

MiTek USA, Inc.

16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

Re: H3-6

SUMMIT HOMES

RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW DEVELOPMENT SERVICES LEE'S SUMMIT, MISSOURI

10/26/2020

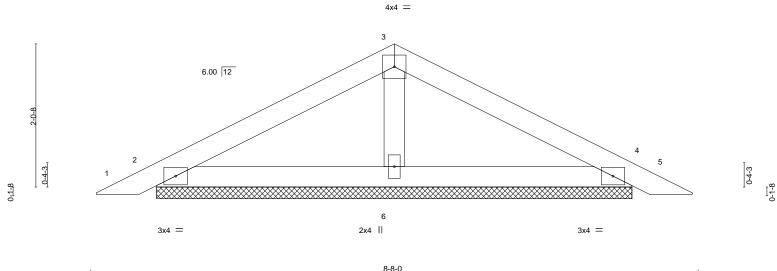
The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Mid America MO.

Pages or sheets covered by this seal: I43185910 thru I43185962

My license renewal date for the state of Missouri is December 31, 2021.

Missouri COA: Engineering 001193

October 14,2020


Sevier, Scott

,Engineer

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job Qty SUMMIT HOMES Truss Truss Type Ply 143185910 C1 H3-6 Piggyback 20 Job Reference (optional) Mid America Truss, Jefferson City, MO - 65101, 8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:19:47 2020 Page 1 ID:Fpza38BVdcFyJDKwxgHN8dztCCb-LRrM53a9dF_zKw9o2KaXVEirZHh7z2Nql3Ln7vyTrLQ 4-4-0 8-8-0

Scale = 1:16.4

	8-8-0											
TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.26 BC 0.08 WB 0.02 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.01 0.01 0.00	(loc) 5 5 4	l/defl n/r n/r n/a	L/d 120 90 n/a	PLATES MT20 Weight: 26 lb	GRIP 244/190 FT = 3%			

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 OTHERS 2x4 SP No.2 **BRACING-**

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 2=6-9-6, 4=6-9-6, 6=6-9-6

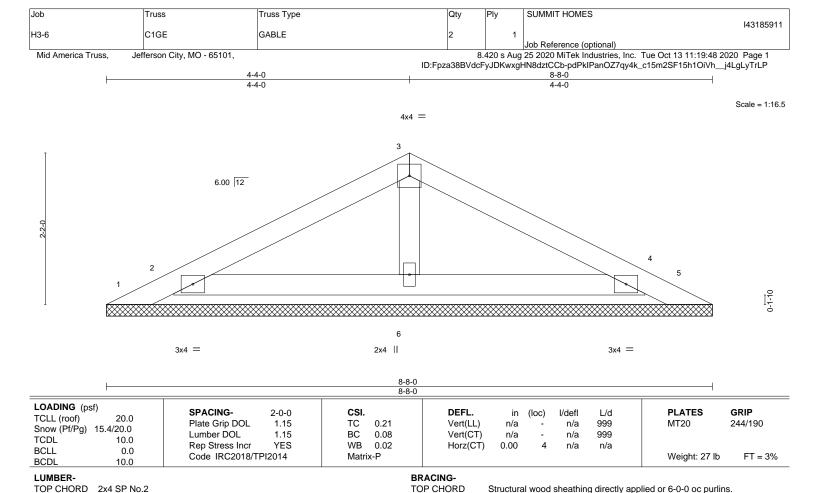
Max Horz 2=-22(LC 9)

Max Uplift 2=-21(LC 11), 4=-25(LC 12)

Max Grav 2=209(LC 16), 4=209(LC 17), 6=264(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10


4-4-0

- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Plates checked for a plus or minus 3 degree rotation about its center.
- 7) Gable requires continuous bottom chord bearing.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

October 14,2020

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 8-8-0.

Max Horz 1=23(LC 8) (lb) -

2x4 SP No.2

2x4 SP No.2

Max Uplift All uplift 100 lb or less at joint(s) 2, 4 except 1=-114(LC 16), 5=-114(LC 17) All reactions 250 lb or less at joint(s) 1, 5, 6 except 2=363(LC 16), 4=363(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

BOT CHORD

OTHERS

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design
- 6) Plates checked for a plus or minus 3 degree rotation about its center.
- 7) Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 2-0-0 oc.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4 except (jt=lb) 1=114. 5=114.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building

October 14,2020

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANS/TPI1 Qu
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job SUMMIT HOMES Truss Type Truss Qty Ply 143185912 H3-6 CJ1 Diagonal Hip Girder Job Reference (optional) Mid America Truss, Jefferson City, MO - 65101, 8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:19:49 2020 Page 1 ID:Fpza38BVdcFyJDKwxgHN8dztCCb-Hqz6WlbP9tFhaEJAAlc?afnAc5IIRyD7CNquCoyTrLO -1-2-14 6-10-5 1-2-14 6-10-5 Scale = 1:18.9 3x4 II 3 4.24 12 Special Special 4 Special Special 2x4 || 6-10-5 6-10-5 LOADING (psf) SPACING-GRIP CSI. DEFL. **PLATES** 2-0-0 (loc) I/defl I/d TCLL (roof) 20.0 Plate Grip DOL 244/190

LUMBER-

Snow (Pf/Pg)

TCDL

BCLL

BCDL

TOP CHORD 2x6 SP No.1 **BOT CHORD** 2x4 SP No.2

15.4/20.0

10.0

10.0

0.0

WFBS 2x4 SP No 2 WEDGE

Left: 2x4 SP No.2

REACTIONS.

(size) 4=Mechanical, 2=0-5-5 Max Horz 2=94(LC 8)

Max Uplift 4=-40(LC 8), 2=-68(LC 7)

Max Grav 4=299(LC 16), 2=370(LC 16)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Lumber DOL

Rep Stress Incr

Code IRC2018/TPI2014

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

1.15

1.15

NO

TC

вС

WB

Matrix-P

0.35

0.42

0.00

Vert(LL)

Vert(CT)

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

0.00

-0.11

-0.00

except end verticals.

360

240

Structural wood sheathing directly applied or 6-0-0 oc purlins,

>728

n/a

Rigid ceiling directly applied or 10-0-0 oc bracing.

MT20

Weight: 35 lb

FT = 3%

- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1
- 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 68 lb down and 47 lb up at 4-1-7, and 68 lb down and 47 lb up at 4-1-7 on top chord, and 12 lb down at 4-1-7, and 12 lb down at 4-1-7 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-51, 2-4=-20

Concentrated Loads (lb)

Vert: 6=-57(F=-28, B=-28) 7=-0(F=-0, B=-0)

October 14,2020

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANS/TPI1 Qu
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job SUMMIT HOMES Truss Type Truss Qty Ply 143185913 H3-6 CJ2 Diagonal Hip Girder Job Reference (optional)

Mid America Truss, Jefferson City, MO - 65101,

8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:19:50 2020 Page 1 ID:Fpza38BVdcFyJDKwxgHN8dztCCb-l0XUj5c1wANYBOuNjS8E7tKEaVaPANHHR1ZSkEyTrLN 7-6-12

-1-2-14 1-6-11 1-2-14 1-6-11 6-0-1

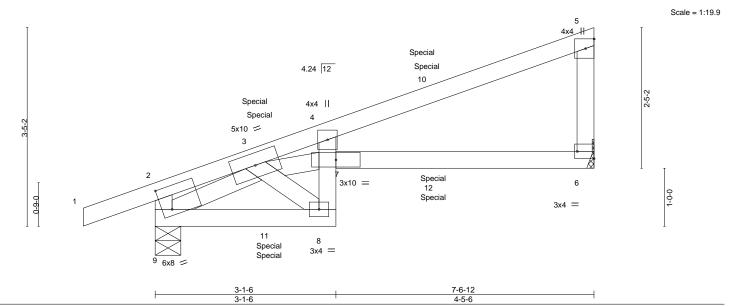


Plate Offsets (X,Y)-- [6:Edge,0-1-8], [9:0-2-0,0-4-12]

LOADING (psf) SPACING-CSL 2-0-0 DEFL. in (loc) I/defI I/d TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.78 Vert(LL) -0.17 6-7 >515 360 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 вС 0.68 Vert(CT) -0.28 6-7 >314 240 **TCDL** 10.0 Rep Stress Incr WB 0.14 NO Horz(CT) 0.10 6 n/a n/a BCLL 0.0 Code IRC2018/TPI2014 Matrix-SH BCDL 10.0

GRIP **PLATES** MT20 244/190

> Weight: 36 lb FT = 3%

LUMBER-

WEBS

TOP CHORD 2x4 SP No.1 **BOT CHORD** 2x4 SP No.2 **BRACING-**

Structural wood sheathing directly applied or 6-0-0 oc purlins, TOP CHORD

except end verticals

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 9=0-5-5, 6=Mechanical

2x4 SP No.2

Max Horz 9=97(LC 30)

Max Uplift 9=-70(LC 7), 6=-54(LC 11) Max Grav 9=419(LC 16), 6=392(LC 16)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 3-4=-808/100

BOT CHORD 8-9=-77/400, 7-8=-42/278, 4-7=-23/251 **WEBS** 3-8=-364/84, 3-9=-466/51, 3-7=-101/572

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 6.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1
- 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 51 lb down and 24 lb up at 1-11-15, 51 lb down and 24 lb up at 1-11-15, and 64 lb down and 32 lb up at 4-9-14, and 64 lb down and 32 lb up at 4-9-14 chord, and at 1-11-15, at 1-11-15, and 44 lb down and 28 lb up at 4-9-14, and 44 lb down and 28 lb up at 4-9-14 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-51, 2-5=-51, 8-9=-20, 6-7=-20

Concentrated Loads (lb)

Vert: 10=-20(F=-10, B=-10) 12=-88(F=-44, B=-44)

October 14,2020

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANS/TPI1 Qu
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

20-6-0

3-8-0

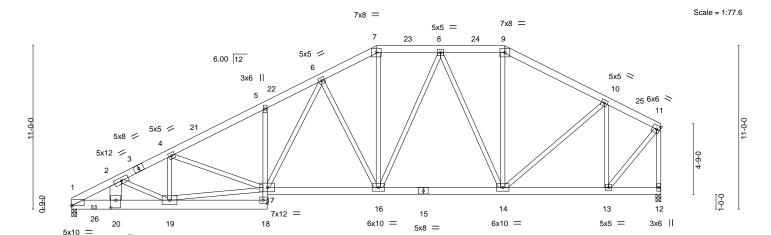
Mid America Truss, Jefferson City, MO - 65101, 2-11-8

2-11-8

6-7-0

3-7-8

13-2-0


6-7-0

16-10-0

3-8-0

5x6 =

8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:19:53 2020 Page 1 ID:Fpza38BVdcFyJDKwxgHN8dztCCb-AbDdM6evD5l72rcxPbhxlVyn_idANY?j7?o6LZyTrLK 24-10-0 29-2-0 36-0-0 39-8-0 4-4-0 4-4-0 6-10-0 3-8-0

Special

8x10 П

JUS24

1	2-11-8	6-7-0	լ 13-2-0 լ	20-6-0	29-2-0	1 36-0-0	, 39-8-0 _I	
Г	2-11-8	3-7-8	6-7-0	7-4-0	8-8-0	6-10-0	3-8-0	
(Y)	[1:0-0-0	0-0-11 [18·F	dge 0-2-81 [20:0-6-4 0-4-	-01				

TCLL (roof) 20.0 Snow (Pf/Pg) 20.4/20.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO	CSI. TC 0.65 BC 0.55 WB 0.85	DEFL. in (loc) l/defl L/d Vert(LL) -0.14 16-17 >999 360 Vert(CT) -0.27 16-17 >999 240 Horz(CT) 0.09 12 n/a n/a	PLATES GRIP MT20 244/190
BCDL 0.0	Code IRC2018/TPI2014	Matrix-SH		Weight: 726 lb FT = 3%

LUMBER-

Plate Offsets (X,

TOP CHORD 2x6 SP No.1 2x6 SP No.1 *Except* **BOT CHORD** 1-18: 2x8 SP 2400F 2.0E

2x4 SP No.2 *Except* WFRS 2-20: 2x10 SP 2400F 2.0E

REACTIONS. (size) 1=0-4-0 (req. 0-5-7), 12=0-4-0

Max Horz 1=243(LC 8)

Max Grav 1=9237(LC 33), 12=2322(LC 33)

BRACING-

TOP CHORD Structural wood sheathing directly applied or 3-8-8 oc purlins,

except end verticals. Except: 10-0-0 oc bracing: 17-18

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

SUPPLEMENTARY BEARING PLATES, SPECIAL ANCHORAGE, OR OTHER MEANS TO ALLOW FOR THE MINIMUM REQUIRED SUPPORT WIDTH (SUCH AS COLUMN CAPS, BEARING BLOCKS, ETC.) ARE THE RESPONSIBILITY OF THE TRUSS MANUFACTURER OR THE BUILDING DESIGNER.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-15465/0, 2-4=-8755/0, 4-5=-5798/0, 5-6=-5800/0, 6-7=-3234/0, 7-8=-2843/0, 8-9=-1961/0, 9-10=-2325/0, 10-11=-1470/0, 5-17=-454/142, 11-12=-2290/0

1-20=0/13176, 19-20=0/13176, 18-19=0/1067, 16-17=0/3767, 14-16=0/2408,

13-14=0/1283

WFBS 2-20=0/6626, 2-19=-5934/0, 4-19=0/2144, 17-19=0/6890, 4-17=-3059/0, 6-17=0/3036,

 $6-16=-2119/0,\ 7-16=0/1154,\ 8-16=0/1083,\ 8-14=-1210/0,\ 9-14=0/629,\ 10-14=0/958,$

10-13=-1467/0, 11-13=0/2020

NOTES-

BOT CHORD

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x8 - 2 rows staggered at 0-2-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x10 - 4 rows staggered at 0-2-0 oc, 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
 4) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0 Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 6) Unbalanced snow loads have been considered for this design.
- 7) Provide adequate drainage to prevent water ponding.
- 8) Plates checked for a plus or minus 3 degree rotation about its center.
- 9) WARNING: Required bearing size at joint(s) 1 greater than input bearing size.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Use USP JUS24 (With 4-10d nails into Girder & 2-10d nails into Truss) or equivalent at 1-6-0 from the left end to connect truss(es) to front face of bottom chord, skewed 0.0 deg.to the right, sloping 0.0 deg. down.

ப் விர்க்கி வெருக்கு மேற்காக with lumber.

October 14,2020

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not Design Valid to Use Only with New Controlled S. This costign is based only upon parameters shown, and is for an individual druining Component, not a fundamental property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	SUMMIT HOMES
на е	GR1	PIGGYBACK BASE GIRDE	,		l43185914
H3-6	GKT	PIGG FBACK BASE GIRDE	'	2	Job Reference (optional)

Mid America Truss, Jefferson City, MO - 65101,

8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:19:54 2020 Page 2 ID:Fpza38BVdcFyJDKwxgHN8dztCCb-enm?ZSfYzPt_g?B8ylCAHjVyk6zP6?FsMfXft?yTrLJ

NOTES-

13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 7604 lb down at 2-11-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

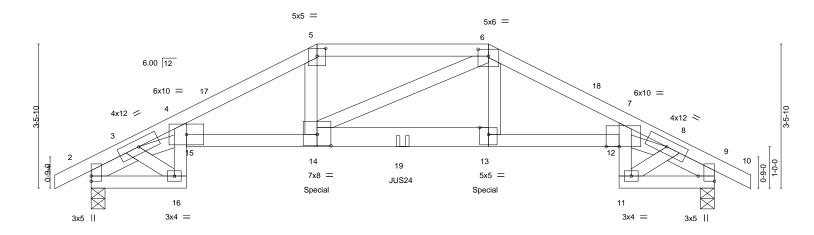
1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-5=-51, 5-7=-51, 7-9=-61, 9-11=-51, 1-18=-20, 12-17=-20

Concentrated Loads (lb)

Vert: 20=-7604(F) 26=-544(F)


JobTrussTruss TypeQtyPlySUMMIT HOMESH3-6H1Hip Girder12Job Reference (optional)

Mid America Truss, Jefferson City, MO - 65101,

8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:19:56 2020 Page 1 ID:Fpza38BVdcFyJDKwxgHN8dztCCb-aAum_8goV07ivJLW4jFeM8aEYvaLa1T9pz0myuyTrLH

-0-10-8 1-1-12 2-3-8 5-5-4 9-6-12 12-8-8 13-10-4 15-0-0 0-10-8 1-1-12 1-1-12 3-1-12 4-1-8 3-1-12 1-1-12 1-1-12 0-10-8

Scale = 1:27.7

2-3-8	3-1-12	4-1-8	'	3-1	l - 12	'	2-3-8	
Plate Offsets (X,Y) [5:0-2-8,0	0-2-4], [6:0-3-0,0-2-0], [7:0-3-12,0-0-0], [9:Edge,0-4-10], [14:0-4-0,	,0-3-4]					
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 20.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2018/TPI2014	CSI. TC 0.95 BC 0.84 WB 0.35 Matrix-SH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.15 14-15 -0.24 14-15 0.24 9	>752	L/d 360 240 n/a	PLATES MT20 Weight: 159 lb	GRIP 244/190 FT = 3%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2 *Except*

14-15,12-13: 2x4 SP No.1, 13-14: 2x6 SP No.1

WERS 2x4 SP No 2

SLIDER Left 2x4 SP No.2 -t 1-2-2, Right 2x4 SP No.2 -t 1-2-2

REACTIONS. (size) 2=0-4-0, 9=0-4-0

Max Horz 2=36(LC 54)

Max Uplift 2=-132(LC 11), 9=-132(LC 12) Max Grav 2=1484(LC 34), 9=1484(LC 34)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1985/189, 3-4=-4073/401, 4-5=-3380/355, 5-6=-3050/342, 6-7=-3385/336,

7-8=-4074/361, 8-9=-1985/187

BOT CHORD 2-16=-145/1364, 15-16=-49/568, 4-15=-31/584, 14-15=-301/3055, 13-14=-255/3055,

12-13=-255/3059, 11-12=-32/567, 7-12=-12/582, 9-11=-111/1364 3-16=-884/97, 5-14=-107/1109, 6-13=-112/1113, 8-11=-883/69, 3-15=-279/2862,

8-12=-223/2864

NOTES-

WEBS

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0 Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 6) Unbalanced snow loads have been considered for this design.
- 7) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs
- 8) Provide adequate drainage to prevent water ponding.
- 9) Plates checked for a plus or minus 3 degree rotation about its center.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=132. 9=132.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and Continuious R502.11.1 and R802.11.1 and R

15-0-0

Structural wood sheathing directly applied or 3-5-6 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

October 14,2020

A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	SUMMIT HOMES	
H3-6	H1	Hip Girder	1	9		143185915
					Job Reference (optional)	

Mid America Truss, Jefferson City, MO - 65101,

8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:19:56 2020 Page 2 $ID: Fpza38BVdcFyJDKwxgHN8dztCCb-aAum_8goV07ivJLW4jFeM8aEYvaLa1T9pz0myuyTrLH\\$

NOTES-

- 12) Use USP JUS24 (With 4-10d nails into Girder & 2-10d nails into Truss) or equivalent at 7-6-0 from the left end to connect truss(es) to front face of bottom chord, skewed 0.0 deg.to the right, sloping 0.0 deg. down.
- 13) Fill all nail holes where hanger is in contact with lumber.
- 14) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 603 lb down and 127 lb up at 5-5-4, and 603 lb down and 127 lb up at 9-6-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

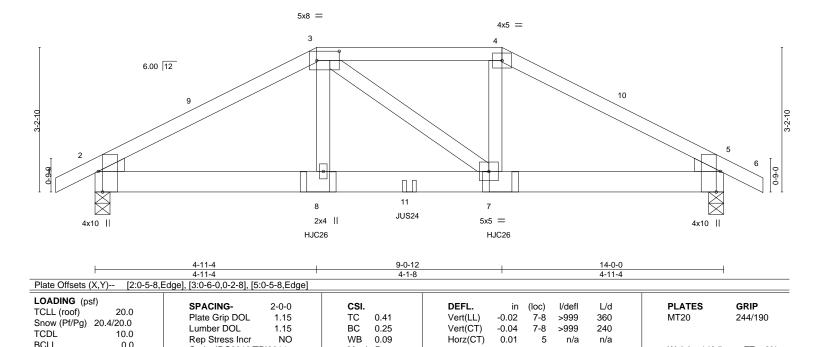
LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-5=-51, 5-6=-61, 6-10=-51, 2-16=-20, 12-15=-20, 9-11=-20

Concentrated Loads (lb)

Vert: 14=-603(F) 13=-603(F) 19=-239(F)


16023 Swingley Ridge Rd Chesterfield, MO 63017

Job Ply SUMMIT HOMES Truss Type Truss Qty 143185916 H3-6 H2 Hip Girder 2 Job Reference (optional) Mid America Truss, Jefferson City, MO - 65101, 8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:19:58 2020 Page 1 ID:Fpza38BVdcFyJDKwxgHN8dztCCb-WZ0WPqi21eNP9cVvB8H6SZfhUjP02?4SHHVt0myTrLF <u>-0-10</u>-8 4-11-4 9-0-12 14-0-0

4-1-8

Scale = 1:25.7

0-10-8

BRACING-

TOP CHORD

BOT CHORD

Matrix-P

LUMBER-

BCDL

0-10-8

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

WEDGE

Left: 2x4 SP No.2 , Right: 2x4 SP No.2

10.0

REACTIONS.

(size) 2=0-4-0, 5=0-4-0 Max Horz 2=-33(LC 55) Max Uplift 2=-114(LC 11), 5=-114(LC 12) Max Grav 2=1298(LC 34), 5=1298(LC 34)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Code IRC2018/TPI2014

4-11-4

TOP CHORD 2-3=-1961/186, 3-4=-1641/189, 4-5=-1961/186 BOT CHORD 2-8=-151/1607, 7-8=-154/1642, 5-7=-133/1607

WEBS 3-8=-50/690, 4-7=-62/722

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0 Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 6) Unbalanced snow loads have been considered for this design.
- 7) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 8) Provide adequate drainage to prevent water ponding.
- 9) Plates checked for a plus or minus 3 degree rotation about its center.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=114, 5=114.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Use USP HJC26 (With 16-16d nails into Girder & 10d nails into Truss) or equivalent spaced at 4-0-12 oc max. starting at 4-11-10 from the left end to 9-0-6 to connect truss(es) to back face of bottom chord.

Continued on page 2

Weight: 148 lb

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

FT = 3%

October 14,2020

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	Job	Truss	Truss Type	Qty	Ply	SUMMIT HOMES
						I43185916
ŀ	H3-6	H2	Hip Girder	1	2	Job Reference (optional)
						Job Reference (optional)

Mid America Truss, Jefferson City, MO - 65101,

8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:19:58 2020 Page 2 ID:Fpza38BVdcFyJDKwxgHN8dztCCb-WZ0WPqi21eNP9cVvB8H6SZfhUjP02?4SHHVt0myTrLF

13) Use USP JUS24 (With 4-10d nails into Girder & 2-10d nails into Truss) or equivalent at 7-0-0 from the left end to connect truss(es) to back face of bottom chord.

14) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-51, 3-4=-61, 4-6=-51, 2-5=-20

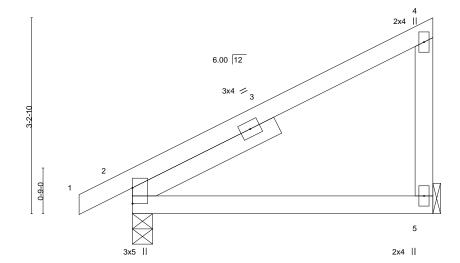
Concentrated Loads (lb)

Vert: 8=-485(B) 7=-485(B) 11=-215(B)

Job SUMMIT HOMES Truss Truss Type Qty Ply 143185917 J1 H3-6 Jack-Closed Job Reference (optional)

Mid America Truss, Jefferson City, MO - 65101,

8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:19:59 2020 Page 1 ID:Fpza38BVdcFyJDKwxgHN8dztCCb-_laucAjgoxVGmm45lroL_mCpY7l6nTibWxFQZDyTrLE


Structural wood sheathing directly applied or 4-11-4 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

-0-10-8 4-11-4 4-11-4 0-10-8

Scale = 1:18.9

4-11-4 LOADING (psf) SPACING-**PLATES** GRIP CSI. DEFL. I/d 2-0-0 (loc) I/defl TCLL (roof) 20.0 Plate Grip DOL 244/190 1.15 TC 0.58 Vert(LL) 0.00 360 MT20 Snow (Pf/Pg) 15.4/20.0 вС Lumber DOL 1.15 0.20 Vert(CT) -0.03 2-5 >999 240 **TCDL** 10.0 Rep Stress Incr YES WB 0.00 Horz(CT) -0.00 5 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-P Weight: 25 lb FT = 3% **BCDL** 10.0

4-11-4

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2

BOT CHORD WFBS 2x4 SP No.2

SLIDER Left 2x4 SP No.2 -t 2-7-14

REACTIONS.

(size) 5=Mechanical, 2=0-4-0

Max Horz 2=93(LC 10)

Max Uplift 5=-21(LC 11), 2=-10(LC 11) Max Grav 5=235(LC 16), 2=287(LC 16)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

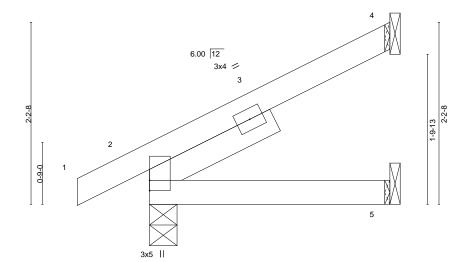
NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

October 14,2020

Job SUMMIT HOMES Truss Truss Type Qty 143185918 J2 H3-6 Jack-Open Job Reference (optional)

Mid America Truss, Jefferson City, MO - 65101,


8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:19:59 2020 Page 1 $ID: Fpza38BVdcFyJDKwxgHN8dztCCb-_laucAjgoxVGmm45lroL_mCwB7oCnTibWxFQZDyTrLE\\$

Structural wood sheathing directly applied or 2-10-15 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

-0-10-8 2-10-15 0-10-8 2-10-15

Scale = 1:14.0

			2-10-15		1			
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.15 BC 0.06 WB 0.00	Vert(CT) -0.	in (loc) 00 2 00 2-5 00 4	l/defl **** >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2018/TPI2014	Matrix-P					Weight: 13 lb	FT = 3%

2-10-15

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2

SLIDER Left 2x4 SP No.2 -t 1-8-4

REACTIONS. (size) 4=Mechanical, 2=0-4-0, 5=Mechanical

Max Horz 2=53(LC 11) Max Uplift 4=-39(LC 11)

Max Grav 4=98(LC 16), 2=213(LC 16), 5=28(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

October 14,2020

Job SUMMIT HOMES Truss Truss Type Qty Ply 143185919 J3 H3-6 Jack-Closed Job Reference (optional)

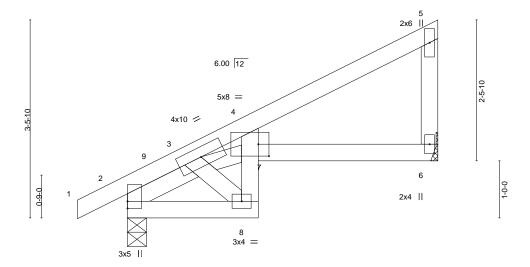
Mid America Truss, Jefferson City, MO - 65101,

8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:20:00 2020 Page 1 ID:Fpza38BVdcFyJDKwxgHN8dztCCb-Tx8GqWklZFd7OwflJZJaX_k15X3jWvvlkb_z5fyTrLD

Structural wood sheathing directly applied or 5-5-4 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.


-0-10-8 1-1-12 5-5-4 4-3-8 0-10-8 1-1-12

Scale = 1:20.2

GRIP

244/190

FT = 3%

5-5-4 3-1-12

BRACING-

TOP CHORD

BOT CHORD

Plate Offsets (X,Y)-- [4:0-2-4,0-2-8]

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.40	DEFL. ir Vert(LL) -0.05	7	l/defl >999	L/d 360	PLATES MT20
TCDL 10.0	Lumber DOL 1.15 Rep Stress Incr YES	BC 0.37 WB 0.07	Vert(CT) -0.08 Horz(CT) 0.04		>790 n/a	240 n/a	
BCLL 0.0	Code IRC2018/TPI2014	Matrix-SH	, ,				Weight: 28 lb

LUMBER-

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2 2x4 SP No.2 WEBS

SLIDER Left 2x4 SP No.2 -t 1-3-11

REACTIONS. (size) 6=Mechanical, 2=0-4-0

Max Horz 2=89(LC 8)

Max Uplift 6=-24(LC 11), 2=-8(LC 11) Max Grav 6=259(LC 16), 2=294(LC 16)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-319/7, 3-4=-449/29

WEBS 3-7=-45/269

NOTES-

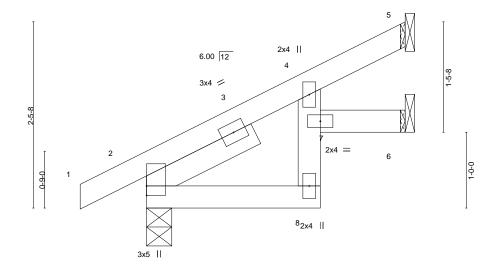
- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

October 14,2020

Job SUMMIT HOMES Truss Truss Type Qty Ply 143185920 H3-6 Jack-Open Job Reference (optional)

Mid America Truss,

Jefferson City, MO - 65101,


8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:20:01 2020 Page 1 $ID: Fpza38BVdcFyJDKwxgHN8dztCCb-x8ie1skxKZI_04EUtGqp3BHHewSCFNBuzFkXd5yTrLC\\$

Structural wood sheathing directly applied or 3-4-15 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

-0-10-8 2-3-8 3-4-15 0-10-8 2-3-8

Scale = 1:15.2

2-3-8 2-3-8 3-4-15 1-1-7 LOADING (psf) SPACING-DEFL. **PLATES** GRIP CSI. I/d in (loc) I/defl TCLL (roof) 20.0 Plate Grip DOL 244/190 1.15 TC 0.09 Vert(LL) -0.00 >999 360 MT20 Snow (Pf/Pg) 15.4/20.0 вС Lumber DOL 1.15 0.16 Vert(CT) -0.01 8 >999 240 **TCDL** 10.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-R Weight: 17 lb FT = 3% BCDL 10.0

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2

SLIDER Left 2x4 SP No 2 -t 1-7-3

(size) 5=Mechanical, 2=0-4-0, 6=Mechanical

Max Horz 2=60(LC 11)

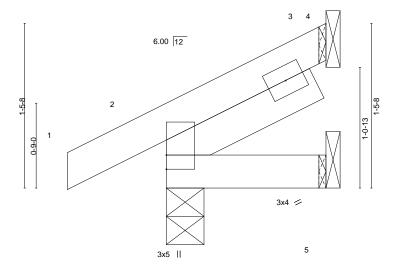
Max Uplift 5=-18(LC 11), 6=-7(LC 11)

Max Grav 5=82(LC 16), 2=239(LC 16), 6=72(LC 16)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 6.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

October 14,2020


Job SUMMIT HOMES Truss Truss Type Qty 143185921 J5 H3-6 Jack-Open Job Reference (optional)

Mid America Truss, Jefferson City, MO - 65101,

8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:20:01 2020 Page 1 $ID: Fpza38BVdcFyJDKwxgHN8dztCCb-x8ie1skxKZI_04EUtGqp3BHH2wUSFNBuzFkXd5yTrLC\\$

-0-10-8 1-4-15 0-10-8

Scale = 1:10.2

1-4-15 1-4-15

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.06 BC 0.01 WB 0.00	DEFL. in (loc) l/defl L/d Vert(LL) 0.00 2 ***** 360 Vert(CT) -0.00 2 >999 240 Horz(CT) -0.00 3 n/a n/a	PLATES GRIP MT20 244/190
BCLL 0.0 BCDL 10.0	Code IRC2018/TPI2014	Matrix-P		Weight: 8 lb FT = 3%

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2

SLIDER Left 2x4 SP No.2 -t 1-5-11 **BRACING-**

TOP CHORD Structural wood sheathing directly applied or 1-4-15 oc purlins. **BOT CHORD**

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 2=0-4-0, 5=Mechanical, 3=Mechanical

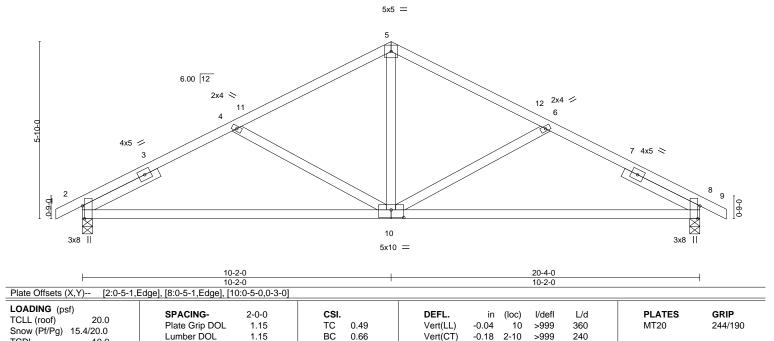
Max Horz 2=32(LC 11)

Max Uplift 2=-2(LC 11), 3=-22(LC 11)

Max Grav 2=144(LC 16), 5=14(LC 1), 3=31(LC 16)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 3.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


October 14,2020

Job SUMMIT HOMES Truss Truss Type Qty Ply 143185922 T1 H3-6 Common Job Reference (optional) Mid America Truss, Jefferson City, MO - 65101, 8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:20:02 2020 Page 1

 $ID: Fpza38BVdcFyJDKwxgHN8dztCCb-PKF1EBIZ5strdEogQ_L2cPqM5Kge_nN2CvT49YyTrLB$ 0-10-8 0-10-8 5-1-0 10-2-0 15-3-0 20-4-0 21-2-8 0-10-8 5-1-0 5-1-0 5-1-0 5-1-0

Scale = 1:37.9

BCDL

TCDL

BCLL

LUMBER-

BRACING-

WB

Matrix-SH

0.20

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.2 WEBS

TOP CHORD Structural wood sheathing directly applied or 5-3-6 oc purlins. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing.

n/a

n/a

0.03

8

Horz(CT)

SLIDER Left 2x4 SP No.2 -t 2-9-12, Right 2x4 SP No.2 -t 2-9-12

REACTIONS. (size) 2=0-4-0, 8=0-4-0

10.0

10.0

0.0

Max Horz 2=63(LC 8)

Max Uplift 2=-20(LC 11), 8=-20(LC 12) Max Grav 2=866(LC 2), 8=866(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Rep Stress Inci

Code IRC2018/TPI2014

TOP CHORD 2-4=-1260/62, 4-5=-956/32, 5-6=-956/32, 6-8=-1260/62

BOT CHORD 2-10=-50/1040, 8-10=0/1040

5-10=0/481, 6-10=-320/124, 4-10=-320/123 WEBS

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

YES

- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Plates checked for a plus or minus 3 degree rotation about its center.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Weight: 100 lb

FT = 3%

October 14,2020

Job Ply SUMMIT HOMES Truss Truss Type Qty 143185923 H3-6 T1G Roof Special Girder 2 Job Reference (optional) Mid America Truss, Jefferson City, MO - 65101, 8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:20:14 2020 Page 1 $ID: Fpza38BVdcFyJDKwxgHN8dztCCb-2e_Zmlu5GYO834j_7VZs5xKTbAs9o7xpymNjbryTrL?$ 10-2-0 15-3-0 20-4-0 5-1-0 5-1-0 5-1-0 5-1-0 Scale = 1:38.7 7x8 = 6.00 12 5x5 ≥ 5x5 / 9 4 2 $\Pi\Pi$ \prod 11 12 13 14 15 16 17 18 8 7 6 5x8 5x8 JUS26 JUS26 JUS26 JUS26 JUS26 JUS26 3x10 | 8x10 = 3x10 || JUS26 JUS26 JUS26 5-1-0 5-1-0 5-1-0 5-1-0 Plate Offsets (X,Y)--[7:0-5-0,0-6-0] LOADING (psf) SPACING-CSL **DEFL** L/d GRIP

in (loc)

6-7

6-7

5

-0.06

-0.13

0.04

Vert(LL)

Vert(CT)

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

I/defl

>999

>999

n/a

Rigid ceiling directly applied or 10-0-0 oc bracing.

360

240

n/a

Structural wood sheathing directly applied or 5-11-8 oc purlins.

LUMBER-

TCLL (roof)

TCDL

BCLL

BCDL

Snow (Pf/Pg)

TOP CHORD 2x6 SP No.1 **BOT CHORD** 2x8 SP 2400F 2.0E

2x4 SP No.2 WEBS

REACTIONS. (size) 1=0-4-0, 5=0-4-0 Max Horz 1=60(LC 33)

20.0

10.0

0.0

10.0

15.4/20.0

Max Uplift 1=-100(LC 11), 5=-98(LC 12) Max Grav 1=4471(LC 2), 5=4404(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 1-2=-7614/179, 2-3=-5408/155, 3-4=-5408/155, 4-5=-7616/180 TOP CHORD **BOT CHORD** 1-8=-162/6612, 7-8=-162/6612, 6-7=-108/6612, 5-6=-108/6612 3-7=-70/4421, 4-7=-2083/123, 4-6=0/1978, 2-7=-2083/122, 2-8=0/1973 **WEBS**

Plate Grip DOL

Rep Stress Incr

Code IRC2018/TPI2014

Lumber DOL

NOTES-

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x8 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

2-0-0

1.15

1.15

NO

TC

вС

WB

Matrix-SH

0.20

0.29

0.54

- 6) Unbalanced snow loads have been considered for this design.
- 7) Plates checked for a plus or minus 3 degree rotation about its center.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Use USP JUS26 (With 4-10d nails into Girder & 4-10d nails into Truss) or equivalent spaced at 2-0-0 oc max. starting at 2-0-12 from the left end to 18-0-12 to connect truss(es) to back face of bottom chord.
- 11) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-51, 3-5=-51, 1-5=-20

Continued on page 2

\Lambda WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANS/TPI1 Qu
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PLATES

Weight: 292 lb

244/190

FT = 3%

MT20

October 14,2020

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	SUMMIT HOMES
H3-6	T1G	Boot Special Circles	_		I43185923
ПЗ-0	IIG	Roof Special Girder		2	Job Reference (optional)

Mid America Truss,

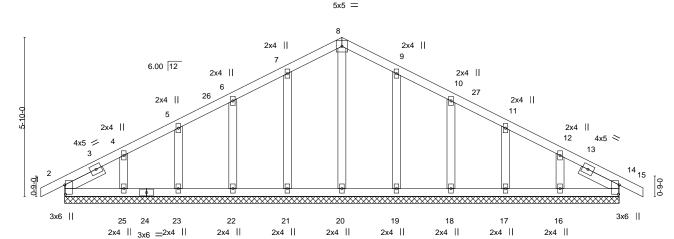
Jefferson City, MO - 65101,

8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:20:14 2020 Page 2 ID:Fpza38BVdcFyJDKwxgHN8dztCCb-2e_Zmlu5GY0834j_7VZs5xKTbAs9o7xpymNjbryTrL?

LOAD CASE(S) Standard

Concentrated Loads (lb)

Vert: 7=-738(B) 11=-738(B) 12=-738(B) 13=-738(B) 14=-738(B) 15=-738(B) 16=-738(B) 17=-738(B) 18=-738(B)


Job SUMMIT HOMES Truss Truss Type Qty Ply 143185924 T1GE H3-6 Common Supported Gable Job Reference (optional)

Mid America Truss, Jefferson City, MO - 65101,

-0-10-8 0-10-8

8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:20:15 2020 Page 1 ID:Fpza38BVdcFyJDKwxgHN8dztCCb-WqYxzevj1sW?hEIAhC45e8sgWaGWXihyBQ7G7HyTrL_ 20-4-0 21-2-8 0-10-8 10-2-0

Scale = 1:42.2

20-4-0 [2:0-4-1,0-0-5], [14:0-4-1,0-0-5]

Plate Offsets (X,Y) [2:0-4-1,0-0-5], [14:0-4-1,0-0-5]											
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCDL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.06 BC 0.03 WB 0.06 Matrix-SH	Vert(CT) -0	in (loc) 0.00 14 0.00 14 0.00 14	l/defl n/r n/r n/a	L/d 120 90 n/a	PLATES MT20 Weight: 113 lb	GRIP 244/190 FT = 3%			

LUMBER-**BRACING-**

TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. **BOT CHORD** 2x4 SP No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 2x4 SP No.2 OTHERS

REACTIONS. All bearings 20-4-0

(lb) -Max Horz 2=-63(LC 7)

Max Uplift All uplift 100 lb or less at joint(s) 2, 21, 22, 23, 25, 19, 18, 17, 16

Max Grav All reactions 250 lb or less at joint(s) 2, 20, 21, 22, 23, 25, 19, 18, 17, 16, 14

10-2-0

10-2-0

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Left 2x4 SP No.2 -t 1-7-3, Right 2x4 SP No.2 -t 1-7-3

SLIDER

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 7) Plates checked for a plus or minus 3 degree rotation about its center.
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 21, 22, 23, 25, 19, 18, 17, 16.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

October 14,2020

Job Qty SUMMIT HOMES Truss Truss Type Ply 143185925 T2 10 H3-6 Roof Special Job Reference (optional) Mid America Truss, Jefferson City, MO - 65101, 8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:20:16 2020 Page 1 $ID: Fpza 38 BVdc FyJDKwxgHN8 dzt CCb-?06 JB_wLoAesJNtMFwbKAMPmNzXDG135Q4 sqekyTrKz$ 10-6-0 15-9-0 21-0-0 5-3-0 5-3-0 5-3-0 5-3-0 Scale = 1:42.2 5x6 = 3 7.00 12 12 4x5 // 4x5 > 2 7x10 = 7x10 =5 0-10-0 0-10-0 9 8 7 3x6 = 4x5 = 4x5 = 14-0-0 21-0-0 7-0-0 7-0-0 7-0-0 Plate Offsets (X,Y)-- [1:Edge,0-2-8], [5:Edge,0-2-8] LOADING (psf) SPACING-CSI. DEFL. L/d **PLATES** GRIP 2-0-0 in (loc) I/defl TCLL (roof) 20.0

LUMBER-

REACTIONS.

Snow (Pf/Pg)

TCDL

BCLL

BCDL

WEBS

BRACING-TOP CHORD

1.15

1.15

YES

TC

вС

WB

Matrix-SH

0.44

0.38

0.57

Vert(LL)

Vert(CT)

Horz(CT)

BOT CHORD

-0.03

-0.09

0.03

7-9

7-9

except end verticals

6

>999

>999

n/a

Rigid ceiling directly applied or 10-0-0 oc bracing.

360

240

n/a

Structural wood sheathing directly applied or 5-3-11 oc purlins,

MT20

Weight: 119 lb

244/190

FT = 3%

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

15.4/20.0

10.0

10.0

0.0

2x4 SP No.2

Plate Grip DOL

Rep Stress Incr

Code IRC2018/TPI2014

Lumber DOL

(size) 10=0-4-0, 6=0-4-0

Max Horz 10=145(LC 8)

Max Uplift 10=-8(LC 11), 6=-8(LC 12) Max Grav 10=828(LC 2), 6=828(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-2=-317/51, 2-3=-1047/79, 3-4=-1047/79, 4-5=-317/51, 1-10=-264/51, 5-6=-264/51 TOP CHORD

BOT CHORD 9-10=-38/933, 7-9=0/651, 6-7=0/929

WEBS 3-7=-37/411, 3-9=-37/410, 2-10=-874/0, 4-6=-874/0

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 6.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

October 14,2020

Design valid for use only with MiTek® cannectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job SUMMIT HOMES Truss Truss Type Qty Ply 143185926 T2GE H3-6 Roof Special Supported Gable Job Reference (optional) Mid America Truss, Jefferson City, MO - 65101, 8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:20:17 2020 Page 1 ID:Fpza38BVdcFyJDKwxgHN8dztCCb-TDfiOKxzZTmjxXSZpd7ZjZy0VNxN?biFekcNAAyTrKy 10-6-0 21-0-0 21-10-8 0-10-8 10-6-0 10-6-0 Scale = 1:46.0 5x5 = 6 2x4 || 2x4 || 5 7.00 12 2x4 || 2x4 || ⁸ 26 2x4 || ₂₅ 2x4 | 3 2x4 || 2x4 || 10 11 12 0-10-0 24 23 22 21 20 19 18 17 16 15 14 13 3x6 3x8 || 2x4 || 3x8 || 2x4 || 21-0-0

21-0-0						
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCDL 10.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.10 BC 0.07 WB 0.09 Matrix-R	DEFL. in (loc) Vert(LL) -0.00 12 Vert(CT) -0.00 12 Horz(CT) 0.00 13	l/defl L/d n/r 120 n/r 90 n/a n/a	PLATES MT20 Weight: 122 lb	GRIP 244/190 FT = 3%

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2

BOT CHORD WFBS 2x4 SP No.2 2x4 SP No.2 OTHERS

BRACING-TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

Rigid ceiling directly applied or 6-0-0 oc bracing. **BOT CHORD**

REACTIONS. All bearings 21-0-0.

Max Horz 24=-153(LC 7) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 24, 13, 19, 20, 21, 23, 17, 16, 15, 14 All reactions 250 lb or less at joint(s) 24, 13, 18, 19, 20, 21, 23, 17, 16, 15, 14

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- $2) \ Wind: ASCE \ 7-16; \ Vult=115mph \ (3-second \ gust) \ Vasd=91mph; \ TCDL=6.0psf; \ BCDL=6.0psf; \ h=25ft; \ Cat. \ II; \ Exp. \ C; \ Enclosed; \ ASCE \ T-16; \ Vult=115mph \ (3-second \ gust) \ Vasd=91mph; \ TCDL=6.0psf; \ BCDL=6.0psf; \ h=25ft; \ Cat. \ II; \ Exp. \ C; \ Enclosed; \ ASCE \ T-16; \ Vult=115mph \ (3-second \ gust) \ Vasd=91mph; \ TCDL=6.0psf; \ BCDL=6.0psf; \ h=25ft; \ Cat. \ II; \ Exp. \ C; \ Enclosed; \ ASCE \ T-16; \ Vult=115mph \ (3-second \ gust) \ Vasd=91mph; \ TCDL=6.0psf; \ BCDL=6.0psf; \ h=25ft; \ Cat. \ II; \ Exp. \ C; \ Enclosed; \ ASCE \ T-16; \ Vult=115mph \ (3-second \ gust) \ Vasd=91mph; \ TCDL=6.0psf; \ BCDL=6.0psf; \ h=25ft; \ Cat. \ II; \ Exp. \ C; \ Enclosed; \ ASCE \ T-16; \ Vult=115mph \ (3-second \ gust) \ Vasd=91mph; \ TCDL=6.0psf; \ BCDL=6.0psf; \ h=25ft; \ Cat. \ II; \ Exp. \ C; \ Enclosed; \ ASCE \ T-16; \ Vult=115mph \ (3-second \ gust) \ Vasd=91mph; \ TCDL=6.0psf; \ BCDL=6.0psf; \ h=25ft; \ Cat. \ II; \ Exp. \ C; \ Enclosed; \ ASCE \ T-16; \ Vult=115mph \ (3-second \ gust) \ Vasd=91mph; \ TCDL=6.0psf; \ BCDL=6.0psf; \ ASCE \ T-16; \ Vult=115mph \ (3-second \ gust) \ Vasd=91mph; \ ASCE \ T-16; \ Vult=115mph \ (3-second \ gust) \ Vasd=91mph; \ ASCE \ T-16; \ Vult=115mph \ (3-second \ gust) \ Vasd=91mph; \ ASCE \ T-16; \ Vult=115mph \ (3-second \ gust) \ Vasd=91mph; \ ASCE \ T-16; \ Vult=115mph \ (3-second \ gust) \ Vasd=91mph; \ ASCE \ T-16; \ Vult=115mph \ (3-second \ gust) \ Vasd=91mph; \ ASCE \ T-16; \ Vult=115mph \ (3-second \ gust) \ Vasd=91mph; \ ASCE \ T-16; \ Vult=115mph \ (3-second \ gust) \ Vasd=91mph; \ ASCE \ T-16; \ Vult=115mph \ (3-second \ gust) \ Vasd=91mph; \ ASCE \ T-16; \ Vult=115mph; \ ASCE \ T-16; \ ASC$ MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 7) Plates checked for a plus or minus 3 degree rotation about its center.
- 8) Gable requires continuous bottom chord bearing.
- 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 24, 13, 19, 20, 21, 23, 17, 16, 15, 14.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

October 14,2020

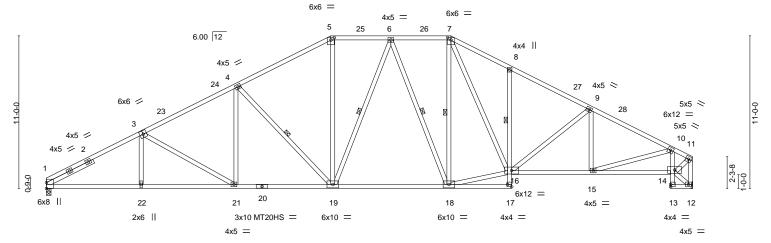
Job SUMMIT HOMES Truss Type Truss Qty Ply 143185927 ТЗ H3-6 Piggyback Base Job Reference (optional)

Mid America Truss, Jefferson City, MO - 65101,

8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:20:19 2020 Page 1 ID:Fpza38BVdcFyJDKwxgHN8dztCCb-PbnSp?yD550RArcxw291o_1BFBQgTPzY625UF2yTrKw

5-8-12

Structural wood sheathing directly applied, except end verticals.


4-19, 6-19, 6-18, 7-18

Rigid ceiling directly applied or 10-0-0 oc bracing. Except:

8-16

6-10-0 13-8-0 20-6-0 24-10-0 29-2-0 33-6-8 39-3-4 45-0-0 6-10-0 6-10-0 6-10-0 4-4-0 4-4-0 5-8-12 5-8-12

Scale = 1:83.1

Plate Offsets (X,Y) [5:0-3-0,0	0-2-0], [7:0-3-0,0-2-0], [17:Edge,0-2-0]			
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 20.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.79 BC 0.85 WB 0.49 Matrix-SH	Vert(LL) -0.21 19 >999 Vert(CT) -0.46 18-19 >999	L/d PLATES GRIP 360 MT20 244/190 240 MT20HS 187/143 n/a Weight: 327 lb FT = 3%

8-8-0

BRACING-

WEBS

TOP CHORD

BOT CHORD

1 Row at midpt

1 Row at midpt

LUMBER-

TOP CHORD 2x4 SP No.2 *Except*

6-10-0

3-5: 2x4 SP No.1, 1-3: 2x4 SP 2400F 2.0E

BOT CHORD 2x4 SP No.2 *Except* 1-20: 2x4 SP No.1

WEBS 2x4 SP No.2

SLIDER Left 2x4 SP No.2 -t 3-9-9

REACTIONS. (size) 1=0-4-0, 12=Mechanical

Max Horz 1=166(LC 10) Max Uplift 1=-13(LC 11)

Max Grav 1=1958(LC 33), 12=2005(LC 33)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-3=-3583/33, 3-4=-3173/53, 4-5=-2543/67, 5-6=-2145/87, 6-7=-2030/70, 7-8=-2936/109, 8-9=-2964/30, 9-10=-3143/9, 10-11=-1655/4, 11-12=-1945/0 TOP CHORD

6-10-0

1-22=-71/3060, 21-22=-72/3057, 19-21=0/2779, 18-19=0/2105, 8-16=-473/126,

BOT CHORD 15-16=0/2755, 14-15=-29/1564, 10-14=-1183/58

WEBS 3-21=-385/94, 4-21=0/331, 4-19=-930/130, 5-19=0/727, 6-18=-429/95, 16-18=0/2002,

7-16=-105/1263, 9-16=-263/85, 10-15=0/1240, 11-14=-19/1896

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33

6-10-0

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design
- 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are MT20 plates unless otherwise indicated
- 7) Plates checked for a plus or minus 3 degree rotation about its center.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1

October 14,2020

Design Valid to Use Only with New Controlled S. This costign is based only upon parameters shown, and is for an individual druining Component, not a fundamental property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job SUMMIT HOMES Truss Type Qty Truss Ply 143185928 H3-6 ТЗА Piggyback Base Job Reference (optional)

24-10-0

4-4-0

Mid America Truss, Jefferson City, MO - 65101,

13-8-0

6-10-0

20-6-0

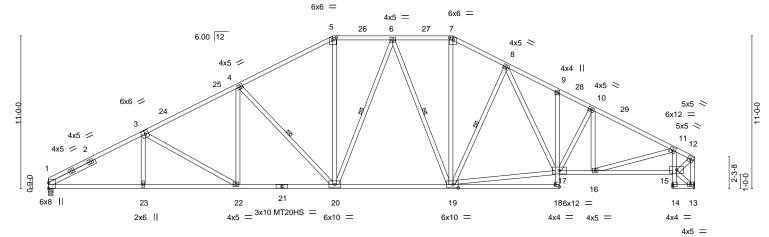
6-10-0

6-10-0

6-10-0

8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:20:21 2020 Page 1 ID:Fpza38BVdcFyJDKwxgHN8dztCCb-L_vCEh_UdiH9P9IK2TBVtP6XI_6lxlwrZMabJxyTrKu 29-2-0 33-0-0 36-10-0 39-3-4 45-0-0 4-4-0 3-10-0 3-10-0 2-5-4 5-8-12

Structural wood sheathing directly applied, except end verticals.


4-20, 6-20, 6-19, 8-19

Rigid ceiling directly applied or 10-0-0 oc bracing.

36-10-0

1 Row at midpt

Scale = 1:83.1

0.00	0.00	• • • • • • • • • • • • • • • • • • • •	, ,			00.2	
Plate Offsets (X,Y) [5:0-3-0,	Plate Offsets (X,Y) [5:0-3-0,0-2-0], [7:0-3-0,0-2-0], [18:Edge,0-2-0], [19:0-4-8,0-3-0]						
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 20.4/20.0 TCDL 10.0 BCDL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.78 BC 0.84 WB 0.53 Matrix-SH	Vert(LL) Vert(CT) Horz(CT)	-0.21 20	l/defl L/d >999 360 >999 240 n/a n/a	PLATES GRIP MT20 244/1 MT20HS 187/1 Weight: 337 lb FT :	90

BRACING-

WEBS

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 *Except*

3-5: 2x4 SP No.1, 1-3: 2x4 SP 2400F 2.0E

BOT CHORD 2x4 SP No.2 *Except* 1-21: 2x4 SP No.1 WEBS

2x4 SP No.2 **SLIDER** Left 2x4 SP No.2 -t 3-9-9

REACTIONS. (size) 1=0-4-0, 13=Mechanical

Max Horz 1=166(LC 10) Max Uplift 1=-13(LC 11)

Max Grav 1=1958(LC 33), 13=2005(LC 33)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-3=-3583/33, 3-4=-3173/53, 4-5=-2542/67, 5-6=-2145/88, 6-7=-2031/69, 7-8=-2350/60, 8-9=-3028/82, 9-10=-3046/40, 10-11=-3127/9, 11-12=-1657/4, 12-13=-1942/0 TOP CHORD

1-23=-71/3059, 22-23=-73/3057, 20-22=0/2779, 19-20=0/2105, 16-17=0/2733,

15-16=-32/1590, 11-15=-1196/64

WEBS 3-22=-384/95, 4-22=0/332, 4-20=-931/129, 5-20=0/725, 6-19=-426/98, 7-19=0/791,

8-19=-784/130, 17-19=0/2146, 8-17=-62/723, 11-16=0/1190, 12-15=-22/1917

BOT CHORD

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are MT20 plates unless otherwise indicated
- 7) Plates checked for a plus or minus 3 degree rotation about its center.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1

October 14,2020

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANS/TPI1 Qu
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job SUMMIT HOMES Truss Type Qty Truss Ply 143185929 H3-6 ТЗВ Piggyback Base Job Reference (optional)

24-10-0

4-4-0

20-6-0

6-10-0

Mid America Truss, Jefferson City, MO - 65101,

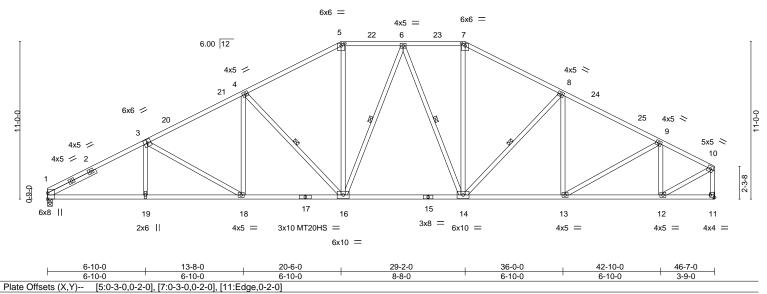
13-8-0

6-10-0

6-10-0

6-10-0

8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:20:23 2020 Page 1 ID:Fpza38BVdcFyJDKwxgHN8dztCCb-HM1zfN?k8JXsfSvi9uEzyqBtlooiPDi71g3hOqyTrKs 29-2-0 36-0-0 42-10-0 46-7-0 4-4-0 6-10-0 6-10-0 3-9-0


Structural wood sheathing directly applied, except end verticals.

4-16, 6-16, 6-14, 8-14

Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Row at midpt

Scale = 1:80.5

LOADING (psf) CSI. DEFL. **PLATES** SPACING-2-0-0 in (loc) I/defl L/d GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.78 Vert(LL) -0.19 18 >999 360 MT20 244/190 Snow (Pf/Pg) 20.4/20.0 Lumber DOL 1.15 вС 0.84 Vert(CT) -0.42 14-16 >999 240 MT20HS 187/143 **TCDL** 10.0 Rep Stress Inci WB 0.51 YES Horz(CT) 0.16 11 n/a n/a BCLL 0.0 Code IRC2018/TPI2014 Matrix-SH Weight: 307 lb FT = 3% BCDL 10.0

BRACING-

WEBS

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 *Except*

5-7: 2x4 SP No.2, 1-3: 2x4 SP 2400F 2.0E

BOT CHORD 2x4 SP No.2 *Except* 1-17: 2x4 SP No.1 WEBS 2x4 SP No.2

SLIDER Left 2x4 SP No.2 -t 3-9-9

REACTIONS. (size) 1=0-4-0, 11=Mechanical

Max Horz 1=166(LC 8) Max Uplift 1=-13(LC 11)

Max Grav 1=1958(LC 33), 11=2005(LC 33)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-3=-3583/33, 3-4=-3173/53, 4-5=-2543/67, 5-6=-2145/87, 6-7=-2038/72, 7-8=-2421/50, TOP CHORD

8-9=-2721/31, 9-10=-2048/7, 10-11=-1978/6

BOT CHORD 1-19=-71/3060, 18-19=-72/3057, 16-18=0/2779, 14-16=0/2103, 13-14=0/2351,

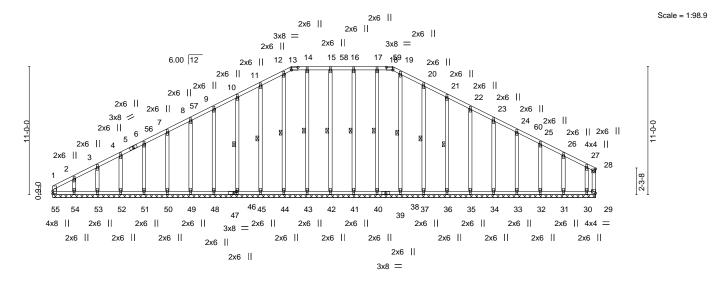
12-13=0/1814

WEBS 3-18=-385/94, 4-18=0/331, 4-16=-930/130, 5-16=0/721, 6-14=-423/97, 7-14=0/662,

8-14=-466/126, 9-13=0/617, 9-12=-917/64, 10-12=0/2074

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are MT20 plates unless otherwise indicated
- 7) Plates checked for a plus or minus 3 degree rotation about its center.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1

October 14,2020


MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANS/TPI1 Qu
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

[13:0-6-8,0-2-12], [18:0-6-8,0-2-12], [29:Edge,0-2-0], [47:0-2-8,0-1-8] Plate Offsets (X,Y)--LOADING (psf) GRIP SPACING-2-0-0 CSL DEFL. in (loc) I/defl I/d PLATES TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.10 Vert(LL) n/a n/a 999 MT20 244/190 Snow (Pf/Pg) 20.4/20.0 Lumber DOL 1.15 вС 0.08 Vert(CT) n/a n/a 999 **TCDL** 10.0 Rep Stress Incr WB 0.17 YES Horz(CT) 0.00 29 n/a BCLL 0.0 Code IRC2018/TPI2014 Matrix-R Weight: 376 lb FT = 3% BCDL 10.0

LUMBER-**BRACING-**TOP CHORD 2x4 SP No.2 Structural wood sheathing directly applied or 6-0-0 oc purlins, TOP CHORD BOT CHORD 2x4 SP No.2 except end verticals. 2x4 SP No.2 BOT CHORD WEBS Rigid ceiling directly applied or 10-0-0 oc bracing. 10-46, 11-45, 12-44, 14-43, 15-42, 16-41, 2x4 SP No.2 **WEBS OTHERS** 1 Row at midpt

REACTIONS. All bearings 46-7-0.

Max Horz 55=164(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 55, 29, 54, 53, 52, 51, 50, 49, 48, 46, 45, 42, 41, 37, 36, 35, 34, 33, 32, 31 except 30=-109(LC 12)

Max Grav All reactions 250 lb or less at joint(s) 55, 29, 54, 53, 52, 51, 50, 49, 48, 46, 45, 44, 43, 42, 41, 40, 38, 37, 36, 35, 34, 33, 32, 31, 30

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 5) Unbalanced snow loads have been considered for this design.
- 6) Provide adequate drainage to prevent water ponding.
- 7) Plates checked for a plus or minus 3 degree rotation about its center.
- 8) Gable requires continuous bottom chord bearing.
- 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 55, 29, 54, 53, 52, 51, 50, 49, 48, 46, 45, 42, 41, 37, 36, 35, 34, 33, 32, 31 except (jt=lb) 30=109.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

17-40, 19-38, 20-37, 21-36

October 14,2020

Job SUMMIT HOMES Truss Truss Type Qty Ply 143185931 T4 H3-6 Common Job Reference (optional)

Mid America Truss, Jefferson City, MO - 65101,

8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:20:28 2020 Page 1 ID:Fpza38BVdcFyJDKwxgHN8dztCCb-eKqsi43tzs99IDogyRp8fuvrRpe64WosAynS31yTrKn 1-0-0 4-11-8 9-11-0 12-6-0 4-11-8 4-11-8 2-7-0

> Scale = 1:39.9 5x6 =

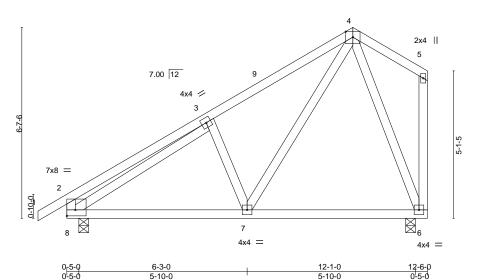


Plate Offsets (X,Y)-- [2:Edge,0-2-8]

LOADING (psf) SPACING-CSI. DEFL. 2-0-0 in (loc) I/defl L/d TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.37 Vert(LL) -0.01 >999 360 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 вС 0.31 Vert(CT) -0.05 7-8 >999 240 **TCDL** 10.0 Rep Stress Incr WB 0.33 6 YES Horz(CT) 0.01 n/a n/a BCLL 0.0 Code IRC2018/TPI2014 Matrix-P BCDL 10.0

PLATES GRIP MT20 244/190

Weight: 83 lb FT = 3%

LUMBER-

WEBS

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2

2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 6=0-4-0, 8=0-4-0

Max Horz 8=196(LC 8)

Max Uplift 6=-23(LC 11), 8=-18(LC 11) Max Grav 6=485(LC 2), 8=560(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 3-4=-517/76 **BOT CHORD** 7-8=-73/499

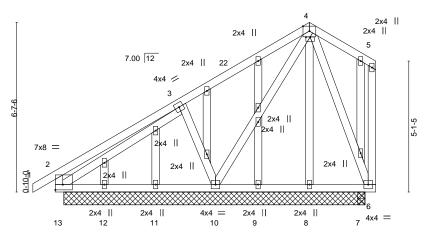
3-7=-277/139, 4-7=-44/472, 4-6=-409/38, 3-8=-566/0 WEBS

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Plates checked for a plus or minus 3 degree rotation about its center.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 8.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

October 14,2020

Job SUMMIT HOMES Truss Truss Type Qty Ply 143185932 T4GE H3-6 Common Structural Gable Job Reference (optional)


Mid America Truss, Jefferson City, MO - 65101,

8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:20:29 2020 Page 1 ID:Fpza38BVdcFyJDKwxgHN8dztCCb-6WOEvQ4Vk9H0NNNsW9KNC5R09D2dp090PcW0bTyTrKm

-0-10-8 0-10-8 4-11-8 9-11-0 12-6-0 4-11-8 4-11-8 2-7-0

> 2x4 = 5x6 =

Scale = 1:45.0

5-10-0

Plate Offsets (X,Y)	[2:Edge,0-2-8], [4:0-2-0,0-0-0]
---------------------	---------------------------------

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.37 BC 0.04 WB 0.13	DEFL. in (loc) l/defl L/d Vert(LL) -0.00 8 >999 360 Vert(CT) -0.00 11 >999 240 Horz(CT) -0.00 6 n/a n/a	PLATES GRIP MT20 244/190
BCLL 0.0 BCDL 10.0	Code IRC2018/TPI2014	Matrix-P	1.012(01) 0.000 0 1.00	Weight: 113 lb FT = 3%

LUMBER-**BRACING-**

TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, BOT CHORD 2x4 SP No.2 except end verticals. 2x4 SP No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS

REACTIONS. All bearings 11-9-0 except (jt=length) 7=0-3-8.

Max Horz 13=195(LC 10)

2x4 SP No.2

Max Uplift All uplift 100 lb or less at joint(s) 10, 13, 6

Max Grav All reactions 250 lb or less at joint(s) 13, 6, 8, 9, 11, 12, 7 except 10=438(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 3-10=-324/142

NOTES-

OTHERS

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 7) Plates checked for a plus or minus 3 degree rotation about its center.
- 8) Gable studs spaced at 2-0-0 oc.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 13, 6.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

October 14,2020

Job SUMMIT HOMES Truss Type Truss Qty Ply 143185933 H3-6 T5 Roof Special Job Reference (optional)

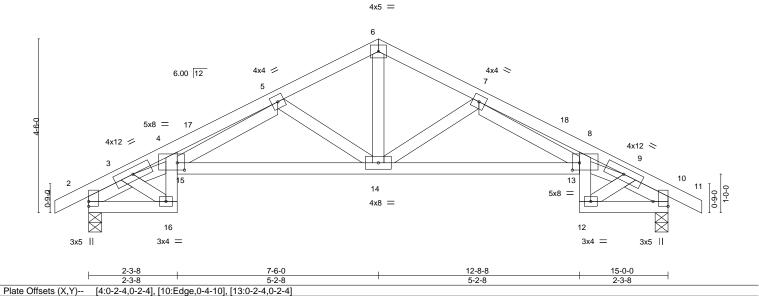
7-6-0

2-7-4

Mid America Truss, Jefferson City, MO - 65101, 1-1-12

1-1-12

1-1-12


-0-10-8

0-10-8

8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:20:30 2020 Page 1 ID:Fpza38BVdcFyJDKwxgHN8dztCCb-ajyc7m57VTPt_Xx33ssclJ_AydHwYP89eGGZ8wyTrKI 10-1-4 12-8-8 13-10-4 15-0-0

2-7-4 1-1-12 1-1-12 0-10-8

Scale = 1:29.8

LOADING (psf) SPACING-CSL 2-0-0 TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.37 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 вС 0.42 **TCDL** 10.0 Rep Stress Incr WB 0.34 YES BCLL 0.0 Code IRC2018/TPI2014 Matrix-P

4-10-12

DEFL. in (loc) I/defl L/d Vert(LL) -0.07 14 >999 360 Vert(CT) -0.15 14-15 >999 240 Horz(CT) 0.14 10 n/a n/a

GRIP **PLATES** MT20 244/190

> Weight: 86 lb FT = 3%

LUMBER-

BCDL

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.2 WEBS

10.0

BRACING-TOP CHORD

Structural wood sheathing directly applied or 3-7-13 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

SLIDER

(size) 2=0-4-0, 10=0-4-0 Max Horz 2=48(LC 8)

Max Uplift 2=-17(LC 11), 10=-17(LC 12) Max Grav 2=653(LC 2), 10=652(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Left 2x4 SP No.2 -t 1-2-2, Right 2x4 SP No.2 -t 1-2-2

TOP CHORD 2-3=-790/20, 3-4=-1773/60, 4-5=-2064/106, 5-6=-852/9, 6-7=-852/15, 7-8=-2064/28,

8-9=-1773/0. 9-10=-790/20

BOT CHORD 2-16=-41/538, 15-16=-10/269, 14-15=-17/1066, 13-14=0/1066, 12-13=0/269, 10-12=0/538

WFBS 6-14=0/618, 7-14=-482/77, 7-13=-10/948, 9-12=-447/0, 5-14=-482/90, 5-15=-67/948,

3-16=-447/42, 3-15=-54/1366, 9-13=0/1366

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Plates checked for a plus or minus 3 degree rotation about its center.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

October 14,2020

Design Valid to Use Only with New Controlled S. This costign is based only upon parameters shown, and is for an individual druining Component, not a fundamental property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job SUMMIT HOMES Truss Type Truss Qty Ply 143185934 H3-6 T5A Roof Special Job Reference (optional) Mid America Truss, Jefferson City, MO - 65101, 8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:20:31 2020 Page 1 ID:Fpza38BVdcFyJDKwxgHN8dztCCb-2vW_K66lGnXkchWFdZNrHWXLm0dBHsUJsw?6gMyTrKk 0-10-5 0-10-5 7-2-8 9-9-12 13-6-12 14-8-8 3-9-0 2-7-4 2-7-4 3-9-0 1-1-12 Scale = 1:29.1 4x5 =5 6.00 12 4x4 <

4x10 2x4 2 1 21-01-0 1 15 4x4 =	/ -4/		12 4x8 =	17 1 5x12 =	
<u> </u>	2-0-0	7-2-8 5-2-8	-	12-5-0 5-2-8	14-8-8

LOADING (psf) SPACING-DEFL. **PLATES** GRIP 2-0-0 CSL in (loc) I/defl L/d TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.37 Vert(LL) -0.06 11 >999 360 MT20 244/190 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 вС 0.42 Vert(CT) -0.13 11-12 >999 240 **TCDL** 10.0 Rep Stress Incr WB 0.33 0.12 YES Horz(CT) 9 n/a n/a BCLL 0.0 Code IRC2018/TPI2014 Matrix-P Weight: 82 lb FT = 3% BCDL 10.0

LUMBER-**BRACING-**

TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 3-8-3 oc purlins,

BOT CHORD 2x4 SP No.2 except end verticals

2x4 SP No.2 BOT CHORD WEBS Rigid ceiling directly applied or 10-0-0 oc bracing. SLIDER Right 2x4 SP No.2 -t 1-2-2

REACTIONS. (size) 9=0-4-0, 15=Mechanical Max Horz 15=-62(LC 7)

Plate Offsets (X,Y)-- [3:0-2-4,0-2-4], [9:Edge,0-4-10]

Max Uplift 9=-8(LC 12), 15=-6(LC 11) Max Grav 9=582(LC 2), 15=582(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1489/52, 3-4=-1701/95, 4-5=-813/8, 5-6=-814/13, 6-7=-2035/36, 7-8=-1748/4,

8-9=-781/24

BOT CHORD 14-15=-29/338, 12-13=-15/978, 11-12=0/1033, 10-11=0/277, 9-10=-3/548

2-14=-288/32, 4-13=-59/659, 4-12=-417/88, 6-12=-484/78, 6-11=-16/956, 8-10=-462/6, WFBS

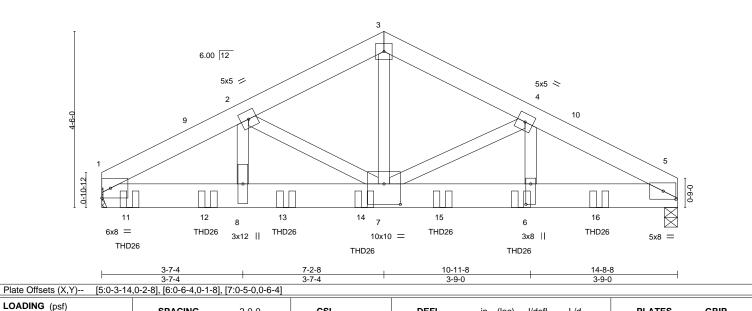
5-12=0/581, 2-15=-644/13, 8-11=0/1345, 2-13=-49/1167

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 15.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

October 14,2020



Job SUMMIT HOMES Truss Type Qty Truss PΙν 143185935 H3-6 T5G Roof Special Girder 2 Job Reference (optional) Mid America Truss, Jefferson City, MO - 65101, 8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:20:32 2020 Page 1 ID: Fpza38BVdcFyJDKwxgHN8dztCCb-X53NXS6N14fbEr5RBHu4qk3OnQvf0BZS5algCoyTrKj10-11-8 14-8-8

3-9-0

Scale = 1:29.4 5x5 |

3-9-0

Snow (Pf/Pg) 15.4/20.0 Lumber DOL **TCDL** 10.0 BCLL 0.0

20.0

10.0

Plate Grip DOL 1.15 TC 1.15 вС Rep Stress Inci WB NO Code IRC2018/TPI2014 Matrix-P

2-0-0

CSL

0.86

0.66

0.85

DEFL. L/d in (loc) I/defl Vert(LL) -0.07 6-7 >999 360 Vert(CT) -0.13 6-7 >999 240 Horz(CT) 0.04 5 n/a n/a

GRIP **PLATES** MT20 244/190

> Weight: 212 lb FT = 3%

LUMBER-

BCDL

TCLL (roof)

TOP CHORD 2x6 SP No.1 **BOT CHORD** 2x8 SP 2400F 2.0E WEBS 2x4 SP No.2

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 4-8-13 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=Mechanical, 5=0-4-0 (req. 0-4-2)

Max Horz 1=45(LC 35)

Max Grav 1=7624(LC 15), 5=6956(LC 16)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

SPACING-

1-2=-11057/0, 2-3=-8201/0, 3-4=-8206/0, 4-5=-11405/0 TOP CHORD 1-8=0/9392, 7-8=0/9392, 6-7=0/9807, 5-6=0/9807 BOT CHORD

WEBS 2-8=0/3167, 2-7=-2405/0, 3-7=0/6940, 4-7=-2832/0, 4-6=0/3291

3-7-4

NOTES-

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:
 - Top chords connected as follows: 2x6 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x8 - 2 rows staggered at 0-4-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 6) Unbalanced snow loads have been considered for this design.
- 7) Plates checked for a plus or minus 3 degree rotation about its center.
- 8) WARNING: Required bearing size at joint(s) 5 greater than input bearing size.
- 9) Refer to girder(s) for truss to truss connections.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Use USP THD26 (With 18-16d nails into Girder & 12-10d x 1-1/2 nails into Truss) or equivalent at 0-8-8 from the left end to connect truss(es) to front face of bottom chord, skewed 0.0 deg.to the left, sloping 0.0 deg. down.
- 12) Use USP THD26 (With 18-16d nails into Girder & 12-10d x 1-1/2 nails into Truss) or equivalent spaced at 2-0-0 oc max. starting at 2-8-8 from the left end to 12-8-8 to connect truss(es) to front face of bottom chord.
- 13) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

Continued on page 2

October 14,2020

\Lambda WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANS/TPI1 Qu
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	SUMMIT HOMES
					I43185935
H3-6	T5G	Roof Special Girder	1	2	Job Reference (optional)
				_	Job Reference (optional)

Mid America Truss,

Jefferson City, MO - 65101,

8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:20:32 2020 Page 2 ID: Fpza38BVdcFyJDKwxgHN8dztCCb-X53NXS6N14fbEr5RBHu4qk3OnQvf0BZS5algCoyTrKj

LOAD CASE(S) Standard

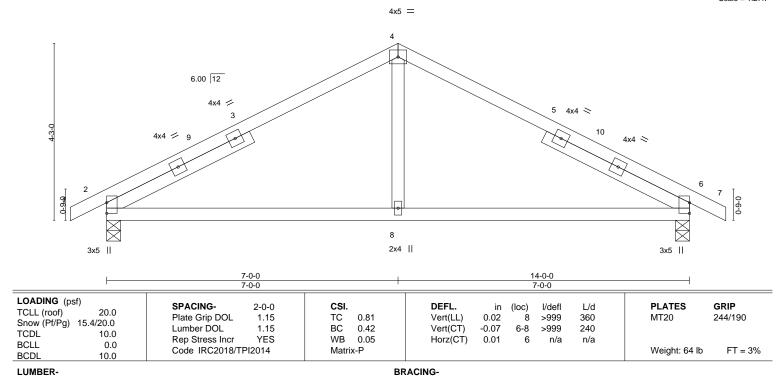
1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-51, 3-5=-51, 1-5=-20

Concentrated Loads (lb)

Vert: 6=-1985(F) 11=-1543(F) 12=-1985(F) 13=-1985(F) 14=-1985(F) 15=-1985(F) 16=-1985(F)


Job SUMMIT HOMES Truss Truss Type Qty Ply 143185936 T6 H3-6 Common Job Reference (optional) Mid America Truss, Jefferson City, MO - 65101, 8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:20:33 2020 Page 1

ID:Fpza38BVdcFyJDKwxgHN8dztCCb-?Idllo7?oOnSr?gdl_PJMxcaKqJelrGcKEUDIFyTrKi 14-0-0 14-10-8 0-10-8

Structural wood sheathing directly applied or 3-6-8 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Scale = 1:27.7

TOP CHORD

BOT CHORD

LUMBER-

WFBS

TOP CHORD 2x4 SP No.1 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2

-0-10-8 0-10-8

SLIDER Left 2x4 SP No.2 -t 3-10-11, Right 2x4 SP No.2 -t 3-10-11

REACTIONS. (size) 2=0-4-0, 6=0-4-0

Max Horz 2=45(LC 8)

Max Uplift 2=-16(LC 11), 6=-16(LC 12) Max Grav 2=612(LC 2), 6=612(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-693/4, 4-6=-692/0 **BOT CHORD** 2-8=0/524, 6-8=0/524

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

7-0-0

7-0-0

- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Plates checked for a plus or minus 3 degree rotation about its center.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

October 14,2020

Job SUMMIT HOMES Truss Type Truss Qty Ply 143185937 H3-6 T6A Common Job Reference (optional) Mid America Truss, Jefferson City, MO - 65101, 8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:20:34 2020 Page 1 ID:Fpza38BVdcFyJDKwxgHN8dztCCb-TUB7y88dZivIT8FqliwYv99lnEfrUIWIZtEnHhyTrKh 7-0-0 14-0-0 14-10-8 7-0-0 0-10-8 Scale = 1:27.2 4x5 = 3 6.00 12 4x4 / 4x4 > 4x4 🥠 0-6-0 7 2x4 || 3x5 || 3x5 7-0-0 7-0-0 14-0-0

DEFL.

Vert(LL)

Vert(CT)

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

CSI.

TC

вС

WB

Matrix-P

0.83

0.42

0.05

7-0-0

I/defl

>999

>999

n/a

Rigid ceiling directly applied or 10-0-0 oc bracing.

(loc)

5-7

5

0.02

-0.07

0.01

I/d

360

240

n/a

Structural wood sheathing directly applied or 2-2-0 oc purlins.

LUMBER-

LOADING (psf)

TCLL (roof)

TCDL

BCLL

BCDL

Snow (Pf/Pg)

TOP CHORD 2x4 SP No.1 2x4 SP No.2 **BOT CHORD** WFBS 2x4 SP No.2

SLIDER Left 2x4 SP No.2 -t 3-10-11, Right 2x4 SP No.2 -t 3-10-11

REACTIONS. (size) 1=0-4-0, 5=0-4-0

20.0

10.0

0.0

10.0

15.4/20.0

Max Horz 1=45(LC 8)

Max Uplift 1=-7(LC 11), 5=-16(LC 12) Max Grav 1=558(LC 2), 5=614(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

SPACING-

Plate Grip DOL

Rep Stress Incr

Code IRC2018/TPI2014

Lumber DOL

TOP CHORD 1-3=-694/4, 3-5=-696/0 **BOT CHORD** 1-7=0/527, 5-7=0/527

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

2-0-0

1.15

1.15

YES

- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Plates checked for a plus or minus 3 degree rotation about its center.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

GRIP

244/190

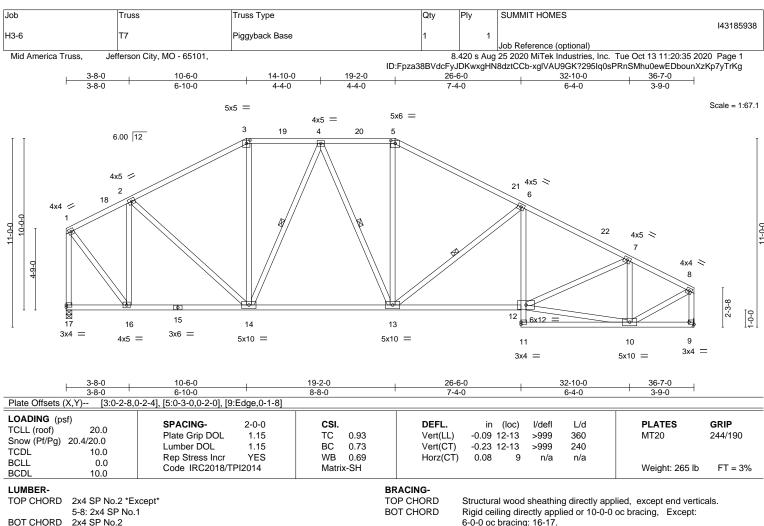
FT = 3%

PLATES

Weight: 63 lb

MT20

October 14,2020


MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not Design Valid to Use Only with New Controlled S. This costign is based only upon parameters shown, and is for an individual druining Component, not a fundamental property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

WEBS

1 Row at midpt

WEBS 2x4 SP No.2

REACTIONS. (size) 17=0-4-0, 9=Mechanical

Max Horz 17=-223(LC 7) Max Uplift 9=-14(LC 12)

Max Grav 17=1634(LC 33), 9=1559(LC 33)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-987/21, 2-3=-1465/49, 3-4=-1182/57, 4-5=-1452/89, 5-6=-1783/66, 6-7=-2315/56,

7-8=-1572/24, 1-17=-1610/0, 8-9=-1531/25 BOT CHORD

14-16=-36/871, 13-14=0/1327, 12-13=0/2026 2-16=-1005/59, 2-14=-17/509, 3-14=0/297, 4-14=-518/78, 4-13=-34/318, 5-13=0/348, WFBS

6-13=-735/131, 10-12=0/1304, 7-12=0/684, 7-10=-886/71, 1-16=0/1413, 8-10=0/1573

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) Provide adequate drainage to prevent water ponding.
- 6) Plates checked for a plus or minus 3 degree rotation about its center.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

October 14,2020

4-14, 4-13, 6-13

Job SUMMIT HOMES Truss Truss Type Qty Ply 143185939 T8 H3-6 Piggyback Base Job Reference (optional) Mid America Truss, Jefferson City, MO - 65101, 8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:20:37 2020 Page 1 $ID: Fpza38BVdcFyJDKwxgHN8dztCCb-t3tGb9AWrdItKc_P_qUFXnnDIRazhRgBFrSRu0yTrKe$ 3-8-0 10-6-0 14-10-0 19-2-0 26-0-0 32-10-0 36-4-0 39-8-0 40-6-8 3-4-0 0-10-8 3-8-0 6-10-0 4-4-0 4-4-0 6-10-0 3-6-0 Scale = 1:74.8 6x6 = 6x6 = 4x5 = 3 6.00 12 22 23 4x5 / 4x5 < 5x5 / 3x8 > 10-0-0 4x5 < 4x5 < 4-9-0 [6-6 17 20 19 18 16 15 14 13 3x8 =4x4 = 4x5 = 6x10 = 6x10 = 4x5 = 5x10 MT20HS = 7x12 MT20HS ≥ 4x5 = 4.00 12 10-6-0 3-8-0 6-10-0 8-8-0 6-10-0 6-10-0 3-6-0 Plate Offsets (X,Y)--[3:0-3-0,0-2-0], [5:0-3-0,0-2-0], [12:0-3-0,0-5-4] LOADING (psf) SPACING-CSL DEFL. GRIP 2-0-0 in (loc) I/defl L/d **PLATES** TCLL (roof) 20.0

LUMBER-

TCDL

BCLL

BCDL

Snow (Pf/Pg)

TOP CHORD 2x4 SP No.2 2x4 SP No.2 *Except* **BOT CHORD**

20.4/20.0

10.0

10.0

0.0

13-17: 2x4 SP No.1 **WEBS** 2x4 SP No.2

REACTIONS. (size) 20=0-4-0, 12=0-4-0

Max Horz 20=-235(LC 7) Max Uplift 12=-37(LC 12)

Max Grav 20=1762(LC 34), 12=1693(LC 34)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Plate Grip DOL

Rep Stress Inci

Code IRC2018/TPI2014

Lumber DOL

TOP CHORD 1-2=-1067/22, 2-3=-1619/51, 3-4=-1322/58, 4-5=-1697/92, 5-6=-2041/73, 6-8=-2898/60,

8-9=-3751/55, 9-10=-4750/52, 1-20=-1737/0, 10-12=-1754/61 18-19=0/942, 16-18=0/1521, 15-16=0/2511, 14-15=0/3360, 13-14=-9/4090,

12-13=-22/468

WFBS 2-19=-1099/53, 2-18=-12/587, 3-18=0/361, 4-18=-644/74, 4-16=-35/444, 5-16=0/490,

6-16=-1105/126, 6-15=0/491, 8-15=-920/85, 8-14=0/403, 9-14=-803/43, 9-13=0/695,

1.15

1.15

YES

TC

вС

WB

Matrix-SH

0.97

0.78

0.92

Vert(LL)

Vert(CT)

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

WEBS

-0.22 14-15

0.21

-0.46 14-15

1 Row at midpt

>999

>999

n/a

Rigid ceiling directly applied or 10-0-0 oc bracing.

360

240

n/a

Structural wood sheathing directly applied, except end verticals.

4-18, 6-16

MT20

MT20HS

Weight: 269 lb

244/190

187/143

FT = 3%

1-19=0/1528, 10-13=0/3766

NOTES-

BOT CHORD

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) All plates are MT20 plates unless otherwise indicated.
- 8) Plates checked for a plus or minus 3 degree rotation about its center.
- 9) Bearing at joint(s) 12 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

October 14,2020

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not Design Valid to Use Only with New Controlled S. This costign is based only upon parameters shown, and is for an individual druining Component, not a fundamental property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job SUMMIT HOMES Truss Type Truss Qty Ply 143185940 T9 H3-6 Piggyback Base Job Reference (optional) Mid America Truss, Jefferson City, MO - 65101, 8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:20:38 2020 Page 1 $ID: Fpza38BVdcFyJDKwxgHN8dztCCb-LFReoVB8cwQkymZbXX?U3?JQzrvcQwkLTVC_QSyTrKd$ 2-10-0 11-6-0 18-4-0 25-2-0 28-8-0 32-0-0 2-10-0 4-7-8 4-0-8 6-10-0 6-10-0 3-6-0 3-4-0 6.00 12 Scale = 1:68.1 6x8 = 3x4 II 6x8 = 2 322 21 4x5 / 4x5 < 5 3x6 < 6 4x5 🗢 9-7-0 4x5 > 14 13 15 12 5x12 = 16 4x5 = 4x5 = 7x10 = 19 18 3x6 =7x10 < 5x10 = 3x4 =4x5 = 4.00 12

2-10-0 2-10-0 4-7-8 4-0-8 6-10-0 5-8-0 4-8-0

Plate Offsets (X,Y)--[2:0-6-0,0-2-8], [4:0-6-0,0-2-8], [11:0-2-12,0-2-4], [18:Edge,0-1-8]

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 20.4/20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.88 BC 0.88 WB 0.81	DEFL. in (loc) l/defl L/d Vert(LL) -0.17 13-14 >999 360 Vert(CT) -0.35 13-14 >999 240 Horz(CT) 0.18 11 n/a n/a	PLATES GRIP MT20 244/190
BCLL 0.0 BCDL 10.0	Code IRC2018/TPI2014	Matrix-SH		Weight: 259 lb FT = 3%

LUMBER-**BRACING-**

TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, **BOT CHORD** 2x4 SP No.2 except end verticals.

WEBS 2x4 SP No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. Except:

1 Row at midpt 3-17 WEBS

1 Row at midpt 2-19, 4-17, 5-15, 1-20 REACTIONS. (size) 20=0-4-0, 11=0-4-0 Max Horz 20=-330(LC 7)

Max Grav 20=1267(LC 2), 11=1367(LC 34)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-386/97, 2-3=-733/77, 3-4=-734/76, 4-5=-1270/77, 5-7=-2115/60, 7-8=-2900/57,

8-9=-3741/53, 1-20=-1242/31, 9-11=-1413/62

19-20=-78/272, 3-17=-430/86, 15-17=0/1012, 14-15=0/1811, 13-14=0/2595, BOT CHORD

12-13=-11/3211. 11-12=-22/386

Max Uplift 20=-19(LC 7), 11=-37(LC 12)

WFBS 2-19=-999/72, 17-19=0/348, 2-17=-1/1044, 4-17=-755/51, 4-15=-7/851, 5-15=-1091/121,

5-14=0/476, 7-14=-850/87, 7-13=0/356, 8-13=-689/43, 8-12=0/562, 1-19=-55/1059,

9-12=0/2943

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) Plates checked for a plus or minus 3 degree rotation about its center.
- 8) Bearing at joint(s) 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 20, 11.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

October 14,2020

Lessign value for use only with full lekes connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job SUMMIT HOMES Truss Type Qty Truss Ply 143185941 H3-6 T10 Piggyback Base Job Reference (optional) Mid America Truss, Jefferson City, MO - 65101, 8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:20:04 2020 Page 1 ID: Fpza38BVdcFyJDKwxgHN8dztCCb-LiNnftnpdU8ZtXy3YOOWhqvcY8JvSYYKfDyBEQyTrL92-10-0 11-6-0 18-4-0 25-2-0 28-8-0 32-0-0 33-10-8 2-10-0 4-7-8 4-0-8 6-10-0 6-10-0 3-6-0 6.00 12 Scale = 1:68.9 6x8 = 3x4 II 6x8 = 2 322 21 4x5 / 4x5 < 5 3x6 > 6 4x5 < Ø

4x5 < 15 13 12 5x12 = 16 20 4x5 = 4x5 = 7x10 = 19 18 3x6 = 3x4 =7x10 < 5x10 = 3x4 = 4x5 =4.00 12

11-6-0 2-10-0 4-7-8 4-0-8 6-10-0 3-4-0

Flate Offsets (A, 1) [2.0-0-0,0	Frate Offsets (A, 1) [2.0-0-0,0-2-0], [4.0-0-0,0-2-0], [11.0-2-12,0-2-4], [10.Euge,0-1-0]									
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 20.4/20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.88 BC 0.86 WB 0.79	DEFL. in (loc) l/defl L/d Vert(LL) -0.17 13-14 >999 360 Vert(CT) -0.35 13-14 >999 240 Horz(CT) 0.18 11 n/a n/a	PLATES GRIP MT20 244/190						
BCLL 0.0 BCDL 10.0	Code IRC2018/TPI2014	Matrix-SH	11012(01) 0.10 11 11/4 11/4	Weight: 261 lb FT = 3%						

LUMBER-**BRACING-**

TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, **BOT CHORD** 2x4 SP No.2

except end verticals WEBS 2x4 SP No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

6-0-0 oc bracing: 11-12.

1 Row at midpt 3-17

WEBS 1 Row at midpt 2-19, 4-17, 5-15, 1-20 REACTIONS. (size) 20=0-4-0, 11=0-4-0

Max Horz 20=-337(LC 7)

Max Uplift 20=-18(LC 7), 11=-48(LC 12) Max Grav 20=1264(LC 2), 11=1420(LC 34)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-2=-385/97, 2-3=-731/75, 3-4=-732/75, 4-5=-1267/75, 5-7=-2107/56, 7-8=-2876/46, TOP CHORD

8-9=-3672/26, 1-20=-1239/31, 9-11=-1435/62 BOT CHORD 19-20=-77/279, 3-17=-430/86, 15-17=0/1009, 14-15=0/1804, 13-14=0/2574,

12-13=0/3149, 11-12=-36/283

WEBS 2-19=-996/70, 17-19=0/353, 2-17=0/1040, 4-17=-752/50, 4-15=-6/847, 5-15=-1086/119,

5-14=0/470, 7-14=-835/81, 7-13=0/339, 8-13=-638/27, 8-12=0/535, 1-19=-55/1057,

9-12=0/2976

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) Plates checked for a plus or minus 3 degree rotation about its center.
- 8) Bearing at joint(s) 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 20, 11.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

October 14,2020

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not Design Valid to Use Only with New Controlled S. This costign is based only upon parameters shown, and is for an individual druining Component, not a fundamental property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job SUMMIT HOMES Truss Truss Type Qty Ply 143185942 H3-6 T10A Piggyback Base Job Reference (optional) Mid America Truss, Jefferson City, MO - 65101, 8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:20:06 2020 Page 1 ID:Fpza38BVdcFyJDKwxgHN8dztCCb-H5VX4Zo395OH6r6RfpQ_mF_xqx_zwSid7XRIIJyTrL7 2-10-0 11-6-0 18-4-0 25-2-0 28-8-0 32-0-0 2-10-0 4-4-0 4-4-0 6-10-0 6-10-0 3-6-0 3-4-0 6.00 12 Scale = 1:67.1 5x5 = 4x5 = 5x5 = 24 3 25 4x4 / 4x5 > 8-0-0 3x6 > 11-0-0 6 4x5 < 4x5 > Ø 18 3x4 5x12 = 16 0-6-0 15 13 12 3x6 =5x10 = 4x5 = 4x5 = 7x10 = 2x4 || 2x4 || 2x4 || 7x10 > 2x4 || 4.00 12 11-6-0 2-10-0 6-10-0 4-0-8 6-10-0 Plate Offsets (X,Y)--[2:0-2-8,0-2-4], [4:0-2-8,0-2-4], [10:Edge,0-2-4], [15:0-4-8,0-2-8] LOADING (psf) SPACING-CSL DEFL. **PLATES** GRIP 2-0-0 in (loc) I/defl L/d TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.96 Vert(LL) -0.16 12-13 >999 360 MT20 244/190 Snow (Pf/Pg) 20.4/20.0 Lumber DOL 1.15 вС 0.89 Vert(CT) -0.34 12-13 >999 240 **TCDL** 10.0 Rep Stress Inci WB 0.81 0.13 YES Horz(CT) n/a n/a BCLL 0.0 Code IRC2018/TPI2014 Matrix-SH Weight: 245 lb FT = 3% BCDL 10.0 LUMBER-**BRACING-**TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, **BOT CHORD** 2x4 SP No.2 except end verticals. 2x4 SP No.2 WEBS BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. Except: 1 Row at midpt 2-17 WEBS 3-17, 5-15

1 Row at midpt

REACTIONS. (size) 18=0-4-0, 10=0-4-0

Max Horz 18=-285(LC 7) Max Uplift 10=-39(LC 12)

Max Grav 18=1268(LC 2), 10=1314(LC 33)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-509/64, 2-3=-425/61, 3-4=-989/120, 4-5=-1251/105, 5-7=-2116/95, 7-8=-2910/96,

8-9=-3764/108, 1-18=-1226/11, 9-10=-1339/64

13-15=0/1812, 12-13=-17/2603, 11-12=-71/3242, 10-11=-24/320 BOT CHORD

15-17=0/774, 3-17=-778/98, 3-15=-55/599, 5-15=-1096/128, 5-13=0/470, 7-13=-857/91, WFBS

7-12=0/369, 8-12=-717/57, 8-11=0/553, 1-17=-27/1030, 9-11=-52/3037

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) Provide adequate drainage to prevent water ponding.
- 6) Plates checked for a plus or minus 3 degree rotation about its center.
- 7) Bearing at joint(s) 10 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1

Job SUMMIT HOMES Truss Truss Type Qty Ply 143185943 PIGGYBACK BASE H3-6 T10B Job Reference (optional) Mid America Truss, Jefferson City, MO - 65101, 8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:20:07 2020 Page 1 ID:Fpza38BVdcFyJDKwxgHN8dztCCb-IH3wlvpiwPW8k?heDXxDJSX7mLKCfv?nLBBrrlyTrL6 2-10-0 11-6-0 18-4-0 25-2-0 28-8-0 32-0-0 2-10-0 4-7-8 4-0-8 6-10-0 3-6-0 3-4-0 6.00 12 Scale = 1:67.5 6x8 = 3x4 II 6x8 = 2 321 20 4x5 / 4x5 > 5 3x6 > 6 4x5 🗢 4x5 > 8 0-9-0-1 10-0-1 14 13 12 5x12 15 19 4x5 = 4x5 = 7x10 = 10 18 17 3x6 =3x4 = 7x10 > 5x10 = 3x4 = 4x5 = 4.00 12 2-10-0 2-10-0 11-6-0 6-10-0 4-7-8 4-0-8 6-10-0 3-6-0 Plate Offsets (X,Y)--[2:0-6-0,0-2-8], [4:0-6-0,0-2-8], [10:Edge,0-2-4], [17:Edge,0-1-8] LOADING (psf) SPACING-CSL DEFL. **PLATES** GRIP 2-0-0 in (loc) I/defl L/d TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.88 Vert(LL) -0.17 12-13 >999 360 MT20 244/190 Snow (Pf/Pg) 20.4/20.0 Lumber DOL 1.15 вС 0.89 Vert(CT) -0.36 12-13 >999 240 **TCDL** 10.0 Rep Stress Inci WB 0.81 0.18 YES Horz(CT) n/a n/a BCLL 0.0 Code IRC2018/TPI2014 Matrix-SH Weight: 258 lb FT = 3% BCDL 10.0 LUMBER-**BRACING-**TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins,

BOT CHORD 2x4 SP No.2 WEBS

2x4 SP No.2

except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. Except:

1 Row at midpt 3-16 WEBS 1 Row at midpt 2-18, 4-16, 5-14, 1-19

REACTIONS. (size) 19=0-4-0, 10=0-4-0

Max Horz 19=-322(LC 7)

Max Uplift 19=-19(LC 7), 10=-26(LC 12) Max Grav 19=1268(LC 2), 10=1314(LC 33)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-386/97, 2-3=-734/78, 3-4=-735/78, 4-5=-1271/78, 5-7=-2117/63, 7-8=-2909/62,

8-9=-3765/66, 1-19=-1243/31, 9-10=-1339/50

18-19=-80/264, 3-16=-430/86, 14-16=0/1013, 13-14=0/1813, 12-13=0/2602, BOT CHORD 11-12=-35/3242, 10-11=-21/320

WFBS 2-18=-1000/73, 16-18=-2/343, 2-16=-3/1045, 4-16=-756/51, 4-14=-8/852,

5-14=-1094/122, 5-13=0/477, 7-13=-855/90, 7-12=0/367, 8-12=-718/51, 8-11=0/555,

1-18=-55/1060, 9-11=-18/3037

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) Provide adequate drainage to prevent water ponding.
- 6) Plates checked for a plus or minus 3 degree rotation about its center.
- 7) Bearing at joint(s) 10 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 19, 10.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

October 14,2020

\Lambda WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not Lessign value for use only with full lekes connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job SUMMIT HOMES Truss Type Truss Qty Ply 143185944 H3-6 T11 Piggyback Base Job Reference (optional) Mid America Truss, Jefferson City, MO - 65101, 8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:20:09 2020 Page 1 ID: Fpza38BVdcFyJDKwxgHN8dztCCb-igAgibryR0mrzJr0LyzhOtcUw9?P7qb3pVgyveyTrL42-10-0 11-6-0 14-9-8 18-1-0 25-2-0 28-8-0 32-0-0 2-10-0 6-4-8 2-3-8 3-3-8 3-3-8 3-6-0 3-4-0 6.00 12 Scale = 1:67.4 6x8 = 4x4 = 5x5 = 2 3 24 25 4x5 / 5x10 ≥ 5 3x4 || 6 3x6 > 4x5 🗢 4x5 > Þη 19 6x12 = 07 0-6-0 5x12 23 7x10 =4x5 = 22 21 16 15 18 3x4 = 7x10 > 5x10 = 3x4 =5x10 = 3x4 =3x4 = 4.00 12

14-9-8 18-1-0 2-10-0 2-0-0 3-7-0 3-3-8 3-6-0 [2:0-6-0 0-2-8] [4:0-2-8 0-2-4] [11:Fdge 0-2-4] [15:Fdge 0-1-8] [17:0-0-0 0-1-8] [21:Fdge 0-1-8]

1 late Checte (71,1) [2.0 0 0,	0 2 0j, [1.0 2 0,0 2 1j, [11.2ag0,0 2 1j,	[10.Eugo,0 1 0], [17.0 0 0	,,o 1 0], [21:2ago,o 1 0]	
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 20.4/20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.78 BC 0.90 WB 0.74	DEFL. in (loc) l/defl L/d Vert(LL) -0.19 13-14 >999 360 Vert(CT) -0.42 13-14 >900 240 Horz(CT) 0.24 11 n/a n/a	PLATES GRIP MT20 244/190
BCLL 0.0 BCDL 10.0	Code IRC2018/TPI2014	Matrix-SH	1.012(01) 0.21 11 1/4 1/4	Weight: 294 lb FT = 3%

LUMBER-**BRACING-**

TOP CHORD 2x4 SP No.2 TOP CHORD

Structural wood sheathing directly applied or 2-5-1 oc purlins, **BOT CHORD** 2x4 SP No.2 except end verticals. WEBS 2x4 SP No.2 BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing. Except: 1 Row at midpt 3-20

10-0-0 oc bracing: 17-19

WEBS 1 Row at midpt 2-22, 5-16, 8-14, 1-23

REACTIONS. (size) 23=0-4-0, 11=0-4-0

Max Horz 23=-322(LC 7) Max Uplift 23=-13(LC 7), 11=-23(LC 12)

Max Grav 23=1278(LC 2), 11=1319(LC 33)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-2=-391/93, 2-3=-1097/28, 3-4=-1253/41, 4-5=-1460/31, 5-6=-2021/134, 6-8=-2072/57, TOP CHORD

8-9=-2950/53, 9-10=-3761/55, 1-23=-1263/18, 10-11=-1346/49 **BOT CHORD** 22-23=-80/264, 3-20=-711/101, 19-20=0/1096, 4-19=0/495, 6-14=-492/140,

13-14=0/2650, 12-13=-24/3238, 11-12=-22/329

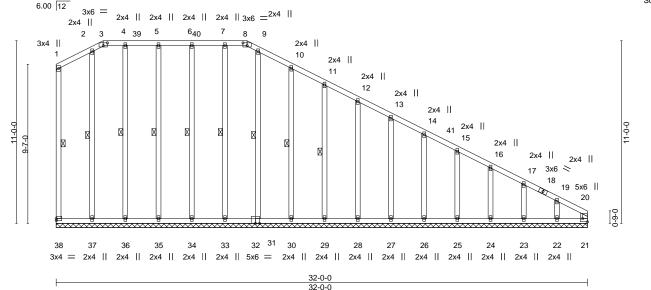
WEBS 2-22=-1087/16, 20-22=0/402, 2-20=0/1255, 3-19=-50/585, 16-19=0/1596, 5-19=-27/300,

5-16=-1335/0, 14-16=0/1210, 5-14=-73/1398, 8-14=-961/96, 8-13=0/377, 9-13=-677/45,

9-12=0/545, 1-22=-48/1093, 10-12=-6/3022

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design
- 5) Provide adequate drainage to prevent water ponding.
- 6) Plates checked for a plus or minus 3 degree rotation about its center.
- 7) Bearing at joint(s) 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 23, 11.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPL1


Job SUMMIT HOMES Truss Truss Type Qty Ply 143185945 GABLE H3-6 T11GE 1 Job Reference (optional)

Mid America Truss, Jefferson City, MO - 65101,

8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:20:12 2020 Page 1 ID:Fpza38BVdcFyJDKwxgHN8dztCCb-6FspLctqkx8QqmZb04XO0WE4SMBLKJKWVSucWyyTrL1 32-0-0

2-10-0 11-6-0 2-10-0 8-8-0

Scale = 1:69.4

Plate Offsets (X,Y) [3:0-3-0,0	0-2-0], [8:0-3-0,0-2-0], [20:Eage,0-3-8]							
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 20.4/20.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.50 BC 0.25 WB 0.17	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) n/a - n/a - 0.01 21	I/defI n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDI 10.0	Code IRC2018/TPI2014	Matrix-R					Weight: 274 lb	FT = 3%

LUMBER-**BRACING-**

TOP CHORD 2x4 SP No.2 Structural wood sheathing directly applied or 6-0-0 oc purlins, TOP CHORD BOT CHORD 2x4 SP No.2 except end verticals. 2x4 SP No.2 BOT CHORD WEBS Rigid ceiling directly applied or 10-0-0 oc bracing.

2x4 SP No.2 **WEBS** 1-38, 2-37, 4-36, 5-35, 6-34, 7-33, 9-31, OTHERS 1 Row at midpt 10-30, 11-29

REACTIONS. All bearings 32-0-0.

(lb) -Max Horz 38=-321(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 38, 21, 37, 36, 35, 34, 33, 31, 30, 29, 28, 27, 26, 25, 24, 23 except 22=-121(LC 7)

Max Grav All reactions 250 lb or less at joint(s) 38, 21, 37, 36, 35, 34, 33, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 17-19=-254/79, 19-20=-300/89

37-38=-80/263, 36-37=-80/263, 35-36=-80/263, 34-35=-80/263, 33-34=-80/263, BOT CHORD

31-33=-80/263, 30-31=-80/263, 29-30=-80/263, 28-29=-80/263, 27-28=-80/263, 26-27=-80/263, 25-26=-80/263, 24-25=-80/263, 23-24=-80/263, 22-23=-80/263,

21-22=-80/263

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 5) Unbalanced snow loads have been considered for this design.
- 6) Provide adequate drainage to prevent water ponding.
- 7) Plates checked for a plus or minus 3 degree rotation about its center.
- 8) Gable requires continuous bottom chord bearing.
- 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 38, 21, 37, 36, 35, 34, 33, 31, 30, 29, 28, 27, 26, 25, 24, 23 except (jt=lb) 22=121.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

October 14,2020

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANS/TPI1 Qu
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.2 2x4 SP No.2

BOT CHORD OTHERS 2x4 SP No.2

(size) 1=11-10-11, 3=11-10-11, 4=11-10-11

Max Horz 1=30(LC 8)

Max Uplift 1=-22(LC 11), 3=-27(LC 12)

Max Grav 1=247(LC 15), 3=247(LC 16), 4=422(LC 2)

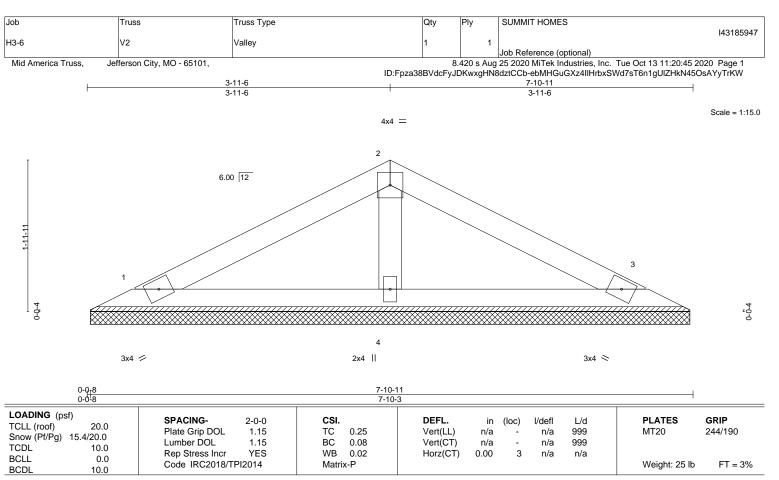
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Gable requires continuous bottom chord bearing.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 6-0-0 oc purlins.


Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD**

2x4 SP No.2 OTHERS 2x4 SP No.2 **BRACING-**

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

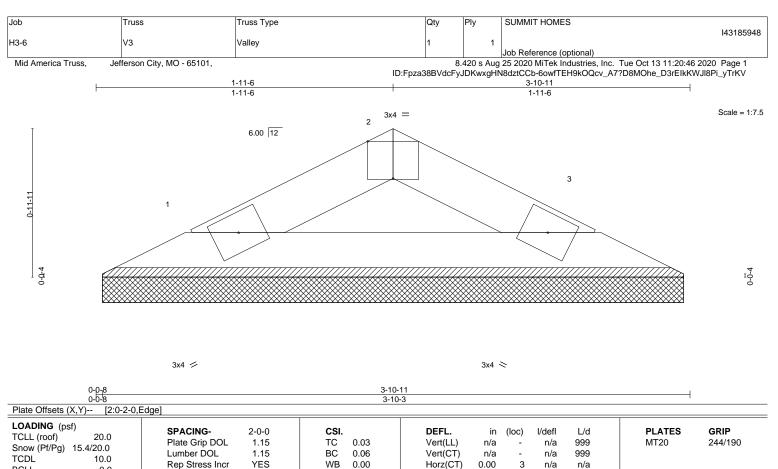
(size) 1=7-9-11, 3=7-9-11, 4=7-9-11

Max Horz 1=19(LC 8)

Max Uplift 1=-14(LC 11), 3=-17(LC 12)

Max Grav 1=156(LC 15), 3=156(LC 16), 4=263(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Gable requires continuous bottom chord bearing.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

October 14,2020

Matrix-P

BRACING-

TOP CHORD

BOT CHORD

BCLL

REACTIONS.

BCDL

LUMBER-TOP CHORD 2x4 SP No.2

0.0

10.0

BOT CHORD 2x4 SP No.2

> (size) 1=3-9-11, 3=3-9-11 Max Horz 1=-8(LC 7) Max Uplift 1=-1(LC 11), 3=-1(LC 12)

Max Grav 1=105(LC 2), 3=105(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Code IRC2018/TPI2014

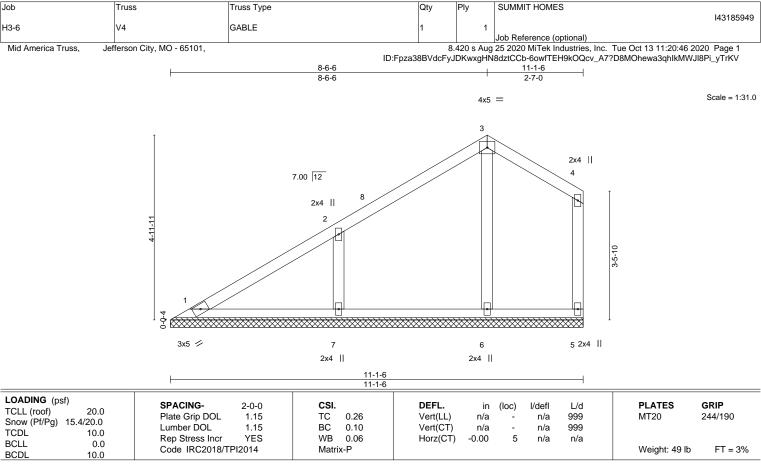
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Gable requires continuous bottom chord bearing.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Weight: 10 lb

Structural wood sheathing directly applied or 3-10-11 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

FT = 3%



Design valid for use only with MiTek® cannectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2

BOT CHORD WFBS 2x4 SP No.2 2x4 SP No.2 OTHERS

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing. **BOT CHORD**

REACTIONS. All bearings 11-1-6.

(lb) -Max Horz 1=134(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 5, 7

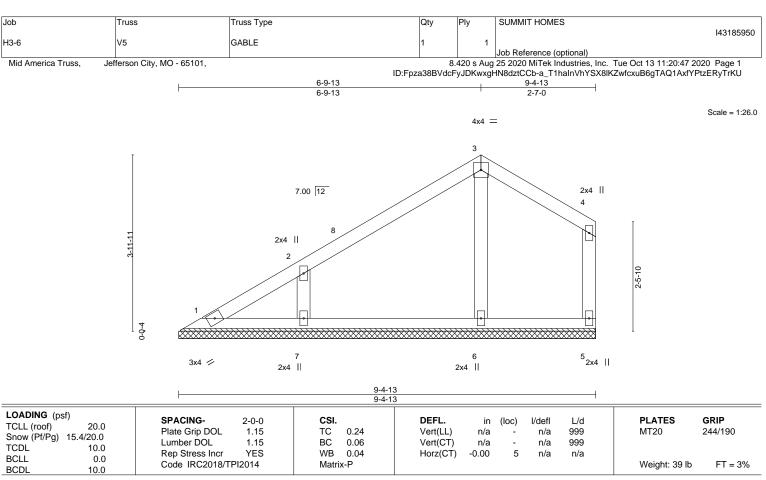
Max Grav All reactions 250 lb or less at joint(s) 1, 5, 6 except 7=406(LC 22)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-7=-313/130

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Gable requires continuous bottom chord bearing.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 7.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



LUMBER-

TOP CHORD 2x4 SP No.2

2x4 SP No.2 **BOT CHORD** WFBS 2x4 SP No.2 2x4 SP No.2 OTHERS

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing. **BOT CHORD**

REACTIONS. All bearings 9-4-13.

(lb) -Max Horz 1=102(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 7

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 6 except 7=335(LC 22)

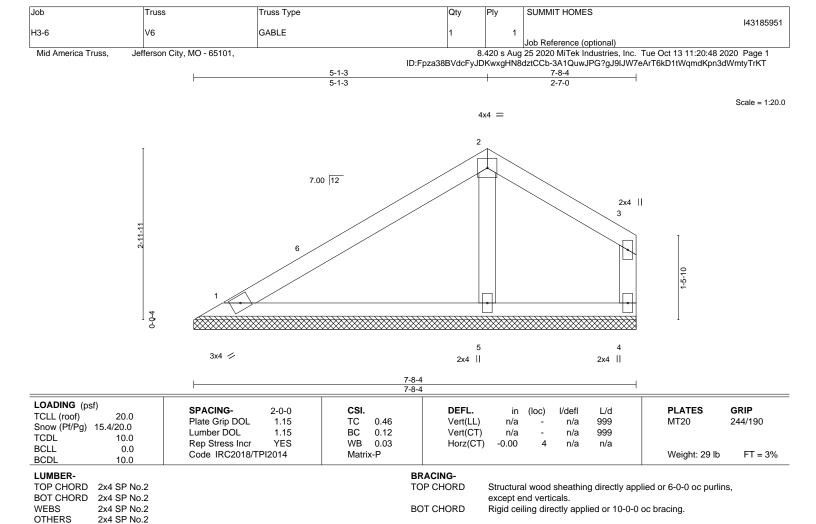
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-7=-262/109

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Gable requires continuous bottom chord bearing.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 7.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

October 14,2020


Design valid for use only with MiTek® cannectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

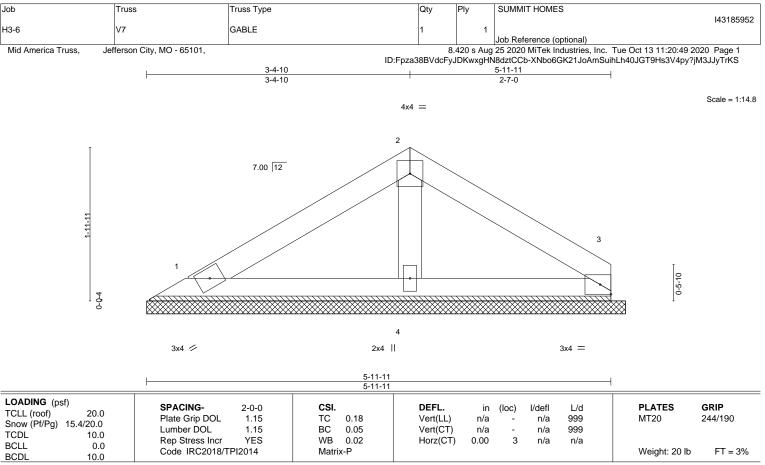
(size) 1=7-8-4, 4=7-8-4, 5=7-8-4

Max Horz 1=70(LC 8)

Max Uplift 1=-14(LC 11), 4=-24(LC 12)

Max Grav 1=174(LC 15), 4=107(LC 16), 5=305(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


NOTES-

REACTIONS.

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Gable requires continuous bottom chord bearing.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 4.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LUMBER-

TOP CHORD 2x4 SP No.2

2x4 SP No.2 **BOT CHORD** OTHERS 2x4 SP No.2 **BRACING-**

TOP CHORD Structural wood sheathing directly applied or 5-11-11 oc purlins. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 1=6-1-15, 3=6-1-15, 4=6-1-15

Max Horz 1=-35(LC 7)

Max Uplift 1=-12(LC 11), 3=-15(LC 12)

Max Grav 1=136(LC 15), 3=125(LC 16), 4=207(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Gable requires continuous bottom chord bearing.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

October 14,2020

Design valid for use only with MiTek® cannectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job SUMMIT HOMES Truss Type Truss Qty Ply 143185953 V8 GABLE H3-6 Job Reference (optional) Mid America Truss, Jefferson City, MO - 65101, 8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:20:49 2020 Page 1 ID:Fpza38BVdcFyJDKwxgHN8dztCCb-XNbo6GK21JoAmSuihLh40JGPAHrgV2sy?jM3JJyTrKS 7-7-7 17-5-7 7-7-7 1-2-0 8-8-0 Scale = 1:42.4 2x4 2x4 || 6 2x4 || 4x5 = 5 4x5 = 3 6.00 12 2x4 || 13 4-0-0 3x5 / 12 11 10 9 2x4 || 4x4 = 2x4 || 2x4 || 2x4 ||

> 17-5-7 17-5-7

0.43

0.08

0.14

Snow (Pf/Pg) 15.4/20.0 **TCDL** 10.0 **BCLL** 0.0 BCDL 10.0

SPACING-CSI. 2-0-0 Plate Grip DOL 1.15 TC вС Lumber DOL 1.15 Rep Stress Incr YES WB Code IRC2018/TPI2014 Matrix-P DEFL. in I/defl I/d Vert(LL) n/a n/a 999 Vert(CT) n/a n/a 999 Horz(CT) -0.00 n/a

PLATES MT20

244/190

GRIP

Weight: 91 lb FT = 3%

LUMBER-

WFBS

OTHERS

LOADING (psf)

TCLL (roof)

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.2

20.0

BRACING-TOP CHORD

except end verticals. **BOT CHORD**

Rigid ceiling directly applied or 6-0-0 oc bracing

Structural wood sheathing directly applied or 6-0-0 oc purlins,

REACTIONS. All bearings 17-10-0.

Max Horz 1=236(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 8, 12, 11, 10, 9

All reactions 250 lb or less at joint(s) 1, 8 except 12=398(LC 33), 11=319(LC 2), 10=378(LC 35),

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-12=-320/105, 5-10=-296/93

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Provide adequate drainage to prevent water ponding.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Gable requires continuous bottom chord bearing.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 12, 11, 10, 9.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Job SUMMIT HOMES Truss Type Qty Truss Ply 143185954 V9 GABLE H3-6 Job Reference (optional) Mid America Truss, Jefferson City, MO - 65101, 8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:20:50 2020 Page 1 ID: Fpza38BVdcFyJDKwxgHN8dztCCb-?Z9AJcKgncw1OcTvE3DJZXpYphBDEWs6EN6drlyTrKR5-3-7 6-5-7 15-1-7 5-3-7 1-2-0 8-8-0 Scale = 1:36.0 2x4 2x4 || 5 2x4 || 4x5 = 6.00 12 4x5 = 2

	0-0 ₇ -8 0-0-8	15-1-7 15-0-15					\dashv	
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.57 BC 0.12 WB 0.09 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT) -	in (loc) n/a - n/a - -0.00 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 73 lb	GRIP 244/190 FT = 3%

3

10

4x4 =

LUMBER-

3x5 /

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD**

2-0-11

WFBS 2x4 SP No.2 2x4 SP No.2 OTHERS

BRACING-TOP CHORD

9

2x4 ||

Structural wood sheathing directly applied or 6-0-0 oc purlins,

8

2x4 ||

72x4 ||

except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

6-0-0 oc bracing: 1-10.

REACTIONS. All bearings 15-0-15.

(lb) -Max Horz 1=198(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 7, 10, 9, 8

Max Grav All reactions 250 lb or less at joint(s) 1, 7 except 10=391(LC 2), 9=372(LC 35), 8=272(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 4-9=-296/93

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Provide adequate drainage to prevent water ponding.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Gable requires continuous bottom chord bearing.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 10, 9, 8.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

October 14,2020

SUMMIT HOMES Job Truss Type Truss Qty Ply 143185955 GABLE H3-6 V10 Job Reference (optional) Mid America Truss, Jefferson City, MO - 65101, 8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:20:40 2020 Page 1 $ID: Fpza38BVdcFyJDKwxgHN8dztCCb-leYODBDO8YgSB3i_fy1y9QPxEfopu0yexph5ULyTrKb$ 2-11-7 4-1-7 12-9-7 2-11-7 1-2-0 8-8-0 Scale = 1:29.3 2x4 L 2x4 || ø 12 2x4 || 4x5 = 6.00 12 4x5 || 2 0-10-11 10 9 8 3x5 / 3x5 > 2x4 || 2x4 || 2x4 || 2x4 || 0-0-8 12-9-7 12-8-15 LOADING (psf) SPACING-DEFL. **PLATES** GRIP CSI. I/d 2-0-0 I/defl TCLL (roof) 20.0 Plate Grip DOL 244/190 1.15 TC 0.19 Vert(LL) n/a n/a 999 MT20 Snow (Pf/Pg) 15.4/20.0

LUMBER-

TCDL

BCLL

BCDL

TOP CHORD 2x4 SP No.2

10.0

0.0

10.0

2x4 SP No.2 **BOT CHORD** WFBS 2x4 SP No.2 2x4 SP No.2 OTHERS

BRACING-TOP CHORD

Vert(CT)

Horz(CT)

вС

WB

Matrix-P

0.06

0.06

Structural wood sheathing directly applied or 6-0-0 oc purlins,

999

n/a

except end verticals.

n/a

-0.00

Rigid ceiling directly applied or 10-0-0 oc bracing. **BOT CHORD**

n/a

n/a

REACTIONS. All bearings 12-8-15.

(lb) -Max Horz 1=159(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 7, 11, 9, 8

Lumber DOL

Rep Stress Incr

Code IRC2018/TPI2014

Max Grav All reactions 250 lb or less at joint(s) 1, 10, 7, 11 except 9=337(LC 35), 8=271(LC 2)

1.15

YES

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 4-9=-268/91

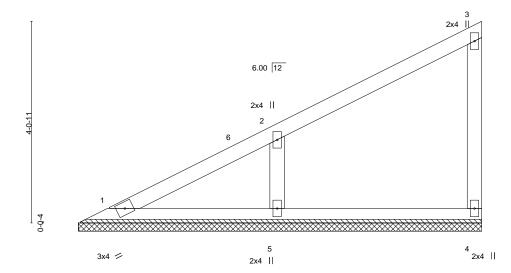
NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Plates checked for a plus or minus 3 degree rotation about its center.
- 5) Gable requires continuous bottom chord bearing.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 11, 9, 8.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Weight: 58 lb

FT = 3%

October 14,2020



SUMMIT HOMES Job Truss Truss Type Qty 143185956 V11 GABLE H3-6 Job Reference (optional)

Mid America Truss, Jefferson City, MO - 65101,

8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:20:41 2020 Page 1 ID:Fpza38BVdcFyJDKwxgHN8dztCCb-mq6mQXD0vroJpDHADgYBhdx4q27XdTTnATQe1nyTrKa

Scale = 1:23.2

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.26 BC 0.10 WB 0.04	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loo n/a n/a -0.00	c) I/defl - n/a - n/a 4 n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCLL 0.0 BCDL 10.0	Code IRC2018/TPI2014	Matrix-P	(,				Weight: 32 lb	FT = 3%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

WFBS 2x4 SP No.2 2x4 SP No.2 OTHERS

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=8-1-7, 4=8-1-7, 5=8-1-7

Max Horz 1=121(LC 8)

Max Uplift 4=-14(LC 8), 5=-53(LC 11)

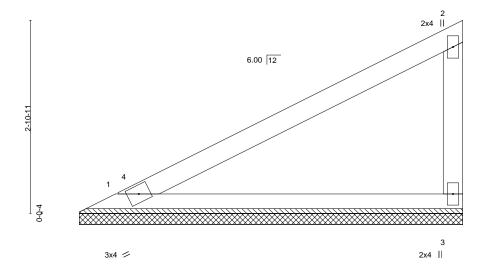
Max Grav 1=102(LC 23), 4=159(LC 15), 5=420(LC 15)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-5=-327/108

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Plates checked for a plus or minus 3 degree rotation about its center.
- 5) Gable requires continuous bottom chord bearing.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

October 14,2020


SUMMIT HOMES Job Truss Type Truss Qty 143185957 H3-6 V12 Valley Job Reference (optional)

Mid America Truss,

Jefferson City, MO - 65101,

8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:20:41 2020 Page 1 ID:Fpza38BVdcFyJDKwxgHN8dztCCb-mq6mQXD0vroJpDHADgYBhdx_i25ddT5nATQe1nyTrKa

Scale = 1:17.3

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.66 BC 0.22	DEFL. in (loc) l/defl L/ Vert(LL) n/a - n/a 99 Vert(CT) n/a - n/a 99	9 MT20 244/190 9
BCLL 0.0 BCDI 10.0	Rep Stress Incr YES Code IRC2018/TPI2014	WB 0.00 Matrix-P	Horz(CT) -0.00 3 n/a n/	Weight: 21 lb FT = 3%

LUMBER-TOP CHORD

WFBS

2x4 SP No.2 2x4 SP No.2

BOT CHORD 2x4 SP No.2 **BRACING-**

TOP CHORD Structural wood sheathing directly applied or 5-9-7 oc purlins,

except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 1=5-8-15, 3=5-8-15

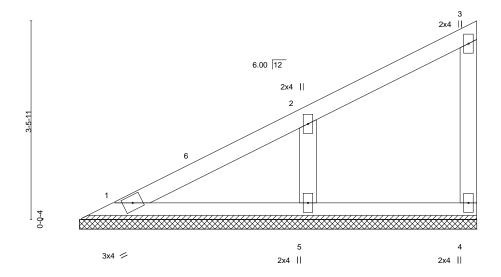
Max Horz 1=83(LC 8)

Max Uplift 1=-3(LC 11), 3=-19(LC 11) Max Grav 1=239(LC 15), 3=249(LC 15)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Plates checked for a plus or minus 3 degree rotation about its center.
- 5) Gable requires continuous bottom chord bearing.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

October 14,2020


SUMMIT HOMES Job Truss Truss Type Qty Ply 143185958 V13 GABLE H3-6 Job Reference (optional)

Mid America Truss, Jefferson City, MO - 65101,

8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:20:42 2020 Page 1 ID:Fpza38BVdcFyJDKwxgHN8dztCCb-E0g8etEfg9wAQNsMmN3QErUGcSTCMwnwO7ACZDyTrKZ

6-11-7

Scale = 1:20.2

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.20 BC 0.07	Vert(LL) n/a Vert(CT) n/a	a -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
BCLL 0.0 BCDL 10.0	Rep Stress Incr YES Code IRC2018/TPI2014	WB 0.04 Matrix-P	Horz(CT) -0.00) 4	n/a	n/a	Weight: 27 lb	FT = 3%

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2

BOT CHORD WFBS 2x4 SP No.2 2x4 SP No.2 OTHERS

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=6-11-7, 4=6-11-7, 5=6-11-7

Max Horz 1=102(LC 8)

Max Uplift 4=-11(LC 8), 5=-45(LC 11)

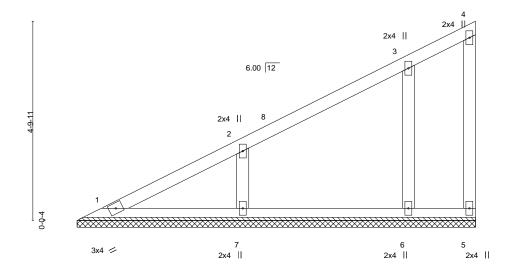
Max Grav 1=106(LC 23), 4=100(LC 15), 5=372(LC 15)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-5=-294/91

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Plates checked for a plus or minus 3 degree rotation about its center.
- 5) Gable requires continuous bottom chord bearing.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


SUMMIT HOMES Job Truss Truss Type Qty 143185959 V14 GABLE H3-6 Job Reference (optional)

Mid America Truss, Jefferson City, MO - 65101,

8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:20:42 2020 Page 1 ID:Fpza38BVdcFyJDKwxgHN8dztCCb-E0g8etEfg9wAQNsMmN3QErUGXST_MvJwO7ACZDyTrKZ

9-7-7

Scale = 1:27.8

TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.20 BC 0.08 WB 0.07	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCLL 0.0 BCDL 10.0	Code IRC2018/TPI2014	Matrix-P	, ,					Weight: 43 lb	FT = 3%

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2

BOT CHORD **WEBS** 2x4 SP No.2 2x4 SP No.2 OTHERS

BRACING-TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 9-7-7.

(lb) -Max Horz 1=146(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 5, 7, 6

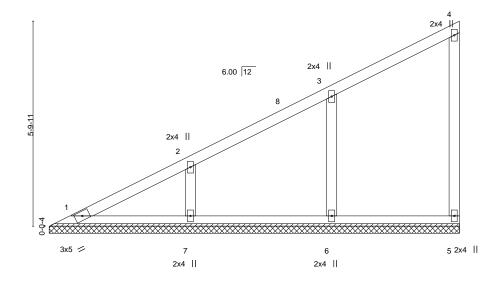
Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=340(LC 2), 6=335(LC 15)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-7=-255/100, 3-6=-269/76

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Plates checked for a plus or minus 3 degree rotation about its center.
- 5) Gable requires continuous bottom chord bearing.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 7, 6.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

October 14,2020


SUMMIT HOMES Job Truss Truss Type Qty 143185960 GABLE H3-6 V15 Job Reference (optional)

Mid America Truss, Jefferson City, MO - 65101, 8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:20:43 2020 Page 1

ID:Fpza38BVdcFyJDKwxgHN8dztCCb-iDEXrDFHRT212XRYK5afm20RosoG5MP4dnvl5fyTrKY 11-7-7

11-7-7

Scale = 1:32.6

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.23 BC 0.08 WB 0.08	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) - 0.00 5 n/a n/a	PLATES GRIP MT20 244/190
BCLL 0.0 BCDL 10.0	Code IRC2018/TPI2014	Matrix-P	11012(01) -0.00 3 11/4 11/4	Weight: 51 lb FT = 3%

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2

BOT CHORD WFBS 2x4 SP No.2 2x4 SP No.2 OTHERS

BRACING-TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 11-7-7.

(lb) -Max Horz 1=178(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 5, 7, 6

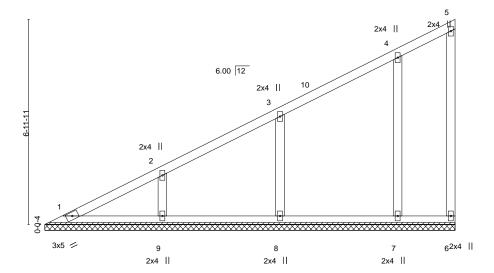
Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=326(LC 2), 6=389(LC 15)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 3-6=-306/97

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Plates checked for a plus or minus 3 degree rotation about its center.
- 5) Gable requires continuous bottom chord bearing.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 7, 6.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

October 14,2020


Job SUMMIT HOMES Truss Type Truss Qty Ply 143185961 GABLE H3-6 V16 Job Reference (optional)

Mid America Truss, Jefferson City, MO - 65101,

8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:20:44 2020 Page 1 ID:Fpza38BVdcFyJDKwxgHN8dztCCb-APov3ZGvCmAugh0luo6uJGZacG8WqoTDsRfld6yTrKX

13-11-7 13-11-7

Scale = 1:39.2

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.36 BC 0.08	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999	PLATES GRIP MT20 244/190
BCLL 0.0 BCDI 10.0	Rep Stress Incr YES Code IRC2018/TPI2014	WB 0.15 Matrix-P	Horz(CT) -0.00 6 n/a n/a	Weight: 68 lb FT = 3%

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2

BOT CHORD WFBS 2x4 SP No.2 2x4 SP No.2 OTHERS

BRACING-TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 13-11-7.

(lb) -Max Horz 1=217(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 6, 9, 8, 7

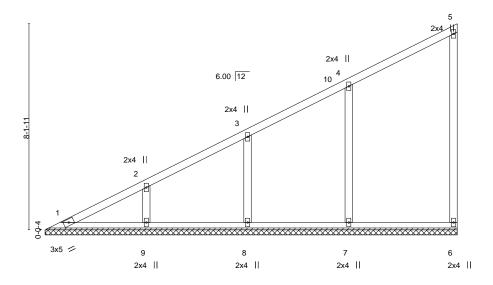
Max Grav All reactions 250 lb or less at joint(s) 1, 6 except 9=326(LC 2), 8=330(LC 2), 7=337(LC 15)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 4-7=-269/78

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Plates checked for a plus or minus 3 degree rotation about its center.
- 5) Gable requires continuous bottom chord bearing.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 9, 8, 7.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

October 14,2020


Job SUMMIT HOMES Truss Type Truss Qty 143185962 V17 GABLE H3-6 Job Reference (optional)

Mid America Truss, Jefferson City, MO - 65101,

8.420 s Aug 25 2020 MiTek Industries, Inc. Tue Oct 13 11:20:44 2020 Page 1 ID:Fpza38BVdcFyJDKwxgHN8dztCCb-APov3ZGvCmAugh0luo6uJGZX6G8BqoyDsRfld6yTrKX

16-3-7 16-3-7

Scale = 1:45.5

TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.52 BC 0.10 WB 0.19	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.00	(loc) - - 6	I/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCLL 0.0 BCDL 10.0	Code IRC2018/TPI2014	Matrix-P	, ,					Weight: 77 lb	FT = 3%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

WFBS 2x4 SP No.2 2x4 SP No.2 OTHERS

BRACING-TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 16-3-7.

(lb) -Max Horz 1=255(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 6, 9, 8, 7

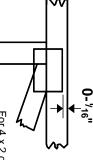
Max Grav All reactions 250 lb or less at joint(s) 1, 6 except 9=332(LC 2), 8=305(LC 2), 7=421(LC 15)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 4-7=-328/109

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Plates checked for a plus or minus 3 degree rotation about its center.
- 5) Gable requires continuous bottom chord bearing.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 9, 8, 7.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

October 14,2020



Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.
Dimensions are in ft-in-sixteenths.
Apply plates to both sides of truss and fully embed teeth.

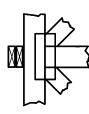
For 4 x 2 orientation, locate plates 0- ¹/16" from outside edge of truss.

?

This symbol indicates the required direction of slots in connector plates.

* Plate location details available in MiTek 20/20 software or upon request.

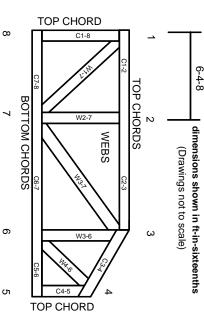
PLATE SIZE


The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING


Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number where bearings occur. Min size shown is for crushing only

Industry Standards:

National Design Specification for Metal Plate Connected Wood Truss Construction. Design Standard for Bracing.
Building Component Safety Information, Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses.

ANSI/TPI1: DSB-89:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2012 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473 rev. 5/19/2020

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.

Ņ

Never exceed the design loading shown and never stack materials on inadequately braced trusses.

ω

Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.

4

- Cut members to bear tightly against each other.
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.

ი ე

- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.

9

œ

- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANS//TPI 1 Quality Criteria.
 21.The design does not take into account any dynamic or other loads other than those expressly stated.