip DOL=1.6(=20.4 psf (Lum DO n. flat roof snow loa th IBC 1608.3.4. roof load of 15.4 ps other live loads. g 100 lb uplift at joir R502.11.1 and R8 directly to the top ch ng the top and/or b	L=24ft; eave=4ft; erior(2E) 8-4-0 to vertical left and ri L=1.15 Plate d governs. Rain f on overhangs ht(s) except (jt=lb) 02.10.2 and hord and 1/2" gyp: ottom chord.	Cat. ght sum	O THE	ANDREW THOMAS TOHISON FUMBER PE-20170189 November 17,	93 100 100 100 100 100 100 100 100 100 10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			F	RELEASE FO	R			
Job	Truss	Truss Type	C	ONSTRUCTIO	DN Ply			
2523907	A03	COMMON	AS NO	TED ON PLANS	REVIEW			143654585
2020001	100	COMMON	DEVE	ELOPMENT SER	VICES	Job Reference	e (optional)	
Builders FirstSource (Valley	Center), Valley Ce	nter, KS - 67147,	LEE'	s summit, miss	OURB.240 s Ma	r 9 2020 MiTek	Industries, Inc. Tue Nov 17 10	:03:18 2020 Page 1
				ID:wH4F	YhEsTNeUP2dX	Ofi1syQY8e-se	l_qF??Fk08jQZY2vDeB9AuUO	qN2DQb3Qul46ylJlt
₀ -10-8	5-3-12		10-4-0	11/30/2020	15-4-4	-	20-8-0	21-6-8
0-10-8	5-3-12		5-0-4	11/00/2020	5-0-4		5-3-12	0-10-8

Scale = 1:35.9

	<u> </u>		+ <u>20-8-0</u> 10-4-0					
Plate Offsets (X,Y) [2:0-0-0,0	0-6-3], [2:0-3-8,Edge], [6:0-3-8,Edge], [6:	:0-0-0,0-6-3], [8:0-4-0,Ed	ge]					
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 15.4/20.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. TC 0.42 BC 0.82 WB 0.33 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc -0.14 8-11 -0.31 8-11) 0.06 (l/defl >999 >790 5 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 70 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 WEDGE		BF TC BC	RACING- DP CHORD DT CHORD	Structural woo Rigid ceiling d	d sheathir irectly app	ng directly applie lied.	d.	

Left: 2x4 SPF No.2, Right: 2x4 SPF No.2

REACTIONS. (size) 2=0-4-0, 6=0-4-0 Max Horz 2=-60(LC 14) Max Uplift 2=-102(LC 16) 6--103

Max Uplift 2=-102(LC 16), 6=-102(LC 16) Max Grav 2=1215(LC 2), 6=1215(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-3=-2184/350, 3-4=-1648/260, 4-5=-1648/260, 5-6=-2184/350
- BOT CHORD 2-8=-262/1976, 6-8=-267/1976
- WEBS 3-8=-599/162, 4-8=-32/634, 5-8=-599/162

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 10-4-0, Exterior(2R) 10-4-0 to 13-4-0, Interior(1) 13-4-0 to 21-6-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=102, 6=102.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			RELEASE FOR	
Job	Truss	Truss Type		140054500
2523907	A04	ROOF SPEC	AL GIRDER NOTED ON PLANS REVIEW DEVELOPMENT SERVICES 2	Job Reference (optional)
Builders FirstSource (Valley	Center), Valley Center, K	S - 67147,	LEE'S SUMMIT, MISSOUR 2.240 s Ma ID:wH4RYhEsTNeUP2dXvO	r 9 2020 MiTek Industries, Inc. Tue Nov 17 10:03:24 2020 Page 2 fi1syQY8e-hG7F5I4mranHRL0hP9K2QQQqwoxLSqwURML3IlyIJIn

11/30/2020

NOTES-

6) Unbalanced snow loads have been considered for this design.

7) Provide adequate drainage to prevent water ponding.

8) All plates are MT20 plates unless otherwise indicated.

9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 27=446, 12=466.

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

13) Use Simpson Strong-Tie HUS26 (14-10d Girder, 4-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 0-7-4 from the left end to 2-7-4 to connect truss(es) to front face of top chord.

14) Use Simpson Strong-Tie HUS26 (14-10d Girder, 4-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 4-7-4 from the left end to 16-5-12 to connect truss(es) to front face of bottom chord.

15) Use Simpson Strong-Tie HUS26 (14-10d Girder, 6-10d Truss) or equivalent at 18-7-4 from the left end to connect truss(es) to front face of top chord.

16) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-81, 3-6=-71, 6-9=-71, 9-11=-81, 15-25=-20, 12-27=-20 Concentrated Loads (lb)

Vert: 20=-1205(F) 2=-900(F) 10=-1681(F) 15=-1086(F) 18=-1116(F) 28=-923(F) 33=-958(F) 34=-958(F) 35=-1294(F) 36=-1027(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale = 1:37.3

<u>⊢</u>	2-9-0	6-7-10	10-8-0	14-	-8-6	18-7-0	21-0-0		
Plate Offsets (X,Y)	[2:0-0-0,0-3-13], [4:0)-4-13,Edge], [8:0-5-12,0-0-	12], [9:0-2-12,0-0-9], [11:0	-3-8,0-1-8], [13:	0-3-8,0-1-8]	5-10-10	2-5-0		
LOADING (psf) TCLL (roof) 25. Snow (Pf/Pg) 20.4/20.1 TCDL 20. BCLL 0. BCDL 10.	0 SPA0 0 Plate 0 Lumb .0 Rep .0 Code	CING- 2-0-0 ∋ Grip DOL 1.15 ber DOL 1.15 Stress Incr NO e IRC2018/TPI2014	CSI. TC 0.83 BC 0.98 WB 0.70 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.29 12 -0.59 12) 0.07 9	l/defl L/d >876 240 >430 180 n/a n/a	PLATES MT20 MT20HS Weight: 84 lb	GRIP 197/144 148/108 FT = 20%	
LUMBER- TOP CHORD 2x4 SP 4-8: 2x4 BOT CHORD 2x4 SP WEBS 2x4 SP SLIDER Left 2x4 REACTIONS. (size Max Ho Max Up Max G	F No.2 *Except* 4 SPF 1650F 1.5E F 1650F 1.5E F No.2 4 SPF No.2 2-6-0, Ri 9) 9=Mechanical, 2 orz 2=30(LC 82) plift 9=-162(LC 12), 2 rav 9=1762(LC 34),	ight 2x6 SPF No.2 2-6-0 2=0-4-0 2=-186(LC 12) 2=1790(LC 2)	BF TC BC	AACING- OP CHORD	Structural wood except 2-0-0 oc purlins Rigid ceiling dire	sheathing directly a (2-4-13 max.): 4-8. ectly applied or 10-0	applied or 2-5-12 oc purli	ns,	
FORCES. (lb) Max. TOP CHORD 2-4 8-9 BOT CHORD 2-15= 9-10: WEBS 4-13= 7-11=	Comp./Max. Ten A 2855/235, 4-5=-5061 393/95 195/2498, 13-15=-1 =-176/2313 147/2811, 5-13=-96 1005/119, 8-11=-15	ll forces 250 (lb) or less exi 1/362, 5-6≕5825/401, 6-7≕ 196/2489, 12-13≕-331/5057 32/115, 5-12≕53/832, 6-12 56/2865	cept when shown. .5825/401, 7-8=-4918/351, , 11-12=-320/4914, 10-11= =-526/92, 7-12=-64/988,	, =-178/2298,					
 WEBS 4-13147/2811, 5-13962/115, 5-12=-53/832, 6-12=-526/92, 7-12=-64/988, 7-11=-1005/119, 8-11=-156/2865 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; IWVFRS (directional); cantilever left and right exposed; 1 cum ber DOL=1.60 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.60) 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.10; Lu=50-0-0 Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4. 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 6) Provide adequate drainage to prevent water ponding. 7) All plates are MT20 plates unless otherwise indicated. 8) This truss has been designed for greater of min roof live load nonconcurrent with any other live loads. 9) Refer to girder(s) for truss to truss connections. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=162, 2=186. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. 12) Graphical putfin representation does not depict the size or the orientation of the purin along the top and/or bottom chord. 13) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent spaced at 17-2-8 oc max. starting at Contabe@&tropable?iet end to 19-3-4 to connect truss(es) to front face of bottom chord. 									
WARNING - Verify on Design valid for use or a truss system. Before building design. Braci is always required fors fabrication, storage, de Safety Information	tesign parameters and REA nly with MiTek® connector: use, the building designer ng indicated is to prevent to stability and to prevent coll pilvery, erection and bracin vailable from Truss Plate I	AD NOTES ON THIS AND INCLUD rs. This design is based only upon p r must verify the applicability of des buckling of individual truss web and lapse with possible personal injury of trusses and truss systems, se Institute, 2670 Crain Highway, Sui	D MITEK REFERENCE PAGE MI arameters shown, and is for an i ign parameters and properly incc for chord members only. Additio and property damage. For gener e ANS/TPTI Quality Cr e 203 Waldorf, MD 20601	I-7473 rev. 5/19/2020 ndividual building co rporate this design i nal temporary and p ral guidance regardin riteria, DSB-89 and	D BEFORE USE. mponent, not nto the overall ermanent bracing 19 the BCSI Building Com	ponent	16023 Swingley Ridge R Chesterfield, MO 63017	d	

			RELEASE FOR	
Job	Truss	Truss Type	CONSTRUCTION Ply	
2523907	B01		AS NOTED ON PLANS REVIEW	143654587
2020001	501		DEVELOPMENT SERVICES	Job Reference (optional)
Builders FirstSource (Valle	ey Center),	Valley Center, KS - 67147,	LEE'S SUMMIT, MISSOUR _{8.240 s Ma}	r 9 2020 MiTek Industries, Inc. Tue Nov 17 10:03:28 2020 Page 2
			ID:wH4RYhEsTNeUP2dXvOf	1syQY8e-Z1Mmwf7GupHjwyKTe?O_bFaVaQCEOf14M_JHRXyIJIj
NOTES-			11/30/2020	

14) Fill all nail holes where hanger is in contact with lumber.

15) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

16) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-4=-71, 4-8=-81, 8-9=-71, 16-20=-20

Concentrated Loads (lb)

Vert: 3=37(F) 24=-74(F) 25=-74(F) 26=-74(F) 27=-74(F) 28=-74(F) 29=-74(F) 31=-74(F) 32=-74(F) 33=37(F) 34=-220(F) 35=-43(F) 36=-43(F) 38=-43(F) 39=-43(F) 40=-43(F) 41=-43(F) 42=-43(F) 43=-220(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			RELEASE FOR				
Job	Truss	Truss Type		Ply			140054500
2523907	B02	Hip	AS NOTED ON PLANS REV	IEW 1			143654588
2020001	802	l "P	DEVELOPMENT SERVICE	ES i	Job Reference (optional)		
Builders FirstSource (V	alley Center), Va	alley Center, KS - 67147,	LEE'S SUMMIT, MISSOU	R8.240 s Ma	r 9 2020 MiTek Industries,	, Inc. Tue Nov 17 10:03:30 2020	0 Page 1
			ID:wH4RYhEsTNel	JP2dXvOfi1s	yQY8e-WQUWLL8XQQXF	R9GUrlQQSgggv3Dy3saHMpIol	NVPylJlh
L	4-3-0	8-6-5	11/38/2020		17-1-0	21-0-0	
I	4-3-0	4-3-5	4-3-5	1	4-3-5	3-11-0	

Scale = 1:36.0

4-3-0	10-8-0		17-1	-0	21-0-0	
4-3-0	6-5-0	I	6-5-	-0	3-11-0	1
Plate Offsets (X,Y) [1:0-3-8,E	dge], [8:0-6-1,0-0-5]					
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.4/20.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.58 BC 0.76 WB 0.59 Matrix-AS	DEFL. in Vert(LL) -0.12 Vert(CT) -0.27 Horz(CT) 0.08	(loc) l/defi L/d 10 >999 240 9-10 >939 180 8 n/a n/a	PLATES MT20 MT20HS Weight: 80 lb	GRIP 197/144 148/108 FT = 20%
LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 SLIDER Left 2x4 SPF No. REACTIONS. (size) 1=0-4 Max Horz 1=38 Max Uplift 1=-77 Max Grav 1=115	2 2-6-0, Right 2x6 SPF No.2 2-6-0 -0, 8=Mechanical LC 15) (LC 16), 8=-77(LC 16) 55(LC 2), 8=1155(LC 2)	BR/ TOF BOT	ACING- ² CHORD Structur 2-0-0 oc C CHORD Rigid ce	ral wood sheathing directly c purlins (3-4-5 max.): 3-6. alling directly applied.	applied, except	
TOP CHORD 1-3=-1850/230, BOT CHORD 1-12=-154/1622 WEBS 3-12=-9/615, 4-2	x. 1en An forces 250 (b) of less exce 3-4=-1589/225, 4-5=-2697/284, 5-6=-1 2, 10-12=-251/2640, 9-10=-254/2611, 8 12=-1202/111, 5-9=-1291/123, 6-9=-12	483/213, 6-8=-1754/220 -9=-147/1517 /633				
 NOTES- 1) Unbalanced roof live loads have 2) Wind: ASCE 7-16; Vult=115m; Il; Exp C; Enclosed; MWFRS (Interior(1) 8-6-5 to 17-1-0, Extexposed; C-C for members and 3) TCLL: ASCE 7-16; Pr=25.0 ps DOL=1.15); Is=1.0; Rough Carsurcharge applied to all expose 4) Unbalanced snow loads have 5) Provide adequate drainage to 6) All plates are MT20 plates unle 7) This truss has been designed 8) Refer to girder(s) for truss to tr 9) Provide mechanical connectio 10) This truss is designed in accorreferenced standard ANSI/TF 11) This truss design requires the sheetrock be applied directly 12) Graphical purlin representation 	ve been considered for this design. oh (3-second gust) Vasd=91mph; TCDL (directional) and C-C Exterior(2E) 0-0-0 erior(2E) 17-1-0 to 21-0-0 zone; cantilex d forces & MWFRS for reactions shown; f (roof LL: Lum DOL=1.15 Plate DOL=1 t C; Partially Exp.; Ce=1.0; Cs=1.00; Ct: ed surfaces with slopes less than 0.500 been considered for this design. prevent water ponding. ess otherwise indicated. for a 10.0 psf bottom chord live load nor uss connections. n (by others) of truss to bearing plate ca ordance with the 2018 International Res Pl 1. at a minimum of 7/16" structural wood s to the bottom chord. on does not depict the size or the orient.	=6.0psf; BCDL=4.2psf; h= to 3-0-0, Interior(1) 3-0-0 t ver left and right exposed ; Lumber DOL=1.60 plate (.15); Pg=20.0 psf; Pf=20.4 =1.10, Lu=50-0-0; Min. flat /12 in accordance with IBC nconcurrent with any other upable of withstanding 100 idential Code sections R50 heathing be applied direct ation of the purlin along the	:15ft; B=45ft; L=24ft; ea out 4-3-0, Exterior(2R) 4- end vertical left and rig grip DDL=1.60 t psf (Lum DDL=1.15 Pi t roof snow load governa C 1608.3.4. r live loads.) Ib uplift at joint(s) 1, 8. 02.11.1 and R802.10.2 ly to the top chord and re top and/or bottom chord	ve=4ft; Cat. '3-0 to 8-6-5, ht late s. Rain and 1/2" gypsum ord.	★ JOINSON NUT/BER PE-20170189 FOR STONAL F	SOUR *

November 17,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

				RELEASE FOR				
Job	Truss	Truss Type	(N Ply			140054500
2523907	B03	Hin	AS NO	OTED ON PLANS R	EVIEW 1			143654589
2020001	200	1 iib	DE\	/ELOPMENT SERV		Job Reference	ce (optional)	
Builders FirstSource (Val	ley Center),	Valley Center, KS - 67147,	LEI	E'S SUMMIT, MISSO)URB .240 s Ma	r 9 2020 MiTe	ek Industries, Inc. Tue Nov 17 10:03:31 202	20 Page 1
				ID:wH4R	YhEsTNeUP2dX	vOfi1syQY8e-	-c2uZh99BkfInQ32J7yhDuC43dF8b49W2y	/Xx1rylJlg
	5-9-0		10-8-0	11/30/2020	15-7-0		21-0-0	
I	5-9-0		4-11-0	11/00/2020	4-11-0	1	5-5-0	

Scale = 1:36.0

, 5-9	9-0	15-7-0				21-0-0	
5-9	9-0	9-10-0				5-5-0	
Plate Offsets (X,Y) [1:0-2-8,0	0-0-1], [7:0-6-1,0-0-5]						
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.4/20.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. TC 0.63 BC 0.83 WB 0.42 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.27 8-10 -0.60 8-10 0.08 7	l/defl L/d >949 240 >423 180 n/a n/a	PLATES MT20 MT20HS Weight: 77 Ib	GRIP 197/144 148/108 FT = 20%
LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 SLIDER Left 2x4 SPF No	.2 2-6-0, Right 2x6 SPF No.2 2-6-0	BR. TOI BO	ACING- P CHORD S 2 T CHORD R	Structural wood -0-0 oc purlins Rigid ceiling dire	sheathing directly (4-3-10 max.): 3-t ectly applied.	v applied, except 5.	
REACTIONS. (size) 1=0-4 Max Horz 1=52 Max Uplift 1=-77 Max Grav 1=11	4-0, 7=Mechanical (LC 15) 7(LC 16), 7=-77(LC 16) 55(LC 2), 7=1155(LC 2)						
FORCES. (lb) Max. Comp./Mi. TOP CHORD 1-3=-1810/218 BOT CHORD 1-10=-135/156 WEBS 3-10=0/466, 4-	ax. Ten All forces 250 (lb) or less exc. , 3-4=-1546/224, 4-5=-1468/216, 5-7=-1 2, 8-10=-211/1968, 7-8=-127/1485 10=-587/89, 4-8=-666/100, 5-8=0/484	ept when shown. 737/213					
 NOTES- 1) Unbalanced roof live loads ha 2) Wind: ASCE 7-16; Vult=115m II; Exp C; Enclosed; MWFRS 9-11-15, Interior(1) 9-11-15 to exposed ; end vertical left and grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=25.0 ps DOL=1.15); Is=1.0; Rough Ca surcharge applied to all expos 4) Unbalanced snow loads have 5) Provide adequate drainage to 6) All plates are MT20 plates unl 7) This truss has been designed 8) Refer to girder(s) for truss to t 9) Provide mechanical connectio 10) This truss is designed in acc referenced standard ANSI/TI 11) This truss design requires th sheetrock be applied directly 	ve been considered for this design. ph (3-second gust) Vasd=91mph; TCDI (directional) and C-C Exterior(2E) 0-0-0 15-7-0, Exterior(2R) 15-7-0 to 19-9-15, I right exposed;C-C for members and fo sf (roof LL: Lum DOL=1.15 Plate DOL=1 tt C; Partially Exp.; Ce=1.0; Cs=1.00; Ct ed surfaces with slopes less than 0.500 been considered for this design. prevent water ponding. ess otherwise indicated. for a 10.0 psf bottom chord live load no russ connections. on (by others) of truss to bearing plate cc ordance with the 2018 International Res Pl 1. at a minimum of 7/16" structural wood s	L=6.0psf; BCDL=4.2psf; h= to 3-0-0, Interior(1) 3-0-0 Interior(1) 19-9-15 to 21-0 rcces & MWFRS for reactio .15); Pg=20.0 psf; Pf=20.4 =1.10, Lu=50-0-0; Min. fla /12 in accordance with IB0 nconcurrent with any othe apable of withstanding 100 sidential Code sections R5 .heathing be applied direct	=15ft; B=45ft; L=2 to 5-9-0, Exterior I-0 zone; cantilev ns shown; Lumbo 4 psf (Lum DOL= t roof snow load g C 1608.3.4. r live loads.) Ib uplift at joint(s 02.11.1 and R80 ly to the top chore	24ft; eave=4ft; C (2R) 5-9-0 to er left and right er DOL=1.60 pl 1.15 Plate governs. Rain s) 1, 7. 2.10.2 and d and 1/2" gyps	Cat. ate sum	ANDREW THOMAS JOHNSON	550URL *

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

November 17,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale = 1:35.8

H		7-3-0	+ 14-1-0 + 6-10-0				<u> </u>			
Plate Offsets (X,Y) [1:0-3-8,E	dge], [3:0-4-13,Edge], [6:0-6-1,0-0-5]								
LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	sf) 25.0 20.4/20.0 20.0 0.0 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.61 BC 0.55 WB 0.26 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT	in -0.08 -0.17) 0.06	(loc) 7-9 7-9 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 81 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS SLIDER	2x4 SPF No.2 *E 3-4: 2x6 SPF No 2x4 SPF No.2 2x4 SPF No.2 Left 2x6 SPF No	xcept* .2 .2 2-6-0, Right 2x6 SPF No.2 2-6-0		BRACING- TOP CHORD BOT CHORD	Structura 2-0-0 oc Rigid ce	al wood purlins iling dire	sheathin (5-2-0 m ectly appl	g directly a ax.): 3-4. ied.	applied, except	

REACTIONS. (size) 1=0-4-0, 6=Mechanical Max Horz 1=66(LC 15) Max Uplift 1=-77(LC 16), 6=-77(LC 16) Max Grav 1=1155(LC 2), 6=1155(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-3=-1678/234, 3-4=-1399/247, 4-6=-1659/228

BOT CHORD 1-9=-142/1465, 7-9=-144/1459, 6-7=-129/1405

WEBS 3-9=0/287, 4-7=0/285

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 7-3-0, Exterior(2R) 7-3-0 to 11-5-15, Interior(1) 11-5-15 to 14-1-0, Exterior(2R) 14-1-0 to 18-3-15, Interior(1) 18-3-15 to 21-0-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) Provide adequate drainage to prevent water ponding.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 6.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 8.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not Lessign value use only winn will exec connectors. Inis design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporely incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

NiTek* 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and

referenced standard ANSI/TPI 1. 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale = 1:60.9

<u> 3-6-1</u> 3-6-1	<u></u>	<u> </u>	<u>23-7-5</u> <u>27-7-</u> 4-1-13 4-0	-15 32-0-0 -9 4-4-1
Plate Offsets (X,Y) [10:0-2	-7,Edge], [11:0-5-8,Edge], [12:0-3-8,0-3-0], [14:0-3-8,0-3-8], [19:0-3-8,0-3-0]		
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.4/20.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2018/TPI2014	CSI.DEFL.TC0.75Vert(LL)BC0.42Vert(CT)WB0.91Horz(CT)Matrix-MSVertice (CT)	in (loc) l/defl -0.18 14-16 >999 ;) -0.40 14-16 >949) 0.07 11 n/a	L/d PLATES GRIP 240 MT20 197/144 180 MT20HS 148/108 n/a MT18HS 197/144 Weight: 411 lb FT = 20%
LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x6 SP 2400F WEBS 2x4 SPF No.2 REACTIONS. (size) 200 Max Horz 200 Max Uplift 200 Max Grav 200	2.0E =0-4-0, 11=0-4-0 =-134(LC 10) =-763(LC 12), 11=-673(LC 12) =7000(LC 2), 11=6961(LC 2)	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing c except end verticals, and 2- Rigid ceiling directly applied	directly applied or 3-10-0 oc purlins, -0-0 oc purlins (3-3-3 max.): 3-8. d or 10-0-0 oc bracing.
FORCES. (lb) Max. Comp./ TOP CHORD 1-2=-5248/6 7-8=-10142/ BOT CHORD 18-19=-500// 13-14=-722// WEBS 2-19=-3311// 4-16=-115/12 8-13=-294/12	Max. Ten All forces 250 (lb) or less exc. 19, 2-3=-7102/841, 3-4=-9333/1072, 4-5=: 1074, 8-9=-8646/901, 9-10=-7103/724, 1-2 1862, 17-18=-667/6687, 16-17=-934/9329 3081, 12-13=-594/6588 367, 2-18=-311/3146, 3-18=-1338/111, 3- 317, 5-16=-427/66, 7-16=-118/648, 7-14= 39, 9-13=-191/2278, 9-12=-2315/249, 1-1	ept when shown. -10501/1142, 5-7=-10501/1142, 20=-6298/705, 10-11=-6358/630), 14-16=-936/10138, 17=-440/4416, 4-17=-2064/175, -1081/172, 8-14=-353/3465, 9=-693/6455, 10-12=-702/7448		
 NOTES- 1) 2-ply truss to be connected Top chords connected as for Bottom chords connected a Webs connected as follows 2) All loads are considered eq ply connections have been 3) Unbalanced roof live loads 4) Wind: ASCE 7-16; Vult=115 II; Exp C; Enclosed; MWFR plate grip DOL=1.60 5) TCLL: ASCE 7-16; Pr=25.0 DOL=1.15); Is=1.0; Rough surfaces with slopes less th 6) Unbalanced snow loads hav 7) Provide adequate drainage 8) All plates are MT20 plates u 9) This truss has been designed 10) Provide mechanical conne 20=763, 11=673. 11) This truss is designed in a referenced standard ANSI CiahtGræðinebaudig represent 	together with 10d (0.120"x3") nails as folk llows: 2x4 - 1 row at 0-4-0 oc. s follows: 2x6 - 2 rows staggered at 0-9-0 2x4 - 1 row at 0-9-0 oc. ally applied to all plies, except if noted as nave been considered for this design. mph (3-second gust) Vasd=91mph; TCDI S (directional); cantilever left and right exp psf (roof LL: Lum DOL=1.15 Plate DOL=1 Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct an 0.500/12 in accordance with IBC 1608 <i>ve</i> been considered for this design. to prevent water ponding. Inless otherwise indicated. ad for a 10.0 psf bottom chord live load no cition (by others) of truss to bearing plate ccordance with the 2018 International Rei /TPI 1.	oxs: oc. s front (F) or back (B) face in the LOAD C (F) or (B), unless otherwise indicated. L=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; I posed ; end vertical left and right expose 1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DC t=1.10, Lu=50-0-0 Rain surcharge applie .3.4. nnconcurrent with any other live loads. capable of withstanding 100 lb uplift at jc sidential Code sections R502.11.1 and F tation of the purlin along the top and/or b	CASE(S) section. Ply to L=24ft; eave=4ft; Cat. d; Lumber DOL=1.60 VL=1.15 Plate ed to all exposed Dint(s) except (jt=lb) R802.10.2 and pottom chord.	NUMBER PE-2017018993 November 17,2020
WARNING - Verify design pa Design valid for use only with M a truss system. Before use, the building design. Bracing indica is always required for stability a fabrication, storage, delivery, et Safety Information available t	ameters and READ NOTES ON THIS AND INCLUDED Trek® connectors. This design is based only upon pe building designer must verify the applicability of design ted is to prevent buckling of individual truss web and/ nd to prevent collapse with possible personal injury a ection and bracing of trusses and truss systems, see rom Truss Plate Institute, 2670 Crain Highway, Suite	D MITEK REFERENCE PAGE MII-7473 rev. 5/19/202 arameters shown, and is for an individual building or gn parameters and properly incorporate this design for chord members only. Additional temporary and j and property damage. For general guidance regard and property damage. For general guidance regard by ANSUTP11 Quality Criteria, DSB-89 and 203 Waldorf, MD 20601	20 BEFORE USE. omponent, not into the overall permanent bracing ing the J BCSI Building Component	16023 Swingley Ridge Rd Chesterfield, MO 63017

			RELEASE FOR	
Job	Truss	Truss Type	CONSTRUCTION Ply	
2523907	C01		AS NOTED ON PLANS REVIEW	143654594
202000	001		DEVELOPMENT SERVICES 2	Job Reference (optional)
Builders FirstSource (Valley Center),	Valley Center, KS - 67147,	LEE'S SUMMIT, MISSOUR ^{B.240} s Ma	r 9 2020 MiTek Industries, Inc. Tue Nov 17 10:03:40 2020 Page 2
			ID:wH4RYhEsTNeUP2dXvO	fi1syQY8e-DL4ISmGo4Vo0MoFmLWco4n4aqFRmC0ir7rDvsqyIJIX
NOTEO				

 NOTES 11/30/2020

 13) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 0-7-4 from the left end to 6-7-4 to connect
 truss(es) to front face of bottom chord.

14) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 8-7-4 from the left end to 30-7-4 to connect truss(es) to front face of bottom chord.

15) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-71, 3-8=-81, 8-10=-71, 11-20=-20 Concentrated Loads (lb)

Vert: 18=-604(F) 17=-604(F) 24=-577(F) 25=-574(F) 26=-645(F) 27=-604(F) 28=-604(F) 29=-717(F) 30=-717(F) 31=-717(F) 32=-717(F) 33=-717(F) 34=-715(F) 35=-637(F) 36=-579(F) 37=-635(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

1-10-0	9-4-11	14-2-0	18-5-5	21-2	2-0 25-2	-0	32-0-0	
Plate Offsets (X,Y) [7:0-2-12	,0-2-0], [9:0-3-0,0-1-8], [10:Edge,0-1-8],	[16:0-2-8,0-3-4]	4-0-0	2-0-	40		0-10-0	
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.4/20.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.86 BC 0.82 WB 0.83 Matrix-AS		DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.19 17-18 -0.42 17-18 0.12 10	l/defl L/d >999 240 >900 180 n/a n/a	PLATES MT20 MT20HS Weight: 175 lb	GRIP 197/144 148/108 FT = 20%
LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 REACTIONS. (size) 10=0 Max Horz 20=1 Max Uplift 10=- Max Grav 10=1	-4-0, 20=0-4-0 52(LC 15) 116(LC 16), 20=-115(LC 16) 744(LC 2), 20=1744(LC 2)		BRAC TOP C BOT C	ING- CHORD	Structural wood 2-0-0 oc purlins Rigid ceiling dire	sheathing directly (3-4-15 max.): 4-6 ectly applied.	applied, except end vertion, 7-8.	cals, and
FORCES. (lb) - Max. Comp./M TOP CHORD 1-2=-1367/214 6-7=-2261/340 67=-393/101 BOT CHORD 2-18=-393/101 11-12=-299/22 WEBS 4-17=0/311, 4 7-11=-910/120	ax. Ten All forces 250 (lb) or less exc. 4, 2-3=-1526/258, 3-4=-2523/356, 4-5=-2 7, 7-8=-1687/270, 8-9=-1900/251, 1-20= 1, 17-18=-364/2313, 16-17=-302/2295, 5 32 16=-84/511, 13-16=-284/1973, 6-16=-9 9, 9-11=-209/1772, 1-18=-214/1747, 3-1	ept when shown. 2487/388, 5-6=-248 -1719/230, 9-10=-1 -16=-475/91, 12-13 9/728, 7-13=-390/8 8=-1224/191	3/389, 675/236 3=-299/223 3,	33,				
 NOTES- 1) Unbalanced roof live loads ha 2) Wind: ASCE 7-16; Vult=115m II; Exp C; Enclosed; MWFRS to 14-3-12, Interior(1) 14-3-12 Interior(1) 28-2-0 to 31-10-4 z & MWFRS for reactions show 3) TCLL: ASCE 7-16; Pr=25.0 p: DOL=1.15); Is=1.0; Rough C: surcharge applied to all expose 4) Unbalanced snow loads have 5) Provide adequate drainage to 6) All plates are MT20 plates un 7) This truss has been designed 8) Provide mechanical connection 10=116, 20=115. 9) This truss is designed in accon referenced standard ANSI/TP 10) This truss design requires th sheetrock be applied directly 11) Graphical purlin representat 	ave been considered for this design. http://www.second.gust/secon	L=6.0psf; BCDL=4. 2 to 3-1-12, Interior 0, Interior(1) 21-2-0 end vertical left and 60 I.15); Pg=20.0 psf; =1.10, Lu=50-0-0; I //12 in accordance apable of withstand dential Code sectio sheathing be applied tation of the purlin a	2psf; h=15 (1) 3-1-12 to 25-2-0, right expo Pf=20.4 p: Min. flat ror with IBC 1 hy other liv ing 100 lb ns R502.1 d directly t along the tr	ift; B=45ft; L= to 11-2-11, I Exterior(2R) osed;C-C for sf (Lum DOL of snow load 608.3.4. ve loads. uplift at joint 1.1 and R80 to the top cho op and/or boi	=24ft; eave=4ft; (Exterior(2R) 11-2 (25-2-0 to 28-2-0 members and fo =1.15 Plate I governs. Rain (s) except (jt=lb) 2.10.2 and ord and 1/2" gyps ttom chord.	Cat. 2-11), rces	ANDREW THOMAS JOHNSON NUMBER PE-201701899 NOVEMBER 17,3	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

18

16

2x4 ||

3x4 ||

14-2-0

6-3-11

CSI

17

15

2x4 ||

14

3x6

19-9-11

4-0-5

DEFL

13

5x12 =

23-10-0

4-0-5

in (loc)

7x8

15-9-5

1-7-5

32

12

2x4 ||

l/defl

34

27-10-0

4-0-0

L/d

35

11

6x8 =

32-0-0

4-2-0

PLATES

4x6 🗢

X

10

3x4 =

-6-1

3-4-4

0-0-1

GRIP

³⁶ 9

REACTIONS. Max Uplift 10=-116(LC 16), 22=-115(LC 16) Max Grav 10=1744(LC 2), 22=1848(LC 42)

4x8 ⋍

21

=_{2x4 ||}

2

1

22

3x6

+ 1-10-0 1-10-0

25.0

5x5

23

6x8 =

7-9-10

2-8-12

4-9-6

Plate Offsets (X,Y)--

LOADING (psf)

TCLL (roof)

TCDL

BCLL

BCDL

WEBS

LUMBER-

BOT CHORD

Snow (Pf/Pg)

7-11-4

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

7-10-5

6-0-5

SPACING-

- TOP CHORD 1-2=-1475/225, 2-3=-2800/334, 3-4=-2801/409, 4-5=-2156/330, 5-6=-2364/338,
- 6-7=-2402/314, 7-8=-1339/212, 8-9=-1483/202, 1-22=-1785/235, 9-10=-1702/221

24

19

[7:0-3-0,0-2-0], [10:Edge,0-1-8], [17:0-2-8,Edge], [20:0-5-8,0-3-0]

2-0-0

4x8 =

- BOT CHORD 2-20=-1228/200, 19-20=-293/1505, 18-19=-261/2125, 17-18=-203/2151, 12-13=-295/2318, 11-12=-296/2315
- 2-19=-111/1074, 3-19=-644/144, 15-17=0/259, 5-17=-74/601, 7-11=-1463/161, WEBS 9-11=-199/1680, 1-20=-228/1873, 4-19=-98/588, 7-13=-299/52, 6-13=-358/49, 13-17=-218/2215, 4-17=-76/350

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 13-10-11, Exterior(2E) 13-10-11 to 15-9-5, Exterior(2R) 15-9-5 to 18-9-5, Interior(1) 18-9-5 to 27-10-0, Exterior(2R) 27-10-0 to 30-10-0, Interior(1) 30-10-0 to 31-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design. 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=116. 22=115.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH1</u> Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

1	/-11-8	18-4-0				28-4-	0	1	
	7-11-8	10-4-8				10-0-	D	1	
Plate Offsets (X,Y) [1:0-3-0,	0-1-12], [5:0-6-0,0-1-15], [11:Ed	ge,0-3-8]							
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.4/20.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0- Plate Grip DOL 1.1 Lumber DOL 1.1 Rep Stress Incr YE Code IRC2018/TPI2014	0 CSI. 5 TC 0.89 5 BC 0.90 5 WB 0.51 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.24 -0.54 0.06	(loc) 8-10 8-10 7	l/defl >999 >625 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 140 lb	GRIP 197/144 148/108 FT = 20%
LUMBER-			BRACING-	Structura	l wood	sheathin	a directly apr	plied except end vertic	cals and

 TOP CHORD
 2x4 SPF No.2
 TOP CHORD
 Structural wood sheathing directly applied, except end verticals

 BOT CHORD
 2x4 SPF No.2
 2-0-0 oc purlins (6-0-0 max.): 5-6.

 WEBS
 2x4 SPF No.2
 BOT CHORD
 Rigid ceiling directly applied.

 REACTIONS.
 (size)
 7=0-4-0, 12=0-4-0
 WEBS
 1 Row at midpt
 3-10

 Max Horz
 12=-212(LC 14)
 X
 X
 X
 X

Max Holz 12=-212(LC 14) Max Uplift 7=-102(LC 16), 12=-103(LC 16) Max Grav 7=1542(LC 2), 12=1542(LC 2)

- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD 1-2=-1559/233, 2-3=-1494/292, 3-4=-2249/339, 4-5=-2228/247, 1-12=-1478/191

BOT CHORD 2-10=-590/146, 8-10=-150/1298, 7-8=-207/1511

- WEBS 3-10=-139/292, 3-8=-138/1169, 4-8=-814/185, 5-8=-11/503, 5-7=-2019/281,
 - 1-10=-150/1451 1-10=-150/1451

NOTES-

1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 11-2-0, Exterior(2R) 11-2-0 to 14-2-0, Interior(1) 14-2-0 to 28-2-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.

4) Unbalanced snow loads have been considered for this design.

5) Provide adequate drainage to prevent water ponding.

6) All plates are MT20 plates unless otherwise indicated.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=102, 12=103.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

November 17,2020

👠 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with ever connectors. This besign is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		7-11-0	10-4-11	20-0-	3	20-4-0		
	I	7-11-8	5-5-3	7-3-1	5	7-7-7		
Plate Offsets (X,	Y) [1:0-3	-0,0-1-12], [4:0-2-12,0-1-12], [7:0-3-0	,0-1-12], [8:Edge,0-3-8], [13	3:Edge,0-3-8]				
LOADING (psf) TCLL (roof) Snow (Pf/Pg) 20 TCDL BCLL BCDL	25.0 0.4/20.0 20.0 0.0 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.93 BC 0.57 WB 0.48 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.11 13-14 -0.22 13-14 0.05 8	l/defi L/d >999 240 >999 180 n/a n/a	PLATES MT20 MT20HS Weight: 149 lb	GRIP 197/144 148/108 FT = 20%
LUMBER- TOP CHORD 22 BOT CHORD 22 WEBS 22	2x4 SPF No.: 2x4 SPF No.: 2x4 SPF No.:	2 2 2		BRACING- TOP CHORD BOT CHORD	Structural wood 2-0-0 oc purlins Rigid ceiling dire	sheathing directly appl (4-3-13 max.): 3-4. ectly applied.	ied, except end vertion	cals, and

REACTIONS. (size) 14=0-4-0, 8=0-4-0 Max Horz 14=-202(LC 14) Max Uplift 14=-103(LC 16), 8=-101(LC 16) Max Grav 14=1573(LC 38), 8=1588(LC 38)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 1-2=-1555/241, 2-3=-1513/293, 3-4=-1569/265, 4-5=-2384/332, 5-7=-2375/247,
- 1-14=-1497/193, 7-8=-1507/185
- BOT CHORD 2-12=-774/168, 10-12=-117/1318, 9-10=-127/1564
- WEBS 3-10=-73/540, 4-10=-313/116, 4-9=-120/787, 5-9=-815/176, 7-9=-165/1940,
 - 1-12=-157/1447, 3-12=-208/275

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 8-11-5, Exterior(2E) 8-11-5 to 13-4-11, Exterior(2R) 13-4-11 to 17-7-9, Interior(1) 17-7-9 to 28-2-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are MT20 plates unless otherwise indicated.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 14=103, 8=101.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	6-1-	5 7-11-8		16-2-11			22-1-9			28-4-0	
Plate Offsets ((X Y) [8:0-3-0 (<u>-5 1-10-3</u>)-1-12] [10:0-3-8 0-3-8] [1	11.0-8-0 0-4-12	8-3-3 [[15:0-4-8 0-3	3-01		5-10-15			6-2-7	
	-0	<u> </u>	11.0 0 0,0 4 12	, [10.0 4 0,0 0	, 0]						
TCLL (roof) Snow (Pf/Pg)	25.0 20.4/20.0 20.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO	CSI. TC 0.6 BC 0.8 WB 0.9	63 81 98	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.22 11-12 -0.50 11-12 0.10 9	l/defl >999 >680 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS	GRIP 197/144 148/108
BCLL BCDL	0.0 10.0	Code IRC2018/TP	12014	Matrix-M	S		0110 0	1,74		Weight: 338 lb	FT = 20%
LUMBER-					в	RACING-					
TOP CHORD	2x4 SPF No.2 *E	Except*			тс	OP CHORD	Structural wood	sheathin	g directly a	pplied or 4-8-1 oc purlins	,
BOT CHORD	6-8: 2x4 SPF 16 2x6 SPF 2100F 13-15: 2x6 SPF	50F 1.5E 1.8E *Except* No.2, 4-13: 2x4 SPF No.2			В	OT CHORD	except end vert Rigid ceiling dire 6-0-0 oc bracing	icals, and ectly appl g: 13-14.	l 2-0-0 oc p ied or 10-0	ourlins (4-3-14 max.): 3-6. -0 oc bracing, Except:	
WEBS	2x4 SPF No.2										
REACTIONS.	(size) 15=0 Max Horz 15=- Max Uplift 15=-6 Max Grav 15=6	I-6-0, 9=0-4-0 184(LC 55) 664(LC 12), 9=-691(LC 12 137(LC 2), 9=6386(LC 34	2))								
FORCES. (b) - Max. Comp./M	ax. Ten All forces 250 (I	b) or less excer	ot when shown	۱.						
TOP CHORD	2-3=-4738/605	, 3-4=-6060/766, 4-5=-612	26/772, 5-6=-75	598/968, 6-7=-8	8101/100	05,					
	7-8=-8664/100	3, 8-9=-5176/599	404/04 44 44		0.44 00	00/0005					
BOT CHORD	14-15=-277/27	48, 13-14=-407/121, 4-12	=-434/64, 11-12	2=-748/7070, 1	10-11=-86	63/8025,					
WEBS	2-14=-405/388 5-11=-201/109 8-10=-854/779	5, 3-14=-3909/437, 12-14 5, 6-11=-281/2426, 7-11= 5	=-552/5551, 3- -716/70, 7-10=-	12=-646/5631, -340/267, 2-15	5-12=-16 =-5963/6	642/222, 642,					
NOTES-											
 2-ply truss t Top chords Bottom cho Webs connect 3) All loads arr ply connect 3) Unbalancee 4) Wind: ASCI II; Exp C; E plate grip D 5) TCLL: ASC DOI =115) 	to be connected to connected as follourds connected as follows: 2 e considered equations have been pri- d roof live loads ha E 7-16; Vult=115m inclosed; MWFRS JOL=1.60 E 7-16; Pr=25.0 pt i ls=10; Rough Ca	gether with 10d (0.120"x3 ows: 2x4 - 1 row at 0-4-0 c follows: 2x6 - 2 rows stage 2x4 - 1 row at 0-9-0 oc. Illy applied to all plies, exc ovided to distribute only lo twe been considered for th the (3-second gust) Vasd= (directional); cantilever lef sf (roof LL: Lum DOL=1.1! at C: Partially Exp : Ce-1 (") nails as follow oc. gered at 0-5-0 c ept if noted as f ads noted as (f is design. =91mph; TCDL= t and right expo 5 Plate DOL=1.	ws: front (F) or bac F) or (B), unles =6.0psf; BCDL= bsed ; end verti 15); Pg=20.0 p 1.10 Lu=50-0.0	at 0-9-0 d k (B) fac s otherwi =4.2psf; I ical left a psf; Pf=20	oc. e in the LOAD C/ ise indicated. h=15ft; B=45ft; L= nd right exposed 0.4 psf (Lum DOL	ASE(S) section. =24ft; eave=4ft; (; Lumber DOL=1 =1.15 Plate	Ply to Cat. .60	and the second sec	STATE OF MISS ANDREW THOMAS JOHNSON	Cite the
surfaces wi	th slopes less than	0.500/12 in accordance	with IBC 1608.3	1.10, ∟u=50-0• 8.4.		surcharge applied	a to all exposed		- N.	NUMBER	四日日
6) Unbalanced	d snow loads have	been considered for this	design.						Ŷ	FE-201/01099	128
7) Provide ade	equate drainage to	prevent water ponding.								1030	JO'A
9) This truss h	has been designed	for a 10.0 psf bottom cho	rd live load non	concurrent wit	h anv oth	er live loads.				ONAL E	J
10) Bearing at capacity o	t joint(s) 15, 9 cons of bearing surface.	siders parallel to grain valu	ue using ANSI/1	TPI 1 angle to g	grain forn	nula. Building de	signer should ve	erify		November 17,2	2020
Continued on p	bage 2										
WARNII Design val	NG - Verify design parar id for use only with MiT	neters and READ NOTES ON THI ek® connectors. This design is b	S AND INCLUDED ased only upon para	MITEK REFERENC	CE PAGE M nd is for an i	III-7473 rev. 5/19/2020 individual building cor	BEFORE USE.				

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			RELEASE FOR	
Job	Truss	Truss Type		140054004
2523907	C08	HIP GIRDER	AS NOTED ON PLANS REVIEW	143654601
			DEVELOPMENT SERVICES	Job Reference (optional)
Builders FirstSource (Valley	Center), Valley Center, K	S - 67147,	LEE'S SUMMIT, MISSOUR ^{B.240} s Ma	r 9 2020 MiTek Industries, Inc. Tue Nov 17 10:03:55 2020 Page 2
			ID:wH4RYhEsTNeUP2dX	VOfi1svQY8e-HEUzbuSCX6huf6ufiANJBvCAvIT4DoN2ZhLCuSvIJI

NOTES-

 NOTES 11/30/2020

 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 15=664, 9=691.

 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 14) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 703 lb down and 84 lb up at 1-8-12, 726 lb down and 83 lb up at 3-8-12, 703 lb down and 84 lb up at 5-6-12, 712 lb down and 83 lb up at 7-9-12, 671 lb down and 113 lb up at 9-8-12, 671 lb down and 113 lb up at 11-8-12, 671 lb down and 113 lb up at 13-8-12, 671 lb down and 113 lb up at 15-8-12, 736 lb down and 107 lb up at 17-8-12, 647 lb down and 97 lb up at 19-8-12, 643 lb down and 88 Ib up at 21-8-12, 658 lb down and 82 lb up at 23-8-12, and 687 lb down and 76 lb up at 25-8-12, and 728 lb down and 72 lb up at 27-8-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-71, 3-6=-81, 6-8=-71, 13-15=-20, 9-12=-20

Concentrated Loads (lb)

Vert: 13=-709(F) 14=-687(F) 21=-654(F) 22=-726(F) 23=-658(F) 24=-658(F) 25=-658(F) 26=-658(F) 27=-736(F) 28=-636(F) 29=-577(F) 30=-642(F) 31=-687(F) 32=-728(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale = 1:21.9

	2-9-0	7-2-12			12-0-0	
Plate Offsets (X,Y) [2:0-4-13	,Edge]	4-5-12			4-5-4	
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.4/20.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2018/TPI2014	CSI. TC 0.59 BC 0.74 WB 0.47 Matrix-MS	DEFL. Vert(LL) -0 Vert(CT) -0 Horz(CT) 0	in (loc) l/defl 0.06 8-9 >999 0.12 8-9 >999 0.01 7 n/a	L/d PLATE 240 MT20 180 n/a Weight	GRIP 197/144 :: 46 lb FT = 20%
LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 SLIDER Left 2x4 SPF No	.2 1-6-0	BRA TOF BOT	CHORD Stru exce CHORD Rigi	ictural wood sheathir ept end verticals, and d ceiling directly app	ng directly applied or 4-4-3 o d 2-0-0 oc purlins (3-8-0 ma lied or 10-0-0 oc bracing.	oc purlins, x.): 4-6.
REACTIONS. (size) 7=0- Max Horz 2=62 Max Uplift 7=-7 Max Grav 7=98	4-0, 2=0-4-0 (LC 11) 5(LC 9), 2=-133(LC 12) 5(LC 31), 2=1034(LC 2)					
FORCES. (b) Max. Comp./M TOP CHORD 2-4=-1442/153 BOT CHORD 2-9=-157/1268 WEBS 4-8=-14/685, 5	ax. Ten All forces 250 (lb) or less exc 4, 4-5=-1896/150, 5-6=-1892/149, 6-7=-5 5, 8-9=-159/1253 -8=-701/123, 6-8=-153/1911	ept when shown. 904/95				
 NOTES- 1) Unbalanced roof live loads ha 2) Wind: ASCE 7-16; Vult=115m II; Exp C; Enclosed; MWFRS plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=25.0 ps DOL=1.15); Is=1.0; Rough Ca surcharge applied to all expose 4) Unbalanced snow loads have 5) This truss has been designed non-concurrent with other live 6) Provide adequate drainage to 7) This truss has been designed 8) Provide mechanical connection 2=133. 9) This truss is designed in accoor referenced standard ANSI/TP 10) Graphical purlin representation 11) Use Simpson Strong-Tie LU truss(es) to front face of bott 12) Fill all nail holes where hang 13) "NAILED" indicates 3-10d (0) 14) In the LOAD CASE(S) Section 	ave been considered for this design. http://www.ave.org/ave.o	L=6.0psf; BCDL=4.2psf; h= bosed ; end vertical left and 1.15); Pg=20.0 psf; Pf=20.4 L=1.10, Lu=50-0-0; Min. flat 0/12 in accordance with IBC psf or 1.00 times flat roof lo onconcurrent with any other apable of withstanding 100 dential Code sections R502 tation of the purlin along the Ply Girder) or equivalent at ails per NDS guidlines. are noted as front (F) or ba	15ft; B=45ft; L=24ft right exposed; Lun psf (Lum DOL=1.1 roof snow load gov 1608.3.4. ad of 15.4 psf on o live loads. Ib uplift at joint(s) 7 2.11.1 and R802.10 e top and/or bottom 2-0-12 from the lef ack (B).	t; eave=4ft; Cat. nber DOL=1.60 5 Plate verns. Rain verhangs / except (jt=lb) 1.2 and chord. t end to connect	STATE OF STATE OF ANI THO FOR PE-201 Novemb	MISSOLA MAS NSCN AL ENGINE AL ENGINE AL ENGINE
Continued on page 2					amevoni	ei 17,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			RELEASE FOR	
Job	Truss	Truss Type		14005 4000
2523907	D01	HALE HIP GI	RDER AS NOTED ON PLANS REVIEW	143654602
2020001	501		DEVELOPMENT SERVICES	Job Reference (optional)
Builders FirstSource (Valley	Center), Valley Center, K	S - 67147,	LEE'S SUMMIT, MISSOURB.240 s M	ar 9 2020 MiTek Industries, Inc. Tue Nov 17 10:03:57 2020 Page 2
			ID:wH4RYhEsTNeUP2dX	vOfi1syQY8e-Dccj0aTT3jxbuP21qbPnGNHW469khpsL1?qJyLyIJIG
			11/30/2020	
LOAD CASE(S) Standard				
1) Dead + Snow (balanced): Lumber Increase=1.15, Pla	ate Increase=	1.15	

Uniform Loads (plf)

Vert: 1-4=-71, 4-6=-81, 7-10=-20

Concentrated Loads (lb)

Vert: 14=37(F) 15=-74(F) 16=-74(F) 18=-74(F) 19=-74(F) 20=-220(F) 21=-43(F) 22=-43(F) 23=-43(F) 24=-43(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	L	4-0-0	12-0-0							
4-0-0		4-0-0	8-0-0							
Plate Offsets (X,Y) [2:0-4-1,0-0-5]										
LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	sf) 25.0 20.4/20.0 20.0 0.0 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.31 BC 0.46 WB 0.34 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.22 0.02	(loc) 7-8 7-8 7	l/defl >999 >651 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 46 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS SLIDER	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Left 2x4 SPF No.	2 1-6-0	BR. TOI BO	ACING- P CHORD T CHORD	Structura 2-0-0 oc Rigid cei	al wood purlins iling dire	sheathin (6-0-0 m ectly appl	g directly ap; ax.): 4-6. ied.	olied, except end vert	icals, and

REACTIONS. (size) 2=0-4-0, 7=0-4-0 Max Horz 2=83(LC 15) Max Uplift 2=-70(LC 16), 7=-58(LC 13) Max Grav 2=734(LC 2), 7=714(LC 35)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-4=-922/181, 4-5=-769/188

BOT CHORD 2-8=-205/774, 7-8=-212/832

WEBS 5-7=-880/221

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 4-0-0, Exterior(2R) 4-0-0 to 8-2-15, Interior(1) 8-2-15 to 11-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 7.
 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPL 1.
- 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	5-6-0	12-0-0							
Plate Offsets (X,Y) [2:0-4-1,0	-0-1], [5:0-3-8,Edge]					0-0-0			
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.4/20.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. TC 0.78 BC 0.33 WB 0.60 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.09 0.01	(loc) 6-7 6-7 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 45 lb	GRIP 197/144 148/108 FT = 20%
LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2			BRACING- TOP CHORD	Structura 2-0-0 oc	al wood purlins	sheathin (6-0-0 m	ig directly app ax.): 4-5.	plied, except end vert	icals, and

 WEBS
 2x4 SPF No.2
 BOT CHORD
 Rigid ceiling directly applied.

 SLIDER
 Left 2x4 SPF No.2 1-6-0

REACTIONS. (size) 2=0-4-0, 6=0-4-0 Max Horz 2=110(LC 15) Max Uplift 2=-69(LC 16), 6=-59(LC 13) Max Grav 2=754(LC 36), 6=680(LC 35)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-4=-851/177, 5-6=-348/97
- BOT CHORD 2-7=-232/701. 6-7=-234/695

WEBS 4-6=-680/210

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 5-6-0, Exterior(2R) 5-6-0 to 9-8-15, Interior(1) 9-8-15 to 11-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) All plates are MT20 plates unless otherwise indicated.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. (size) 6=Mechanical, 2=0-4-0 Max Horz 2=116(LC 13) Max Uplift 6=-59(LC 13), 2=-68(LC 16) Max Grav 6=665(LC 2), 2=808(LC 36)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-4=-692/150, 5-6=-269/73
- BOT CHORD 2-10=-200/588, 9-10=-122/393, 7-8=-108/259, 6-7=-230/652
- WEBS 4-6=-732/232

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed: MWFRS (directional) and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 7-0-0, Exterior(2R) 7-0-0 to 11-2-15, Interior(1) 11-2-15 to 12-1-12 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads
- 6) Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7)
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

November 17,2020

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with ever connectors. This besign is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 2.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

November 17,2020

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH1</u> Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSITTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 12-1-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.
 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

November 17,2020

👠 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with ever connectors. This besign is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. (size) 2=0-4-0, 13=Mechanical Max Horz 2=163(LC 16) Max Uplift 2=-27(LC 16), 13=-86(LC 16) Max Grav 2=754(LC 2), 13=629(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-4=-797/29, 6-8=-72/439, 5-8=-72/439
- BOT CHORD 2-7=-171/677, 6-7=-171/677

WEBS 4-7=0/254, 4-6=-727/179, 5-13=-631/136

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 11-10-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 13.
 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

November 17,2020

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with ever connectors. This besign is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

November 17,2020

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with ever connectors. This besign is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 16023 Swingley Ridge Rd Chesterfield, MO 63017

REACTIONS. (size) 2=0-4-0, 6=0-4-0 Max Horz 2=138(LC 15) Max Uplift 2=-68(LC 16), 6=-58(LC 13) Max Grav 2=799(LC 36), 6=649(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-661/149

BOT CHORD 2-7=-220/563. 6-7=-221/556

WEBS 4-7=0/279, 4-6=-702/234

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 7-1-14, Exterior(2R) 7-1-14 to 11-4-13, Interior(1) 11-4-13 to 11-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.
 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1
- 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

					RELEA	SE FO	R						
Job	Truss	Truss Ty	/pe	С	ONSTR	RUCTIC	DN	Ply					
2523907	D15	ROOF S	SPECIAI	L GIRDER DEVI	TED ON ELOPME	PLANS	REVIEV VICES	V 1	Job Refe	erence (optio	nal)		14365461
Builders FirstSource (Valley	Center),	Valley Center, KS - 6714	7,	LEE'	'S SUMM	IT, MISS	OURb.2	240 s Ma	r 9 2020	MiTek Indust	ries, Inc.	Tue Nov	17 10:04:20 2020 Page 1
						ID:wH4Rነ	hEsTNel	JP2dXv(Dfi1syQY8	8e-21VQrRluf	oqL9yISI	hwKAiDk(OHN_EaCbkJ4v1FWylJHv
-0 <mark>-10-8 3-0-4</mark> 0 ¹ 10-8 3-0-4	5-9-0 2-8-12	11-10-0 6-1-0		17-5-0 5-7-0	18-11-1730 1-6-0 0-9-0	/2020 4-6-0		26-9-0 2-7-0	28-11-0	33-1-0 4-2-0	33-3-8 0-2-8	37-3-0 3-11-8	37 ₇ 8 ₁ 0 40-0-0 40-10-8 0-5-0 2-4-0 0-10-8
													Scale = 1:73

1	3-0-4	5-9-0	11-10-0	17-5-0	19-8-0	24-2-0	26-9-0	28-11-0	33-3-8	37-3-0	37 ₁ 8 ₁ 0 40-0-0	
1	3-0-4	2-8-12	6-1-0	5-7-0	2-3-0	4-6-0	2-7-0	2-2-0	4-4-8	3-11-8	0-5-0 2-4-0	
Plate Offsets (X,Y	′) [2:0-3	3-13,0-0-1],	[7:0-3-0,0-2-1], [10:0-6-	0,0-2-0], [11:0-3-8,0-1	-8], [13:0	-3-8,0-3-0], [14:0-	6-0,0-2-3]	[16:Edg	e,0-1-13], [16:0-0	0-14,0-6-7],	[16:0-0-7,0-0-1	4]
	. [19:	0-3-0.0-0-0	0									

LOADING (psf)		SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP			
TCLL (roof)	25.0	Plate Grip DOL 1.15	TC 0.84	Vert(LL)	-0.16 20-21	>999	240	MT20	197/144			
TCDI 310W (FI/FG) 20.4/	20.0	Lumber DOL 1.15	BC 0.86	Vert(CT)	-0.27 20-21	>590	180					
BCLL	0.0	Rep Stress Incr NO	WB 0.53	Horz(CT)	0.07 16	n/a	n/a	Waisht 474 lb	FT 200/			
BCDL	10.0	Code IRC2018/1912014	Matrix-MS					vveight: 174 ib	F1 = 20%			
LUMBER-			BF	RACING-								
TOP CHORD 2x4	4 SPF No.2 *E	Except*	TC	OP CHORD	Structural wood	l sheathing	g directly app	lied or 4-5-2 oc purlins	s, except			
14-	17: 2x6 SPF	No.2			2-0-0 oc purlins	(2-10-10	-10 max.): 5-7, 8-9, 10-14.					
BOT CHORD 2X4	1 SPF N0.2 ^1 22: 2v4 SPF	EXCEPT [®]	BC	DI CHORD	10-0-0 oc braci	ectly appli	ed or 5-10-1	3 oc bracing. Except:				
WEBS 2x4	1 SPF No.2		W	EBS	1 Row at midpt	ig. 10 20	13-22					
WEDGE												
Right: 2x4 SPF No.2	2											
SLIDER Left	t 2x4 SPF No	0.2 1-6-0										
	ll bearings 0-	4-0										
(lb) - Ma	ax Horz 2=77	(LC 11)										
Ma	ax Uplift All u	uplift 100 lb or less at joint(s) 2 except 1	6=-156(LC 12), 29=-205(LC								
	121),	, 24=-221(LC 12)		0								
Ma	ax Grav All i	eactions 250 lb or less at joint(s) excep	t 2=687(LC 44), 16=994(I	LC								
	10), 1	29=1400(LC 74), 24=2302(LC 43)										
FORCES. (lb) - Ma	lax. Comp./M	ax. Ten All forces 250 (lb) or less exc	ept when shown.									
TOP CHORD 2-	-4=-737/76, 4	-5=-584/77, 5-6=-512/84, 6-7=-505/195	, 7-8=-577/229, 8-9=-467	/238,								
9-	-10=-597/244	-, 10-11=-178/2111, 11-12=-57/721, 12-	13=-32/461, 13-14=-2962	2/342,								
BOT CHORD 2-	4-15=-2648/3 -31=-15/617	39, 15-16=-794/136 30-31=-15/617 29-30=-263/110 27-29	263/110 26-2791/41	0								
25	5-26=-943/42	4, 24-25=-947/419, 12-22=-402/59, 21-	22=-312/2962, 20-21=-28	88/2568,								
19	9-20=-278/24	59, 15-19=-233/2070, 16-18=-47/389						man				
WEBS 6-	-30=-70/783,	6-29=-1348/256, 6-27=-236/829, 7-27=	-531/150, 8-27=-53/350,					OF MIC	A.			
9-	-26=-286/54,	10-26=-112/1096, 13-22=-3429/364, 13	-21=-38/476, 11-24=-860)/91, 42/404			6	THE	N.O.			
22	2-24=-2043/2	.24, 11-22=-151/1536, 10-24=-1560/151	, 14-20=-05/062, 14-21=-	42/404			H.	ANDREW	New /			
NOTES-							R	ANDREW THOMAS	1- 18			
1) Unbalanced roof	f live loads ha	we been considered for this design.					↓	INHUSON	1+12			
2) Wind: ASCE 7-16	6; Vult=115m	iph (3-second gust) Vasd=91mph; TCD	_=6.0psf; BCDL=4.2psf; ł	n=15ft; B=45ft; L	=24ft; eave=5ft;	Cat.			A A A A			
II; EXP C; ENCIOS		(directional); cantilever left and right exp	bosed ; end vertical left al	na right exposed	; Lumber DOL=1	1.60	Im					
3) TCLL: ASCE 7-1	6: Pr=25.0 p	sf (roof LL: Lum DOL=1.15 Plate DOL=	1.15): Pa=20.0 psf: Pf=20	.4 psf (Lum DOL	=1.15 Plate		U.S	NUMBER				
DOL=1.15); Is=1	.0; Rough Ca	at C; Partially Exp.; Ce=1.0; Cs=1.00; Ci	=1.10, Lu=50-0-0; Min. fl	at roof snow load	d governs. Rain		N.C	PE-201701899	13/SA			
surcharge applie	ed to all expos	sed surfaces with slopes less than 0.500	0/12 in accordance with IE	3C 1608.3.4.			V	(Pe	SA			
4) Unbalanced snov	w loads have	been considered for this design.						ONAL E	A			
5) This truss has been designed for greater of min root live load of 12.0 psf or 1.00 times flat root load of 15.4 psf on overhangs												
 6) Provide adequate 	e drainage to	prevent water ponding.						November 17.2	2020			
Continiserusa bages	2en designed	for a 10.0 psf bottom chord live load no	nconcurrent with any oth	er live loads.				,				
	arifi danina a			1 7 4 7 2 mm 5 /4 0 /2000								
Design valid for us	eniy design parar ise only with MiT	ek® connectors. This design is based only upon pa	arameters shown, and is for an i	ndividual building co	mponent, not							
a truss system. Be	efore use, the bu	uilding designer must verify the applicability of desi	on parameters and properly inco	propriate this design in	nto the overall							
is always required	d for stability and	to prevent collapse with possible personal injury a	nd property damage. For gener	ral guidance regardir	g the			IVITIEK				
fabrication, storag Safety Informatio	ge, delivery, erec on available fro	tion and bracing of trusses and truss systems, see m Truss Plate Institute, 2670 Crain Highway, Suite	ANSI/TPI1 Quality Co 203 Waldorf, MD 20601	riteria, DSB-89 and	BCSI Building Com	ponent		16023 Swingley Ridge Rd Chesterfield, MO 63017				

Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			RELEASE FOR	
Job	Truss	Truss Type		
2523907	D15	ROOF SPEC		143654616
			DEVELOPMENT SERVICES	Job Reference (optional)
Builders FirstSource (Valley	Center), Valley Center, H	(S - 67147,	LEE'S SUMMIT, MISSOURB.240 s Ma	ar 9 2020 MiTek Industries, Inc. Tue Nov 17 10:04:21 2020 Page 2
			ID:wH4RYhEsTNeLIP2dXv	dfi1svOY8e-WE3o2nmWO5yBn5tfEdrPERHY1nKT.lfrtYkeanyyl.lHu

 NOTES 11/30/2020

 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 16=156, 29=205, 24=221.

 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

(10) Graphical purity representation does not depict the size or the orientation of the purity along the top and/or bottom chord.
 (11) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 221 lb down and 38 lb up at 37-9-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

13) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

NOTES-

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-5=-71, 5-7=-81, 7-8=-71, 8-9=-81, 9-10=-71, 10-14=-81, 14-17=-71, 23-32=-20, 19-22=-20, 18-39=-20

Concentrated Loads (lb)

Vert: 19=-220(B) 51=-74(B) 53=41(B) 55=41(B) 56=41(B) 57=41(B) 58=37(B) 59=-43(B) 60=-206(B) 61=-206(B) 62=-206(B) 63=-206(B) 63=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			RELEASE FO	DR			
Job	Truss	Truss Type	CONSTRUCT	ON Ply			
2523907	D16		AS NOTED ON PLANS	REVIEW			143654617
2020001		ROOF OF EOLAE	DEVELOPMENT SEI	RVICES	Job Reference (optio	nal)	
Builders FirstSource (Valley	Center), Valley Center, k	(S - 67147,	LEE'S SUMMIT, MIS	SOURB.240 s Ma	r 9 2020 MiTek Indust	ries, Inc. Tue Nov 17 10:04:23 2020) Page 1
			ID:wH	I4RYhEsTNeUP2d	vOfi1syQY8e-ScBZTT	nmxjDv0P11M2ttJsMvlb6_nb0A?27	hsryIJHs
-0-10-8 4	I-3-0	11-10-0	11/30/5020	17-5-0	21-2-0	26-11-0	_
0-10-8 4	I-3-0	7-7-0	4-1-0	1-6-0	3-9-0	5-9-0	7

Scale: 1/4"=1'

	4-3-0		11-10-0			15-11-0	1	7-5-0	21	-2-0		26-11-0	
Plate Offsets (X,Y) [2:0-4-1,	0-0-1], [10:0-3-13,0-()-1]			4-1-0		1-0-0		9-0		5-9-0	
LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	f) 25.0 20.4/20.0 20.0 0.0 10.0	SPACING- Plate Grip DC Lumber DOL Rep Stress Ir Code IRC20	2-0-0 DL 1.15 1.15 Icr YES 18/TPI2014	CSI. TC BC WB Matri	0.83 0.41 0.42 x-AS		DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.16 0.01	(loc) 14-15 14-15 10	l/defl >999 >900 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 104 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS SLIDER REACTIONS.	2x4 SPF No.2 * 4-6: 2x4 SPF 16 2x4 SPF No.2 2x4 SPF No.2 Left 2x4 SPF No.2 (size) 10=(Max Horz 2=6(Except* 550F 1.5E 5.2 2-6-0, Right 2x4 : 0-4-0, 2=0-4-0, 14=0 00 C 15	SPF No.2 2-6-0 -4-0			BRACIN TOP CHO BOT CHO	G- DRD DRD	Structura 2-0-0 oc Rigid cei	al wood : purlins (ling dire	sheathing (6-0-0 ma ctly applie	directly app x.): 4-6, 7-8 ed.	plied, except	
FORCES. (Ib TOP CHORD BOT CHORD WEBS	Max Uplift 10=- Max Grav 10=7) - Max. Comp./N 2-4=-652/121, 2-15=-74/646, 5-15=-95/978,	56(LC 16), 2=-72(LC 777(LC 44), 2=654(L 1ax. Ten All forces 4-5=-660/140, 5-6=1 14-15=-329/28, 12- 5-14=-1092/171, 6-	: 16), 14=-95(LC 16) C 44), 14=1763(LC 4: 250 (lb) or less excep)/329, 6-7=-775/176, 14=-102/635, 11-12=- 14=-1041/134	3) ot when sh 7-8=-835/ 83/695, 10	iown. 198, 8-10 0-11=-97/)=-945/179 /835							
NOTES- 1) Unbalanced 2) Wind: ASCE II; Exp C; Ei , Interior(1) to 26-11-0 z reactions sh 3) TCLL: ASCC DOL=1.15(); surcharge a 4) Unbalanced 5) This truss h non-concurn 6) Provide ade 7) This truss h 8) Provide mer 9) This truss is referenced 3: 10) This truss sheetrock 11) Graphical	I roof live loads ha E 7-16; Vult=115n nclosed; MWFRS 7-3-0 to 17-5-0, E ione; cantilever le nown; Lumber DO E 7-16; Pr=25.0 p Is=1.0; Rough C; pplied to all expo s now loads have as been designed rent with other live equate drainage chanical connectii a designed in accc standard ANS/TF design requires th be applied directif purlin represental	ave been considered nph (3-second gust) (directional) and C-(ixterior(2R) 17-5-0 tc ft and right exposed bL=1.60 plate grip DC isf (roof LL: Lum DO) at C; Partially Exp.; C sed surfaces with slo been considered fo d for greater of min ro beats considered fo d for greater of min ro borevent water pond for a 10.0 psf botton on (by others) of trus ordance with the 201 P1 1. hat a minimum of 7/1 y to the bottom chorro tion does not depict t	for this design. Vasd=91mph; TCDL= C Exterior(2E) -0-10-8 20-5-0, Interior(1) 20 =1.15 Plate DOL=1. Ce=1.0; Cs=1.00; Ct= opes less than 0.500/1 this design. bof live load of 12.0 ps ing. n chord live load none s to bearing plate cap 8 International Reside 6" structural wood sh 1. he size or the oriental	6.0psf; B(to 2-1-8,)-5-0 to 21 right expc 15); Pg=2(1.10, Lu=£ 12 in accor sf or 1.00 t concurren bable of wi ential Code eathing be tion of the	CDL=4.2p Interior(1 -2-0, Extersed;C-C).0 psf; P 50-0-0; M rdance wit times flat t with any thstandin e sections a applied purlin alc	osf; h=15ft;) 2-1-8 to 4 erior(2R) 2 ⁻⁷ for membe f=20.4 psf in. flat roof ith IBC 160 roof load o roof load o o other live g 100 lb up s R502.11. directly to t	B=45ft; L= -3-0, Exte -2-0 to 24 rs and for Lum DOL snow load 8.3.4. f 15.4 psf oads. lift at joint I and R80 he top cho and/or bo	=24ft; eav rior(2R) 4 I-2-0, Inteces & MV =1.15 Pla I governs on overha (s) 10, 2, 2.10.2 ar ord and 1, ttom choi	ve=4ft; C I-3-0 to ' prior(1) 2 VFRS fo ate . Rain angs 14. ad /2" gyps rd.	at. 7-3-0 4-2-0 r	C S PINO	ANDREW THOMAS JOHNSIN NUMBER PE-201701899	CLIPIT AND

November 17,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale: 1/4"=1'

	2-9-0	7-2-10	11-	10-0	14-5-0	15-11-0	19-3-8	22-	8-0	26-11-0			
	2-9-0	4-5-10	4-	7-6	2-7-0	' 1-6-0 '	3-4-8	3-4	4-8	4-3-0			
Plate Offsets ()	K,Y) [2:0-4-13	,Edge], [12:0-4-1,0-0-1]											
LOADING (pst TCLL (roof) Snow (Pf/Pg) TCDI	f) 25.0 20.4/20.0 20.0	SPACING- Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI. TC 0. BC 0.	.52 .51	DEFL. Vert(LL) Vert(CT)	in (loc) -0.04 18-19 -0.10 18-19	l/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 197/144		
BCLL	0.0	Rep Stress Incr	NO 2014	WB 0. Motrix M	.56	Horz(CT)) 0.01 12	n/a	n/a	Waight: 107 lb	ET - 20%		
BCDL	10.0		2014	Iviau ix-iv	13					weight. 107 lb	F1 = 20%		
LUMBER- TOP CHORD BOT CHORD WEBS SLIDER REACTIONS.	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Left 2x4 SPF No (size) 12=0 Max Horz 2=46 Max Uplift 12=- Max Grav 12=7	0.2 2-6-0, Right 2x4 SPF No 0-4-0, 2=0-4-0, 16=0-4-0 5(LC 104) 72(LC 105), 2=-124(LC 12) '13(LC 66), 2=897(LC 40),	0.2 2-6-0 , 16=-141(LC 16=2243(LC	- 12) 39)	BR TO BO	ACING- P CHORD IT CHORD	Structural wood 2-0-0 oc purlins Rigid ceiling dirr 5-8-4 oc bracing 5-6-12 oc bracin	sheathing o (4-10-1 ma ectly applied g: 16-18 ng: 15-16.	directly app x.): 4-7, 8- ⁻ d or 10-0-0	ilied or 5-0-8 oc purlins 10. oc bracing, Except:	, except		
FORCES. (Ib TOP CHORD	RCES. (Ib) - Max. Comp./Max. Ten All forces 250 (Ib) or less except when shown. P CHORD 2-4=-1153/124, 4-5=-1134/125, 5-6=-1130/124, 6-7=-360/211, 7-8=-386/238,												
BOT CHORD	8-9=-995/170, 9-10=-995/170, 10-12=-929/131 OT CHORD 2-19=-94/1020, 18-19=-95/1000, 16-18=-1012/69, 15-16=-1012/69, 14-15=-128/516, 13-14=-76/838 12-13=-74/841												
WEBS	13-14=-76/838, 12-13=-74/841 VEBS 4-19=0/268, 5-18=-653/112, 6-18=-149/2277, 6-16=-2036/182, 6-15=-91/1328, 8-15=-643/43, 8-14=-31/682, 9-14=-448/69, 10-14=-73/266												
NOTES- 1) Unbalanced 2) Wind: ASCE II; Exp C; Er plate grip DO 3) TCLL: ASCE DOL=1.15); surcharge a 4) Unbalanced 5) This truss ha non-concurr 6) Provide ade 7) This truss ha 8) Provide ade 7) This truss ha 8) Provide mec 2=124, 16=1 9) This truss is referenced s 10) Graphical g 11) Use Simps truss(es) to 12) Fill all nail I 13) "NAILED" i Odditinues ADM	roof live loads ha 7-16; Vult=115m bclosed; MWFRS DL=1.60 E 7-16; Pr=25.0 p Is=1.0; Rough Ca pplied to all expois snow loads have as been designed ent with other live quate drainage to as been designed thanical connection 41. designed in acco thanical connection 41. designed in acco than	ave been considered for this ph (3-second gust) Vasd={ (directional); cantilever left sf (roof LL: Lum DOL=1.15 at C; Partially Exp.; Ce=1.0; sed surfaces with slopes lee been considered for this d for greater of min roof live beads. prevent water ponding. I for a 10.0 psf bottom chorr on (by others) of truss to be ordance with the 2018 Interne P1 1. ion does not depict the size (S24 (4-10d Girder, 2-10d T tom chord. ger is in contact with lumber 0.148"x3") or 3-12d (0.148"; on, loads applied to the face	s design. 11mph; TCDI and right exp Plate DOL=1 ; Cs=1.00; Ct ss than 0.500 esign. load of 12.0 µ d live load no aring plate ca hational Resid or the orient russ, Single (3.25") toe-na e of the truss	=6.0psf; BCDL loosed ; end ver .15); Pg=20.0 =1.10, Lu=50-0 /12 in accordar osf or 1.00 time nconcurrent wi apable of withst dential Code se ation of the pur Ply Girder) or e	=4.2psf; h tical left an psf; Pf=20. I-0; Min. fla nce with IB es flat roof I th any othe tanding 100 ections R50 flin along th equivalent a tidlines. ont (F) or b	=15ft; B=45ft; L d right exposed 4 psf (Lum DOI tt roof snow Ioa C 1608.3.4. Ioad of 15.4 psf er live Ioads. 0 Ib uplift at join 02.11.1 and R80 ne top and/or bo at 2-0-12 from th back (B).	=24ft; eave=4ft; (t; Lumber DOL=1 L=1.15 Plate d governs. Rain f on overhangs t(s) 12 except (jt= 02.10.2 and bitom chord. he left end to con	Cat. .60 =lb) nect	Contraction of the second seco	ANDREW THOMAS JOINSOL NUMBER PE-201701899 FE-SSIONAL EN November 17,2			
WARNIN Design valic a truss syste building des is always re fabrication, Safety Infor	G - Verify design para f for use only with MiT em. Before use, the bu- ign. Bracing indicate quired for stability anc storage, delivery, erec rmation available fro	meters and READ NOTES ON THIS ex® connectors. This design is ba- uilding designer must verify the app is to prevent buckling of individue to prevent collapse with possible tion and bracing of trusses and tru m Truss Plate Institute, 2670 Crair	AND INCLUDED sed only upon pa blicability of desig at truss web and/o personal injury a ss systems, see h Highway, Suite	MITEK REFEREN irameters shown, a gn parameters and or chord members nd property damag ANSI/TP 203 Waldorf, MD 2	CE PAGE MII nd is for an in properly incor only. Additior e. For genera 11 Quality Cri 0601	-7473 rev. 5/19/2020 dividual building co rporate this design i hal temporary and p al guidance regardin iteria, DSB-89 and	D BEFORE USE. mponent, not nto the overall ermanent bracing ig the BCSI Building Comp	ponent		MITEK* 16023 Swingley Ridge Rd Chesterfield, MO 63017			

			RELEASE FOR		
Job	Truss	Truss Type		ly	
2523907	D17		AL CHRAS NOTED ON PLANS REVIEW	1	143654618
2323301			DEVELOPMENT SERVICES	'	Job Reference (optional)
Builders FirstSource (Valley	Center), Valley Center, K	S - 67147,	LEE'S SUMMIT, MISSOURE 24	10 s Ma	9 2020 MiTek Industries, Inc. Tue Nov 17 10:04:27 2020 Page 2
			ID:wH4RYhEsTN	leUP2d	XvOfi1syQY8e-LOQ3JrqH?xjLV0LobuypUiXfeCTKjNulwf5v?cylJHo
			11/30/2020		
LOAD CASE(S) Standard					
1) Dead + Snow (balanced): Lumber Increase=1.15, Pla	ate Increase=	1.15		

 Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=<u>1.15</u> Uniform Loads (plf)

Vert: 1-4=-71, 4-7=-81, 7-8=-71, 8-10=-81, 10-12=-71, 20-24=-20

Concentrated Loads (lb)

Vert: 6=-75(B) 16=-47(B) 3=37(B) 28=-74(B) 29=-74(B) 31=-74(B) 32=-74(B) 35=-220(B) 36=-43(B) 37=-43(B) 38=-43(B) 39=-43(B) 39

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale = 1:24.3

	2-4-0	4-1-14	11-1-)	13-5-0
	2-4-0	1-9-14	6-11-	2	2-4-0
Plate Offsets (X,Y	/) [3:0-3-15,0-	1-6], [5:0-4-8,0-2-0], [9:0-8-0,0-2-	-0], [11:0-3-0,0-0-8], [13:0-4-3,0-1-8]		
LOADING (psf) TCLL (roof) Snow (Pf/Pg) 20 TCDL BCLL BCDL	25.0 0.4/20.0 20.0 0.0 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI.DEFL.TC0.93Vert(LLBC0.53Vert(CWB0.29Horz(CMatrix-ASVert(C	in (loc) I/defl L/d) -0.07 9-10 >999 240) -0.16 9-10 >999 180 T) 0.05 7 n/a n/a	PLATES GRIP MT20 197/144 MT20HS 148/108 Weight: 54 lb FT = 20%
LUMBER-			BRACING-		
TOP CHORD 2	x4 SPF No.2		TOP CHORD	Structural wood sheathing directly app	plied, except end verticals, and
BOT CHORD 2	x4 SPF No.2			2-0-0 oc purlins (2-2-0 max.): 4-6.	
WEBS 2	x4 SPF No.2		BOT CHORD	Rigid ceiling directly applied.	

REACTIONS. (size) 7=0-4-0, 13=0-4-0 Max Horz 13=90(LC 15) Max Uplift 7=-63(LC 13), 13=-79(LC 16) Max Grav 7=799(LC 35), 13=817(LC 2)

- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- 2-3=-529/100, 3-4=-1505/268, 4-5=-1359/280, 5-6=-928/155, 6-7=-735/134, TOP CHORD 2-13=-808/201
- BOT CHORD 3-11=-184/1176, 10-11=-324/1368, 9-10=-213/1170, 5-9=-694/182 WEBS 4-10=0/267, 5-10=-116/369, 6-9=-205/1190
- NOTES-
- 1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 4-1-14, Exterior(2R) 4-1-14 to 8-4-13, Interior(1) 8-4-13 to 13-3-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads

6) Provide adequate drainage to prevent water ponding.

- 7) All plates are MT20 plates unless otherwise indicated.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 13.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

🗼 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not Lessign value use only winn win exec connectors. Inis design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporely incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale = 1:26.0

2	4-7-14	1		11-1-0					13-4-0		
2	2-4-0	2-3-14	1		6-5-2				I	2-3-0	
Plate Offsets (X,Y) [2:0-3-0,	Edge], [9:0-4-8,0-1-8], [9:	:0-3-0,0-0-12], [⁻	12:0-3-0,0-0-	8]							
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.4/20.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/T	2-0-0 1.15 1.15 YES PI2014	CSI. TC BC WB Matrix	0.49 0.67 0.43 -AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.17 0.05	(loc) 10-11 10-11 18	l/defl >999 >929 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 53 lb	GRIP 197/144 FT = 20%

LUMBER-		BRACING-	
TOP CHORD	2x4 SPF No.2	TOP CHORD	Structural wood sheathing directly applied, except end verticals, and
BOT CHORD	2x4 SPF No.2		2-0-0 oc purlins (5-2-1 max.): 4-6.
WEBS	2x4 SPF No.2	BOT CHORD	Rigid ceiling directly applied.
OTHERS	2x4 SPF No.2		

REACTIONS. (size) 14=0-4-0, 18=Mechanical Max Horz 14=73(LC 16) Max Uplift 14=-73(LC 16), 18=-58(LC 13) Max Grav 14=817(LC 2), 18=742(LC 35)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-3=-574/89, 3-4=-1381/231, 4-5=-1201/246, 5-6=-254/0, 6-9=-75/528, 2-14=-802/196
- BOT CHORD 13-14=-141/286, 3-12=-122/943, 11-12=-261/1216, 10-11=-237/1276, 9-10=-187/1301

WEBS 4-11=0/296, 5-9=-1114/288, 6-18=-764/118

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 4-7-14, Exterior(2R) 4-7-14 to 8-8-7, Interior(1) 8-8-7 to 12-10-12 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Bearing at joint(s) 14 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 18.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	I	2-4-0	3-9-14		1		4-11-2			1	2-3-0	I	
Plate Offsets (2	X,Y) [3:0-4-7,0	0-1-2], [4:0-4-13,Edge], [5:0-5-8,0-3-0], [′	11:0-3-0,0-2	-8]								
LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	f) 25.0 20.4/20.0 20.0 0.0 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TI	2-0-0 1.15 1.15 YES Pl2014	CSI. TC BC WB Matrix	0.90 0.83 0.33 -AS	DEFL. Vert(L Vert(C Horz(C	ii .) -0.09 T) -0.17 T) 0.06	n (loc) 9 10-11 7 10-11 6 17	l/defl >999 >922 n/a	L/d 240 180 n/a		PLATES MT20 MT20HS Weight: 56 lb	GRIP 197/144 148/108 FT = 20%
						BRACING-	Structu		l choothir	a directly	applied (aveant and vort	icals and
TOP CHORD	2x4 SPF No.2					TOP CHORD	Structu	ral wood	sheathir	ng directly	applied, e	except end vert	icals, and

 TOP CHORD
 2x4 SPF No.2
 TOP CHORD
 Structural wood sheathing directly applied, except end verticals, and 2-0-0 oc purlins (2-2-0 max.): 4-5.

 WEB
 2x4 SPF No.2
 BOT CHORD
 BOT CHORD

 2x4 SPF No.2
 Except*
 BOT CHORD
 Rigid ceiling directly applied.

 0THERS
 2x4 SPF No.2
 SPF No.2
 SPF No.2

REACTIONS. (size) 13=0-4-0, 17=Mechanical Max Horz 13=95(LC 16) Max Uplift 13=-71(LC 16), 17=-56(LC 13)

Max Grav 13=841(LC 36), 17=703(LC 35)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-3=-627/72, 3-4=-1166/202, 4-5=-1013/236, 2-13=-842/190
- BOT CHORD 3-11=-98/723, 10-11=-247/1006, 9-10=-38/264, 8-9=-16/312

WEBS 5-10=-229/839, 5-17=-719/130

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 6-1-14, Exterior(2R) 6-1-14 to 10-4-13, Interior(1) 10-4-13 to 12-10-12 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.

7) All plates are MT20 plates unless otherwise indicated.

- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) Refer to girder(s) for truss to truss connections.
- Bearing at joint(s) 13 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 13, 17.

- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) All plates are MT20 plates unless otherwise indicated.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Bearing at joint(s) 13 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 13, 14.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum 13) sheetrock be applied directly to the bottom chord.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with ever connectors. This besign is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

November 17,2020

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with ever connectors. This besign is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 **WARNING - Verify Design Content Content**

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LUMBER-

 TOP CHORD
 2x4 SPF No.2

 BOT CHORD
 2x4 SPF No.2

 WEBS
 2x4 SPF No.2

 SLIDER
 Left 2x4 SPF No.2 1-6-0

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied.

REACTIONS. (size) 2=0-4-0, 9=Mechanical Max Horz 2=247(LC 15) Max Uplift 2=-64(LC 16), 9=-63(LC 13) Max Grav 2=800(LC 2), 9=732(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-872/141, 6-9=-293/155

BOT CHORD 2-10=-258/739, 9-10=-258/739

WEBS 4-10=0/283, 4-9=-828/211

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 13-4-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) Refer to girder(s) for truss to truss connections.

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 9.
 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- 9) This truss is designed in accordance with the 2018 international residential Code sections (Code sections (Code and Robert 10.2 and Robert 10.
- 9) This truss design requires that a minimum of //16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LUMBER-

 TOP CHORD
 2x4 SPF No.2

 BOT CHORD
 2x4 SPF No.2

 WEBS
 2x4 SPF No.2

 SLIDER
 Left 2x4 SPF No.2 1-6-0

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied.

REACTIONS. (size) 2=0-4-0, 6=Mechanical Max Horz 2=247(LC 15) Max Uplift 2=-66(LC 16), 6=-64(LC 13) Max Grav 2=807(LC 2), 6=723(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-4=-891/143, 5-6=-272/141
- BOT CHORD 2-7=-252/757, 6-7=-252/757
- WEBS 4-7=0/287, 4-6=-846/204

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 13-2-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. (size) 2=0-4-0, 7=Mechanical Max Horz 2=214(LC 15) Max Uplift 2=-69(LC 16), 7=-63(LC 13) Max Grav 2=898(LC 36), 7=746(LC 36)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-4=-1112/145, 4-5=-1154/254
- BOT CHORD 2-8=-279/909
- WEBS 4-8=-616/215, 5-8=-212/1036, 5-7=-750/307

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 11-6-0, Exterior(2E) 11-6-0 to 13-2-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 7.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			RELEASE FOR	
Job	Truss	Truss Type	CONSTRUCTION Ply	
2523907	G01	HIP GIRDER	AS NOTED ON PLANS REVIEW	143654632
2020001			DEVELOPMENT SERVICES	Job Reference (optional)
Builders FirstSource (Valley	Center), Valley Center, K	S - 67147,	LEE'S SUMMIT, MISSOUR8.240 s Mar	9 2020 MiTek Industries, Inc. Tue Nov 17 10:04:49 2020 Page 2
			ID:wH4RYhEsTNeUP2dXv0	fi1syQY8e-idlOwM54qiUD8P01tWLzNLRKb3t0tN7?_4Q3nKyIJHS
			11/30/2020	
LOAD CASE(S) Standard				
1) Dead + Snow (balanced): Lumber Increase=1.15, Pla	ate Increase=	1.15	

 Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=<u>1.15</u> Uniform Loads (plf)

Vert: 1-4=-71, 4-6=-81, 6-8=-71, 12-16=-20

Concentrated Loads (lb)

Vert: 10=-43(F) 5=-74(F) 3=37(F) 7=37(F) 20=-75(F) 21=-74(F) 24=-74(F) 25=-75(F) 26=-220(F) 27=-43(F) 28=-43(F) 29=-43(F) 30=-43(F) 31=-220(F) 31=-220(F) 32=-32(F) 32

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale = 1:17.4

Snow (Pf/Pg) TCDL BCLL BCDL	20.4/20.0 20.0 0.0 10.0	Lumber DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2018/TPI2014	BC WB Matri	0.16 0.37 0.05 x-MP		Vert(CT) Horz(CT)	-0.01 -0.02 0.01	9 9 7	>999 >999 n/a	240 180 n/a	Weight: 27 lb	FT = 20%
LUMBER-	_				BRA	CING-	_					
TOP CHORD	2x4 SPF No.2				TOP	CHORD	Structural	wood	sheathin	g directly app	olied or 6-0-0 oc purlir	ns, except
BOT CHORD	2x4 SPF No.2						2-0-0 oc p	ourlins	(6-0-0 m	ax.): 4-5.		
WEBS	2x4 SPF No.2				BOT	CHORD	Rigid ceili	ng dire	ectly appl	ied or 10-0-0	oc bracing.	
SLIDER	Left 2x4 SPF No	0.2 1-6-15, Right 2x4 SPF No.2 1-6-15					5	-			5	

REACTIONS. (size) 2=0-4-0, 7=0-4-0 Max Horz 2=33(LC 11) Max Uplift 2=-124(LC 12), 7=-124(LC 12) Max Grav 2=751(LC 35), 7=751(LC 35)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-4=-802/140, 4-5=-678/130, 5-7=-802/140 TOP CHORD

2-10=-83/694, 9-10=-84/678, 7-9=-84/694 BOT CHORD

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0 Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.

Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads

- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=124, 7=124.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 11) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent spaced at 3-2-8 oc max. starting at 2-0-12 from the left end to 5-3-4 to connect truss(es) to front face of bottom chord.

12) Fill all nail holes where hanger is in contact with lumber.

- 13) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Continued on page 2

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH1</u> Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

November 17,2020

			RELEASE FOR			
Job	Truss	Truss Type		Ply	14005-100	
2523907	H01		AS NOTED ON PLANS REVIE	V 1	14365463	33
2020001			DEVELOPMENT SERVICES		Job Reference (optional)	
Builders FirstSource (Valley	Center), Valley Center, K	S - 67147,	LEE'S SUMMIT, MISSOURE	240 s Ma	r 9 2020 MiTek Industries, Inc. Tue Nov 17 10:04:53 2020 Page 2	
			ID:wH4RYhEsTNeUI	P2dXvOf	1syQY8e-aO?umk9btw_fc0Ko6MQvXBcBdhNbpFGaviPHw5yIJHO	
			11/30/2020			
LOAD CASE(S) Standard						
1) Dead + Snow (balanced): Lumber Increase=1.15, Pla	ate Increase=	1.15			

Uniform Loads (plf) Vert: 1-4=-71, 4-5=-81, 5-8=-71, 11-15=-20 Concentrated Loads (lb)

Vert: 19=37(F) 20=-75(F) 21=37(F) 22=-220(F) 23=-43(F) 24=-220(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

- non-concurrent with other live loads. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 15.4/20.0 TCDL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.10 BC 0.04 WB 0.00	DEFL. in Vert(LL) -0.00 Vert(CT) -0.00 Horz(CT) -0.00	(loc) 5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCLL 0.0 BCDL 10.0	Code IRC2018/TPI2014	Matrix-MR					Weight: 6 lb	FT = 20%
	1							

LUMBER-

 TOP CHORD
 2x4 SPF No.2

 BOT CHORD
 2x4 SPF No.2

 WEBS
 2x4 SPF No.2

BRACING-TOP CHORD BOT CHORD

Sheathed or 2-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (Ib/size) 5=176/0-4-0, 3=48/Mechanical, 4=15/Mechanical Max Horz 5=58(LC 16)

Max Uplift 5=-29(LC 16), 3=-18(LC 16)

Max Grav 5=224(LC 21), 3=63(LC 21), 4=33(LC 7)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed. (a construction of a construction o
- exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 29 lb uplift at joint 5 and 18 lb uplift at joint 3.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) SPACING- 2-0-0 CSI. TCLL (roof) 25.0 Plate Grip DOL 1.15 TC (roof) Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 BC (roof) TCDL 20.0 Rep Stress Incr YES WB (roof) BCLL 0.0 Code IRC2018/TPI2014 Matrix-	DEFL. in (loc) l/defl L/d PLATES GRIP 2 Vert(LL) -0.00 4-5 >999 240 MT20 197/144 7 Vert(CT) -0.01 4-5 >999 180 Horz(CT) 0.00 3 n/a n/a Weight: 9 lb FT = 20%

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF No.2

BRACING-TOP CHORD

Structural wood sheathing directly applied or 3-2-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-5-11, 3=Mechanical, 4=Mechanical Max Horz 5=56(LC 16) Max Uplift 5=-63(LC 16), 3=-18(LC 16) Max Grav 5=354(LC 21), 3=102(LC 21), 4=52(LC 7)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-5=-319/200

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Corner(3) -1-5-8 to 2-9-7, Exterior(2R) 2-9-7 to 3-1-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.

 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.4/20.0 TCDL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO	CSI. TC 0.22 BC 0.35 WB 0.02	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.02 8-11 -0.05 8-11 0.03 5	l/defl >999 >938 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCDL 0.0	Code IRC2018/TPI2014	Matrix-MP					Weight: 14 lb	FT = 20%
LUMBER-		BR	ACING-					

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 WEDGE Left: 2x4 SPF No.2

REACTIONS. (size) 5=Mechanical, 2=0-4-0, 6=Mechanical Max Horz 2=48(LC 11) Max Uplift 5=-70(LC 36), 2=-43(LC 12), 6=-18(LC 9)

Max Grav 5=37(LC 50), 2=335(LC 32), 6=241(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2, 6. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 50 lb down and 34 lb up at 3-11-4, and 54 lb down and 29 lb up at 3-0-0 on top chord, and 29 lb down and 9 lb up at 3-0-0 on bottom chord. The
- design/selection of such connection device(s) is the responsibility of others.
- 13) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Continued on page 2

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Structural wood sheathing directly applied or 4-0-0 oc purlins,

except end verticals, and 2-0-0 oc purlins: 3-5.

Rigid ceiling directly applied or 6-0-0 oc bracing

			RELE	ASE FO	DR			
Job	Truss	Truss Type	CONS	TRUCTI	<mark>ØN</mark> I	Ply		
2523907	.103	HALE HIP GI	IRDER AS NOTED C	N PLANS	REVIEV	V 1		143654637
2020007	000		DEVELOPI	MENT SEF	VICES		Job Reference (optional)	
Builders FirstSource (Valley	Center), Valley Center, K	S - 67147,	LEE'S SUM	AMIT, MIS	SOUR _{b.2}	240 s Ma	r 9 2020 MiTek Industries, Inc. Tue Nov 17 10:04:58 2020	Page 2
				ID:wH4F	RYhEsTNel	JP2dXv¢	Dfi1syQY8e-xLonpRCkiTdxjnCmvv04EEJ1Qh41UW1J3_62b	JyIJHJ
			11	/30/2020				
LOAD CASE(S) Standard								
Uniform Loads (plf)								

Vert: 1-3=-71, 3-4=-81, 4-5=-81, 6-9=-20 Concentrated Loads (lb)

Vert: 3=-1(B) 5=-38(B) 8=0(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	I	4-0-0)		I					
Plate Offsets (X,Y) [2:0-2	late Offsets (X,Y) [2:0-2-0,0-4-11]									
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 15.4/20.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.24 BC 0.21 WB 0.00 Matrix-AS	DEFL. in Vert(LL) 0.02 Vert(CT) -0.03 Horz(CT) 0.01	(loc) l/defl 4-7 >999 4-7 >999 2 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 12 lb	GRIP 197/144 FT = 20%			
LUMBER- TOP CHORD 2x4 SPF No.:	2	BRACIN TOP CHO	G- ORD Structural	wood sheathing	g directly applied.					

BOT CHORD

Rigid ceiling directly applied.

BOT CHORD 2x4 SPF No.2 WEDGE Left: 2x4 SPF No.2

REACTIONS. (size) 3=Mechanical, 2=0-4-0, 4=Mechanical

Max Horz 2=55(LC 16) Max Uplift 3=-28(LC 16), 2=-33(LC 16) Max Grav 3=155(LC 21), 2=320(LC 21), 4=77(LC 7)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-11-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1. 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum
- sheetrock be applied directly to the bottom chord.

November 17,2020

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (pst) TCLL (roof) 25.0 Snow (Pf/Pg) 15.4/20.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. TC 0.07 BC 0.04 WB 0.00 Matrix-MP	DEFL. in Vert(LL) -0.00 Vert(CT) -0.00 Horz(CT) 0.00	(loc) 7 7 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 7 lb	GRIP 197/144 FT = 20%
		BBA						

LUMBER

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEDGE Left: 2x4 SPF No.2 TOP CHORD BOT CHORD Structural wood sheathing directly applied or 2-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

Leil. 2X4 SPF IN

REACTIONS. (size) 3=Mechanical, 2=0-4-0, 4=Mechanical

Max Horz 2=35(LC 16) Max Uplift 3=-11(LC 16), 2=-32(LC 16) Max Grav 3=62(LC 2), 2=205(LC 2), 4=36(LC 7)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BCDL	
LUMBER-	

TOP CHORD 2x4 SPF No.2

BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2

10.0

BRACING-TOP CHORD

Matrix-MR

Structural wood sheathing directly applied or 1-11-7 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-5-11, 3=Mechanical, 4=Mechanical Max Horz 5=46(LC 16) Max Uplift 5=-67(LC 16), 3=-8(LC 13) Max Grav 5=308(LC 2), 3=34(LC 2), 4=25(LC 7)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-5=-272/186

Code IRC2018/TPI2014

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Corner(3) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=-1.0; Rough Cat C; Partially Exp; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Telefenceu standaru ANSI/TETT.

Weight: 7 lb

FT = 20%

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MITEK° 16023 Swingley Ridge Rd Chesterfield, MO 63017

			RELEASE FO	DR			
Job	Truss	Truss Type	CONSTRUCT	ON Ply			
2523907	107	HALE HIP GI	RDER AS NOTED ON PLANS	REVIEW	1	1436	54641
2020001	001		DEVELOPMENT SEI	VICES		Job Reference (optional)	
Builders FirstSource (Valley	Center), Valley Center, K	S - 67147,	LEE'S SUMMIT, MIS	SOUR8 .240	s Mar	9 2020 MiTek Industries, Inc. Tue Nov 17 10:05:02 2020 Page	; 2
			ID:wH4RY	nEsTNeUP2dX	<vofi†< td=""><td>syQY8e-p71IfpGEmh7NBPWX8I41P4UkmJVmQKCvzc4Fk4yIJH</td><td>F</td></vofi†<>	syQY8e-p71IfpGEmh7NBPWX8I41P4UkmJVmQKCvzc4Fk4yIJH	F
			11/30/2020				
LOAD CASE(S) Standard	1						
Concentrated Loads (lb)							

Vert: 8=1(B) 11=-10(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y) [2:0-0-14,	,0-1-12], [5:0-0-0,0-1-12]							
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 15.4/20.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. TC 0.26 BC 0.13 WB 0.00 Matrix-AS	DEFL. Vert(LL) -0. Vert(CT) -0. Horz(CT) 0	in (loc) .01 4-5 .02 4-5 .01 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 11 lb	GRIP 197/144 FT = 20%

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied.

REACTIONS. (size) 5=0-4-0, 3=Mechanical, 4=Mechanical

Max Horz 5=85(LC 16) Max Uplift 5=-27(LC 16), 3=-39(LC 16)

Max Grav 5=340(LC 21), 3=164(LC 21), 4=74(LC 7)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-5=-312/140

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-11-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

- right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2, 6.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

	I	4-0-0			I				
Plate Offsets (X,Y) [2:0-2-0,0-4-11]									
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 15.4/20.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. D TC 0.24 V BC 0.21 V WB 0.00 H Matrix-AS H H	EFL. in (lo ert(LL) 0.02 4 ert(CT) -0.03 4 orz(CT) 0.01	oc) l/defl 4-7 >999 2 4-7 >999 1 2 n/a	L/d PLATES (40 MT20 80 n/a Weight: 12 lb	GRIP 197/144 FT = 20%			
LUMBER- TOP CHORD 2x4 SPF No.2		BRACING TOP CHO	RD Structural w	vood sheathing d	irectly applied.				

BOT CHORD

Rigid ceiling directly applied.

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEDGE Left: 2x4 SPF No.2

REACTIONS. (size) 3=Mechanical, 2=0-4-0, 4=Mechanical

Max Horz 2=55(LC 16) Max Uplift 3=-28(LC 16), 2=-33(LC 16) Max Grav 3=155(LC 21), 2=320(LC 21), 4=77(LC 7)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-11-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1. 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum
- sheetrock be applied directly to the bottom chord.

November 17,2020

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2

BRACING-TOP CHORD

Structural wood sheathing directly applied or 2-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing

REACTIONS. (size) 4=0-4-0, 2=Mechanical, 3=Mechanical

Max Horz 4=37(LC 16) Max Uplift 2=-22(LC 16)

Max Grav 4=101(LC 2), 2=77(LC 2), 3=37(LC 7)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right

- exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 15.4/20.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. TC 0.25 BC 0.23 WB 0.00 Matrix-AS	DEFL. Vert(LL) -0 Vert(CT) -0 Horz(CT) 0	in (loc) 0.02 3-6 0.04 3-6 0.01 1	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 10 lb	GRIP 197/144 FT = 20%
LUMBER-		BR	ACING-					

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEDGE Left: 2x4 SPF No.2

REACTIONS. (size) 1=0-4-0, 2=Mechanical, 3=Mechanical

Max Horz 1=41(LC 16) Max Uplift 1=-4(LC 16), 2=-30(LC 16)

Max Grav 1=222(LC 20), 2=156(LC 20), 3=79(LC 7)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 3-11-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 2.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 naīj,

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-4-13 to 3-4-13, Interior(1) 3-4-13 to 4-5-14, Exterior(2R) 4-5-14 to 7-5-14, Interior(1) 7-5-14 to 8-6-14 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

November 17,2020

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-4-13 to 3-4-13, Interior(1) 3-4-13 to 6-3-3, Exterior(2R) 6-3-3 to 9-3-3, Interior(1) 9-3-3 to 12-1-9 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 13, 12, 10, 9.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 9.
 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

November 17,2020

November 17,2020

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-3-6 to 3-3-6, Interior(1) 3-3-6 to 4-9-3, Exterior(2R) 4-9-3 to 7-9-3, Interior(1) 7-9-3 to 9-2-15 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=171, 6=171.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

				RELEAS	E FOR]			
Job	Trus	S	Truss Type	CONSTRU		Ply				143654655
2523907	LG08	3	GABLE	AS NOTED ON P		V 1				143054055
Builders FirstSou	urce (Valley Cente	er), Valley Center, ł	(S - 67147,	LEE'S SUMMIT	F, MISSOURE2	240 s Ma	Job Reference (r 9 2020 MiTek Ir	optional) ndustries, Inc.	Tue Nov 17 10:05:17 2	020 Page 1
			Į	ID: 11/50/2 1 2x4 N	3seZTgShN_qvhel 2020 9	lqPBpz4	myNXMX-t?RzoxI	ReEI0FVi9PW(OrYVFbEvMe2R5P6QF	RDYmiyIJH0 Scale = 1:38.5
			7-0-13		2x4 12 2x4 12 3 cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	à N				
				2x4 2x4						
LOADING (psf) TCLL (roof) Snow (Pf/Pg) 1 TCDL BCLL BCDL	25.0 5.4/20.0 20.0 0.0 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/	2-0-0 1.15 1.15 YES TPI2014	CSI. TC 0.40 BC 0.06 WB 0.10 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a 0.00	loc) l/defl - n/a - n/a 3 n/a	L/d 999 999 n/a	PLATES MT20 Weight: 26 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS OTHERS	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2			Bi TC BC	RACING- DP CHORD DT CHORD	Structur except e Rigid ce	ral wood sheathir end verticals. eiling directly app	ng directly app lied or 10-0-0	blied or 4-11-9 oc purl oc bracing.	ins,
REACTIONS.	(size) 5=4- Max Horz 5=-2 Max Uplift 5=-9 Max Grav 5=10	11-9, 3=4-11-9, 4=4-11 25(LC 10) 9(LC 12), 3=-76(LC 13))2(LC 24), 3=238(LC 12)	-9), 4=-182(LC 14) 2), 4=403(LC 24)	1						
FORCES. (Ib) TOP CHORD BOT CHORD WEBS	- Max. Comp./M 2-3=-464/500 4-5=-310/320, 2-4=-419/294	lax. Ten All forces 25 3-4=-310/320	0 (lb) or less exc	ept when shown.						
 NOTES- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp; Ce=1.0; Cs=1.00; Ct=1.10 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3 except (jt=lb) 4=182. 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 										
								Artic	NUMBER PE-20170189	NOTES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 November 17,2020

16023 Swingley Ridge Rd Chesterfield, MO 63017

LOADING (psf) SPACING-2-0-0 CSI. DEFL. L/d PLATES GRIP in (loc) l/defl TCLL (roof) 25.0 Plate Grip DOL Vert(LL) 999 197/144 1.15 тс 0.17 n/a n/a MT20 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 BC 0.07 Vert(CT) 999 n/a n/a TCDI 20.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 2 n/a n/a BCLL 0.0 Code IRC2018/TPI2014 Matrix-P Weight: 9 lb FT = 20% BCDL 10.0 LUMBER-BRACING-TOP CHORD 2x4 SPF No.2 TOP CHORD Structural wood sheathing directly applied or 3-8-11 oc purlins, 2x4 SPF No.2 BOT CHORD

BOT CHORD

except end verticals Rigid ceiling directly applied or 10-0-0 oc bracing

REACTIONS. 3=3-8-0, 2=3-8-0 (size) Max Horz 3=-36(LC 14) Max Uplift 3=-11(LC 16), 2=-9(LC 16) Max Grav 3=151(LC 2), 2=151(LC 2)

2x4 SPF No.2

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

WEBS

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Plate Offsets (X,Y)-- [2:0-1-12,0-0-10], [4:0-0-2,0-2-0], [4:0-1-12,0-0-0]

i idio eliebte (, (, , , , , , , , , , , , , , , , , ,									
LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	sf) 25.0 15.4/20.0 20.0 0.0 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. TC 0.30 BC 0.12 WB 0.05 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 16 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2		BF TC BC	RACING- DP CHORD DT CHORD	Structura except er Rigid ceil	I wood nd verti ling dire	sheathin cals. ectly appl	g directly app ied or 10-0-0	blied or 6-0-0 oc purlin oc bracing.	S,

REACTIONS. (size) 5=6-4-11, 3=6-4-11, 4=6-4-11 Max Horz 5=-71(LC 12) Max Uplift 5=-10(LC 12), 3=-82(LC 21), 4=-50(LC 16)

2x4 SPF No.2

Max Grav 5=193(LC 21), 3=23(LC 12), 4=515(LC 21)

NOTES-

OTHERS

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 4-3-8, Interior(1) 4-3-8 to 5-6-10 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3, 4.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-4=-426/244

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- r) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 3-8-0, Exterior(2R) 3-8-0 to 6-8-0, Interior(1) 6-8-0 to 7-2-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 4.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

