STRUCTURAL ENGINEERING CALCULATIONS

FOR

LEE'S SUMMIT R7 DISTRICT ATHLETIC FACILITIES LEE'S SUMMIT, MISSOURI PERMIT SUBMITTAL

PREPARED BY

Richard C. Crabtree, P.E. Steven J. Brooks, E.I.

OF

BOB D. CAMPBELL AND COMPANY, INC. STRUCTURAL ENGINEERS 4338 BELLEVIEW KANSAS CITY, MISSOURI 64111 (816) 531-4144

FOR

GOULD EVANS 706 Massachusetts Street Lawrence, Kansas, 66044 Ph.# (785) 330-7055

OCTOBER 2, 2020

Structural Design Criteria

Building Code: International Building Code (IBC 2018)

1605.2.1 Basic load combinations (Strength Design) (Strength Design) 1.4D 1.2D + 1.6L 1.2D + 1.6L + 0.5(Lr or S or R) 1.2D + 1.0(W or E) + L + 0.5(Lr or S or R) 0.9D + W 0.9D + E		1605.3.1 Basic load combinations (Allowable Stress Design) (Allowable Stress Design) D D + L D + 0.75L + 0.75(Lr or S or R) D + 0.75(0.6W or 0.7E) + 0.75L + 0.75(Lr or S or R) 0.6D + 0.6W 0.6D + 0.7E
Structural Design Loads		
Roof: Roof Live Load	20 psf	Lr
Snow Load	20 psf	S

L

Snow Load	20 psf
Floor: Floor & Stair Live Load	100 psf

Geotechnical Information

The following are assumed allowable bearing values. Values will be verified in forthcoming geotechnical reports.

Lee's Summit High	2500 psf
Lee's Summit North	3000 psf
Lee's Summit West	3000 psf

Materials

Steel:	Beams & Columns: Miscellaneous steel: Tubes & Pipes:	ASTM A992, Grade 50 ASTM A36 ASTM A500, Grade B
Concrete:	3500 psi (footings & grade	beams)

4000 psi (Structural Slabs) 4500 psi w/ 6% +/- 1% air entrainment (exterior flatwork)

Reinf. Steel: ASTM A615 or A706 Grade 60 steel

Search Information

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Disclaimer

Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

Search Information

Address:	LEE'S SUMMIT HIGH SCHOOL				
Coordinates:	38.9039849, -94.36637379999999				
Elevation:	1048 ft				
Timestamp:	2020-08-05T14:29:29.935Z				
Hazard Type:	Seismic				
Reference Document:	ASCE7-16				
Risk Category:	II				
Site Class:	D				
MCER Horizontal Response Spectrum					

Design Horizontal Response Spectrum

Basic Parameters

Additional Information

/	Name	Value	Description
(SDC	В	Seismic design category
	F _a	1.6	Site amplification factor at 0.2s
	Fv	2.4	Site amplification factor at 1.0s
	CRS	0.899	Coefficient of risk (0.2s)

CR ₁	0.846	Coefficient of risk (1.0s)
PGA	0.054	MCE _G peak ground acceleration
F _{PGA}	1.6	Site amplification factor at PGA
PGA _M	0.087	Site modified peak ground acceleration
TL	12	Long-period transition period (s)
SsRT	0.114	Probabilistic risk-targeted ground motion (0.2s)
SsUH	0.127	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	1.5	Factored deterministic acceleration value (0.2s)
S1RT	0.067	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.079	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	0.6	Factored deterministic acceleration value (1.0s)
PGAd	0.5	Factored deterministic acceleration value (PGA)

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

ASCE 7-16

Search Information

Address:	LEE'S SUMMIT HIGH SCHOOL
Coordinates:	38.9039849, -94.36637379999999
Elevation:	1048 ft
Timestamp:	2020-08-05T14:28:57.645Z
Hazard Type:	Wind

ASCE 7-05

MRI 10-Year	75 mph	MRI 10-Year	76 mph	ASCE 7-05 Wind Speed	90 mph
MRI 25-Year	83 mph	MRI 25-Year	84 mph		
MRI 50-Year	88 mph	MRI 50-Year	90 mph		
MRI 100-Year	94 mph	MRI 100-Year	96 mph		
Risk Category I	103 mph	Risk Category I	105 mph		
Risk Category II	109 mph	Risk Category II	115 mph		
Risk Category III	117 mph	Risk Category III-IV	120 mph		
Risk Category IV	122 mph				

ASCE 7-10

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Disclaimer

Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer. Per ASCE 7, islands and coastal areas outside the last contour should use the last wind speed contour of the coastal area – in some cases, this website will extrapolate past the last wind speed contour and therefore, provide a wind speed that is slightly higher. NOTE: For queries near wind-borne debris region boundaries, the resulting determination is sensitive to rounding which may affect whether or not it is considered to be within a wind-borne debris region.

Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting

and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

ROOF WIND PRESSURES

LSHS											
	Hoight					P, table			Ultimate Uplift Pressure		
Building Type	Height	Slope L B	a	Zone 1	Zone 2	Zone 3	Zone 1	Zone 2	Zone 3		
	[ft]		[ft]	[ft]	[ft]	[psf]	[psf]	[psf]	[psf]	[psf]	[psf]
Press Box Roof	60	Monosloped	25	95	3.8	45.4	58.2	100.7	53.0	81.0	105.0
Other Structures	20	Flat	25	50	3	41	64.4	87.7	37.0	57.0	78.0
			LSW								
	Unight			D			P, table		Ultima	ite Uplift Pi	ressure
Building Type	Height	Slope	L	В	d	Zone 1	Zone 2	Zone 3	Zone 1	Zone 2	Zone 3
	[ft]		[ft]	[ft]	[ft]	[psf]	[psf]	[psf]	[psf]	[psf]	[psf]
Press Box Roof	50	Monosloped	35	70	3.5	43.4	56	96.9	44.0	54.0	86.0
Other Structures	15	Flat	35	70	3.5	38.6	60.6	82.6	34.0	54.0	73.0
			LSN								
	Hoight			р	2		P, table		Ultima	ite Uplift Pi	ressure
Building Type	Height	Slope	L	в	a	Zone 1	Zone 2	Zone 3	Zone 1	Zone 2	Zone 3
	[ft]		[ft]	[ft]	[ft]	[psf]	[psf]	[psf]	[psf]	[psf]	[psf]
Press Box Roof	50	Monosloped	20	90	3.6	43.4	56	96.9	44.0	54.0	86.0
Other Structures	15	Flat	30	30	3	38.6	60.6	82.6	34.0	54.0	73.0

** Ultimate (LRFD) wind pressures are calculated based on an effective wind area of 50 square feet **

	LSHS							
Building Type			Ultimate Uplift Pressure					
	Building / Roof Type	a	Zone 1	Zone 2	Zone 3			
		[ft]	[psf]	[psf]	[psf]			
I	Press Box Roof	Open Building, Monosloped Roof	4	53.0	81.0	105.0		
I	Other Structures	Enclosed Building, Flat Roof	3	37.0	57.0	78.0		

LSW							
Building Type			Ultimate Uplift Pressure				
	Building / Roof Type	a	Zone 1	Zone 2	Zone 3		
		[ft]	[psf]	[psf]	[psf]		
Press Box Roof	Open Building, Monosloped Roof	3.5	51.0	78.0	102.0		
Other Structures	Enclosed Building, Flat Roof	3.5	34.0	54.0	73.0		

LSN							
Building Type		Ultimate Uplift Press					
	Building / Roof Type	a Zone 1 Zone 2	Zone 3				
		[ft]	[psf]	[psf]	[psf]		
Press Box Roof	Open Building, Monosloped Roof	4	51.0	78.0	102.0		
Other Structures Enclosed Building, Flat Roof		3	34.0	54.0	73.0		

** Wind pressures are ultimate values (LRFD) and calculated based on an effective wind area of 50 square feet **

	Typical 8" CMU Wall					
М	8.01	k-in	Applied Moment			
Fs	32	ksi	Allowable Stress in Steel			
F _b	0.5	ksi	Allowable Stress in CMU			
Es	29000	ksi	Steel Modulus of Elasticity			
E _m	1350	ksi	CMU Modulus of Elasticity			
n	21.48		Modular Ratio			
As	0.31	in ²	Area of Steel			
b	32	in	Width			
d	3.813	in	Effective Depth			
ρ	0.0025		Reinforement Ratio			
ρn	0.0546					
k	0.2803					
j	0.9066					
$M_{\rm m}$	29.55	k-in	CMU Flexural Capacity			
M_{s}	34.29	k-in	Steel Flexural Capacity			
M _r	29.55	k-in	Governing Flexural Capacity			
	0.27	OK	Unity Check			

	Typical 12" CMU Wall						
М	28.83	k-in	Applied Moment				
Fs	32	ksi	Allowable Stress in Steel				
F _b	0.5	ksi	Allowable Stress in CMU				
Es	29000	ksi	Steel Modulus of Elasticity				
E _m	1350	ksi	CMU Modulus of Elasticity				
n	21.48		Modular Ratio				
A _s	0.31	in ²	Area of Steel				
b	48	in	Width				
d	9	in	Effective Depth				
ρ	0.0007		Reinforement Ratio				
ρn	0.0154						
k	0.1608						
j	0.9464						
M _m	147.96	k-in	CMU Flexural Capacity				
Ms	84.49	k-in	Steel Flexural Capacity				
M _r	84.49	k-in	Governing Flexural Capacity				
	0.34	ОК	Unity Check				

www.hilti.com

Company:	Bob D. Campbell & Co.	Page:	1
Address:		Specifier:	
Phone I Fax:	\bigwedge	E-Mail:	
Design:	SR7 Typ. CMU Anchor 人	Date:	10/2/2020
Fastening point:	han		
Specifier's commer	nts:		

1 Input data

Anchor type and diameter:	Kwik Bolt TZ - CS 5/8 (3 1/8)		ann an
Item number:	not available		-
Effective embedment depth:	h _{ef} = 3.125 in.		
Material:	Carbon Steel		
Evaluation Service Report:	ESR-3785		
Issued I Valid:	7/1/2020 7/1/2021		
Proof:	Design Method ASD Masonry		
Stand-off installation:			
Profile:			
Base material:	Grout-filled CMU, L x W x H: 16.000 in. x 8.000 in. x 8.000 in.;		
	Joints: vertical: 0.375 in.; horizontal: 0.375 in.		
	Base material temperature: 68 °F		
Installation:	Face installation		
Seismic loads	no		

Geometry [in.]

www.hilti.com

Company:	Bob D. Campbell & Co.	Page:	2
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	LSR7 Typ. CMU Anchor	Date:	10/2/2020
Fastening point:			

Geometry [in.] & Loading [lb, in.lb]

1.1 Design results

Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
1	Combination 1	$N = 0; V_x = 0; V_y = -832;$	no	52
		$M_{x} = 0; M_{y} = 0; M_{z} = 0;$		

2 Load case/Resulting anchor forces

Load case: Service loads

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	0	832	0	-832
max. compressive strain: max. compressive stress: resulting tension force in $(x/y)=(0.000/0.000)$: resulting compression force in $(x/y)=(0.000/0.00)$		- - D/0.000): 0 (0.000/0.000): 0	[‰] [psi] [lb] [lb]	

www.hilti.com	I.
---------------	----

Company:	Bob D. Campbell & Co.	Page:	3
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	LSR7 Typ. CMU Anchor	Date:	10/2/2020
Fastening point:			

3 Tension load (Most utilized anchor 1)

	Load P _s [lb]	Capacity P _t [lb]	Utilization $\beta_{P} = P_{s}/P_{t}$ [%]	Status
Overall strength	N/A	N/A	N/A	N/A

www.hilti.com						
Company: Address: Phone I Fax:	Bob D. Ca	impbell & Co.		Page: Specifier: E-Mail:		2
Design: Fastening point:	LSR7 Typ	. CMU Anchor		Date:		10/2/2020
4 Shear load (Most utilized a	inchor 1)			\sim	
		Load	V _s [lb]	Capacity V _t [lb]	Utilization $\beta_v = \gamma$	V _s /V _t [%] Status
Overall strength par	a and perp, (Dir. x-) ¹			-	52	ок
¹ Shear utilization m	ay result from paralle	el and perpendicu	lar shear (see details)	u	uuu
4.1 Overall strength	n parallel					
$\begin{array}{l} V_{t,Base,\parallel} = ESR\;Valu\\ V_{t,\parallel} = V_{t,Base,\parallel}\cdotf\\ V_{t,\parallel} \ge V_{s,\parallel} \end{array}$	$\textbf{e}_{\text{red},\text{E},\parallel} \cdot \textbf{f}_{\text{red},\text{s},\parallel} \cdot \textbf{f}_{\text{red},\text{Temp}}$	refer to IC	C-ES ESR-3785			
Variables						
c _{min} [in.]	c _{cr} [in.]	s _{min} [in.]	s _{cr} [in.]	Temperature [°F]		
4.000	12.000	5.000	14.250	68		
Results						
V _{t,} [lb]	$V_{t,Base,\parallel}$ [lb]	V _{s,} [lb]	$f_{red,E,\parallel}$	$f_{red,S,\parallel}$	f _{red,Temp}	Utilization $\beta_{V,\parallel}$ [%]
1,615	1,615	-832	1.000	1.000	1.000	52
4.2 Overall strength	n perpendicular					
$ \begin{array}{l} V_{t,Base,\perp} = ESR \; Valu \\ V_{t,\perp} &= V_{t,Base,\perp} \cdot \\ V_{t,\perp} &\geq V_{s,\perp} \end{array} $	${\stackrel{\textbf{ie}}{{}_{{{f}_{{red},{E},\perp}}}} \cdot {{f}_{{{red}},{s},\perp}} \cdot {{f}_{{{red}},{{Tem}}}}}$	refer to I	CC-ES ESR-3785			
Variables						
c _{min} [in.]	c _{cr} [in.]	s _{min} [in.]	s _{cr} [in.]	Temperature [°F]		
4.000	12.000	5.000	14.250	68		
Results						
$V_{t,\perp}$ [lb]	$V_{t,Base,\perp}$ [lb]	$V_{s,\perp}$ [lb]	$f_{red,E,\perp}$	$f_{red,S,\bot}$	f _{red,Temp}	Utilization $\beta_{V,\perp}$ [%]
0	1,615	0	0.000	0.000	1.000	0
4.3 Shear interaction	on					
$\beta_{V, } = \frac{V_{s, }}{V_{s, }}$	$\beta_{V,\perp} = \frac{V_{s,\perp}}{V_{s,\perp}}$	δ	Utilization B. [%]	Status		
0.515	0.000	1.667	52	OK	_	
$\beta_{V} = \beta_{V, }^{\delta} + \beta_{V,\perp}^{\delta} <= 1.0$)					

www.hilti.com

Company:	Bob D. Campbell & Co.	Page:	5
Address:	·	Specifier:	
Phone I Fax:		E-Mail:	
Design:	LSR7 Typ. CMU Anchor	Date:	10/2/2020
Fastening point:			

5 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2018, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- · Refer to the manufacturer's product literature for cleaning and installation instructions.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- The min. sizes of the bricks, the masonry compressive strength, the type / strength of the mortar and the grout (in case of fully grouted CMU walls) has to fulfill the requirements given in the relevant ESR-approval or in the PTG.
- Only the local load transfer from the anchor(s) to the wall is considered, a further load transfer in the wall is not covered by PROFIS!
- Wall is assumed as being perfectly aligned vertically checking required(!): Noncompliance can lead to significantly different distribution of forces and higher tension loads than those calculated by PROFIS. Masonry wall must not have any damages (neither visible nor not visible)! While installation, the positioning of the anchors needs to be maintained as in the design phase i.e. either relative to the brick or relative to the mortar joints.
- The effect of the joints on the compressive stress distribution on the plate / bricks was not taken into consideration.
- If no significant resistance is felt over the entire depth of the hole when drilling (e.g. in unfilled butt joints), the anchor should not be set at this position or the area should be assessed and reinforced. Hilti recommends the anchoring in masonry always with sieve sleeve. Anchors can only be installed without sieve sleeves in solid bricks when it is guaranteed that it has not any hole or void.
- The accessories and installation remarks listed on this report are for the information of the user only. In any case, the instructions for use provided with the product have to be followed to ensure a proper installation.
- The compliance with current standards (e.g. 2015, 2012, 2009 and 2006 IBC) is the responsibility of the user.
- Drilling method (hammer, rotary) to be in accordance with the approval!
- · Masonry needs to be built in a regular way in accordance with state-of the art guidelines!
- · Warnings/Notes OST in Masonry HNA!

Fastening meets the design criteria!

www.hilti.com

Company:	Bob D. Campbell & Co.	Page:	6
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	LSR7 Typ. CMU Anchor	Date:	10/2/2020
Fastening point:			

6 Installation data

Profile: -
Hole diameter in the fixture: -
Plate thickness (input): -

Anchor type and diameter: Kwik Bolt TZ - CS 5/8 (3 1/8) Item number: not available Installation torque: 420 in.lb Hole diameter in the base material: 0.625 in. Hole depth in the base material: 3.875 in. Minimum thickness of the base material: 3.125 in.

Drilling method: Drilled in hammer mode

Hilti KB-TZ stud anchor with 3.125 in embedment, 5/8 (3 1/8), Steel galvanized, installation per ESR-3785

Coordinates Anchor in.

Anchor	x	У	C _{-x}	C+x	c_y	c _{+y}
1	0.000	0.000	20.000	20.000	36.000	20.000

www.hilti.com

Company:	Bob D. Campbell & Co.	Page:	7
Address:	•	Specifier:	
Phone I Fax:		E-Mail:	
Design:	LSR7 Typ. CMU Anchor	Date:	10/2/2020
Fastening point:			

7 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.

.

	SN-1
SJB	Oct 02, 2020

Line Project Grid

	Label	Start [ft]	End [ft]	Start [ft]	End [ft]	Start Bubble	End Bubble
1	1-A	0	0	-2	92	Yes	Yes
2	1-B	1	1	-2	92	Yes	Yes
3	1-C	18.33	18.33	-2	92	Yes	Yes
4	1-D	20.33	20.33	-2	92	Yes	Yes
5	1-6	-2	21	0	0	Yes	Yes
6	1-5	-2	21	21.33	21.33	Yes	Yes
7	1-4	-2	21	42.67	42.67	Yes	Yes
8	1-3	-2	21	64	64	Yes	Yes
9	1-2	-2	21	70.17	70.17	Yes	Yes
10	1-1	-2	21	90.58	90.58	Yes	Yes

Nodes

	Label	X [ft]	Y [ft]	Z [ft]	Temp [deg F]	Detach From Diaphragm
1	N21	0	27	20.33		
2	N22	0	27	0		
3	N23	64	27	20.33		
4	N24	21.33	27	0		
5	N25	21.33	27	20.33		
6	N26	64	27	0		
7	N27	42.67	27	20.33		
8	N28	42.67	27	0		
9	N29	42.67	37	20.33		
10	N30	42.67	37	0		
11	N31	0	37	20.33		
12	N32	0	37	0		
13	N33	64	37	20.33		
14	N34	21.33	37	0		
15	N35	21.33	37	20.33		
16	N36	64	37	0		
17	N37	42.67	51.33	-2.17		
18	N38	0	51.33	-2.17		
19	N39	21.33	51.33	-2.17		
20	N40	64	51.33	-2.17		
21	N41	64	51.33	22.5		
22	N42	0	51.33	22.5		
23	N43	21.33	51.33	22.5		
24	N44	42.67	51.33	22.5		
25	N45	53.33	27	0		
26	N46	53.33	27	20.33		
27	N47	32	27	0		
28	N48	32	27	20.33		
29	N51	53.33	37	0		
30	N52	53.33	37	20.33		
31	N53	32	37	0		
32	N54	32	37	20.33		
33	N55	10.67	37	0		
34	N56	10.67	37	20.33		
35	N57	68.89	27	0		
36	N58	68.89	27	20.33		
37	N59	68.89	37	0		
38	N60	68.89	37	20.33		
39	N66	68.89	51.33	0		
40	N67	68.89	51.33	20.33		
41	N71	53.33	51.33	-2.17		
42	N72	53.33	51.33	22.5		
43	N77	32	51.33	-2.17		
44	N78	32	51.33	22.5		
45	N83	10.67	51.33	-2.17		

Nodes (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [deg F]	Detach From Diaphragm
46	N84	10.67	51.33	22.5		
47	N91	68.89	51.33	10.17		
48	N92	0	51.33	10.17		
49	N93	90.58	0	0		
50	N94	68.89	0	0		
51	N95	90.58	0	20.33		
52	N96	68.89	0	20.33		
53	N101	90.58	51.33	0		
54	N102	90.58	51.33	20.33		
55	N99	80.375	51.33	0		
56	N100	80.375	51.33	20.33		
57	N103	90.58	51.33	10.17		
58	N104	90.58	27	20.33		
59	N105	90.58	27	0		
60	N106	90.58	37	0		
61	N107	90.58	37	20.33		
62	N80	42.67	37	1		
63	N81	64	0	1		
64	N82	42 67	51.33	1		
65	N85	0	0	1		
66	N86	0	8	1		
67	N87	0	27	1		
68	N88	0	37	1		
69	N89	21.33	0	1		
70	N90	21.33	27	1		
71	N97	21.33	8	1		
72	N98	21.33	37	1		
73	N109	42 67	8	1		
74	N110	42.67	27	1		
75	N111	64	8	1		
76	N112	64	27	1		
77	N113	64	37	1		
78	N114	0	51.33	1		
79	N115	21.33	51.33	1		
80	N116	64	51.33	1		
81	N117	21.33	8	18.33		
82	N118	64	27	18.33		
83	N119	42.67	27	18.33		
84	N120	42.67	37	18.33		
85	N121	0	8	18.33		
86	N122	0	27	18.33		
87	N123	0	37	18.33		
88	N124	21.33	27	18.33		
89	N125	21.33	37	18.33		
90	N126	42.67	8	18.33		
91	N127	64	8	18.33		
92	N128	64	37	18.33		
93	N130	42.67	51.33	18.33		
94	N131	64	0	18.33		
95	N132	64	51.33	18.33		
96	N133	0	0	18.33		
97	N134	0	51.33	18.33		
98	N135	21.33	0	18.33		
99	N136	21.33	51.33	18.33		
100	N108	42.669998	0	18.33		
101	N129	42.669998	0			
102	N13/	5.25	27	20.33		
103	N138	5.25	27	18.33		

Nodes (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [deg F]	Detach From Diaphragm
104	N139	5.25	37	20.33		
105	N140	5.25	37	18.33		
106	N141	5.25	27	0		
107	N142	5.25	27	15.08		
108	N143	0	27	15.08		
109	N144	13.25	27	0		
110	N145	13.25	27	20.33		
111	N146	10.67	37	18.33		
112	N147	-2.25	51.33	-2.17		
113	N148	-2.25	51.33	22.5		
114	N149	80.375	51.33	-2.17		
115	N150	90.58	51.33	-2.17		
116	N151	68.89	51.33	-2.17		
117	N152	90.58	51.33	22.5		
118	N153	80.375	51.33	22.5		
119	N154	68.89	51.33	22.5		
120	N157	92.83	51.33	-2.17		
121	N158	92.83	51.33	22.5		

Boundary Conditions

	Node Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot [k-ft/rad]	Y Rot [k-ft/rad]	Z Rot [k-ft/rad]
1	N129	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
2	N108	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
3	N93	Reaction	Reaction	Reaction			
4	N95	Reaction	Reaction	Reaction			
5	N96	Reaction	Reaction	Reaction			
6	N94	Reaction	Reaction	Reaction			
7	N81	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
8	N85	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
9	N89	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
10	N131	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
11	N133	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
12	N135	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
13	N60	Reaction	Reaction	Reaction			
14	N59	Reaction	Reaction	Reaction			

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm. Coeff. [1e⁵°F⁻¹]	Density [k/ft³]	Yield [ksi]	Ry	Fu [ksi]	Rt
1	A992	29000	11154	0.3	0.65	0.49	50	1.1	65	1.1
2	A36 Gr.36	29000	11154	0.3	0.65	0.49	36	1.5	58	1.2
3	A572 Gr.50	29000	11154	0.3	0.65	0.49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	0.3	0.65	0.527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	0.3	0.65	0.527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	0.3	0.65	0.49	35	1.6	60	1.2
7	A1085	29000	11154	0.3	0.65	0.49	50	1.25	65	1.15
8	A913 Gr.65	29000	11154	0.3	0.65	0.49	65	1.1	80	1.1

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design	Area [in ²]	lyy [in⁴]	lzz [in⁴]	J [in⁴]
1	COL	W10X49	Column	Wide Fla	A992	Column	14.4	93.4	272	1.39
2	BRACE	HSS5X5X4	HBrace	None	A500 Gr	Typical	4.3	16	16	25.8
3	FLR BM	W14X22	Beam	None	A992	Floor Be	6.49	7	199	0.208
4	FLR GIRDER	W14X22	Beam	None	A992	Floor Be	6.49	7	199	0.208
5	ROOF GIR	HSS12X6X4	Beam	Tube	A500 Gr	Roof Beam	8.03	51.9	151	124
6	ROOF BM	HSS12X6X4	Beam	Tube	A500 Gr	Roof Beam	8.03	51.9	151	124
7	DIAPHRAGM	L2x2x2	HBrace	None	A36 Gr.36	Typical	0.491	0.189	0.189	0.003
8	HANGER	W8X24	Column	Wide Fla	A992	Column	7.08	18.3	82.7	0.346

Basic Load Cases

	BLC Description	Category	X Gra	Y Gra	. Z Gra	Nodal	Point	Distributed	Area(Mem	Surface(Plate/
1	D	None		-1				2	3	
2	L	None						2	2	
3	S	None							1	
4	Wx1	None							2	6
5	Wx2	None							2	6
6	Wz1	None						12	2	6
7	Wz2	None						12	2	6
8	Wz3	None						13	2	6
9	Wz4	None						13	1	6
10	Wx3	None						1		
11	BLC 1 Transient A	None						100		
12	BLC 2 Transient A	None						51		
13	BLC 3 Transient A	None						49		
14	BLC 4 Transient A	None						50		
15	BLC 5 Transient A	None						100		
16	BLC 6 Transient A	None						158		
17	BLC 7 Transient A	None						158		
18	BLC 8 Transient A	None						158		
19	BLC 9 Transient A	None						86		

Load Combinations

	Description	Solve	PDelta	SRSS	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor
1	D	Yes	Y		1	1						
2	D+L	Yes	Y		1	1	2	1				
3	D+S	Yes	Y		1	1	3	1				
4	D+0.75L+0.75S	Yes	Y		1	1	2	0.75	3	0.75		
5	D+0.6Wx1	Yes	Y		1	1	4	0.6				
6	D+0.75L+0.75S+0.45	Yes	Y		1	1	2	0.75	3	0.75	4	0.45
7	0.6D+0.6Wx1	Yes	Y		1	0.6	4	0.6				
8	D+0.6Wx2	Yes	Y		1	1	5	0.6				
9	D+0.75L+0.75S+0.45	Yes	Y		1	1	2	0.75	3	0.75	5	0.45
10	0.6D+0.6Wx2	Yes	Y		1	0.6	5	0.6				
11	D+0.6Wz1	Yes	Y		1	1	6	0.6				
12	D+0.75L+0.75S+0.45	Yes	Y		1	1	2	0.75	3	0.75	6	0.45
13	0.6D+0.6Wz1	Yes	Y		1	0.6	6	0.6				
14	D+0.6Wz2	Yes	Y		1	1	7	0.6				
15	D+0.75L+0.75S+0.45	Yes	Y		1	1	2	0.75	3	0.75	7	0.45
16	0.6D+0.6Wz2	Yes	Y		1	0.6	7	0.6				
17	D+0.6Wz3	Yes	Y		1	1	8	0.6				
18	D+0.75L+0.75S+0.45	Yes	Y		1	1	2	0.75	3	0.75	8	0.45
19	0.6D+0.6Wz3	Yes	Y		1	0.6	8	0.6				
20	D+0.6Wz4	Yes	Y		1	1	9	0.6				
21	D+0.75L+0.75S+0.45	Yes	Y		1	1	2	0.75	3	0.75	9	0.45
22	0.6D+0.6Wz4	Yes	Y		1	0.6	9	0.6				
23	D+Wx3	Yes	Y		1	1	10	0.6				

Node Reactions

	Node Label		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N129	max	0.0024	17	79.8005	2	3.0267	18	18.066	18	0.0004	20	0.01	7
2		min	-0.0008	7	20.5078	13	-1.2177	16	-6.7292	16	-0.0003	9	-0.0367	11
3	N108	max	0.0073	12	86.3755	12	1.4591	19	8.4418	19	0.0005	8	-0.0094	7
4		min	0.001	7	15.7463	22	-2.5745	15	-13.9814	15	-0.0002	13	-0.0918	12
5	N93	max	0.0179	13	2.766	20	0.5557	20	0	23	0	23	0	23
6		min	-0.3411	8	0.8779	13	0.219	7	0	1	0	1	0	1
7	N95	max	0.0212	22	2.2907	11	-0.1631	7	0	23	0	23	0	23
8		min	-0.3063	8	0.6198	22	-0.4419	11	0	1	0	1	0	1
9	N96	max	1.653	12	9.2907	11	-0.3263	7	0	23	Ó	23	0	23

Node Reactions (Continued)

	Node Label		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
10		min	0.6486	22	4.1549	22	-1.0311	11	Ö	1	0	1	Ō	1
11	N94	max	0.6837	8	3.2951	21	0.4954	11	0	23	0	23	0	23
12		min	0.1402	13	1.5387	13	0.0281	7	0	1	0	1	0	1
13	N81	max	0.0039	11	50.7685	2	1.5599	18	9.5217	18	0.0006	20	0.01	7
14		min	-0.0008	7	13.8056	7	-0.3855	16	-2.0534	16	-0.0002	13	-0.0497	12
15	N85	max	-0.0016	16	42.6272	21	1.735	21	9.4371	21	0.0143	20	0.5244	23
16		min	-0.0425	23	10.0082	13	-0.9581	16	-5.3876	16	-0.013	13	-0.0637	16
17	N89	max	0.0037	17	79.9391	2	3.3639	18	19.7168	18	0.0006	23	0.0092	7
18		min	-0.0009	10	19.2115	13	-1.6338	16	-8.8991	16	-0.0002	10	-0.0377	18
19	N131	max	0.0065	12	54.4222	2	0.5402	19	3.0906	19	0.0007	22	-0.009	7
20		min	0.001	7	11.8297	22	-1.2665	15	-7.161	15	-0.0007	11	-0.0778	12
21	N133	max	0.0421	16	50.1343	12	1.0156	22	5.5868	22	0.0098	11	0.62	17
22		min	-0.0498	17	7.9445	22	-1.8175	12	-10.2533	12	-0.0196	23	-0.6546	14
23	N135	max	0.0118	12	87.1764	12	1.8375	19	10.638	19	0.0005	8	-0.0147	7
24		min	0.0011	22	14.301	22	-2.8492	14	-16.0159	14	-0.0001	2	-0.1338	12
25	N60	max	1.2671	22	44.7808	12	4.9862	22	0	23	0	23	0	23
26		min	-15.7026	11	22.1805	22	-4.5188	11	0	1	0	1	0	1
27	N59	max	2.4493	13	37.7278	3	5.8004	20	0	23	0	23	0	23
28		min	-12.5875	20	20.2617	7	-5.8446	13	0	1	0	1	0	1
29	WP1	max	7.9819	21	77.4054	20	0.4272	8	0	23	1.7411	7	59.1456	20
30		min	1.2269	7	36.9311	13	-1.1597	13	0	1	-0.8754	14	5.6681	13
31	WP2	max	0.0053	7	81.3661	9	6.4664	19	46.7184	22	1.6529	17	0	23
32		min	-0.467	11	45.5375	19	-6.5557	14	-46.185	11	-1.6969	16	0	1
33	WP3	max	7.9963	11	74.558	11	1.2061	22	0	23	1.3657	17	89.9102	11
34		min	1.399	7	32.6054	22	-0.3815	8	0	1	-1.3299	7	16.9385	22
35	WP4	max	0.4073	11	55.3228	12	2.4783	19	31.5676	20	2.0243	14	0	23
36		min	-1.1101	7	30.0711	7	-3.2647	14	1.7283	13	-1.6483	19	0	1
37	Totals:	max	0	3	888.9336	2	32.6142	22						
38		min	-14.2717	5	349.1136	19	-32.6142	11						

Node Displacements

	Node L		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [r	LC	Y Rotation [r	LC	Z Rotation [r	LC
1	N21	max	0.0014	19	-0.0004	22	0.0555	11	1.7734e-04	13	1.4467e-03	16	2.8563e-04	18
2		min	-0.0457	12	-0.0452	12	-0.0508	22	-4.3409e-04	21	-1.7821e-03	20	-1.5874e-05	16
3	N22	max	0.0009	7	-0.0082	13	0.0538	11	2.3825e-04	13	2.4144e-03	23	2.1536e-04	12
4		min	-0.0046	11	-0.0447	21	-0.0511	22	-2.5377e-04	20	-1.2268e-03	13	1.2078e-05	19
5	N23	max	0.0007	7	-0.0124	22	0.0287	13	3.0666e-04	12	9.0009e-05	12	-3.3899e-06	22
6		min	-0.004	20	-0.0611	2	-0.0326	20	9.6757e-06	22	-4.2782e-05	22	-4.0393e-05	12
7	N24	max	0.0012	22	-0.0143	13	0.0852	13	9.2393e-04	12	-1.0906e-05	13	2.3907e-05	16
8		min	-0.0047	11	-0.0735	21	-0.095	20	-2.541e-04	22	-7.5617e-05	9	-2.8995e-05	17
9	N25	max	0.0009	10	-0.0171	22	0.0867	13	8.6867e-04	12	8.3909e-05	12	7.069e-06	22
10		min	-0.0039	20	-0.1061	2	-0.094	20	4.1681e-05	22	-1.9499e-05	22	-8.158e-05	12
11	N26	max	0.0012	7	-0.0114	7	0.0276	13	7.2696e-04	2	4.0667e-05	13	1.9138e-06	7
12		min	-0.0035	11	-0.0419	2	-0.0339	20	9.7901e-05	22	-8.6725e-05	20	-1.5565e-05	12
13	N27	max	0.001	13	-0.0191	22	0.0707	13	1.2386e-03	12	1.0815e-04	12	3.8624e-06	22
14		min	-0.0043	20	-0.1159	2	-0.0781	20	7.7626e-05	22	-3.0318e-05	22	-5.0327e-05	12
15	N28	max	0.0013	22	-0.0169	13	0.0687	13	8.7826e-04	12	6.0538e-06	13	1.0779e-05	16
16		min	-0.0045	11	-0.0709	2	-0.0792	20	-4.107e-05	22	-7.7891e-05	21	-1.8403e-05	17
17	N29	max	0.0042	14	-0.0207	22	0.1526	11	1.3526e-03	2	-3.7958e-05	22	-4.1971e-07	22
18		min	-0.0038	22	-0.1355	2	-0.1218	22	-1.0067e-05	22	-2.9046e-04	12	-1.7679e-04	12
19	N30	max	0.0046	19	-0.0201	13	0.155	11	1.0766e-03	12	2.2821e-04	15	9.2488e-07	13
20		min	-0.0064	11	-0.0864	2	-0.1192	22	-1.4912e-04	22	5.7884e-05	19	-1.0124e-04	20
21	N31	max	0.0046	16	-0.008	22	0.1409	11	1.638e-03	12	3.4242e-03	12	4.2548e-04	18
22		min	-0.0047	20	-0.1032	12	-0.1079	22	-1.8154e-04	22	-5.6992e-04	22	-1.4898e-04	16
23	N32	max	0.0072	19	-0.0041	13	0.1429	11	1.1415e-03	12	3.5857e-04	19	5.5341e-04	15
24		min	-0.0109	11	-0.0471	21	-0.1069	22	-3.742e-04	22	-4.0531e-03	12	8.2036e-06	19
25	N33	max	0.0013	14	-0.0144	22	0.0545	11	3.7788e-04	2	1.6933e-05	22	-9.5658e-07	22
26		min	-0.0012	22	-0.0735	2	-0.0451	22	-8.1503e-06	19	-3.3743e-04	12	-1.7026e-04	12

Node Displacements (Continued)

27 N34 max 0.0065 19 0.0163 13 0.2195 11 1.3532e-03 12 3.076e-04 12 3.076e-04 12 3.076e-04 12 3.1046e-04 22 28 N35 max 0.004 12 0.0239 22 0.1248 11 1.9675e-03 2 7.1055e-05 12 1.8045e-04 12 1.4045e-04 12 1.459e-04 12 3.149e-04 12 1.459e-04 12 3.149e-04 13 3.9687e-05 12 1.4571e-04 12 3.1778e-04 12 <th></th> <th>Node L</th> <th></th> <th>X [in]</th> <th>LC</th> <th>Y [in]</th> <th>LC</th> <th>Z [in]</th> <th>LC</th> <th>X Rotation [r</th> <th>LC</th> <th>Y Rotation [r</th> <th>LC</th> <th>Z Rotation [r</th> <th>LC</th>		Node L		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [r	LC	Y Rotation [r	LC	Z Rotation [r	LC
28 max 0.0094 11 -0.060 22 3.2266-04 22 2.2376-05 19 -1.0496-04 20 30 min 0.0048 12 -0.1528 2 0.1105 23 3.2116-04 12 3.3144-04 12 1.4596-04 12 1.4596-04 12 1.4596-04 12 1.4596-04 12 1.4596-04 12 1.4596-04 12 1.4596-04 12 1.4596-04 12 3.2566-05 13 3.5897-05 20 33 NT max 0.0083 13 0.1666 15 0.1477 12 2.3586-03 15 1.6215-04 12 3.5766-04 12 3.5766-04 12 3.5766-04 12 3.5766-04 12 3.5766-04 12 3.5766-04 12 3.5766-04 12 3.5766-04 12 3.5766-04 12 3.5766-04 12 3.5766-04 12 3.5766-04 12 3.5766-04 12 3.5766-04 12 3.5766-04 12 <td>27</td> <td>N34</td> <td>max</td> <td>0.0065</td> <td>19</td> <td>-0.0163</td> <td>13</td> <td>0.2195</td> <td>11</td> <td>1.3532e-03</td> <td>12</td> <td>3.076e-04</td> <td>15</td> <td>4.0756e-06</td> <td>13</td>	27	N34	max	0.0065	19	-0.0163	13	0.2195	11	1.3532e-03	12	3.076e-04	15	4.0756e-06	13
29 N35 max 0.0048 21 0.2184 11 1.9675e-03 2 7.1055e-05 12 1.8435e-04 12 3.8557e-05 13 3.5587e-05 13 3.5587e-05 13 3.5587e-05 13 3.5587e-05 13 3.5587e-05 13 1.5587e-04 12 3.1756e-04 12 3.1756e-04 12 3.5751e-04 12 3.5751e-04 12 3.5751e-04 12 3.1685e-04 12 1.8685e-04 12 <th1.8685e-04< th=""> 12 1.8</th1.8685e-04<>	28		min	-0.0094	11	-0.086	21	-0.1669	22	-3.2268e-04	22	2.2367e-05	19	-1.0496e-04	20
30 min -0.0048 22 -0.1702 22 1.431e-04 12 -1.4805e-04 12 -1.4015e-06 13 31 N36 max 0.001 10 0.0112 -0.0435 22 6.200e-05 12 -0.895e-04 7 1.8807e-04 12 -3.814e-04 12 -3.816e-04 12 -3.9761e-05 13 -3.0163e-04 12 -3.812e-04 12 -1.6756e-04 12 -3.9761e-05 7 38 man -0.0074 1 -0.0048 12 -1.4053e-04 12 -1.685e-04 12 -1.685e-04 12 -1.685e-04 12 -1.685e-04 12 -1.685e-04 12 -1.685e-04 12 -1.686e-04 12 -1.686e-04 12 -1.686e-04 12 -1.686e-04 12 -1.686e-04 12 -1.686e-04<	29	N35	max	0.0049	14	-0.0239	22	0.2184	11	1.9675e-03	2	-7.1055e-05	22	1.8045e-06	22
31 N36 mx 0.001 19 0.0142 7 0.0569 12 1.8080-04 21 4.0108-06 12 32 min 0.003 12 0.008-05 22 6.2008-05 12 1.8087-04 12 3.9258-05 13 34 min 0.008 13 0.1666 15 0.177 22 3.2378-03 21 1.8187-04 12 3.9168-04 12 3.9168-04 12 3.9168-04 12 3.9168-04 12 3.9168-04 12 3.9168-04 12 3.9168-04 12 3.9168-04 12 3.9168-04 12 3.9168-04 12 3.9168-04 12 3.9168-04 12 3.9168-04 12 1.9168-04 12 1.9168-04 12 1.9168-04 12 1.9168-04 12 1.9168-04 12 1.9168-04 12 1.9168-04 12 1.9168-04 12 1.9168-04 12 1.9168-04 12 1.9168-04 12 <th1.9168-04< th=""> 12</th1.9168-04<>	30		min	-0.0048	22	-0.1529	2	-0.1702	22	1.4331e-04	22	-3.3414e-04	12	-1.459e-04	12
32 min -0.0014 11 0.0527 2 0.0035 22 0.0727 12 -3985-04 7 1.8847-04 12 3.9256-04 7 34 min -0.0083 13 0.1666 15 -0.1477 22 -2.3185-03 15 -1.6215-044 12 -3.513-044 7 -3.0163e-04 18 36 min -0.0085 13 0.1008 12 -0.2217 2.15327e-03 11 -1.6275e-04 12 -3.9761e-05 17 -3.9761e-05 17 -3.9761e-05 17 -1.6756e-04 12 -1.6656e-04 12 -2.6667e-04 12 -2.6666e-04 12 -2.6666e-04 12 -2.6666e-04	31	N36	max	0.001	19	-0.0142	7	0.0569	11	6.4699e-04	12	1.8905e-04	21	-4.0105e-06	13
33 N37 max 0.039 12 0.0372 7 0.2357 12 3.9853e-04 7 1.8847e-04 12 3.9256e-05 13 34 min 0.0388 20 0.0212 7 0.347 12 2.513e-04 7 2.5412e-05 19 3.0168e-04 12 3.0168e-05 13 38 min 0.0308 12 0.0271 12 0.0148 12 0.0168e-04 12 1.9308e-05 13 40 min 0.0601 12 0.0127 15 0.0128 12 0.0128 12 0.0128e-04 12 1.9308e-04 12 1.9308e-04 12 1.9308e-04 12 1.9308e-04 12 1.9308e-04 12 1.9308e-04 <th12< th=""> 1.9308e-04</th12<>	32		min	-0.0014	11	-0.0527	2	-0.0435	22	6.2009e-05	22	6.5722e-05	13	-9.5897e-05	20
34 min 0.0083 13 0.1666 15 -0.1477 22 -2.3185-03 15 -1.6216-04 22 -1.7766-04 10 35 N38 min 0.0089 13 -0.108 21 -0.2064 22 -1.5237-03 21 1.4376-04 12 -3.9761-05 7 36 min 0.0039 13 -0.1031 15 -1.5576-04 22 -1.66956-04 21 -1.16956-04 21 -1.16956-04 21 -1.16956-04 21 -1.16956-04 21 -1.16956-04 21 -1.16956-04 21 -1.16956-04 21 -1.16956-04 22 -1.16956-04 22 -1.16956-04 22 -1.16956-04 22 -2.11696-05 12 -2.6916-04 22 -2.2916-04 12 -2.6916-04 22 -2.2914-04 12 -2.6916-04 22 -2.2914-04 12 -2.6916-06 12 -2.6916-06 12 -2.6916-06 12 -2.6916-06 12 -2.69166-06 12 <td>33</td> <td>N37</td> <td>max</td> <td>0.039</td> <td>20</td> <td>-0.0372</td> <td>7</td> <td>0.2357</td> <td>12</td> <td>-3.9853e-04</td> <td>7</td> <td>1.8847e-04</td> <td>12</td> <td>-3.9256e-05</td> <td>13</td>	33	N37	max	0.039	20	-0.0372	7	0.2357	12	-3.9853e-04	7	1.8847e-04	12	-3.9256e-05	13
35 N38 max 0.0389 20 0.0212 7 0.34 12 2.512-04 7 2.5413-04 12 3.50163-04 12 36 min 0.0369 10.0024 13 0.0246 12 1.5237-03 1 1.4312-05 12 1.54516-04 12 1.6866-04 12 1.6876-05 12 1.6816-04 12 1.6876-05 12 1.6816-04 12 1.6876-05 12 1.6166-04 12 1.61636-04	34		min	-0.0083	13	-0.1666	15	-0.1477	22	-2.3185e-03	15	-1.6215e-04	22	-1.7766e-04	20
36 min 0.0089 13 0.1008 12 -0.2064 12 -1.5237c-03 12 1.41756c-04 12 -3.9761c-05 7 38 min 0.0035 10 0.0054 15 -0.5267 1 1.5756c-04 12 -1.6895e-04 12 -1.6895e-04 12 -1.6895e-04 12 -1.8995e-04 12 -1.8995e-04 12 -1.8995e-04 12 -1.8995e-06 12 -1.8995e-06 12 -1.8995e-06 12 -1.8995e-06 12 -1.8995e-06 12 -1.8995e-06 12 -1.8995e-05 12 -1.8995e-05 12 -1.8956e-04 12 -1.8956e-04 12 -1.8956e-04 12 -1.8956e-04 12 -1.8956e-04 12 -1.8956e-04 12 -2.5916e-05 12 -1.8916e-05 12 -1.9176e-04 12 -2.5176e-05 12 -1.3776e-04 12 -1.8916e-05 12 -1.6164 12 -2.5176e-05 12 -1.7176e-04 12 -2.5176e-05 12 <	35	N38	max	0.0389	20	-0.0212	7	0.34	12	-2.513e-04	7	2.5413e-04	12	-3.0163e-04	19
37 N39 max 0.0349 20 0.0341 7 0.3269 12 3.241e-04 7 1.5515e-04 21 3.36761e-05 7 38 min 0.0361 1.0071 1.0041 1.2 1.568e-04 1.7 1.5962e-04 1.2 1.1898e-05 1.3 40 min 0.0631 1.2 0.028 7.07044 1.2 1.2668e-04 1.2 1.5968e-04 1.2 1.5968e-04 1.2 2.5291e-04 1.2 2.8157e-05 1.2 2.41354e-04 1.2	36		min	-0.0065	13	-0.1008	21	-0.2064	22	-1.5237e-03	21	-1.4312e-05	19	-5.5001e-03	15
38 min -0.0074 13 -0.107 15 -0.208-03 15 -1.5515e-04 22 -1.6685e-04 21 40 min -0.0081 13 -0.1027 15 -0.0486 22 -1.4063e-03 15 -1.6743e-04 12 -1.1895e-04 12 -1.2184e-04 12 <td>37</td> <td>N39</td> <td>max</td> <td>0.0389</td> <td>20</td> <td>-0.0343</td> <td>7</td> <td>0.3269</td> <td>12</td> <td>-3.241e-04</td> <td>7</td> <td>1.6756e-04</td> <td>12</td> <td>-3.9761e-05</td> <td>7</td>	37	N39	max	0.0389	20	-0.0343	7	0.3269	12	-3.241e-04	7	1.6756e-04	12	-3.9761e-05	7
39 N40 max 0.0385 20 -00261 7 0.892-e-04 12 -1.1892-e-04 12 -2.2801-e-04 12 -2.2802-e-04 12 -2.2802-e-04 12 -2.2802-e-04	38		min	-0.0074	13	-0.1607	15	-0.2017	22	-2.1758e-03	15	-1.5515e-04	22	-1.6695e-04	21
40 min -0.0081 13 -0.1027 15 -0.488-03 15 -1.673a-04 22 -1.9306e-04 20 41 Max 0.00631 12 -0.0173 12 -1.843e-04 12 -1.848e-05 12 -2.868e-04 12 -2.856e-04 13 10.653-e04 21 1.868e-05 13 1.0633-e04 13 10.653-e04 12 2.856e-05 11 1.053-e04 12 2.856e-05 11 1.053-e04	39	N40	max	0.0385	20	-0.0258	7	0.0744	12	-3.0842e-04	7	1.8952e-04	12	-1.1898e-05	13
41 N41 max 0.0076 22 0.0739 12 2.1849e-03 12 2.1617e-04 12 -1.6881e-05 22 43 N42 max 0.0076 12 0.0084 22 0.3287e-04 22 -2.5281e-04 12 -1.6881e-05 22 -2.541e-04 12 -2.8157e-05 22 -8.0169-05 3 5.84e-03 12 -2.8157e-05 22 -8.0169-05 3 5.84e-03 12 -2.8157e-05 22 -8.0169-05 3 5.84e-03 12 -2.8157e-05 22 -4.134e-04 22 -2.5506e-04 12 -2.8157e-05 22 -4.134e-04 22 -2.5376e-04 12 -2.6506e-04 12 -2.4134e-05 22 48 min -0.0071 22 -0.0352 20 7.2786e-05 22 -1.5504e-04 20 1.6838e-04 21 1.6848e-04 22 -2.5376e-04 12 50 min -0.0041 10 -1.6486 2 -0.0759 20 2.8358e-05 12 -1.6848e-04 12 -1.6848e-05 11	40		min	-0.0081	13	-0.1027	15	-0.0486	22	-1.4063e-03	15	-1.6743e-04	22	-1.9306e-04	20
42 min -0.0076 22 -0.12567 12 -0.0485 22 2.5281e-04 12 2.5360e-04 12 2.5360e-04 12 2.5360e-04 12 2.5360e-04 12 2.4356e-04 12 2.4356e-04 12 2.4356e-04 12 2.4376e-05 22 1.7366e-04 22 1.2376e-04 12 2.4376e-05 22 1.7366e-04 12 1.5636e-04 12 1.6888e-05 13 50 min 0.0041 20 0.3767 22 0.0702 13 7.7286e-04 12 1.6336e-05 11 1.5035e-05 21 1.3636e-05 12 1.3057e-04 12 2.5386e-05 12 1.32656e-05 12 1.3057e-04	41	N41	max	0.0633	12	-0.029	22	0.0739	12	2.1849e-03	12	2.6617e-04	12	-1.6881e-05	22
44 max 0.0651 12 0.0244 22 0.324 12 3.8867+03 12 9.9053+06 22 2.2464+0-04 22 44 min 0.0071 22 0.0246 22 2.726+05 22 8.916+05 3 5.84+03 12 45 N43 max 0.0647 12 -0.0355 22 0.736+04 22 -2.5506+04 12 -2.8156+05 22 46 min -0.0074 22 -0.0352 22 0.7356+04 22 -2.5376+0-04 22 -2.5376+0-04 22 -2.5376+0-04 21 1.6338+0-04 21 1.6338+0-04 21 1.6338+0-04 12 1.6338+0-04 12 1.6338+0-05 12 1.6388+0-05 13 2.0537e+04 12 1.6338+0-05 12 1.6388+0-05 13 2.0537e+04 12 1.6338+0-05 12 1.6338+0-05 12 1.6388+0-05 13 2.0537e+04 11 1.5075e+05 11 1.5075e+05 11 <td>42</td> <td></td> <td>min</td> <td>-0.0076</td> <td>22</td> <td>-0.1557</td> <td>12</td> <td>-0.0485</td> <td>22</td> <td>3.5628e-04</td> <td>22</td> <td>-1.2566e-04</td> <td>22</td> <td>-2.5291e-04</td> <td>12</td>	42		min	-0.0076	22	-0.1557	12	-0.0485	22	3.5628e-04	22	-1.2566e-04	22	-2.5291e-04	12
44 min -0.0071 22 -0.2322 12 -0.2068 22 -2.726e-05 22 -8.9168e-05 3 -5.84e-05 12 45 N43 max 0.0641 12 -0.2045 12 4.476e-03 12 2.7578e-04 22 -1.2314e-04 22 -2.8157e-05 22 47 N44 max 0.0671 12 -0.2035 22 0.2369 12 4.3776e-03 12 2.6564e-04 12 -2.4134e-05 22 -2.5376e-04 12 -2.4134e-05 22 -2.5376e-04 12 -2.4134e-05 22 -2.5376e-04 12 -2.4576e-04 13 1.0633e-04 13 1.0633e-05 22 1.7586e-04 13 2.0587e-05 22 1.7346e-04 13 2.0376e-05 11 1.5037e-05 11 1.5037e-05 11 1.5037e-05 11 1.5037e-05 12 1.548e-04 13 2.0358e-05 12 1.628e-05 11 1.2507e-05 12 1.57274e-06	43	N42	max	0.0651	12	-0.0094	22	0.342	12	3.8687e-03	12	9.9053e-06	22	-2.041e-04	22
45 N43 max 0.0649 12 0.0246 22 0.2369 12 4.462e-03 12 2.7691e-04 12 -2.817e-05 22 46 min -0.0074 22 0.2355 22 0.2359 12 4.4776e-03 12 2.6504e-04 12 -2.817e-04 22 -2.3376e-04 12 -2.817e-04 22 -2.3376e-04 12 -2.4134e-04 22 -2.5376e-04 12 48 min -0.0072 22 -0.3082 10 17.22 17.7376e-03 12 -1.6485e-04 12 -2.4134e-04 22 -2.3776e-04 12 -2.4134e-04 12 -2.3376e-04 12 1.413e-04 13 2.0335e-04 12 1.6436e-05 12 1.413e-04 13 2.0335e-04 12 2.6386e-05 12 1.2338e-0	44		min	-0.0071	22	-0.2322	12	-0.2068	22	2.726e-05	22	-8.9169e-05	3	-5.84e-03	12
46 min -0.0074 22 -0.2951 12 -0.2014 22 -1.5744e-04 22 -1.2314e-04 22 -2.5536e-04 12 47 N44 max 0.0074 22 0.2395 12 4.3776e-03 12 2.6504e-04 12 -2.4134e-05 22 48 min -0.0071 22 -0.2802 13 0.6776 22 -1.776e-04 22 -2.5376e-04 12 50 min -0.0042 1 -1.486 2 0.7702 13 7.8204e-04 21 1.6413e-04 13 2.0337e-04 12 51 M46 max 0.00013 22 0.3703 13 0.094 13 9.0135e-04 12 6.5386e-05 11 1.5035e-05 21 54 min -0.0041 01 -1.5471 2 0.109 20 5.9653e-05 22 -2.538e-04 21 1.6376e-04 12 3.7876e-04 12 3.7876e-04	45	N43	max	0.0649	12	-0.0246	22	0.3269	12	4.462e-03	12	2.7891e-04	12	-2.8157e-05	22
44 max 0.0647 12 0.0355 22 0.2359 12 4.3776e-03 22 1.2704e-04 12 2.2434e-05 22 48 min 0.0079 22 0.2033 12 0.1475 22 3.7037e-04 22 1.554e-04 21 1.554e-04 20 1.6838e-05 13 50 min 0.0042 11 1.4666 2 0.0759 20 2.8395e-05 22 1.7685e-04 20 1.848e-05 13 2.053re-04 12 51 N46 max 0.0013 22 0.0781 20 4.367e-05 22 1.734e-04 20 2.388te-05 21 1.503e-05 21 53 N47 max 0.0013 22 0.0701 2 0.0994 13 0.0156-04 21 6.238e-05 11 7.2744e-06 19 56 min -0.0046 11 1.4978 2 0.1068 22 4.3278e-04 12 3.784e-04 11 1.2607e-04 12 57 N51 max	46		min	-0.0074	22	-0.2951	12	-0.2014	22	1.5744e-04	22	-1.2314e-04	22	-2.5506e-04	12
48 min -0.0079 22 -0.2903 12 0.1475 22 3.7037e-04 22 -1.2704e-04 22 -2.5376e-04 12 49 N45 max 0.0012 22 -0.3682 13 0.0702 13 7.8204e-04 2 1.5594e-04 13 1.0633e-04 21 50 min -0.0042 11 1.4666 2 -0.0759 20 2.8395e-05 22 -1.7685e-04 13 2.0537e-04 12 51 M46 max 0.0013 12 -0.3703 13 0.0994 13 9.0135e-04 12 6.2121e-05 21 -1.0258e-05 13 55 N48 max 0.0001 13 -0.3709 22 0.0994 13 1.0537e-03 12 6.2012e-05 11 .1625e-05 13 56 Min -0.0041 14 -1.4774 2 0.1068 22 -2.9538e-04 22 .2053e-05 12 .6	47	N44	max	0.0647	12	-0.0355	22	0.2359	12	4.3776e-03	12	2.6504e-04	12	-2.4134e-05	22
49 N45 max 0.0012 22 0.3682 13 0.0702 13 7.6204-04 2 1.5694-04 13 1.0633e-04 21 50 min -0.0042 11 -1.4866 2 0.0759 20 2.8395e-05 22 -1.7346e-04 13 2.0537e-04 12 51 M46 max 0.00041 20 -1.5164 2 -0.0781 20 4.3667e-05 22 -1.7346e-04 13 2.0537e-04 12 53 M47 max 0.00047 11 1.5047 2 0.1068 20 -1.473e-04 22 -6.221e-05 22 -1.0258e-05 13 56 min -0.0041 10 1.517 2 -0.109 20 5.9653e-05 22 -6.221e-05 20 -3.807e-05 2 57 N51 max 0.0028 14 -0.3686 22 0.1269 11 8.618e-04 12 3.828e-04 11	48		min	-0.0079	22	-0.2903	12	-0.1475	22	3.7037e-04	22	-1.2704e-04	22	-2.5376e-04	12
50 min -0.0042 11 1.4866 2 -0.0759 20 2.8395-05 22 -1.7865-04 20 1.6413e-04 13 2.0537e-04 12 51 N46 max 0.0008 10 -0.3677 20 0.3667e-05 12 1.6413e-04 13 2.0537e-04 12 1.5386e-05 11 1.5035e-05 21 53 N47 max 0.0009 13 0.3709 22 0.0984 13 9.0135e-04 12 6.528e-05 11 -7.2744e-06 19 56 min -0.0041 10 1.5417 2 -0.108 22 4.3558e-05 22 6.221e-05 20 -3.807e-05 2 57 N51 max 0.0028 14 -0.3668 22 0.1086 22 -2.9538e-04 12 1.6251e-05 13 59 N52 max 0.0028 19 -0.318 13 0.2024 11 1.2154e-03 12 <td>49</td> <td>N45</td> <td>max</td> <td>0.0012</td> <td>22</td> <td>-0.3682</td> <td>13</td> <td>0.0702</td> <td>13</td> <td>7.8204e-04</td> <td>2</td> <td>1.5594e-04</td> <td>13</td> <td>1.0633e-04</td> <td>21</td>	49	N45	max	0.0012	22	-0.3682	13	0.0702	13	7.8204e-04	2	1.5594e-04	13	1.0633e-04	21
51 N46 max 0.0008 10 0.3677 22 0.0702 13 7.7286-04 12 1.413e-04 13 2.0537e-04 12 53 N47 max 0.0013 22 0.3703 13 0.0994 13 9.0135e-04 12 6.5386e-05 11 1.5037e-05 21 54 min 0.0047 11 1.5047 2 -0.1068 20 -1.473e-04 22 -6.2121e-05 22 -1.0258e-05 13 55 N48 max 0.0003 19 0.3699 12 0.1089 11 8.619e-04 12 3.784e-04 11 1.2607e-04 21 56 min -0.0028 14 0.3689 12 -0.108 22 -2.538e-04 11 1.2651e-05 13 59 N52 max 0.0028 14 0.3682 2 0.3584e-04 22 2.29454e-04 22 1.2616e-05 11 1.5151e-05 12	50		min	-0.0042	11	-1.4866	2	-0.0759	20	2.8395e-05	22	-1.7685e-04	20	1.6988e-05	13
52 min -0.0041 20 -1.5164 20 -4.366-05 22 -1.7346e-04 20 2.3881e-05 21 53 N47 max 0.0013 22 -0.3703 13 0.0994 13 9.0135e-04 12 6.5386e-05 11 1.5035e-05 13 55 N48 max 0.0009 13 -0.3709 22 0.0994 13 1.0537e-03 12 6.282e-05 11 7.7244e-06 19 56 min -0.0041 10 1.5417 2 -0.1068 22 -4.3558e-05 22 -2.9538e-04 11 1.2607e-04 21 59 N52 max 0.0025 14 -0.3668 22 1.4098 11 1.2154e-03 12 2.1868e-04 12 2.318e-04 11 1.2334e-04 12 1.8076e-04 21 1.8042e-04 22 1.6051e-05 11 60 min -0.0025 12 1.5335 2 <	51	N46	max	0.0008	10	-0.3677	22	0.0702	13	7.7286e-04	12	1.6413e-04	13	2.0537e-04	12
53 N47 max 0.0013 22 0.3703 13 0.0994 13 9.0136e-04 12 6.5386e-05 11 1.5035e-05 21 54 min -0.0047 11 -1.607 2 -0.1088 20 -1.473e-04 12 6.282e-05 11 -7.2744e-06 19 56 min -0.0041 20 -1.5477 2 -0.109 20 5.9653e-05 22 -6.2021e-05 20 -3.807e-05 2 57 N51 max 0.0033 19 -0.3666 22 0.1068 24 -4.3558e-05 22 -2.9538e-04 21 1.6251e-05 13 59 N52 max 0.0028 14 -0.3686 22 0.1269 11 1.2154e-04 21 3.8288e-04 11 1.23348e-04 12 2.5186e-04 11 1.1591e-05 22 61 min -0.0083 11 -1.5745 2 -0.1723 22 6.	52		min	-0.0041	20	-1.5164	2	-0.0781	20	4.3667e-05	22	-1.7346e-04	20	2.3881e-05	22
54 min 0.0047 11 1.5047 2 -0.1088 20 -1.473e-04 22 -6.2121e-05 22 1.10258e-05 13 55 N48 max 0.0009 13 -0.3709 22 0.0994 13 1.0537e-03 12 6.282e-05 11 -7.2744e-06 19 56 min -0.0041 20 -1.5417 2 -0.109 20 5.9653e-05 22 -6.201e-05 23.807e-05 2 1.2607e-04 21 3.7818e-04 11 1.2607e-04 21 3.7818e-04 11 2.3248e-04 11 2.348e-04 12 2.9454e-04 22 2.2045e-05 22 6.6538e-05 12 2.5186e-04 11 1.5101e-05 22 6.61 N53 max 0.0058 19 -0.3716 22 0.2094 11 1.2154e-03 12 2.5186e-04 11 6.7861e-05 12 61 N53 max 0.0068 12 1.6821e-05 22	53	N47	max	0.0013	22	-0.3703	13	0.0994	13	9.0135e-04	12	6.5386e-05	11	1.5035e-05	21
55 N48 max 0.0009 13 0.3709 22 0.0994 13 1.0537e-03 12 6.282e-05 11 -7.2744e-06 19 56 min -0.0041 20 -1.5417 2 -0.109 20 5.9683e-05 22 -6.2021e-05 20 -3.807e-05 2 57 N51 max 0.0026 11 -1.4878 2 -0.1084 22 -4.3558e-05 22 -2.9538e-04 22 1.6251e-05 13 59 N52 max 0.0028 14 -0.3686 22 -4.3558e-05 22 -2.9454e-04 22 2.045e-05 22 60 min -0.0083 11 -1.5177 2 -0.1694 22 -2.9454e-04 22 -1.6057e-05 11 63 N54 max 0.0046 14 -0.3746 22 0.2941 1 1.601e-05 2 1.6861e-05 2 2.4404e-04 19 -3.7578e-05 </td <td>54</td> <td></td> <td>min</td> <td>-0.0047</td> <td>11</td> <td>-1.5047</td> <td>2</td> <td>-0.1068</td> <td>20</td> <td>-1.473e-04</td> <td>22</td> <td>-6.2121e-05</td> <td>22</td> <td>-1.0258e-05</td> <td>13</td>	54		min	-0.0047	11	-1.5047	2	-0.1068	20	-1.473e-04	22	-6.2121e-05	22	-1.0258e-05	13
56 min -0.0041 20 1.5417 2 -0.109 20 5.9653e-05 22 -6.2021e-05 20 -3.807e-05 2 57 N51 max 0.0033 19 -0.3699 13 0.1269 11 8.619e-04 12 3.7818e-04 11 1.2607e-04 21 58 min 0.0046 11 -1.4978 2 -0.1068 22 -2.9538e-04 22 3.8288e-04 11 2.3348e-04 12 60 min -0.0058 19 -0.3718 13 0.2094 11 1.2154e-03 12 2.548e-04 22 -1.6057e-05 11 63 N54 max 0.0068 19 -0.3746 22 -2.354e-04 22 -1.6057e-05 11 63 N54 max 0.0072 19 -0.3733 13 0.272 11 1.2479e-03 12 2.4049e-04 19 -3.7578e-05 7 66 min	55	N48	max	0.0009	13	-0.3709	22	0.0994	13	1.0537e-03	12	6.282e-05	11	-7.2744e-06	19
57 N51 max 0.0033 19 -0.369 13 0.1269 11 2.619e-04 12 3.7818e-04 11 1.2007e-04 21 58 min -0.0046 11 -1.4978 2 -0.1068 22 -2.9538e-04 22 1.6251e-05 13 59 N52 max 0.0025 22 -1.5335 2 0.1094 12 3.8288e-04 12 2.348e-04 12 1.8622e-04 12 1.8622e-04 12 1.8627e-04 12 1.8627e-04 12 1.2478e-03 12 2.5698e-04 11 1.5077e-04 12 1.2479e-03 12 2.4042e-04 19 3.7578e-05 7 66 min -0.0077 19 11 1.7479e-03 12 2.5091e-04 19 -4.1636e-05 16	56		min	-0.0041	20	-1.5417	2	-0.109	20	5.9653e-05	22	-6.2021e-05	20	-3.807e-05	2
58 min -0.0046 11 -1.4978 2 -0.1068 22 -4.3558e-05 22 -2.9538e-04 22 1.6251e-05 13 59 N52 max 0.0028 14 -0.3668 22 0.1289 11 8.6549e-04 2 3.8288e-04 12 2.3454e-04 22 2.2045e-05 22 60 min -0.0058 19 -0.3718 13 0.2094 11 1.2154e-03 12 2.5186e-04 11 1.1591e-05 22 62 min -0.0043 11 -1.5177 2 -0.1698 22 -2.3548e-04 22 1.6057e-05 11 63 N54 max 0.0047 12 -1.5745 2 -0.1723 22 6.6622e-05 22 -1.8892e-04 22 1.243e-05 22 65 N55 max 0.0077 14 -0.4545 2 0.2719 11 1.740e-03 12 2.4404e-04 19 -3	57	N51	max	0.0033	19	-0.3699	13	0.1269	11	8.619e-04	12	3.7818e-04	11	1.2607e-04	21
59 N52 max 0.0028 14 -0.3686 22 0.1269 11 8.6549e-04 2 3.8288e-04 11 2.3348e-04 12 60 min -0.0025 22 -1.5335 2 -0.1094 22 -8.99e-06 22 -2.9454e-04 22 2.2045e-05 12 61 N53 max 0.0083 11 -1.5177 2 -0.1698 22 -2.3548e-04 12 -1.6057e-05 11 63 N54 max 0.0046 14 -0.3746 22 0.2094 11 1.6601e-03 2 2.5698e-04 11 6.7861e-05 2 64 min -0.0043 2 -1.572 2 -0.223 22 -3.4802e-04 22 2.30387e-04 14 -1.5763e-04 2 65 max 0.0047 14 -0.4545 22 0.2719 11 1.7404e-03 12 2.5021e-04 19 -4.1636e-05 16 <t< td=""><td>58</td><td></td><td>min</td><td>-0.0046</td><td>11</td><td>-1.4978</td><td>2</td><td>-0.1068</td><td>22</td><td>-4.3558e-05</td><td>22</td><td>-2.9538e-04</td><td>22</td><td>1.6251e-05</td><td>13</td></t<>	58		min	-0.0046	11	-1.4978	2	-0.1068	22	-4.3558e-05	22	-2.9538e-04	22	1.6251e-05	13
60 min -0.0025 22 -1.5335 2 -0.1094 22 -8.99e-06 22 -2.9454e-04 22 2.2045e-05 22 61 N53 max 0.0058 19 -0.3718 13 0.2094 11 1.2154e-03 12 2.5186e-04 11 1.1591e-05 22 62 min -0.0083 11 1.5177 2 0.1698 22 -2.3548e-04 22 -1.8642e-04 22 1.267e-05 11 63 N54 max 0.0043 12 -1.5745 2 -0.1723 22 6.6622e-05 22 -1.8892e-04 22 1.243e-05 22 66 min -0.0105 11 -1.572 2 -0.2223 2 -3.4802e-04 22 -3.0387e-04 14 -1.975e-04 2 67 N56 max 0.0017 14 -0.4545 22 0.2719 11 1.7404e-03 12 2.5021e-04 19 4.16	59	N52	max	0.0028	14	-0.3686	22	0.1269	11	8.6549e-04	2	3.8288e-04	11	2.3348e-04	12
61 N53 max 0.0058 19 -0.3718 13 0.2094 11 1.2154e-03 12 2.5186e-04 11 1.1591e-05 22 62 min -0.0083 11 -1.5177 2 -0.1698 22 -2.3548e-04 22 -1.8642e-04 22 -1.6057e-05 11 63 N54 max 0.0046 14 -0.3746 22 0.2094 11 1.6601e-03 2 2.5698e-04 11 6.7861e-05 22 64 min -0.0043 22 -1.5774 2 -0.2223 22 -3.8402e-04 22 1.243e-05 7 66 min -0.0105 11 -1.577 2 -0.2223 22 -3.8402e-04 22 -3.7578e-05 7 67 N56 max 0.0047 20 -1.8751 2 -0.2248 22 -1.904e-05 22 -3.13e-04 14 -1.975e-04 2 69 N57	60		min	-0.0025	22	-1.5335	2	-0.1094	22	-8.99e-06	22	-2.9454e-04	22	2.2045e-05	22
62 min -0.0083 11 -1.5177 2 -0.1698 22 -2.3548e-04 22 -1.8642e-04 22 -1.6057e-05 11 63 N54 max 0.0046 14 -0.3746 22 0.2094 11 1.6601e-03 2 2.5698e-04 11 6.7861e-05 2 64 min -0.0043 22 -1.5745 2 -0.1723 22 6.6622e-05 22 -1.8892e-04 22 1.243e-05 7 66 min -0.0105 11 -1.572 2 -0.223 22 -3.4802e-04 22 -3.0387e-04 14 -1.5763e-04 2 67 N56 max 0.0047 14 -0.4545 22 0.2719 11 1.7404e-03 12 2.5021e-04 19 -4.1636e-05 16 68 min -0.0031 11 -0.0125 0.0031 3 -3.9276e-06 13 2.4895e-03 5 -1.1081e-05 13 <	61	N53	max	0.0058	19	-0.3718	13	0.2094	11	1.2154e-03	12	2.5186e-04	11	1.1591e-05	22
63 N54 max 0.0046 14 -0.3746 22 0.2094 11 1.6601e-03 2 2.5698e-04 11 6.7861e-05 2 64 min -0.0043 22 -1.5745 2 -0.1723 22 6.6622e-05 22 -1.8892e-04 22 1.2439e-05 22 65 N55 max 0.0072 19 -0.3833 13 0.272 11 1.2479e-03 12 2.4404e-04 19 -3.7578e-05 7 66 min -0.0105 11 -1.572 2 -0.2223 22 -3.387e-04 14 -1.578e-05 16 67 N56 max 0.0017 7 -0.0069 7 0.003 13 -3.9276e-06 13 2.4895e-03 5 -1.081e-05 13 70 max 0.0017 7 -0.006 22 0.0034 11 6.5817e-06 12 2.7994e-03 20 -1.1099e-05 22	62		min	-0.0083	11	-1.5177	2	-0.1698	22	-2.3548e-04	22	-1.8642e-04	22	-1.6057e-05	11
64 min -0.0043 22 -1.5745 2 -0.1723 22 6.6622e-05 22 -1.8892e-04 22 1.243e-05 22 65 N55 max 0.0072 19 -0.3833 13 0.272 11 1.2479e-03 12 2.4404e-04 19 -3.7578e-05 7 66 min -0.0105 11 -1.572 2 -0.2248 22 -3.4802e-04 22 -3.0387e-04 14 -1.5763e-04 2 67 N56 max 0.0047 14 -0.4545 22 0.2218 22 -3.13e-04 14 -1.9975e-04 2 68 min -0.0047 7 -0.006 7 0.003 13 -3.9276e-06 13 2.4895e-03 5 -1.081e-05 13 70 min -0.0031 11 -0.016 22 -7.3581e-06 12 2.7994e-03 20 -1.1099e-05 22 74 min 0	63	N54	max	0.0046	14	-0.3746	22	0.2094	11	1.6601e-03	2	2.5698e-04	11	6.7861e-05	2
65 N55 max 0.0072 19 -0.3833 13 0.272 11 1.2479e-03 12 2.4404e-04 19 -3.7578e-05 7 66 min -0.0105 11 -1.572 2 -0.2223 22 -3.4802e-04 22 -3.0387e-04 14 -1.5763e-04 2 67 N56 max 0.0047 14 -0.4545 22 0.2218 22 -1.904e-05 22 -3.13e-04 14 -1.975e-04 2 68 min -0.0047 20 -1.8751 2 -0.2248 22 -1.904e-05 22 -3.13e-04 14 -1.975e-04 2 69 N57 max 0.0013 7 -0.006 7 0.003 13 -3.9276e-06 13 2.4895e-03 5 -1.081e-05 13 70 min -0.0035 20 -0.0116 12 -7.73581e-06 12 2.7994e-03 20 -1.1099e-05 22 <	64		min	-0.0043	22	-1.5745	2	-0.1723	22	6.6622e-05	22	-1.8892e-04	22	1.243e-05	22
66 min -0.0105 11 -1.572 2 -0.2223 22 -3.4802e-04 22 -3.0387e-04 14 -1.5763e-04 2 67 N56 max 0.0047 14 -0.4545 22 0.2719 11 1.7404e-03 12 2.5021e-04 19 -4.1636e-05 16 68 min -0.0047 20 -1.8751 2 -0.2248 22 -1.904e-05 22 -3.13e-04 14 -1.9975e-04 2 69 N57 max 0.0013 7 -0.0069 7 0.003 13 -3.9276e-06 13 2.4895e-03 5 -1.081e-05 13 70 min -0.0035 20 -0.0116 12 -0.0018 22 -7.3581e-06 22 -2.4848e-03 7 -4.0472e-05 12 73 N59 max 0 20 0 7 0 13 2.0917e-04 21 2.619e-03 8 -1.402e-04	65	N55	max	0.0072	19	-0.3833	13	0.272	11	1.2479e-03	12	2.4404e-04	19	-3.7578e-05	7
67 N56 max 0.0047 14 -0.4545 22 0.2719 11 1.7404e-03 12 2.5021e-04 19 -4.1636e-05 16 68 min -0.0047 20 -1.8751 2 -0.2248 22 -1.904e-05 22 -3.13e-04 14 -1.9975e-04 2 69 N57 max 0.0013 7 -0.0069 7 0.003 13 -3.9276e-06 13 2.4895e-03 5 -1.081e-05 13 70 min -0.0031 11 -0.0125 3 -0.0011 20 -1.2873e-05 20 -2.7069e-03 13 -2.4642e-05 20 71 N58 max 0.0007 7 -0.006 22 0.0018 22 -7.3581e-06 12 2.7994e-03 20 -1.402e-04 7 74 min 0 13 0 3 0 20 1.0847e-04 13 -2.6057e-03 13 -2.6038e-05	66		min	-0.0105	11	-1.572	2	-0.2223	22	-3.4802e-04	22	-3.0387e-04	14	-1.5763e-04	2
68 min -0.0047 20 -1.8751 2 -0.2248 22 -1.904e-05 22 -3.13e-04 14 -1.9975e-04 2 69 N57 max 0.0013 7 -0.0069 7 0.003 13 -3.9276e-06 13 2.4895e-03 5 -1.081e-05 13 70 min -0.0031 11 -0.0125 3 -0.0031 20 -1.2873e-05 20 -2.7069e-03 13 -2.4642e-05 20 71 N58 max 0.0007 7 -0.006 22 0.0034 11 6.5817e-06 12 2.7994e-03 20 -1.1099e-05 22 72 min -0.0035 20 -0.0116 12 -0.0018 22 -7.3581e-06 22 -2.4848e-03 7 -4.0472e-05 12 73 N59 max 0 13 0 3 0 20 10.847e-04 13 -2.6057e-03 13 -4.6384e-04	67	N56	max	0.0047	14	-0.4545	22	0.2719	11	1.7404e-03	12	2.5021e-04	19	-4.1636e-05	16
69 N57 max 0.0013 7 -0.0069 7 0.003 13 -3.9276e-06 13 2.4895e-03 5 -1.081e-05 13 70 min -0.0031 11 -0.0125 3 -0.0031 20 -1.2873e-05 20 -2.7069e-03 13 -2.4642e-05 20 71 N58 max 0.0007 7 -0.006 22 0.0034 11 6.5817e-06 12 2.7994e-03 20 -1.1099e-05 22 72 min -0.0035 20 -0.0116 12 -0.0018 22 -7.3581e-06 22 -2.4848e-03 7 -4.0472e-05 12 73 N59 max 0 20 0 7 0 13 2.0917e-04 21 2.619e-03 8 -1.402e-04 7 74 min 0 13 0 3 0 20 1.0847e-04 13 -2.6057e-03 12 -8.8005e-05 22	68		min	-0.0047	20	-1.8751	2	-0.2248	22	-1.904e-05	22	-3.13e-04	14	-1.9975e-04	2
70 min -0.0031 11 -0.0125 3 -0.0031 20 -1.2873e-05 20 -2.7069e-03 13 -2.4642e-05 20 71 N58 max 0.0007 7 -0.006 22 0.0034 11 6.5817e-06 12 2.7994e-03 20 -1.1099e-05 22 72 min -0.0035 20 -0.0116 12 -0.0018 22 -7.3581e-06 22 -2.4848e-03 7 -4.0472e-05 12 73 N59 max 0 20 0 7 0 13 2.0917e-04 21 2.619e-03 8 -1.402e-04 7 74 min 0 13 0 3 0 20 1.0847e-04 13 -2.6057e-03 13 -2.6384e-04 21 75 N60 max 0.0219 8 -0.0077 7 0.0063 13 -4.3401e-04 7 4.8765e-04 11 4.9068e-05 10	69	N57	max	0.0013	7	-0.0069	7	0.003	13	-3.9276e-06	13	2.4895e-03	5	-1.081e-05	13
71 N58 max 0.0007 7 -0.006 22 0.0034 11 6.5817e-06 12 2.7994e-03 20 -1.1099e-05 22 72 min -0.0035 20 -0.0116 12 -0.0018 22 -7.3581e-06 22 -2.4848e-03 7 -4.0472e-05 12 73 N59 max 0 20 0 7 0 13 2.0917e-04 21 2.619e-03 8 -1.402e-04 7 74 min 0 13 0 3 0 20 1.0847e-04 13 -2.6057e-03 13 -2.6384e-04 21 75 N60 max 0 11 0 22 0 11 -6.204e-05 19 2.6075e-03 52 -1.9379e-04 12 76 min 0 22 0 12 0.0063 13 -4.3401e-04 7 4.8765e-04 11 4.9068e-05 10	70		min	-0.0031	11	-0.0125	3	-0.0031	20	-1.2873e-05	20	-2.7069e-03	13	-2.4642e-05	20
72 min -0.0035 20 -0.0116 12 -0.0018 22 -7.3581e-06 22 -2.4848e-03 7 -4.0472e-05 12 73 N59 max 0 20 0 7 0 13 2.0917e-04 21 2.619e-03 8 -1.402e-04 7 74 min 0 13 0 3 0 20 1.0847e-04 13 -2.6057e-03 13 -2.6384e-04 21 75 N60 max 0 11 0 22 0 11 -6.204e-05 19 2.6075e-03 22 -8.8005e-05 22 76 min 0 22 0 12 0 22 -1.1195e-04 12 -2.5253e-03 5 -1.9379e-04 12 77 N66 max 0.0219 8 -0.0077 7 0.0063 13 -4.3401e-04 7 4.8765e-04 11 4.9068e-05 10 78 min 0.0075 13 -0.0166 21 -0.003 13 1.3796e-	71	N58	max	0.0007	7	-0.006	22	0.0034	11	6.5817e-06	12	2.7994e-03	20	-1.1099e-05	22
73 N59 max 0 20 0 7 0 13 2.0917e-04 21 2.619e-03 8 -1.402e-04 7 74 min 0 13 0 3 0 20 1.0847e-04 13 -2.6057e-03 13 -2.6384e-04 21 75 N60 max 0 11 0 22 0 11 -6.204e-05 19 2.6075e-03 22 -8.8005e-05 22 76 min 0 22 0 12 0 22 -1.1195e-04 12 -2.5253e-03 5 -1.9379e-04 12 77 N66 max 0.0219 8 -0.0077 7 0.0063 13 -4.3401e-04 7 4.8765e-04 11 4.9068e-05 10 78 min 0.0075 13 -0.0166 21 -0.003 13 1.3796e-03 12 1.3188e-03 12 2.2842e-05 10 80 </td <td>72</td> <td></td> <td>min</td> <td>-0.0035</td> <td>20</td> <td>-0.0116</td> <td>12</td> <td>-0.0018</td> <td>22</td> <td>-7.3581e-06</td> <td>22</td> <td>-2.4848e-03</td> <td>7</td> <td>-4.0472e-05</td> <td>12</td>	72		min	-0.0035	20	-0.0116	12	-0.0018	22	-7.3581e-06	22	-2.4848e-03	7	-4.0472e-05	12
74 min 0 13 0 3 0 20 1.0847e-04 13 -2.6057e-03 13 -2.6384e-04 21 75 N60 max 0 11 0 22 0 11 -6.204e-05 19 2.6075e-03 22 -8.8005e-05 22 76 min 0 22 0 12 0 22 -1.1195e-04 12 -2.5253e-03 5 -1.9379e-04 12 77 N66 max 0.0219 8 -0.0077 7 0.0063 13 -4.3401e-04 7 4.8765e-04 11 4.9068e-05 10 78 min 0.0075 13 -0.0166 21 -0.003 13 1.3796e-03 12 1.3188e-03 12 2.2842e-05 10 79 N67 max 0.0252 12 -0.0043 7 0.33624e-04 7 -4.1348e-04 22 -8.7796e-05 20 80 min <td>73</td> <td>N59</td> <td>max</td> <td>0</td> <td>20</td> <td>0</td> <td>7</td> <td>0</td> <td>13</td> <td>2.0917e-04</td> <td>21</td> <td>2.619e-03</td> <td>8</td> <td>-1.402e-04</td> <td>7</td>	73	N59	max	0	20	0	7	0	13	2.0917e-04	21	2.619e-03	8	-1.402e-04	7
75 N60 max 0 11 0 22 0 11 -6.204e-05 19 2.6075e-03 22 -8.8005e-05 22 76 min 0 22 0 12 0 22 -1.1195e-04 12 -2.5253e-03 5 -1.9379e-04 12 77 N66 max 0.0219 8 -0.0077 7 0.0063 13 -4.3401e-04 7 4.8765e-04 11 4.9068e-05 10 78 min 0.0075 13 -0.0166 21 -0.009 20 -1.6073e-03 3 -6.4737e-04 22 -1.1712e-04 11 79 N67 max 0.0252 12 -0.0063 7 0.003 13 1.3796e-03 12 1.3188e-03 12 2.2842e-05 10 80 min 0.0071 22 -0.0138 19 0.1593 12 -3.535e-04 7 6.2996e-04 12 2.5112e-04 9	74		min	0	13	0	3	0	20	1.0847e-04	13	-2.6057e-03	13	-2.6384e-04	21
76 min 0 22 0 12 0 22 -1.1195e-04 12 -2.5253e-03 5 -1.9379e-04 12 77 N66 max 0.0219 8 -0.0077 7 0.0063 13 -4.3401e-04 7 4.8765e-04 11 4.9068e-05 10 78 min 0.0075 13 -0.0166 21 -0.009 20 -1.6073e-03 3 -6.4737e-04 22 -1.1712e-04 11 79 N67 max 0.0252 12 -0.0063 7 0.003 13 1.3796e-03 12 1.3188e-03 12 2.2842e-05 10 80 min 0.0071 22 -0.0139 12 -0.0044 20 3.3624e-04 7 -4.1348e-04 22 -8.7796e-05 20 81 N71 max 0.039 20 -0.1038 19 0.1593 12 -3.535e-04 7 6.2996e-04 12 2.5112e-04	75	N60	max	0	11	0	22	0	11	-6.204e-05	19	2.6075e-03	22	-8.8005e-05	22
77 N66 max 0.0219 8 -0.0077 7 0.0063 13 -4.3401e-04 7 4.8765e-04 11 4.9068e-05 10 78 min 0.0075 13 -0.0166 21 -0.009 20 -1.6073e-03 3 -6.4737e-04 22 -1.1712e-04 11 79 N67 max 0.0252 12 -0.0063 7 0.003 13 1.3796e-03 12 1.3188e-03 12 2.2842e-05 10 80 min 0.0071 22 -0.0139 12 -0.0044 20 3.3624e-04 7 -4.1348e-04 22 -8.7796e-05 20 81 N71 max 0.039 20 -0.1038 19 0.1593 12 -3.535e-04 7 6.2996e-04 12 2.5112e-04 9 82 min -0.0086 13 -0.817 15 -0.1041 22 -1.8626e-03 15 -3.8729e-04 22 4.466	76		min	0	22	0	12	0	22	-1.1195e-04	12	-2.5253e-03	5	-1.9379e-04	12
78 min 0.0075 13 -0.0166 21 -0.009 20 -1.6073e-03 3 -6.4737e-04 22 -1.1712e-04 11 79 N67 max 0.0252 12 -0.0063 7 0.003 13 1.3796e-03 12 1.3188e-03 12 2.2842e-05 10 80 min 0.0071 22 -0.0139 12 -0.0044 20 3.3624e-04 7 -4.1348e-04 22 -8.7796e-05 20 81 N71 max 0.039 20 -0.1038 19 0.1593 12 -3.535e-04 7 6.2996e-04 12 2.5112e-04 9 82 min -0.0086 13 -0.817 15 -0.1041 22 -1.8626e-03 15 -3.8729e-04 22 4.4669e-05 7 83 N72 max 0.064 12 -0.0851 22 0.1592 12 3.2818e-03 12 6.3251e-04 12 5.13e	77	N66	max	0.0219	8	-0.0077	7	0.0063	13	-4.3401e-04	7	4.8765e-04	11	4.9068e-05	10
79 N67 max 0.0252 12 -0.0063 7 0.003 13 1.3796e-03 12 1.3188e-03 12 2.2842e-05 10 80 min 0.0071 22 -0.0139 12 -0.0044 20 3.3624e-04 7 -4.1348e-04 22 -8.7796e-05 20 81 N71 max 0.039 20 -0.1038 19 0.1593 12 -3.535e-04 7 6.2996e-04 12 2.5112e-04 9 82 min -0.0086 13 -0.817 15 -0.1041 22 -1.8626e-03 15 -3.8729e-04 22 4.4669e-05 7 83 N72 max 0.064 12 -0.0851 22 0.1592 12 3.2818e-03 12 6.3251e-04 12 5.13e-04 12 84 min -0.0078 22 -0.9097 12 -0.1047 22 3.6333e-04 22 -3.8672e-04 22 2.6364	78		min	0.0075	13	-0.0166	21	-0.009	20	-1.6073e-03	3	-6.4737e-04	22	-1.1712e-04	11
80 min 0.0071 22 -0.0139 12 -0.0044 20 3.3624e-04 7 -4.1348e-04 22 -8.7796e-05 20 81 N71 max 0.039 20 -0.1038 19 0.1593 12 -3.535e-04 7 6.2996e-04 12 2.5112e-04 9 82 min -0.0086 13 -0.817 15 -0.1041 22 -1.8626e-03 15 -3.8729e-04 22 4.4669e-05 7 83 N72 max 0.064 12 -0.0851 22 0.1592 12 3.2818e-03 12 6.3251e-04 12 5.13e-04 12 84 min -0.0078 22 -0.9097 12 -0.1047 22 3.6333e-04 22 -3.8672e-04 22 2.6364e-05 22	79	N67	max	0.0252	12	-0.0063	7	0.003	13	1.3796e-03	12	1.3188e-03	12	2.2842e-05	10
81 N71 max 0.039 20 -0.1038 19 0.1593 12 -3.535e-04 7 6.2996e-04 12 2.5112e-04 9 82 min -0.0086 13 -0.817 15 -0.1041 22 -1.8626e-03 15 -3.8729e-04 22 4.4669e-05 7 83 N72 max 0.064 12 -0.0851 22 0.1592 12 3.2818e-03 12 6.3251e-04 12 5.13e-04 12 84 min -0.0078 22 -0.9097 12 -0.1047 22 3.6333e-04 22 -3.8672e-04 22 2.6364e-05 22	80		min	0.0071	22	-0.0139	12	-0.0044	20	3.3624e-04	7	-4.1348e-04	22	-8.7796e-05	20
82 min -0.0086 13 -0.817 15 -0.1041 22 -1.8626e-03 15 -3.8729e-04 22 4.4669e-05 7 83 N72 max 0.064 12 -0.0851 22 0.1592 12 3.2818e-03 12 6.3251e-04 12 5.13e-04 12 84 min -0.0078 22 -0.9097 12 -0.1047 22 3.6333e-04 22 -3.8672e-04 22 2.6364e-05 22	81	N71	max	0.039	20	-0.1038	19	0.1593	12	-3.535e-04	7	6.2996e-04	12	2.5112e-04	9
83 N72 max 0.064 12 -0.0851 22 0.1592 12 3.2818e-03 12 6.3251e-04 12 5.13e-04 12 84 min -0.0078 22 -0.9097 12 -0.1047 22 3.6333e-04 22 -3.8672e-04 22 2.6364e-05 22	82		min	-0.0086	13	-0.817	15	-0.1041	22	-1.8626e-03	15	-3.8729e-04	22	4.4669e-05	7
84 min -0.0078 22 -0.9097 12 -0.1047 22 3.6333e-04 22 -3.8672e-04 22 2.6364e-05 22	83	N72	max	0.064	12	-0.0851	22	0.1592	12	3.2818e-03	12	6.3251e-04	12	5.13e-04	12
	84		min	-0.0078	22	-0.9097	12	-0.1047	22	3.6333e-04	22	-3.8672e-04	22	2.6364e-05	22
Node Displacements (Continued)

	Node L		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [r	LC	Y Rotation [r	LC	Z Rotation [r	LC
85	N77	max	0.0391	20	-0.1007	19	0.286	12	-3.6131e-04	7	3.5619e-04	12	-1.9769e-06	16
86		min	-0.008	13	-0.8574	15	-0.1807	22	-2.2471e-03	15	-2.106e-04	22	-3.2051e-05	18
87	N78	max	0.0648	12	-0.073	22	0.2859	12	4.4198e-03	12	3.5562e-04	12	3.2802e-05	13
88		min	-0.0077	22	-0.9871	12	-0.1813	22	2.6391e-04	22	-2.1025e-04	22	-4.4784e-05	20
89	N83	max	0.0388	20	-0.077	19	0.3376	12	-2.8772e-04	7	1.2227e-05	19	-3.7341e-05	19
90		min	-0.0068	13	-0.6829	15	-0.2093	22	-1.7451e-03	9	-5.3565e-05	14	-6.4381e-04	15
91	N84	max	0.065	12	-0.0372	22	0.3377	12	4.1655e-03	12	8.2501e-05	12	-8.1105e-05	7
92		min	-0.0072	22	-0.8427	12	-0.2098	22	9.2381e-05	22	1.1829e-05	7	-5.5779e-04	12
93	N91	max	0.2083	5	-0.0073	19	0.0025	13	0	23	1.2591e-04	16	1.233e-04	10
94		min	-0.0434	13	-0.0151	12	-0.0054	20	0	1	-1.5263e-04	18	-2.8557e-04	20
95	N92	max	0.0714	12	-0.0093	7	0.3409	12	1.1654e-04	22	2.8343e-04	11	-2.1158e-04	19
96		min	0.0121	19	-0.0448	15	-0.2065	22	-3.2104e-04	12	-2.0518e-04	22	-2.8991e-03	12
97	N93	max	0	8	0	13	0	7	1.3813e-05	13	3.206e-05	13	-3.9707e-05	7
98		min	0	13	0	20	0	20	-1.0797e-04	20	-6.3205e-06	5	-8.3277e-05	14
99	N94	max	0	13	0	13	0	7	1.0571e-05	16	2.3773e-05	10	1.0613e-04	14
100		min	0	8	0	21	0	11	-7.3273e-05	8	-2.6328e-05	11	7.0357e-06	7
101	N95	max	0	8	0	22	0	11	1.1081e-04	11	5.9721e-06	7	-3.6868e-05	7
102		min	0	22	0	11	0	7	-1.7648e-05	22	-3.2474e-05	20	-8.1436e-05	17
103	N96	max	0	22	0	22	0	11	5.6417e-05	14	1.0477e-05	22	8.3196e-05	12
104		min	0	12	0	11	0	7	2.6199e-06	19	-1.0092e-05	8	2.0271e-05	7
105	N101	max	0.0227	20	-0.0186	13	0.0161	13	-6.92e-04	7	5.9973e-04	11	1.7284e-04	15
106		min	0.0074	13	-0.0391	21	-0.0234	20	-2.3183e-03	3	-5.4128e-04	20	5.8551e-05	7
107	N102	max	0.0279	12	-0.0164	22	0.022	11	2.1341e-03	3	1.205e-03	12	1.1729e-04	18
108		min	0.0073	22	-0.0409	12	-0.0177	22	6.376e-04	7	-5.8163e-04	22	2.968e-05	7
109	N99	max	0.0216	20	-0.0149	7	0.0294	13	8.8031e-04	7	1.7188e-04	22	-7.4625e-06	16
110		min	0.0078	13	-0.0292	21	-0.0304	20	-2.8402e-03	14	-3.8959e-04	5	-3.7025e-05	17
111	N100	max	0.0252	12	-0.0116	22	0.028	13	2.8061e-03	17	3.1692e-04	7	-1.3379e-05	10
112		min	0.008	22	-0.0305	12	-0.0305	20	-8.6092e-04	7	-3.5228e-04	12	-4.6882e-05	14
113	N103	max	0.0627	20	-0.0184	19	0.0188	11	0	23	2.5177e-04	22	2.186e-04	13
114		min	0.004	10	-0.0348	12	-0.0195	20	0	1	-3.0846e-04	11	-1.9874e-04	5
115	N104	max	0.0024	8	-0.0106	22	0.0111	11	2.9088e-05	13	7.0785e-04	7	-1.2271e-05	22
116		min	-0.0008	22	-0.0271	12	-0.0098	22	-4.4168e-05	20	-2.7545e-03	17	-3.7147e-05	12
117	N105	max	0.0032	8	-0.0118	13	0.0091	13	4.0477e-05	11	2.7624e-03	14	-1.188e-05	13
118		min	-0.0003	13	-0.0263	21	-0.0118	20	-3.0883e-05	22	-7.0783e-04	7	-3.2652e-05	20
119	N106	max	0.0088	8	-0.0153	13	0.0134	13	2.6435e-05	11	2.5552e-03	11	-2.0408e-05	13
120		min	0.0021	13	-0.0326	21	-0.0152	20	-3.3743e-05	22	-6.0832e-04	10	-6.6038e-05	9
121	N107	max	0.009	12	-0.0138	22	0.0144	11	3.3573e-05	13	6.1236e-04	10	-1.9806e-05	22
122		min	0.0017	22	-0.0342	12	-0.0142	22	-2.5924e-05	20	-2.5561e-03	20	-7.8524e-05	9
123	N80	max	0.0056	20	-0.023	7	0.1549	11	1.3328e-03	12	2.2452e-04	15	9.2488e-07	13
124		min	-0.0042	13	-0.0905	2	-0.1192	22	-7.4091e-05	22	4.772e-05	19	-1.0124e-04	20
125	N81	max	0	7	0	7	0	16	0	16	0	13	0	12
126		min	0	11	0	2	0	18	0	18	0	20	0	7
127	N82	max	0.0332	20	-0.0239	7	0.2356	12	-1.8891e-04	7	1.8906e-04	12	-3.9256e-05	13
128		min	-0.0018	13	-0.0939	2	-0.1477	22	-8.4538e-04	9	-1.5486e-04	22	-1.7766e-04	20
129	N85	max	0	23	0	13	0	16	0	16	0	13	0	16
130		min	0	16	0	21	0	21	0	21	0	20	0	23
131	N86	max	0.0103	23	-0.0028	13	0.0275	13	2.8155e-04	13	7.693e-04	13	3.6687e-05	16
132		min	-0.0017	16	-0.0122	21	-0.0466	21	-4.403e-04	20	-8.4633e-04	20	-1.8069e-04	23
133	N87	max	0.0289	23	-0.0101	13	0.0538	11	3.3199e-04	12	2.387e-03	23	2.1536e-04	12
134		min	-0.0192	11	-0.0392	2	-0.0511	22	-2.011e-04	22	-1.2288e-03	13	1.2078e-05	19
135	N88	max	0.0115	19	-0.0127	7	0.1428	11	1.2762e-03	12	3.4754e-04	19	5.5341e-04	15
136		min	-0.0583	12	-0.0474	2	-0.1069	22	-3.3472e-04	22	-3.7736e-03	12	8.2036e-06	19
137	N89	max	0	10	0	13	0	16	0	16	0	10	0	18
138		min	0	17	0	2	0	18	0	18	0	23	0	7
139	N90	max	0.0008	19	-0.0191	7	0.0851	13	1.2024e-03	12	-7.6684e-06	13	2.3907e-05	16
140		min	-0.0051	12	-0.0753	2	-0.095	20	-1.7254e-04	22	-6.8901e-05	9	-2.8995e-05	17
141	N97	max	0.0002	7	-0.0055	13	0.0443	16	4.2078e-04	16	9.0685e-06	10	1.2712e-05	12
142		min	-0.0007	18	-0.0229	2	-0.1014	18	-1.0494e-03	18	-3.4227e-05	23	-3.1394e-06	7

Node Displacements (Continued)

	Node L		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [r	LC	Y Rotation [r	LC	Z Rotation [r	LC
143	N98	max	0.007	17	-0.0229	7	0.2194	11	1.6162e-03	12	2.9909e-04	15	4.0756e-06	13
144		min	-0.0061	13	-0.0905	2	-0.1669	22	-2.4572e-04	22	1.6394e-05	19	-1.0496e-04	20
145	N109	max	0.0002	7	-0.0059	13	0.0338	16	3.305e-04	16	1.5497e-05	9	1.5067e-05	12
146		min	-0.0008	11	-0.0229	2	-0.0941	18	-1.002e-03	18	-2.4741e-05	20	-3.4122e-06	7
147	N110	max	0.0007	19	-0.0191	7	0.0686	13	1.1369e-03	2	5.7103e-06	13	1.0779e-05	16
148		min	-0.0046	11	-0.0753	2	-0.0792	20	3.3968e-05	22	-7.1224e-05	21	-1.8403e-05	17
149	N111	max	0.0002	7	-0.0039	7	0.0101	16	9.1552e-05	16	1.2864e-05	13	1.7172e-05	12
150		min	-0.001	12	-0.0145	2	-0.0507	18	-5.703e-04	18	-3.4437e-05	20	-3.5485e-06	7
151	N112	max	0.0008	7	-0.0127	7	0.0276	13	8.7984e-04	2	3.4723e-05	13	1.9138e-06	7
152		min	-0.0032	11	-0.0477	2	-0.0339	20	1.3642e-04	22	-7.6344e-05	20	-1.5565e-05	12
153	N113	max	0.0031	20	-0.0153	7	0.0568	11	7.8494e-04	2	1.7392e-04	21	-4.0105e-06	13
154		min	-0.0005	13	-0.0573	2	-0.0435	22	1.005e-04	22	7.4194e-05	13	-9.5897e-05	20
155	N114	max	0.0416	21	-0.0134	7	0.34	12	1.8102e-04	13	5.638e-04	12	-2.0754e-04	19
156		min	0.0053	13	-0.051	21	-0.2063	22	-7.3102e-04	20	-7.6294e-05	19	-2.8673e-03	15
157	N115	max	0.0332	20	-0.0237	7	0.3269	12	-1.349e-04	7	1.7073e-04	12	-3.9761e-05	7
158		min	-0.0015	13	-0.0938	2	-0.2017	22	-7.258e-04	15	-1.495e-04	22	-1.6695e-04	21
159	N116	max	0.0325	20	-0.016	7	0.0744	12	-1.3371e-04	7	1.8726e-04	12	-1.1898e-05	13
160		min	-0.0014	13	-0.0596	2	-0.0486	22	-5.0785e-04	9	-1.5754e-04	22	-1.9306e-04	20
161	N117	max	-0.0003	7	-0.0041	22	0.0807	14	7.9442e-04	14	6.4073e-06	2	3.8793e-05	12
162		min	-0.0024	12	-0.025	12	-0.0554	19	-5.8984e-04	19	-2.8553e-05	8	4.0918e-06	7
163	N118	max	0	7	-0.0115	22	0.0286	13	-9.2648e-06	13	6.9199e-05	12	-3.4128e-06	22
164		min	-0.0036	18	-0.0514	2	-0.0325	20	-3.4709e-04	21	-3.0727e-05	22	-4.0636e-05	12
165	N119	max	0	7	-0.0161	22	0.0706	13	2.5892e-04	11	8.9363e-05	12	3.8831e-06	22
166		min	-0.0042	18	-0.0817	2	-0.0778	20	-2.3171e-04	22	-2.4625e-05	22	-5.0448e-05	12
167	N120	max	0.0101	12	-0.0197	22	0.1524	11	3.0715e-04	11	-4.7335e-05	22	-4.0291e-07	22
168		min	-0.0028	22	-0.0984	2	-0.1215	22	-3.2006e-04	20	-2.3212e-04	12	-1.771e-04	12
169	N121	max	0.0122	17	-0.0022	22	0.0518	12	5.1311e-04	12	1.1642e-03	23	2.5344e-04	14
170		min	-0.0137	14	-0.0144	12	-0.0281	22	-2.7558e-04	22	-5.8393e-04	11	-2.1564e-04	17
171	N122	max	0.0416	19	-0.0082	22	0.0555	11	1.7354e-04	13	1.4467e-03	16	2.8563e-04	18
172		min	-0.0694	11	-0.0462	12	-0.0508	22	-4.4666e-04	21	-1.7821e-03	20	-1.5874e-05	16
173	N123	max	0.0083	22	-0.0115	22	0.1409	11	8.6194e-04	12	3.0666e-03	12	4.2548e-04	18
174		min	-0.0759	12	-0.0611	12	-0.1078	22	-4.1115e-04	22	-4.973e-04	19	-1.4898e-04	16
175	N124	max	0.0002	7	-0.015	22	0.0865	13	1.3487e-04	13	7.2171e-05	12	5.3581e-06	22
176		min	-0.0037	18	-0.0817	2	-0.0937	20	-3.3621e-04	21	-1.8112e-05	19	-8.7364e-05	12
177	N125	max	0.0115	12	-0.019	22	0.2182	11	5.3778e-04	12	-7.3281e-05	22	1.8503e-06	22
178		min	-0.0031	22	-0.1	12	-0.1698	22	-2.417e-04	22	-2.6979e-04	12	-1.4597e-04	12
179	N126	max	-0.0002	7	-0.0045	22	0.0679	15	6.357e-04	14	1.1598e-05	13	2.8171e-05	12
180		min	-0.0017	12	-0.0248	12	-0.0439	19	-4.6672e-04	19	-3.0401e-05	8	2.6987e-06	7
181	N127	max	-0.0002	7	-0.0034	22	0.0362	15	3.5938e-04	15	4.1908e-05	11	2.4698e-05	12
182		min	-0.0015	12	-0.0156	2	-0.016	19	-1.6733e-04	19	-4.1098e-05	22	2.6445e-06	7
183	N128	max	0.0088	12	-0.0139	22	0.0546	11	1.3872e-05	16	-2.6885e-06	22	-8.4886e-07	22
184		min	-0.0014	22	-0.0618	2	-0.045	22	-3.1876e-04	18	-2.6991e-04	12	-1.7049e-04	12
185	N130	max	0.0517	12	-0.0201	22	0.2361	12	1.7631e-03	12	2.4996e-04	12	-2.4134e-05	22
186		min	-0.0016	22	-0.1054	12	-0.1475	22	1.2938e-04	22	-1.2496e-04	22	-2.5376e-04	12
187	N131	max	0	7	0	22	0	15	0	15	0	11	0	12
188		min	0	12	0	2	0	19	0	19	0	22	0	7
189	N132	max	0.0503	12	-0.0143	22	0.0741	12	7.5325e-04	12	2.4757e-04	12	-1.6881e-05	22
190		min	-0.0014	22	-0.0654	12	-0.0485	22	1.6058e-04	7	-1.2164e-04	22	-2.5291e-04	12
191	N133	max	0	17	0	22	0	12	0	12	0	23	0	14
192		min	0	16	0	12	0	22	0	22	0	11	0	17
193	N134	max	0.0769	12	-0.0119	22	0.3417	12	1.8955e-03	12	-1.4414e-05	7	-1.1997e-04	22
194		min	-0.0041	22	-0.0663	12	-0.2066	22	-2.3411e-04	22	-2.845e-04	3	-2.9578e-03	12
195	N135	max	0	22	0	22	0	14	0	14	0	2	0	12
196		min	0	12	0	12	0	19	0	19	0	8	0	7
197	N136	max	0.0512	12	-0.0192	22	0.3272	12	1.8185e-03	12	2.6005e-04	12	-2.8156e-05	22
198		min	-0.0013	22	-0.1075	12	-0.2014	22	-1.1183e-05	22	-1.225e-04	22	-2.5506e-04	12
199	N108	max	0	7	0	22	0	15	0	15	0	13	0	12
200		min	0	12	0	12	0	19	0	19	0	8	0	7

Node Displacements (Continued)

	Node L		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [r	LC	Y Rotation [r	LC	Z Rotation [r	LC
201	N129	max	0	7	0	13	0	16	0	16	0	9	0	11
202		min	0	17	0	2	0	18	0	18	0	20	0	7
203	N137	max	0.0009	10	-0.4129	22	0.1089	11	-4.8609e-04	13	2.1849e-03	11	-3.1644e-03	13
204		min	-0.0036	20	-1.6808	2	-0.1041	22	-2.5044e-03	2	-1.9831e-03	17	-1.2727e-02	2
205	N138	max	0.0437	19	-0.4278	22	0.1088	11	-6.0781e-04	13	2.0201e-03	11	-3.1662e-03	13
206		min	-0.0513	11	-1.739	2	-0.104	22	-2.9884e-03	2	-1.8381e-03	17	-1.2734e-02	2
207	N139	max	0.0046	16	-0.3078	22	0.2225	11	1.6884e-03	12	5.5716e-04	19	-3.8283e-03	16
208		min	-0.0047	20	-1.2912	2	-0.2496	22	-1.0159e-04	22	-1.1438e-03	14	-1.5325e-02	2
209	N140	max	0.0083	22	-0.424	22	0.2042	11	-2.0457e-03	13	9.3074e-04	19	-4.5537e-03	22
210		min	-0.0758	12	-1.724	2	-0.1648	22	-9.7531e-03	2	-1.0414e-03	14	-1.859e-02	2
211	N141	max	0.0009	7	-0.2704	13	0.1086	11	1.0418e-02	2	7.0846e-04	17	-3.1826e-03	13
212		min	-0.0046	11	-1.097	2	-0.1026	22	2.4844e-03	22	-8.0598e-04	13	-1.2799e-02	2
213	N142	max	0.1012	19	-0.4628	22	0.1088	11	-6.1574e-04	13	1.0795e-03	11	-3.1691e-03	13
214		min	-0.1147	11	-1.8763	2	-0.1038	22	-2.984e-03	2	-9.8311e-04	17	-1.2745e-02	2
215	N143	max	0.1012	19	-0.0192	7	0.0554	11	-1.2222e-04	13	9.5101e-04	16	2.4139e-04	18
216		min	-0.1147	11	-0.0722	2	-0.0511	22	-7.31e-04	2	-1.7522e-03	23	3.3554e-06	16
217	N144	max	0.0011	22	-0.3595	13	0.1103	13	1.4573e-02	2	6.8492e-05	9	6.4608e-03	2
218		min	-0.0048	11	-1.4572	2	-0.1129	20	3.4545e-03	22	-1.6773e-04	19	1.5941e-03	22
219	N145	max	0.0009	10	-0.3342	22	0.1103	13	-3.6221e-03	13	9.7605e-05	11	8.1133e-03	2
220		min	-0.0038	20	-1.3745	2	-0.1145	20	-1.5298e-02	2	-2.783e-05	23	2.0368e-03	10
221	N146	max	0.0083	22	-0.5869	22	0.2719	11	-4.8242e-03	13	2.9438e-03	12	-4.206e-05	16
222		min	-0.0757	12	-2.4097	2	-0.2245	22	-2.042e-02	2	-4.8679e-04	22	-1.956e-04	2
223	N147	max	0.0389	20	0.0628	11	0.344	12	-2.513e-04	7	1.2637e-04	15	-2.675e-04	19
224		min	-0.0065	13	-0.0328	19	-0.2065	22	-1.5237e-03	21	-1.4546e-05	19	-5.4007e-03	15
225	N148	max	0.0651	12	-0.0045	22	0.3433	12	3.8687e-03	12	7.7389e-05	15	-1.8862e-04	22
226		min	-0.0071	22	-0.0794	2	-0.2066	22	2.726e-05	22	8.303e-07	19	-5.7338e-03	12
227	N149	max	0.0379	20	-0.051	7	0.0295	13	-6.0322e-04	7	1.5504e-04	20	-4.8078e-06	16
228		min	-0.0077	13	-0.1402	3	-0.0304	20	-2.0855e-03	3	-1.1821e-04	13	-3.7813e-05	17
229	N150	max	0.0375	20	-0.039	7	0.016	13	-7.414e-04	7	5.2754e-04	11	2.3592e-04	15
230		min	-0.0075	13	-0.1018	3	-0.0234	20	-2.4709e-03	3	-5.0692e-04	22	8.5117e-05	7
231	N151	max	0.0383	20	-0.0194	7	0.0064	13	-4.477e-04	7	6.2708e-04	11	4.9068e-05	10
232		min	-0.0079	13	-0.0591	3	-0.009	20	-1.6517e-03	3	-6.919e-04	22	-1.1712e-04	11
233	N152	max	0.0602	12	-0.0376	7	0.022	11	2.2895e-03	3	9.566e-04	12	1.9928e-04	18
234		min	-0.0068	22	-0.0985	12	-0.0177	22	6.8663e-04	7	-4.2894e-04	22	6.6823e-05	7
235	N153	max	0.0613	12	-0.0481	7	0.0281	13	1.9335e-03	3	1.1019e-04	22	-1.376e-05	10
236		min	-0.007	22	-0.133	3	-0.0305	20	5.4249e-04	7	-3.0808e-04	12	-4.9936e-05	14
237	N154	max	0.0626	12	-0.0159	7	0.003	13	1.5799e-03	12	1.4613e-03	12	2.2842e-05	10
238		min	-0.0073	22	-0.0532	12	-0.0045	20	3.8026e-04	7	-5.8138e-04	22	-8.7796e-05	20
239	N157	max	0.0375	20	-0.0374	7	0.0013	16	-7.414e-04	7	5.7689e-04	11	1.4349e-04	15
240		min	-0.0075	13	-0.0978	3	-0.0115	21	-2.4709e-03	3	-5.4787e-04	22	5.3566e-05	7
241	N158	max	0.0602	12	-0.0365	7	0.001	16	2.2895e-03	3	9.0067e-04	12	1.093e-04	18
242		min	-0.0068	22	-0.0956	12	-0.0115	21	6.8663e-04	7	-3.8799e-04	22	3.65e-05	7

Asd360

	Member	Shape	Code	Loc [ft]	LC	Shear	Loc [ft]	Dir	LC	Pnc/o	Pnt/o…	Mnyy/	Mnzz/	Cb	Eqn
1	M9	W14X	0.2763	1.0589	2	0.2036	0.8471	У	2	63.0469	194.3	10.9531	43.4316	2.4217	H1-1b
2	M10	W14X	0.9997	18.2123	2	0.3451	0.8471	У	2	63.0469	194.3	10.9531	39.5692	2.2064	H1-1b
3	M11	W14X	1.1638	18.2123	2	0.3495	18.4241	У	2	63.0469	194.3	10.9531	40.1648	2.2396	H1-1b
4	M12	W14X	0.8252	18.2123	2	0.1886	18.4241	У	2	63.0469	194.3	10.9531	39.1605	2.1836	H1-1b
5	M13	W14X	1.9569	10.665	2	0.1478	21.33	У	2	61.0801	194.3	10.9531	50.1011	1	H1-1b
6	M14	W14X	1.9596	10.67	2	0.1478	21.34	у	2	61.0588	194.3	10.9531	50.1011	1	H1-1b
7	M15	W14X	1.7681	8.2209	2	0.2288	21.33	y	2	61.0801	194.3	10.9531	50.1011	1	H1-1b
8	M17	W14X	1.9564	10.67	2	0.1478	0	У	2	61.0588	194.3	10.9531	50.1011	1	H1-1b
9	M18	W14X	1.9531	10.665	2	0.1482	0	y	2	61.0801	194.3	10.9531	50.1011	1	H1-1b
10	M19	W14X	1.1113	10.165	2	0.2875	20.33	y	2	63.0469	194.3	10.9531	82.8343	1	H1-1b
11	M20	W14X	1.1118	10.165	2	0.2876	20.33	У	2	63.0469	194.3	10.9531	82.8343	1	H1-1b
12	M30	W14X	0.7503	18.2123	12	0.2486	18.4241	У	2	63.0469	194.3	10.9531	39.9231	2.2261	H1-1b
13	M31	W14X	1.2423	18.2123	2	0.4236	18.4241	У	2	63.0469	194.3	10.9531	40.6939	2.2691	H1-1b

Asd360 (Continued)

	Member	Shape	Code	Loc [ft]	LC	Shear	Loc [ft]	Dir	LC	Pnc/o Pnt/o	Mnvv/Mnzz/	Cb	Ean
14	M32	W14X	1.1884	18.2123	2	0.3495	18.4241	V	2	63.0469 194.3	10.9531 40.4351	2.2546	H1-1b
15	M33	W14X	0.8341	18.2123	2	0.1885	18.4241	y	2	63.0469 194.3	10.9531 39.6764	2.2123	H1-1b
16	M34	W14X	1.9565	10.665	2	0.1477	21.33	y	2	61.0801 194.3	10.9531 50.1011	1	H1-1b
17	M35	W14X	1.9593	10.67	2	0.1478	0	y	2	61.0588 194.3	10.9531 50.1011	1	H1-1b
18	M36	W14X	2.0661	10.665	2	0.156	0	y	2	61.0801 194.3	10.9531 50.1011	1	H1-1b
19	M37	W14X	1.9548	10.67	2	0.148	21.34	У	2	61.0588 194.3	10.9531 50.1011	1	H1-1b
20	M38	W14X	2.2792	10.665	2	0.1974	21.33	y	2	84.3563 230.2	13.8224 64.6983	1	H1-1b
21	M39	W14X	1.9575	10.665	2	0.1483	0	у	2	61.0801 194.3	10.9531 50.1011	1	H1-1b
22	M40	W14X	1.1113	10.165	2	0.2875	20.33	У	2	63.0469 194.3	10.9531 82.8343	1	H1-1b
23	M41	W14X	1.1118	10.165	2	0.2876	20.33	У	2	63.0469 194.3	10.9531 82.8343	1	H1-1b
24	M42	W14X	1.2512	10.8003	2	0.4341	20.33	у	2	63.0469 194.3	10.9531 82.8343	1	H1-1b
25	M43	HSS1	0.4431	13.0181	15	0.056	2.4563	У	15	153.9 221.1	34.0176 71.3872	1	H1-1b
26	M44	HSS1	0.5182	10.67	15	0.0423	0	У	15	160.3 221.1	34.0176 71.3872	1	H1-1b
27	M45	HSS1	0.5076	10.665	15	0.0497	0	у	15	160.3 221.1	34.0176 71.3872	1	H1-1b
28	M46	HSS1	0.4498	13.0181	12	0.0521	2.4563	У	12	153.9 221.1	34.0176 71.3872	1	H1-1b
29	M47	HSS1	0.5111	10.67	12	0.0417	21.34	у	12	160.3 221.1	34.0176 71.3872	1	H1-1b
30	M48	HSS1	0.5089	10.665	12	0.0632	21.33	у	12	160.3 221.1	34.0176 71.3872	1	H1-1b
31	M49	W14X	0.0314	2.445	11	0.0055	4.89	Z	12	66.2732 194.3	10.9531 50.1011	1	H1-1b
32	M50	W14X	0.0322	2.445	20	0.0044	4.89	Z	17	66.2732 194.3	10.9531 50.1011	1	H1-1b
33	M51	W14X	0.0517	4.89	14	0.0054	4.89	Z	20	66.2732 194.3	10.9531 50.1011	1	H1-1b*
34	M52	W14X	0.0433	2.445	11	0.0055	4.89	Z	11	66.2732 194.3	10.9531 50.1011	1	H1-1b
35	M53	HSS1	0.0056	2.445	11	0.0185	4.89	у	17	186.2 221.1	34.0176 71.3872	1	H1-1b
36	M54	HSS1	0.0121	4.89	12	0.0281	4.89	у	12	186.2 221.1	34.0176 71.3872	1	H1-1b*
37	M55	HSS1	0.3478	20.5583	12	0.2522	3.0838	у	15	150.7 221.1	34.0176 71.3872	3	H1-1b
38	M56	HSS1	0.4558	20.5583	12	0.1035	20.5583	У	12	150.7 221.1	34.0176 71.3872	2.9842	H1-1b
39	M57	HSS1	0.4577	20.5583	12	0.1054	20.5583	у	12	150.7 221.1	34.0176 71.3872	2.9907	H1-1b
40	M58	HSS1	0.2515	20.5583	12	0.0588	20.5583	у	12	150.7 221.1	34.0176 71.3872	2.6613	H1-1b
41	M60	HSS1	0.5555	12.592	12	0.076	24.67	У	12	150.7 221.1	34.0176 / 1.38/2	1	H1-1b
42	M63	HSS1	0.5597	12.592	12	0.0749	24.67	У	12	150.7 221.1	34.01/6/1.38/2	1	H1-1b
43	M66	HSS1	0.556	12.592	12	0.0761	24.67	У	12	150.7 221.1	34.01/6/1.38/2	1	H1-1b
44	IVI73	L2X2X2	7.6881	10.4549	20	0.0054	20.9098	<u>y</u>	12	0.1792 10.5844	0.2635 0.1621	1.1364	H2-1
45	IVI/4		9.99+	11.48	11	0.006	22.9599	у	2	0.1486 10.5844	0.2635 0.1477	1.1364	H2-1
40		L2X2X2	1.5113	11.4776	15	0.006	22.9553	<u>у</u>	12	0.1487 10.5844	0.2635 0.1477	1.1364	H2-1
47			1.2194	11.40	11	0.006	22.9599	У	10	0.1400 10.3044	0.2035 0.1477	1.1304	
40			4.0000	10.4540	14	0.006	22.9599	У	17	0.1400 10.3044	0.2035 0.1477	1.1304	
49			9.99+	11 / 9	11	0.0055	20.9090	<u>у</u>	12	0.1792 10.5844	0.2035 0.1021	1.1304	
50			9.997	11.40	22	0.0001	22.9099	<u>у</u>	12	0.1400 10.5044	0.2035 0.1477	1.1304	
51			0.00+	11.4770	<u> </u>	0.0001	22.9555	<u>y</u>		0.1407 10.5044	0.2035 0.1477	1.1304	
52	M8/	1 2 2 2 2 2	0.86	11.40	18	0.000	22.9599	у У	2	0.1486 10.5844	0.2035 0.1477	1.1364	H2-1
54	M85	12x2x2	9 99+	11 4776	10	0.0001	22.0000	у 	2	0.1487 10.5844	0.2035 0.1477	1 1 3 6 4	H2-1
55	M103	HSS1	0.386	10 3768	12	0.0001	20.33	y 	12	163.0 221.1	34 0176 71 3872	1.100+	H1_1h
56	M104	12x2x2	6 7986	11 6749	20	0.0000	23 3498	у У	20	0 1437 10 5844	0 2635 0 1453	1 1 3 6 4	H2-1
57	M87	12x2x2	9 99+	11 5126	20	0.0063	23 0252	y V	9	0 1478 10 5844	0.2635 0.1400	1 1364	H2-1
58	M88	12x2x2	1 8314	11 3738	17	0.00066	20.0202	y V	20	0 1514 10 5844	0.2635 0.1491	1 1364	H2-1
59	M89	12x2x2	8 4878	13 4393	11	0.0000	26 8786	y V	12	0 1085 10 5844	0.2635 0.1461	1 1364	H2-1
60	M90	12x2x2	3 4756	13 4373	20	0.0000	26.8746	y V	12	0 1085 10 5844	0.2635 0.1262	1 1364	H2-1
61	M91	12x2x2	1 8422	13 4393	22	0.0077	26 8786	y V	12	0 1085 10 5844	0.2635 0.1262	1 1364	H2-1
62	M92	L2x2x2	8.0628	13,4393	11	0.0076	26.8786	v	12	0.1085 10 5844	0.2635 0 1262	1,1364	H2-1
63	M93	L2x2x2	8.5684	13,4373	22	0.0078	26.8746	v	12	0.1085 10 5844	0.2635 0 1263	1,1364	H2-1
64	M94	L2x2x2	9.99+	13,4393	12	0.0073	26.8786	v	9	0.1085 10.5844	0.2635 0.1262	1,1364	H2-1
65	M70	W10X	0.4219	0	2	0.0236	7.875	v	18	133.7 431.1	70.6088 150.6	2.1985	H1-1a
66	M71	W10X	0.1291	0	2	0.0398	0	v	2	366.5 431.1	70.6088 150.6	2.2603	H1-1b
67	M72	W10X	0.0445	0	2	0.0037	0	v	2	308.9431.1	70.6088 150.6	1.3435	H1-1b
68	M95	W10X	0.4427	0	12	0.0192	7.875	v	15	133.7 431.1	70.6088 150.6	2.6415	H1-1a
69	M96	W10X	0.1156	0	12	0.0326	0	ý	15	366.5 431.1	70.6088 150.6	2.2629	H1-1b
70	M97	W10X	0.0518	14.33	12	0.0067	0	ý	3	308.9 431.1	70.6088 150.6	1.589	H1-1b
71	M99	W10X	0.1558	0	21	0.0446	0	y	18	366.5 431.1	70.6088 150.6	2.2676	H1-1b

Asd360 (Continued)

	Member Shape Code	Loc [ft]	LC	Shear	Loc [ft]	Dir	LC	Pnc/o Pnt/o	Mnyy/Mnzz/	Cb	Eqn
72	M100 W10X 0.0915	14.33	12	0.0117	0	у	3	308.9 431.1	70.6088 150.6	1.4539	H1-1b
73	M102 W10X 0.1552	0	12	0.0385	0	y	12	366.5 431.1	70.6088 150.6	2.2608	H1-1b
74	M105 W10X 0.1085	14.33	12	0.0174	0	y	12	308.9 431.1	70.6088 150.6	2.0377	H1-1b
75	M106 W10X 0.7466	0	12	0.0431	7.875	ý	15	133.7 431.1	70.6088 150.6	2.862	H1-1a
76	M107 W10X 0.2095	0	12	0.0099	0	z	12	366.5 431.1	70.6088 150.6	1.1358	H1-1b
77	M108 W10X 0.104	14.33	12	0.0176	0	у	12	308.9 431.1	70.6088 150.6	2.1447	H1-1b
78	M109 W10X 0.4421	0	12	0.0289	7.875	y	12	133.7 431.1	70.6088 150.6	2.8793	H1-1a
79	M110 W10X 0.1371	0	12	0.0296	0	y	12	366.5 431.1	70.6088 150.6	2.0803	H1-1b
80	M111 W10X 0.1589	14.33	9	0.0165	0	y	3	308.9 431.1	70.6088 150.6	1.9951	H1-1b
81	M112 W10X 0.3798	0	21	0.0282	7.875	y	21	133.7 431.1	70.6088 150.6	2.8289	H1-1a
82	M113 W10X 0.0867	10	21	0.026	0	y	21	366.5 431.1	70.6088 150.6	2.179	H1-1b
83	M114 W10X 0.221	14.33	15	0.029	0	y	12	308.9 431.1	70.6088 150.6	2.1521	H1-1b
84	M115 W10X 0.6969	0	21	0.0514	7.875	ý	18	133.7 431.1	70.6088 150.6 1	2.7217	H1-1a
85	M116 W10X 0.1519	10	21	0.0411	0	y	18	366.5 431.1	70.6088 150.6	2.255	H1-1b
86	M117 W10X 0.0902	14.33	12	0.0112	0	y	3	308.9 431.1	70.6088 150.6	1.372	H1-1b
87	M118 HSS5 0.1312	0	21	0.0069	25.7163	y	23	25.2535 118.4	17.4681 17.4681	1.1364	H1-1b*
88	M119 HSS5 0.1331	0	12	0.0077	25.7163	y	23	25.2535 118.4	17.4681 17.4681	1.1364	H1-1b*
89	M120 HSS5 0.2475	12.0545	14	0.0042	25.7163	y	9	25.2535 118.4	17.4681 17.4681	1.1364	H1-1a
90	M121 HSS5 0.2695	12.0545	18	0.0042	25.7163	ý	23	25.2535 118.4	17.4681 17.4681	1.1364	H1-1a
91	M122 HSS5 0.2153	2.4109	18	0.0042	25.7163	y	9	25.2535 118.4	17.4681 17.4681	1.1364	H1-1a
92	M123 HSS5 0.196	0	15	0.0042	25.7163	ý	9	25.2535 118.4	17.4681 17.4681	1.1364	H1-1b*
93	M124 HSS5 0.0994	0	18	0.0042	25.7163	ý	8	25.2535 118.4	17.4681 17.4681	1.1364	H1-1b*
94	M125 HSS5 0.0929	12.5903	15	0.0042	25.7163	y	8	25.2535 118.4	17.4681 17.4681	1.1364	H1-1b
95	M101 W10X 0.7291	0	12	0.0393	7.875	ý	15	133.7 431.1	70.6088 150.6	2.7152	H1-1a
96	M126 W10X 0.6798	0	21	0.0463	7.875	y	18	133.7 431.1	70.6088 150.6	2.6299	H1-1a
97	M98 W14X 1.7482	8.2591	2	0.1763	18.2123	y	2	17.6783 194.3	10.9531 22.8883	1.2762	H1-1b
98	M127 W14X 0.0335	2.625	17	0.0096	5.25	z	21	137.2 194.3	10.9531 82.8343	1.1364	H1-1b
99	M128 W14X 1.7032	8.04	2	0.1435	16.08	у	2	28.2582 194.3	10.9531 33.0448	1.3111	H1-1b
100	M129 W14X 3.4711	10.165	2	0.2202	20.33	y	2	17.6783 194.3	10.9531 20.4009	1.1375	H1-1b
101	M130 L2x2x2 6.3384	10.9384	11	0.0095	21.8768	y	2	0.1637 10.5844	0.2635 0.155	1.1364	H2-1
102	M131 L2x2x2 1.5492	10.9237	14	0.0096	21.8474	y	2	0.1642 10.5844	0.2635 0.1552	1.1364	H2-1
103	M132 L2x2x2 3.077	7.9839	14	0.0116	15.9677	y	2	0.3073 10.5844	0.2635 0.2121	1.1364	H2-1
104	M133 W8X24 0.9579	5.2239	2	0.3096	0	y	2	133.3 211.976	21.3822 57.6347	1.3182	H1-1b
105	M134 W8X24 0.0487	10	2	0.0063	10	Z	14	141.0 211.976	21.3822 50.7588	1	H1-1b
106	M135 HSS1 0.0806	12.335	3	0.0136	24.67	у	12	150.7 221.1	34.0176 71.3872	1	H1-1b
107	M136 HSS1 0.0495	0	11	0.0147	0	y	3	191.264 221.1	34.0176 71.3872	2.0449	H1-1b
108	M137 HSS1 0.092	0	9	0.0185	2.17	Z	8	191.264 221.1	34.0176 71.3872	1.3766	H1-1b
109	M138 HSS1 0.067	0	9	0.0335	0	у	3	191.264 221.1	34.0176 71.3872	1.8439	H1-1b
110	M139 HSS1 0.0879	2.17	12	0.0519	2.17	z	12	191.264 221.1	34.0176 71.3872	1.8395	H1-1b
111	M140 HSS1 0.057	21.4463	12	0.0163	21.4463	У	3	93.6959 221.1	34.0176 71.3872	1.4964	H1-1b
112	M141 HSS1 0.1097	21.4463	12	0.0157	21.4463	y	3	93.6959 221.1	34.0176 71.3872	1.4881	H1-1b
113	M142 HSS1 0.0042	1.085	3	0.0058	2.17	y	3	191.264 221.1	34.0176 71.3872	1.1364	H1-1b
114	M143 HSS1 0.0039	1.085	3	0.0058	2.17	y	3	191.264 221.1	34.0176 71.3872	1.1364	H1-1b
115	M144 HSS1 0.0796	12.335	3	0.0109	24.67	У	3	88.8431 221.1	34.0176 71.3872	1.1364	H1-1b

LSH Concessions Campy SK-1		
RMH Oct 02, 2020	RMH	Oct 02, 2020
GEA2012 Concessions Canopy.r3d	GEA2012	Concessions Canopy.r3d

ob D Campbell & Co.
MH Oct 02, 2020

Bob D Campbell & Co.	LSH Concessions Canopy	SK-3
RMH		Oct 02, 2020
GEA2012		Concessions Canopy.r3d

Loads: BLC 2. Live		
Bob D Campbell & Co.	LSH Concessions Canopy	SK-4
RMH		Oct 02, 2020
GEA2012		Concessions Canopy.r3d

	NC 0,27 0,04	Code Check (LC 1) No Calc > 1.0 .90-1.0 .7590 .5075 .050
Member Code Checks Displayed Results for LC 1, DL + LL		
Bob D Campbell & Co.	LSH Concessions Canopy	SK-5
RMH GEA2012	-	Oct 02, 2020
GEAZUIZ		Concessions Canopy.r30

Nodes

	Label	X [in]	Y [in]	Z [in]	Temp [deg F]	Detach From Diaphragm
1	N1	0	0	0		
2	N2	48	0	0		
3	N3	0	0	96		
4	N4	48	0	96		
5	N5	0	0	192		
6	N6	48	0	192		
7	N7	48	0	288		
8	N8	0	0	288		
9	N9	48	0	384		
10	N10	0	0	384		
11	N11	-3.6	0	384		
12	N12	-3.6	0	0		
13	N13	-3.6	0	288		
14	N14	-3.6	0	192		
15	N15	-3.6	0	96		

Boundary Conditions

	Node Label	X [k/in]	Y [k/in]	Z [k/in]
1	N10	Reaction	Reaction	Reaction
2	N8	Reaction	Reaction	Reaction
3	N5	Reaction	Reaction	Reaction
4	N3	Reaction	Reaction	Reaction
5	N1	Reaction	Reaction	Reaction
6	N11	Reaction	Reaction	Reaction
7	N12	Reaction	Reaction	Reaction
8	N13	Reaction	Reaction	Reaction
9	N14	Reaction	Reaction	Reaction
10	N15	Reaction	Reaction	Reaction

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm. Coeff. [1e⁵°F⁻¹]	Density [k/ft3]	Yield [ksi]	Ry	Fu [ksi]	Rt
1	A992	29000	11154	0.3	0.65	0.49	50	1.1	65	1.1
2	A36 Gr.36	29000	11154	0.3	0.65	0.49	36	1.5	58	1.2
3	A572 Gr.50	29000	11154	0.3	0.65	0.49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	0.3	0.65	0.527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	0.3	0.65	0.527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	0.3	0.65	0.49	35	1.6	60	1.2
7	A1085	29000	11154	0.3	0.65	0.49	50	1.25	65	1.15
8	A913 Gr.65	29000	11154	0.3	0.65	0.49	65	1.1	80	1.1

Primary Member Properties

	Label	I Node	J Node	K Node	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rule
1	M1	N11	N9			HSS8X2X4	Beam	Tube	A500 Gr	Typical
2	M2	N13	N7			HSS8X2X4	Beam	Tube	A500 Gr…	Typical
3	M3	N14	N6			HSS8X2X4	Beam	Tube	A500 Gr…	Typical
4	M4	N15	N4			HSS8X2X4	Beam	Tube	A500 Gr…	Typical
5	M5	N12	N2			HSS8X2X4	Beam	Tube	A500 Gr…	Typical
6	M6	N9	N2			HSS8X2X4	Beam	Tube	A500 Gr…	Typical
7	M7	N10	N8			RIGID	None	None	RIGID	Typical
8	M8	N8	N5			RIGID	None	None	RIGID	Typical
9	M9	N5	N3			RIGID	None	None	RIGID	Typical
10	M10	N3	N1			RIGID	None	None	RIGID	Typical

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Nodal	Point	Distributed
1	Dead	DL		-1				1
2	Live	LL						1

Load Combinations

	Description	Solve	PDelta	SRSS	BLC	Factor	BLC	Factor
1	DL + LL	Yes	Y		DL	1	LL	1

Node Reactions

	LC	Node Label	X [k]	Y [k]	Z [k]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
1	1	N10	0	12.5406	Ő	0	Ö	0
2	1	N8	0	13.1954	0	0	0	0
3	1	N5	0	13.2108	0	0	0	0
4	1	N3	0	13.1954	0	0	0	0
5	1	N1	0	12.5406	0	0	0	0
6	1	N11	0	-12.0001	0	0	0	0
7	1	N12	0	-12.0001	0	0	0	0
8	1	N13	0	-12.0002	0	0	0	0
9	1	N14	0	-12.0003	0	0	0	0
10	1	N15	0	-12.0002	0	0	0	0
11	1	N6	NC	NC	NC	NC	NC	LOCKED
12	1	Totals:	0	4.6819	0			
13	1	COG (in):	X: 46.1355	Y: 0	Z: 192			

Node Deflections

	LC	Node Label	X [in]	Y [in]	Z [in]	X Rotation [rad]	Y Rotation [rad]	Z Rotation [rad]
1	1	N1	Ô	Ô	0	8.5855e-04	0	-3.9652e-04
2	1	N2	0	-0.0473	0	8.5855e-04	0	0
3	1	N3	0	0	0	8.5808e-05	0	-3.9652e-04
4	1	N4	0	-0.0847	0	8.5808e-05	0	0
5	1	N5	0	0	0	0	0	-3.9652e-04
6	1	N6	0	-0.0855	0	0	0	0
7	1	N7	0	-0.0847	0	-8.5808e-05	0	0
8	1	N8	0	0	0	-8.5808e-05	0	-3.9652e-04
9	1	N9	0	-0.0473	0	-8.5855e-04	0	0
10	1	N10	0	0	0	-8.5855e-04	0	-3.9652e-04
11	1	N11	0	0	0	-8.5855e-04	0	-2.789e-04
12	1	N12	0	0	0	8.5855e-04	0	-2.789e-04
13	1	N13	0	0	0	-8.5808e-05	0	-2.789e-04
14	1	N14	0	0	0	0	0	-2.789e-04
15	1	N15	0	0	0	8.5808e-05	0	-2.789e-04

Asd360

	LC	Member	Shape	UC Max	Loc [in]	Shear	Loc [in]	Dir	Pnc/o…	Pnt/o…	Mnyy/	Mnzz/	Cb	Eqn
1	1	M1	HSS8	0.1452	3.225	0.2135	3.225	У	91.1473	118.44	7.3612	22.2196	2.1621	H1-1b
2	1	M2	HSS8	0.2079	3.7625	0.2135	3.225	У	91.1473	118.44	7.3612	22.2196	1.5948	H1-1b
3	1	M3	HSS8	0.2107	3.7625	0.2135	3.225	y	91.1473	118.44	7.3612	22.2196	1.5947	H1-1b
4	1	M4	HSS8	0.2079	3.7625	0.2135	3.225	У	91.1473	118.44	7.3612	22.2196	1.5948	H1-1b
5	1	M5	HSS8	0.1452	3.225	0.2135	3.225	У	91.1473	118.44	7.3612	22.2196	2.1621	H1-1b
6	1	M6	HSS8	0.037	344	0.0109	288	У	2.9969	118.44	7.3612	22.2196	1.1984	H1-1b

	Typ. Video Deck Floor Beam										
w (klf)	1.1	R=V (kips)	6.6								
L (ft)	12	M _{max} (k-ft)	19.8								
σ_{max} (ksi)	30	M _{max} (k-in)	237.6								
L/Δ	240	S _r (in ³)	7.9								
Beam	W8x15	I _r (in ⁴)	29.5								
		Δ _{max} (in)	0.369								
		Unity Check (Bending)	0.67								
		Unity Check (Defl.)	0.61								

	Typ. Press Box Roof Beam										
w (klf)	0.313	R=V (kips)	2.8								
L (ft)	17.75	M _{max} (k-ft)	12.3								
σ_{max} (ksi)	30	M _{max} (k-in)	147.9								
L/Δ	240	S _r (in ³)	4.9								
Beam	hss12x4x1/4	I _r (in ⁴)	27.2								
		Δ _{max} (in)	0.203								
		Unity Check (Bending)	0.25								
		Unity Check (Defl.)	0.23								

RMH GEA2012	LSN Press Box Braced Frame	Oct 2, 2020 at 11:44 AM Braced Frame.r2d

<ch`Fc``YX'GhYY`'DfcdYfh]Yg

	Šæà^	ÒÄX • ãa	ÕÃŽ•ãã	Þĭ	V@~¦{ ÁQEDÍÁ2D	Ö^}∙ãĉŽĐcâÈ	ÈŸã∿∣åŽ∙ãã
F	OEHÎ ÁÕ¦ÈHÎ	GJ€€€	FFFÍ I	È	ÊÍ	ÈJ	HÎ
G	OÉÍGÁÕ¦Ě€	GJ€€€	FFFÍ I	È	ÊÍ	ÈJ	Í€
Н	ŒIJG	GJ€€€	FFFÍ I	È	ÊÍ	ÈJ	Í€
1	OÉL€€ÃÕ¦ÈLG	GJ€€€	FFFÍ I	È	ÊÍ	ÈJ	IG
Í	CÉE€ÆÕ¦ÈIÎ	GJ€€€	FFFÍ I	ÈH	ÊÍ	ÈJ	ΙÎ

>c]bh'7ccfX]bUhYg'UbX'HY adYfUhi fYg

	Šæà^	ÝÆcá	ŸÆcá	V^{] <i>Ä</i> ä z ia
F	ÞF	€	€	€
G	ÞG	€	F€	€
Н	ÞH	€	FÏ Ě	€
	ÞI	FG	€	€
Í	ÞÍ	FG	F€	€
Î	ÞÎ	FG	FÏ Ě	€
Ï	ÞÏ	€	F	€
Ì	ÞÌ	FG	F	€

>c]bh`6cibXUfm`7cbX]h]cbg

	R[ā] c/Šæà^	ÝÃŽEB),á	ŸÁĨXHB)já	Ü[cæa¶[}ŽË+6Dæåá
F	ÞF	Ü^æ\$cā[}	Ü^æ\$æį́}	
G	ÞI	Ü^æ\$cāį}	Ü^æ\$æį́}	

6Ug]W[®]cUX⁷UgYg

	ÓŠÔÁÖ^•&¦ājcāj}	Ôæe^*[¦^	ÝÁÕ¦æçãc	ΫΆÕ¦æçãcî	RĮą̃c	Ú[ậc	Öãadâãĭơ∿å
F	ÖDOÖ	ÖŠ		Ë	F€		
G	ΥΦΟÖ	ΥŠ				G	

@cUX[·]7caV]bUh]cbg

	Ö^∙&¦a]ica[i}	Ù[È	₩Ö^	æÙÜÙÙ	ÓŠÔ	Øæ&È	ĨЊĆ	Øæse	ĨЊĈ	Øæ&∰	ĎŠÔ	Øæ&ÈÈ	ĐŠÔ	Øæ	ĐŠÔ	Øæ	ĎŠÔ	Øæ	ĐŠÔ	Øæ&ÈÈ	ĐŠÔ	Øæ&ÈÈ	ŧðšô	Øæ
F	€ĒÖŠÆǼEĒĖĖ	Ϋ ^•	Ϋ́		ÖŠ	Ê	ΥŠ	Ê																
G	€ĒĪÖŠÆİĞÆĪÌYŠ	Ϋ́^∙	Ϋ́		ÖŠ	Ê	ΥŠ	ΪĤ																

9bjY`cdY`>c]bh`FYUWh]cbg

	RĮą̃c		ÝÄŽtá	ŠÔ	ŸÁŽÍá	ŠÔ	T[{ ^} OÃXË-cá	ŠÔ
F	ÞF	{ 28¢	€	G	ÍËIF	G	€	G
G		{ a }	€	F	ËGËË	F	€	F
Н	ÞI	{ 28¢	HÈÈFJ	G	ÍËIF	F	€	G
1		{ a }	ËHËËFÏ	F	ËGËË	G	€	F
Í	V[cæ‡∙K	{ 28¢	HĒĖFÌ	G	HÈÏF	G		
Î		{ a	ËHËËFÌ	F	HÈĖÏF	F		

9bjY`cdY`>c]bh`8]gd`UWY a Ybhg

	RĮą̃ic		ÝÃÃjá	ŠÔ	ΫÃÃβjá	ŠÔ	Ü[cæqā[} Á Žænáá	ŠÔ
F	ÞF	{ 28¢	€	G	€	G	FÈLI^Ë€I	G
G		{ a }	€	F	€	F	ËFÈÎG^ËEI	F
Η	ÞG	{ 28¢	ÈFÏ	F	Ì€€H	F	FÈLJH∧Ë€	G
-		{ a }	Ë€GF	G	Ë€€Ï	G	ËFÈHÍÏ^Ë8	F
Í	ÞH	{ 28¢	È€GJ	F	Ì€€I	F	FÈGHÎ^Ë€	G
Î		{ a }	Ë€-H	G	Ë€€Ì	G	ËFÈGÏÌ^ËE	F
Ï	ÞI	{ 28¢	€	G	€	G	GÈEÎG∧Ë€I	G
Ì		{ a }	€	F	€	F	ËFËÌÎ^Ë8	F
J	ÞÍ	{ 28¢	È€G	F	€	G	FÈÈÎÌ∧Ë€	G
F€		{ a }	ËÊ€GH	G	Ë€€H	F	ËFÈHF^Ë	F
FF	ÞÎ	{ 28¢	È	F	€	G	JÈLJH∧Ë€Í	G
FG		{ a }	Ë€-H	G	Ë€€H	F	ËÈGYËÉ	F
FH	ÞÏ	{ 28¢	È€€G	F	€	F	FÈÈHÎ^Ë€E	G
FI		{ a }	ËÉ€€G	G	€	G	ËFÈÎF^Ë	F
FÍ	ÞÌ	{ 28¢	È€€G	F	€	G	GÈEÍÍ^Ë€E	G
FÎ		{ a	ËÉ€€H	G	€	F	ËËÌGË	F

Structural EngineersSince 19574338 Belleview Ave.816.531.4144Kansas City, MO 64111www.bdc-engrs.com

Project: LSN - Press Box			
Location:	Lee's Summit, MO		
By:	RMH		
Date:	10/2/2020		

8" Masonry Wall - CANTILEVERED

Working stress design of 8" CMU wall with uniform vertical load and uniform lateral load

Spreadsheet password = bdc

b	length of wall considered	12.00	in.
t	thickness of wall	7.625	in.
d		3.8125	in.
f'm	compressive strength of masonry	1500	psi
h'	effective height of wall	10	ft
	Uniform lateral wind load on wall	20	psf
Р	Uniform vertical load on wall	200	plf

Allowable stresses									
Fb	Allowable bending stress = 0.33f'm	495 psi							
Fs	Allowable tensile stress of steel = 0.5fy	24000 psi							
Em	Modulus of elasticity of masonry = 750f'm	1125000 psi							
Es	Modulus of elasticity of steel	29000000 psi							

Flexural Effects

М	max. moment in wall due to lateral (wl^2/2)	1000.00	lb*ft
	size of reinforcing steel	#5	1
	area of one bar	0.31	sq. in.
	spacing of bars	16	in.
As	Area of steel per foot of wall	0.23	sq. in.
n	Es/Em	25.8	
р	As/bd	0.00508	
k	(n^2p^2 + 2np)^0.5 - np	0.397	
i	1.0 - k/3	0.868	
fb	24M/jkbd^2	399	psi
fs	12M/jdAs	15605	psi
Axial	Effects		
Spaci	ng of grout cells	16	
Equiv	alent solid thickness of wall	4.44	sq. in.
Ae		53.28	•
fa	P/Ae	4	psi
r	Table 21-H-1 (UBC)	2.43	•
h'/r	· ,	49.4	
Fa		328	psi

fa/Fa + fb/Fb

0.82	<1.33	(1/3	allowable	stress	increase	for	wind)
------	-------	------	-----------	--------	----------	-----	------	---

	*Equivalent s	*Equivalent solid thickness of wall							
		Equivalent solid thickne	ess, in.						
		8" CMU	12" CMU						
solid grouted	8	6.38	9.13						
16" o.c.	16	4.44	6.07						
24" o.c.	24	3.79	5.04						
32" o.c.	32	3.47	4.53						
40" o.c.	40	3.28	4.23						
48" o.c.	48	3.15	4.02						
no grout	no grout	2.5	3						

* for calculating Ae

* face shells + grouted cells only (web area excluded)

	Radius of Gv	ration = r	
	Radius of Cy		
		8" CMU	12" CMU
solid grouted	8	2.19	3.34
16" o.c.	16	2.43	3.67
24" o.c.	24	2.53	3.82
32" o.c.	32	2.59	3.91
40" o.c.	40	2.63	3.97
48" o.c.	48	2.66	4.02
no grout	no grout	2.8	4.29

BOB D. CAMPBELL & CO.Structural EngineersSince 19574338 Belleview Ave.816.531.4144Kansas City, MO 64111www.bdc-engrs.com

Project LSR7 Athletic Facilities Date _____ Page __ of ___

LSN Visitor Restroom Wall Fasting JP M P = (66 psf)(10')(1') = 660 lbs $M=(20 \text{ psf})(1)(10')^2/2 = 1000 \text{ ft} - 165$ $W_{4} = (150 \text{ pc} +)(3.33')(2.67')(1') = 1334' \text{ lbs}$ 31-4" $e = \frac{M}{P + W_1} = \frac{1000 + 1 - W_2}{660 + 1334165} = 0.5 + 1$ B/6 = 3.33'/6= 0.56 ft e < B/6 : OK for eccentric loading $B' = B - 2e_{B} = 3.33' - 2(0.5) = 2.33'$ $q_{eq} = \frac{P + W_e}{A} = \frac{660 \text{ lbs} + 1334 \text{ lbs}}{(2.33')(1')} = 856 \text{ psf} < 3000 \text{ psf}$

Bob D. Campbell & Co.	LSW Press Box Addition	SK-1
SJB GEA2012		Oct 02, 2020 Press Box Video Deck r3d
GEAZUIZ		FIESS DUX VIGEO DECK.130

Bob D. Campbell & Co. LSW Press Box Addition SK-3

Nodes

	Label	X [ft]	Y [ft]	Z [ft]	Temp [deg F]	Detach From Diaphragm
1	N1	Ö	Ō	0		
2	N2	0	0	25		
3	N3	6.83	0	0		
4	N4	6.83	0	25		
5	N5	22.83	0	0		
0 7		22.03	0	25		
/	IN7 N8	30.17	0	25		
9	NG	52	0	0		
10	N10	52	0	25		
11	N11	61	0	0		
12	N12	61	0	25		
13	N13	0	10.33	0		
14	N14	6.83	10.33	0		
15	N15	22.83	10.33	0		
16	N16	38.17	10.33	0		
1/	N17	52	10.33	0		
10	N10	0	10.33	25		
20	N20	22.83	14.5	25		
20	N21	38 17	14.5	25		
22	N22	6.83	14.5	25		
23	N23	61	14.5	25		
24	N24	52	14.5	25		
25	N25	22.83	15.08	28.5		
26	N26	0	15.08	28.5		
27	N27	38.17	15.08	28.5		
28	N28	6.83	15.08	28.5		
29	N29	61	15.08	28.5		
30	N30 N31	52	15.08	28.5		
32	N32	6.83	9.75	-3.5		
33	N33	22.83	9.75	-3.5		
34	N34	38.17	9.75	-3.5		
35	N35	52	9.75	-3.5		
36	N36	61	9.75	-3.5		
37	N37	0	11.67	8.17		
38	N38	6.83	11.67	8.17		
39	N39	-1.83	9.75	-3.5		
40	N40	-1.03	15.08	28.5		
41	N41	62.83	9.75	-3.5		
43	N43	45,085	9,75	-3.5		
44	N44	45.085	15.08	28.5		
45	N45	30.5	9.75	-3.5		
46	N46	30.5	15.08	28.5		
47	N47	14.83	9.75	-3.5		
48	N48	14.83	15.08	28.5		
49	N49	61	12.415	12.5		
50	N5U	0	12.3775	12.3//5		
57	N52	6.83	14	0.17		
52 53	N53	0.05	14	0.17		
54	N54	6,83	14	0		
55	N55	3.415	14	0		
56	N56	3.415	14	8.17		
57	N57	0	14	4.085		
58	N58	6.83	14	4.085		

Nodes (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [deg F]	Detach From Diaphragm
59	N59	61.4575	15.08	28.5		
60	N60	62.83	13.7475	20.5		
61	N61	62.83	11.0825	4.5		
62	N62	-1.83	11.0825	4.5		
63	N63	-1.83	13.7475	20.5		
64	N64	45.085	12.415	12.5		
65	N65	30.5	12.415	12.5		
66	N66	14.83	12.415	12.5		
67	N67	0	-1	0		
68	N68	0	-1	25		
69	N69	52	-1	0		
70	N70	52	-1	25		
71	N71	61	-1	0		
72	N72	61	-1	25		

Boundary Conditions

	Node Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot [k-ft/rad]	Y Rot [k-ft/rad]
1	N7	Reaction	Reaction	Reaction		Reaction
2	N6	Reaction	Reaction	Reaction		Reaction
3	N3	Reaction	Reaction	Reaction		Reaction
4	N4	Reaction	Reaction	Reaction		Reaction
5	N5	Reaction	Reaction	Reaction		Reaction
6	N8	Reaction	Reaction	Reaction		Reaction
7	N67	Reaction	Reaction	Reaction		Reaction
8	N68	Reaction	Reaction	Reaction		Reaction
9	N69	Reaction	Reaction	Reaction		Reaction
10	N70	Reaction	Reaction	Reaction		Reaction
11	N71	Reaction	Reaction	Reaction		Reaction
12	N72	Reaction	Reaction	Reaction		Reaction

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm. Coeff. [1e⁵°F⁻¹]	Density [k/ft3]	Yield [ksi]	Ry	Fu [ksi]	Rt
1	A992	29000	11154	0.3	0.65	0.49	50	1.1	65	1.1
2	A36 Gr.36	29000	11154	0.3	0.65	0.49	36	1.5	58	1.2
3	A572 Gr.50	29000	11154	0.3	0.65	0.49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	0.3	0.65	0.527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	0.3	0.65	0.527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	0.3	0.65	0.49	35	1.6	60	1.2
7	A1085	29000	11154	0.3	0.65	0.49	50	1.25	65	1.15
8	A913 Gr.65	29000	11154	0.3	0.65	0.49	65	1.1	80	1.1

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design	Area [in ²]	lyy [in⁴]	lzz [in⁴]	J [in⁴]
1	COLUMN	HSS4X4X4	Column	SquareT	A500 Gr	Typical	3.37	7.8	7.8	12.8
2	BEAM 1	HSS16X8X4	Beam	Tube	A500 Gr	Typical	10.8	127	368	300
3	BEAM 2	HSS16X4X4	Beam	Tube	A500 Gr	Typical	8.96	27.7	253	85.2
4	BRACE	HSS5X5X4	HBrace	Tube	A500 Gr	Typical	4.3	16	16	25.8
5	DIAPHRAGM	L3X3X3	HBrace	Single A	A36 Gr.36	Typical	1.09	0.948	0.948	0.014
6	BEAM 3	W12X14	Beam	Wide Fla	A992	Typical	4.16	2.36	88.6	0.07

Basic Load Cases

	BLC Description	Category	X Gravity Y Gravity Z	Gravity Nodal	Point	Distributed	Area(Member)
1	D	None	-1			25	1
2	L	None				25	1
3	Wx1	None				33	2
4	Wx2	None				33	2

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity Y Grav	vity Z Gravity	Nodal	Point	Distributed	Area(Member)
5	Wx3	None					33	2
6	Wx4	None					33	2
7	Wz1	None					33	2
8	Wz2	None					33	2
9	Wz3	None					33	2
10	Wz4	None					33	2
11	BLC 1 Transient Area	None					3	
12	BLC 2 Transient Area	None					3	
13	BLC 3 Transient Area	None					13	
14	BLC 4 Transient Area	None					13	
15	BLC 5 Transient Area	None					13	
16	BLC 6 Transient Area	None					13	
17	BLC 7 Transient Area	None					5	
18	BLC 8 Transient Area	None					5	
19	BLC 9 Transient Area	None					5	
20	BLC 10 Transient Are	None					5	

Load Combinations

	Description	Solve	PDelta	SRSS	BLC	Factor	BLC	Factor	BLC	Factor
1	D+L	Yes	Y		1	1	2	1		
2	D+0.6WX1	Yes	Y		1	1	3	0.6		
3	D+0.6WX2	Yes	Y		1	1	4	0.6		
4	D+0.6WX3	Yes	Y		1	1	5	0.6		
5	D+0.6WX4	Yes	Y		1	1	6	0.6		
6	D+0.6WZ1	Yes	Y		1	1	7	0.6		
7	D+0.6WZ2	Yes	Y		1	1	8	0.6		
8	D+0.6WZ3	Yes	Y		1	1	9	0.6		
9	D+0.6WZ4	Yes	Y		1	1	10	0.6		
10	0.6D+0.6WX1	Yes	Y		1	0.6	3	0.6		
11	0.6D+0.6WX2	Yes	Y		1	0.6	4	0.6		
12	0.6D+0.6WX3	Yes	Y		1	0.6	5	0.6		
13	0.6D+0.6WX4	Yes	Y		1	0.6	6	0.6		
14	0.6D+0.6WZ1	Yes	Y		1	0.6	7	0.6		
15	0.6D+0.6WZ2	Yes	Y		1	0.6	8	0.6		
16	0.6D+0.6WZ3	Yes	Y		1	0.6	9	0.6		
17	0.6D+0.6WZ4	Yes	Y		1	0.6	10	0.6		
18	D+0.75L+0.75(0.6WX1)	Yes	Y		1	1	2	0.75	3	0.45
19	D+0.75L+0.75(0.6WX2)	Yes	Y		1	1	2	0.75	4	0.45
20	D+0.75L+0.75(0.6WX3)	Yes	Y		1	1	2	0.75	5	0.45
21	D+0.75L+0.75(0.6WX4)	Yes	Y		1	1	2	0.75	6	0.45
22	D+0.75L+0.75(0.6WZ1)	Yes	Y		1	1	2	0.75	7	0.45
23	D+0.75L+0.75(0.6WZ2)	Yes	Y		1	1	2	0.75	8	0.45
24	D+0.75L+0.75(0.6WZ3)	Yes	Y		1	1	2	0.75	9	0.45
25	D+0.75L+0.75(0.6WZ4)	Yes	Y		1	1	2	0.75	10	0.45

Node Reactions

	Node Label		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N7	max	0.0301	12	13.9058	1	0.01	16	0	25	0.0014	16	0	25
2		min	-0.0339	10	1.6261	12	-0.0428	23	0	1	-0.008	23	0	1
3	N6	max	0.0118	12	15.2505	1	0.0267	23	0	25	0.0007	9	0	25
4		min	-0.0114	10	1.4984	16	-0.0002	14	0	1	-0.0003	14	0	1
5	N3	max	0.0376	21	12.3548	1	0.0201	17	0	25	0.0208	21	0	25
6		min	-0.0256	10	1.5176	12	-0.0212	14	0	1	-0.0059	10	0	1
7	N4	max	0.0192	19	11.9962	1	0.0063	16	0	25	0.0139	19	0	25
8		min	-0.0093	10	1.2864	16	-0.0074	25	0	1	-0.0139	12	0	1
9	N5	max	0.0338	12	15.1508	1	0.0098	16	0	25	0.0031	5	0	25
10		min	-0.0332	10	1.6901	12	-0.053	23	0	1	-0.0021	11	0	1

Node Reactions (Continued)

	Node Label		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
11	N8	max	0.0103	12	14.0013	1	0.0203	23	0	25	0.001	16	Ö	25
12		min	-0.0121	10	1.4515	16	-0.0005	14	0	1	-0.0059	23	0	1
13	N67	max	0.0261	13	6.7251	25	2.7202	25	0	25	0.0595	5	0	25
14		min	-0.0296	10	-0.5214	14	-1.6014	14	0	1	-0.0643	2	0	1
15	N68	max	0.0125	12	6.2977	23	1.1653	16	0	25	0.0522	2	0	25
16		min	-0.0138	10	-0.2842	16	-2.4889	23	0	1	-0.0481	5	0	1
17	N69	max	3.3748	13	14.5295	21	0.0405	25	0	25	0.0435	14	0	25
18		min	-3.5473	3	-2.9361	10	-0.0223	14	0	1	-0.0893	25	0	1
19	N70	max	2.4889	5	14.6224	21	0.0059	16	0	25	0.0497	23	0	25
20		min	-2.4013	11	-2.6207	10	-0.0169	1	0	1	-0.0192	16	0	1
21	N71	max	0.0376	5	10.0373	19	2.7501	25	0	25	0.0697	5	0	25
22		min	-0.0191	10	-2.9611	12	-1.4095	14	0	1	-0.042	10	0	1
23	N72	max	0.0169	13	9.5893	19	0.9973	16	0	25	0.0332	10	0	25
24		min	-0.0049	10	-2.6842	12	-2.3933	23	0	1	-0.0485	5	0	1
25	Totals:	max	6.0291	4	130.5658	1	5.8426	9						
26		min	-6.0291	11	18.5762	10	-5.9634	14						

Node Displacements

	Node L		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [r	LC	Y Rotation [r	LC	Z Rotation [r	LC
1	N1	max	0.0173	3	0	14	0.0482	14	3.5048e-03	14	6.4863e-05	2	1.2838e-03	13
2		min	-0.0155	13	-0.001	25	-0.0788	9	-5.6749e-03	9	-6.0014e-05	5	-1.4294e-03	3
3	N2	max	0.014	3	0	16	0.0973	23	7.2803e-03	23	4.8467e-05	5	9.6011e-04	13
4		min	-0.0116	13	-0.001	23	-0.0465	16	-3.503e-03	16	-5.2622e-05	2	-1.1589e-03	3
5	N3	max	0	10	0	12	0	14	9.0748e-04	14	0	10	1.773e-03	5
6		min	0	21	0	1	0	17	-9.4484e-04	9	0	21	-1.5235e-03	10
7	N4	max	0	10	0	16	0	25	7.2996e-04	7	0	12	1.5018e-03	5
8		min	0	19	0	1	0	16	-5.9432e-04	16	0	19	-1.1387e-03	10
9	N5	max	0	10	0	12	0	23	1.512e-03	7	0	11	1.583e-03	12
10		min	0	12	0	1	0	16	-7.8377e-04	16	0	5	-1.7614e-03	3
11	N6	max	0	10	0	16	0	14	4.9647e-04	14	0	14	1.1834e-03	12
12		min	0	12	0	1	0	23	-1.1198e-03	9	0	9	-1.3069e-03	3
13	N7	max	0	10	0	12	0	23	1.3597e-03	7	0	23	1.5125e-03	12
14		min	0	12	0	1	0	16	-7.6259e-04	16	0	16	-1.8656e-03	3
15	N8	max	0	10	0	16	0	14	4.7895e-04	14	0	23	1.127e-03	12
16		min	0	12	0	1	0	23	-9.9639e-04	9	0	16	-1.4318e-03	3
17	N9	max	0.1122	3	0.0005	10	0.0084	14	6.9196e-04	14	9.0025e-05	25	7.4984e-03	12
18		min	-0.1033	12	-0.0022	21	-0.0106	25	-8.7027e-04	9	-4.3876e-05	14	-8.1905e-03	3
19	N10	max	0.104	3	0.0004	10	0.0092	23	7.5759e-04	23	1.9333e-05	16	7.7509e-03	5
20		min	-0.1033	5	-0.0022	21	-0.0058	16	-4.7807e-04	16	-5.013e-05	23	-7.877e-03	3
21	N11	max	0.0156	3	0.0005	12	0.0426	14	3.0985e-03	14	4.2311e-05	10	1.2505e-03	5
22		min	-0.0152	5	-0.0015	19	-0.0792	25	-5.6859e-03	25	-7.0328e-05	5	-1.287e-03	3
23	N12	max	0.0114	3	0.0004	12	0.0934	23	6.9819e-03	23	4.8925e-05	5	9.5473e-04	5
24		min	-0.0115	5	-0.0015	19	-0.0401	16	-3.0167e-03	16	-3.3525e-05	10	-9.4981e-04	3
25	N13	max	0.1531	3	-0.0015	10	0.0643	7	4.7267e-04	19	1.0406e-04	10	2.5328e-04	12
26		min	-0.1351	12	-0.0065	21	-0.0613	9	-4.9293e-05	14	-9.7118e-05	5	-3.2427e-04	19
27	N14	max	0.1524	3	-0.0023	12	0.0749	7	4.0564e-04	21	6.111e-05	10	1.0217e-04	12
28		min	-0.1348	12	-0.0195	1	-0.0697	9	-6.5956e-05	14	-2.1654e-04	21	-1.0333e-03	19
29	N15	max	0.1496	3	-0.0026	12	0.082	7	-2.9365e-04	16	2.1984e-05	11	2.9621e-05	12
30		min	-0.1323	12	-0.0239	1	-0.0774	9	-1.3297e-03	23	-3.2049e-05	5	-9.078e-05	3
31	N16	max	0.1475	3	-0.0025	12	0.078	7	-2.6582e-04	12	8.3655e-05	23	4.2628e-04	21
32		min	-0.1302	12	-0.0219	1	-0.075	9	-1.0226e-03	23	-1.4845e-05	16	-3.7506e-05	10
33	N17	max	0.145	3	-0.0018	10	0.0663	7	9.4414e-04	1	3.6187e-04	3	9.1536e-04	19
34		min	-0.1263	12	-0.0202	1	-0.0644	9	-1.2111e-04	14	-8.6276e-06	16	-1.6935e-04	12
35	N18	max	0.1431	3	0.0054	12	0.0534	7	5.5117e-04	25	3.0487e-05	14	1.2491e-04	12
36		min	-0.1252	12	-0.0141	19	-0.0547	9	-1.2608e-04	14	-1.0634e-04	19	-5.0532e-04	19
37	N19	max	0.1646	3	-0.0018	16	0.0642	7	4.3787e-05	12	5.9975e-05	4	1.3715e-04	12
38		min	-0.1403	12	-0.0086	1	-0.0613	9	-5.2047e-04	23	-2.2959e-04	11	-1.7684e-04	19
39	N20	max	0.1558	3	-0.0032	16	0.0828	7	1.397e-03	1	4.959e-06	14	1.1501e-05	12

Node Displacements (Continued)

	Node L		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [r	LC	Y Rotation [r	LC	Z Rotation [r	LC
40		min	-0.1381	12	-0.0337	1	-0.0774	16	2.1993e-04	16	-1.0565e-05	9	-7.0372e-05	19
41	N21	max	0.1541	3	-0.0031	16	0.0787	7	1.0837e-03	1	8.6615e-05	23	4.2062e-04	21
42		min	-0.1364	12	-0.031	1	-0.0746	8	1.9927e-04	16	-1.5051e-05	16	-7.1871e-06	10
43	N22	max	0.158	3	-0.0027	16	0.0742	7	7.7283e-05	10	2.0342e-04	12	-5.9604e-05	12
44		min	-0.143	12	-0.0265	1	-0.0692	8	-4.1096e-04	25	-2.0294e-04	19	-1.0579e-03	19
45	N23	max	0.1521	3	0.007	12	0.0535	7	9.6212e-05	10	3.4371e-05	12	1.0128e-04	12
46		min	-0.1334	12	-0.0185	19	-0.0545	9	-5.1555e-04	1	-8.0355e-05	25	-4.7384e-04	19
47	N24	max	0.1534	3	-0.0029	10	0.0667	7	1.1818e-04	10	1.5385e-04	23	9.4909e-04	19
48		min	-0.134	12	-0.0276	1	-0.0641	9	-9.165e-04	25	-2.0049e-04	10	-8.6987e-05	12
49	N25	max	0.156	3	-0.0152	16	0.0932	7	2.2252e-03	1	2.6906e-07	10	-1.7075e-05	10
50		min	-0.1382	12	-0.1209	1	-0.0755	16	2.9898e-04	16	-9.4509e-06	5	-5.0012e-05	21
51	N26	max	0.1573	3	0.0099	23	0.0631	6	9.503e-05	12	6.9384e-05	8	8.3513e-05	12
52		min	-0.1391	12	-0.006	12	-0.0628	9	-4.0887e-04	23	-1.4916e-04	11	-1.1625e-04	19
53	N27	max	0.155	3	-0.0141	16	0.0873	7	1.8304e-03	1	9.2955e-05	23	4.1535e-04	21
54		min	-0.1372	12	-0.1022	1	-0.0728	16	2.75e-04	16	-2.7326e-05	16	2.8592e-05	10
55	N28	max	0.1569	3	-0.0048	16	0.075	7	2.3845e-04	2	4.8584e-05	12	-8.9565e-05	16
56		min	-0.1389	12	-0.0296	19	-0.0692	17	5.2853e-05	17	-2.095e-04	23	-1.1207e-03	1
57	N29	max	0.154	3	0.0131	21	0.0535	6	1.4103e-04	10	3.6702e-05	14	7.9147e-05	12
58		min	-0.136	12	-0.0195	2	-0.0559	9	-3.8264e-04	1	-1.2219e-04	9	-4.5719e-04	19
59	N30	max	0.154	3	-0.0012	17	0.0659	6	1.9625e-04	10	1.9435e-04	19	8.5341e-04	1
60		min	-0.1364	12	-0.0147	2	-0.0663	9	-4.0365e-04	25	-4.1241e-05	12	8.1075e-05	16
61	N31	max	0.1497	3	0.0112	19	0.064	6	3.8372e-04	19	4.162e-05	8	1.305e-04	4
62		min	-0.1324	12	-0.0059	12	-0.0631	9	-9.8353e-05	14	-6.0908e-05	7	-1.1353e-04	19
63	N32	max	0.1494	3	-0.0041	12	0.076	7	-5.9085e-05	12	2.8891e-05	16	-6.7158e-05	12
64		min	-0.1321	12	-0.0243	23	-0.0692	17	-2.5331e-04	7	-2.0008e-04	23	-1.0374e-03	1
65	N33	max	0.1482	3	-0.0183	12	0.0925	7	-3.9005e-04	12	2.1391e-05	11	-1.5274e-05	10
66		min	-0.131	12	-0.1078	1	-0.0744	16	-2.1465e-03	1	-3.1814e-05	5	-4.898e-05	21
67	N34	max	0.1467	3	-0.0169	12	0.0868	7	-3.5791e-04	12	9.3696e-05	23	4.1098e-04	21
68		min	-0.1295	12	-0.0901	1	-0.0718	16	-1.757e-03	1	-2.231e-05	16	1.6248e-05	10
69	N35	max	0.1454	3	0.0026	21	0.0663	6	4.1174e-04	21	1.6071e-04	23	8.1883e-04	1
70		min	-0.1284	12	-0.0129	6	-0.0663	9	-2.1015e-04	14	-3.159e-05	16	6.35e-05	12
71	N36	max	0.1451	3	0.0146	21	0.0542	14	4.2229e-04	25	7.3135e-05	14	6.085e-05	12
72		min	-0.1278	12	-0.0144	2	-0.0564	9	-1.8655e-04	14	-1.0904e-04	19	-4.8696e-04	19
73	N37	max	0.1647	3	-0.005	12	0.0684	7	2.665e-04	23	1.3267e-05	14	2.8001e-04	12
74		min	-0.1497	12	-0.0516	1	-0.059	16	1.3345e-05	16	-4.4335e-05	25	-4.2467e-04	19
75	N38	max	0.1642	3	-0.0069	10	0.0843	7	9.1844e-04	1	5.1523e-05	14	1.7466e-04	12
76		min	-0.15	12	-0.1228	1	-0.068	16	5.5476e-05	10	-2.9769e-04	5	-9.8061e-04	19
77	N39	max	0.1497	3	0.0125	19	0.0636	6	3.8372e-04	19	3.4023e-05	2	1.619e-04	4
78		min	-0.1324	12	-0.009	12	-0.0626	9	-9.8354e-05	14	-2.1595e-05	15	-7.6044e-05	11
79	N40	max	0.1573	3	0.0112	19	0.0632	6	9.5028e-05	12	4.9194e-05	8	1.1225e-04	4
80		min	-0.1391	12	-0.0082	4	-0.0619	9	-4.0887e-04	23	-7.0453e-05	11	-6.1788e-05	19
81	N41	max	0.154	3	0.0097	13	0.0534	6	1.4103e-04	10	2.4804e-05	14	6.2732e-05	12
82		min	-0.136	12	-0.0266	2	-0.0538	9	-3.8264e-04	1	-1.0676e-04	25	-5.1285e-04	19
83	N42	max	0.1451	3	0.0078	13	0.0538	6	4.2229e-04	25	3.9816e-05	14	4.655e-05	12
84		min	-0.1277	12	-0.0213	2	-0.0544	9	-1.8655e-04	14	-1.0275e-04	25	-5.4237e-04	19
85	N43	max	0.146	3	-0.0145	12	0.0812	7	-2.1663e-04	12	1.4646e-04	23	5.2637e-04	1
86		min	-0.1289	12	-0.0833	1	-0.0674	16	-7.1915e-04	23	-6.6719e-05	16	5.6698e-05	10
87	N44	max	0.1545	3	-0.0133	16	0.0815	7	7.3577e-04	19	1.4839e-04	23	5.4414e-04	1
88		min	-0.1367	12	-0.0942	1	-0.0684	16	1.6284e-04	16	-6.8379e-05	16	5.6749e-05	16
89	N45	max	0.1475	3	-0.0243	16	0.097	7	-3.7396e-04	12	2.4587e-05	7	6.227e-05	19
90		min	-0.1303	12	-0.1532	1	-0.0731	16	-1.9517e-03	1	-1.3599e-05	16	5.0553e-07	12
91	N46	max	0.1555	3	-0.0203	16	0.0975	7	2.0277e-03	1	2.8508e-05	7	6.6932e-05	19
92		min	-0.1377	12	-0.1663	1	-0.0743	16	2.8698e-04	16	-1.8154e-05	12	2.7122e-06	12
93	N47	max	0.149	3	-0.0179	12	0.0941	7	-2.2456e-04	12	3.8278e-05	16	-4.7672e-05	10
94		min	-0.1317	12	-0.1407	1	-0.0716	16	-1.1921e-03	23	-9.5306e-05	23	-3.9667e-04	1
95	N48	max	0.1565	3	-0.0167	16	0.0943	7	1.2058e-03	1	4.1309e-05	16	-5.4588e-05	16
96		min	-0.1387	12	-0.1524	1	-0.0727	16	1.8079e-04	16	-1.0614e-04	23	-4.2699e-04	1
97	N49	max	0.1482	3	-0.0016	12	0.058	7	3.1379e-05	7	3.121e-06	14	1.4475e-04	12

Node Displacements (Continued)

	Node L		X [in]	LC	Y [in]	LC	Z [in]	LC	X Rotation [r	LC	Y Rotation [r	LC	Z Rotation [r	LC
98		min	-0.1386	12	-0.0625	1	-0.0514	16	-1.405e-05	16	-5.9708e-05	25	-5.0499e-04	19
99	N50	max	0.1675	3	-0.0056	12	0.0689	7	3.7436e-05	23	9.5568e-05	12	2.4277e-04	12
100		min	-0.1485	12	-0.0568	1	-0.0588	16	-2.3327e-05	16	-4.7436e-05	7	-3.8865e-04	19
101	N51	max	0.1859	3	-0.0051	12	0.0864	7	8.7734e-04	23	1.3267e-05	14	4.8318e-04	12
102		min	-0.1615	12	-0.052	1	-0.0683	16	-4.8647e-04	16	-4.4335e-05	25	-9.534e-04	19
103	N52	max	0.186	3	-0.0069	10	0.0988	7	6.14e-04	23	5.1523e-05	14	5.1627e-04	12
104		min	-0.1615	12	-0.1231	1	-0.0699	16	-1.2909e-04	16	-2.9769e-04	5	-7.7547e-04	3
105	N53	max	0.1997	3	-0.0016	10	0.0866	7	6.7922e-04	23	1.0406e-04	10	8.018e-04	12
106		min	-0.1626	12	-0.007	21	-0.0683	16	-2.9332e-04	16	-9.7118e-05	5	-1.5049e-03	19
107	N54	max	0.1997	3	-0.0024	12	0.0987	7	9.9772e-04	23	6.111e-05	10	8.8522e-04	12
108		min	-0.1626	12	-0.02	1	-0.0699	16	-9.6663e-06	16	-2.1654e-04	21	-1.2012e-03	3
109	N55	max	0.1997	3	-0.0029	10	0.093	7	8.4033e-04	23	1.9401e-05	16	-8.632e-07	12
110		min	-0.1627	12	-0.0188	1	-0.0693	16	-1.3974e-04	16	-2.1026e-04	23	-1.5963e-04	1
111	N56	max	0.186	3	-0.0072	14	0.0929	7	7.3574e-04	23	1.9861e-05	16	5.8543e-06	10
112		min	-0.1615	12	-0.0929	1	-0.0694	16	-2.9125e-04	16	-2.1321e-04	23	-8.6817e-04	1
113	N57	max	0.1939	3	-0.0043	14	0.0866	7	4.596e-04	1	1.3264e-05	16	5.8635e-04	12
114		min	-0.162	12	-0.035	1	-0.0684	16	2.796e-05	12	-2.1533e-04	19	-1.1748e-03	19
115	N58	max	0.1927	3	-0.0056	10	0.0987	7	1.052e-03	1	3.0599e-05	12	6.4319e-04	12
116		min	-0.1631	12	-0.0771	1	-0.0699	16	4.1931e-05	10	-2.0104e-04	23	-9.2747e-04	3
117	N59	max	0.154	3	0.0116	21	0.0535	6	1.4103e-04	10	2.9207e-05	14	7.1925e-05	12
118		min	-0.136	12	-0.0212	2	-0.0554	9	-3.8264e-04	1	-1.0932e-04	9	-4.8162e-04	19
119	N60	max	0.1502	3	-0.0613	12	0.0843	7	-5.2113e-04	10	9.0176e-06	14	6.0703e-05	12
120		min	-0.1338	12	-0.2559	19	-0.04	16	-1.9904e-03	1	-8.4706e-05	25	-5.2334e-04	19
121	N61	max	0.1442	3	-0.0624	12	0.0845	7	2.0063e-03	1	1.7593e-05	14	5.1214e-05	12
122		min	-0.1277	12	-0.2532	19	-0.0402	16	5.2382e-04	14	-8.5858e-05	25	-5.3572e-04	19
123	N62	max	0.1563	3	-0.0673	10	0.0946	7	1.9971e-03	1	7.6024e-05	2	1.5434e-04	4
124		min	-0.1386	12	-0.2399	1	-0.0486	16	5.2506e-04	14	-3.4632e-05	13	-8.0031e-05	11
125	N63	max	0.1666	3	-0.069	10	0.0943	7	-5.228e-04	16	4.0003e-05	4	1.2123e-04	4
126		min	-0.1418	12	-0.2397	1	-0.0482	16	-1.9986e-03	1	-5.3967e-05	11	-5.9983e-05	19
127	N64	max	0.15	3	-0.1281	16	0.245	23	2.8566e-05	21	1.0583e-04	23	5.3477e-04	1
128		min	-0.1315	12	-1.2198	1	-0.0489	16	-8.9819e-06	16	-9.3924e-06	16	5.0466e-05	16
129	N65	max	0.1516	3	-0.1392	16	0.279	23	3.4094e-05	1	2.8165e-05	3	6.3694e-05	19
130		min	-0.1341	12	-1.3887	1	-0.0541	16	-1.0554e-05	16	-1.8941e-05	12	2.3788e-06	12
131	N66	max	0.1605	3	-0.1387	16	0.2839	23	3.1621e-05	21	8.2169e-06	10	-4.9637e-05	16
132		min	-0.1434	12	-1.4242	1	-0.052	16	-1.032e-05	16	-7.9002e-05	21	-4.1223e-04	1
133	N67	max	0	10	0	14	0	14	4.1406e-03	14	0	2	1.2965e-03	13
134		min	0	13	0	25	0	25	-6.7784e-03	9	0	5	-1.4428e-03	3
135	N68	max	0	10	0	16	0	23	8.303e-03	23	0	5	9.6638e-04	13
136		min	0	12	0	23	0	16	-3.9659e-03	16	0	2	-1.1657e-03	3
137	N69	max	0	3	0	10	0	14	7.0158e-04	14	0	25	8.8744e-03	13
138		min	0	13	0	21	0	25	-8.913e-04	25	0	14	-9.6209e-03	3
139	N70	max	0	11	0	10	0	1	7.6953e-04	23	0	16	8.8078e-03	5
140		min	0	5	0	21	0	16	-4.8085e-04	16	0	23	-8.8497e-03	3
141	N71	max	0	10	0	12	0	14	3.6589e-03	14	0	10	1.2658e-03	5
142		min	0	5	0	19	0	25	-6.8133e-03	25	0	5	-1.298e-03	3
143	N72	max	0	10	0	12	0	23	7.9709e-03	23	0	5	9.6167e-04	5
144		min	0	13	0	19	0	16	-3.4136e-03	16	0	10	-9.5415e-04	3

Asd360

	Member	Shape	Code	Loc [ft]	LC	Shear	Loc [ft]	Dir	LC	Pnc/o	Pnt/o…	Mnyy/	Mnzz/	Cb	Eqn
1	M1	HSS4	0.3066	0.9442	25	0.1103	0.9442	Z	25	54.2441	92.8263	10.7655	10.7655	1.0911	H1-1b
2	M2	HSS4	0.2404	10.33	1	0.0043	10.33	У	21	59.391	92.8263	10.7655	10.7655	1.6667	H1-1a
3	M3	HSS4	0.3088	10.33	19	0.0026	10.33	Z	23	59.391	92.8263	10.7655	10.7655	1.6667	H1-1a
4	M4	HSS4	0.2902	10.33	19	0.003	10.33	Z	23	59.391	92.8263	10.7655	10.7655	1.6667	H1-1a
5	M5	HSS4	0.5014	0.9442	5	0.147	0.9442	у	3	54.2441	92.8263	10.7655	10.7655	1.9867	H1-1a
6	M6	HSS4	0.3223	0.9442	25	0.1143	0.9442	Z	25	54.2441	92.8263	10.7655	10.7655	1.9429	H1-1b
7	M7	HSS4	0.3241	0.9688	23	0.1013	0.9688	Z	23	33.8883	92.8263	10.7655	10.7655	2.2011	H1-1b
8	M8	HSS4	0.3358	14.5	1	0.0021	14.5	у	12	38.506	92.8263	10.7655	10.7655	1.6667	H1-1a

Asd360 (Continued)

	Member	Shape	Code	Loc [ft]	LC	Shear	Loc [ft]	Dir	LC	Pnc/o Pnt/o Mnyy/ Mnzz/ Cb Eqn
9	M9	HSS4	0.4222	14.5	1	0.0012	14.5	Z	25	38.506 92.8263 10.7655 10.7655 1.6667 H1-1a
10	M10	HSS4	0.3926	14.5	1	0.0013	14.5	У	19	38.506 92.8263 10.7655 10.7655 1.6667 H1-1a
11	M11	HSS4	0.5973	0.9688	21	0.1072	0.9688	у	5	33.8883 92.8263 10.7655 10.7655 2.0338 H1-1a
12	M12	HSS4	0.4181	0.9688	23	0.099	0.9688	Z	23	33.8883 92.8263 10.7655 10.7655 1.9511 H1-1a
13	M13	HSS1	0.1255	16.2204	19	0.0124	0	у	1	27.4735 246.8 22.6623 94.3378 1.1332 H1-1b
14	M14	HSS1	0.1161	16.2204	1	0.0124	0	У	1	27.4735 246.8 22.6623 94.3378 1.1336 H1-1b
15	M15	HSS1	0.0691	3.5477	5	0.0228	3.5477	У	21	223.0297.48554.0255118.51.8188 H1-1b
16	M16	HSS1	0.0633	0	5	0.0217	0	У	1	149.5 297.48554.0255 118.5 1.5703 H1-1b
17		HSS1	0.0651	0	5	0.0213	0	<u>у</u>	21	223.0297.485 54.0255 118.51.8131 H1-1D
10	M10	HSST	0.2051	3.5477	19	0.0668	3.5477	<u>у</u>	21	223.0 297.485 54.0255 118.5 1.677 H1-1D
20	M20	поот цеет	0.2149		19	0.05	0	<u>y</u>	21	149.5 297.405 54.0255 110.5 1.5027 FI-1D
20		поот цеет	0.200	3 5477	19	0.0041	3 5477	<u>у</u>	10	223.0297.46554.0255118.51.070 H1-1D
21	M22	HSS1	0.2209	25 3454	1	0.0787	25 3454	у у	19	149 5 297 485 54 0255 118 5 3 H1-1b
23	M23	HSS1	0.2241	0	1	0.040	0	y 	1	223.0 297.48554.0255 118.5 1.7519 H1-1b
24	M24	HSS1	0.220	3 5477	1	0.0704	3 5477	y V	19	223.0 297 485 54 0255 118 5 1 7499 H1-1b
25	M25	HSS1	0.2481	25.3454	1	0.0488	25.3454	y V	1	149.5 297.48554.0255 118.5 3 H1-1b
26	M26	HSS1	0.2527	0	1	0.0848	0	y V	1	223 0 297 485 54 0255 118 5 1 7515 H1-1b
27	M27	HSS1	0.1773	3.5477	21	0.0741	3.5477	v	21	223.0 297.485 54.0255 118.5 1.7091 H1-1b
28	M28	HSS1	0.1757	0	23	0.0452	0	v	1	215.2 297.485 54.0255 118.5 2.3289 H1-1b
29	M29	HSS1	0.1906	17.0663	21	0.0512	17.0663	y	1	186.8 297.485 54.0255 118.5 1.8855 H1-1b
30	M30	HSS1	0.1892	0	21	0.065	0	ý	21	223.0 297.485 54.0255 118.5 1.7103 H1-1b
31	M31	HSS1	0.0459	3.5477	5	0.0278	3.5477	У	19	223.0 297.485 54.0255 118.5 1.7336 H1-1b
32	M32	HSS1	0.0552	8.2792	25	0.015	0	У	19	215.2 297.485 54.0255 118.5 1.9522 H1-1b
33	M33	HSS1	0.0564	0	21	0.0212	17.0663	у	19	186.8 297.485 54.0255 118.5 1.5019 H1-1b
34	M34	HSS1	0.0343	0	19	0.0175	0	у	19	223.0 297.485 54.0255 118.5 1.6911 H1-1b
35	M35	HSS1	0.0357	1.83	23	0.0129	1.83	у	1	172.906 246.8 22.6623 94.3378 1.6813 H1-1b
36	M36	HSS1	0.1202	6.83	23	0.0298	6.83	у	19	157.0 246.8 22.6623 94.3378 1.529 H1-1b
37	M37	HSS1	0.198	8	1	0.0589	16	у	1	98.3892 246.8 22.6623 94.3378 1.6874 H1-1b
38	M38	HSS1	0.1726	0	23	0.0397	0	у	1	103.1 246.8 22.6623 94.3378 1.7808 H1-1b
39	N139	H551	0.1444	0.915	19	0.0607	0	<u>y</u>	6	113.8 240.8 22.0023 94.3378 1.7399 H1-1D
40	M40	HSST	0.1145	0	23	0.0103	9	Z	0	143.5 240.6 22.0023 94.3370 1.4740 HI-ID
41	M41	поот цеет	0.0391	1.83	10	0.0129	1.83	у	1	172.900 240.0 22.0023 94.3378 1.082 H1-1D
42	M/3	HSS1	0.0409	6.83	10	0.0129	6.83	у У	10	157 0 246 8 22 6623 94 3378 1 4909 H1-1b
40	M44	HSS1	0.1207	8	25	0.0270	16	y 	10	98 3892 246 8 22 6623 94 3378 1 6768 H1-1b
45	M45	HSS1	0.2001	7 67	25	0.0398	0	y V	1	103 1 246 8 22 6623 94 3378 1 7759 H1-1b
46	M46	HSS1	0.1482	6.915	25	0.0614	0	y V	1	113.8. 246.8. 22.6623 94.3378 1.7545 H1-1b
47	M47	HSS1	0.1113	0	19	0.0172	9	z	17	145.5 246.8 22.6623 94.3378 1.4533 H1-1b
48	M48	HSS1	0.0331	0	25	0.0131	0	V	1	172.906 246.8 22.6623 94.3378 1.6841 H1-1b
49	M49	HSS1	0.4337	16.2204	1	0.0569	32.4409	y	1	115.1 297.485 54.0255 118.5 1.139 H1-1b
50	M50	HSS1	0.4711	16.2204	1	0.0617	0	y	1	115.1 297.485 54.0255 118.5 1.1388 H1-1b
51	M51	HSS1	0.4907	16.2204	1	0.0643	32.4409	У	1	115.1 297.485 54.0255 118.5 1.1392 H1-1b
52	M52	HSS1	0.0248	9	3	0.0098	9	У	21	145.5 246.8 22.6623 94.3378 1.1364 H1-1b*
53	M53	HSS1	0.017	9	11	0.0101	9	у	25	145.5 246.8 22.6623 94.3378 1.1364 H1-1b*
54	M54	HSS5	0.0967	0	5	0.0073	17.066	у	23	55.4916 118.4 17.4681 17.4681 1.1364 H1-1b*
55	M55	HSS5	0.0826	0	5	0.0101	13.7007	у	25	72.6589 118.4 17.4681 17.4681 1.1364 H1-1b*
56	M56	HSS5	0.0724	0	23	0.008	17.6177	у	5	52.7954 118.4 17.4681 17.4681 1.1364 H1-1b*
57	M57	HSS5	0.0859	17.6177	25	0.01	17.6177	у	5	52.7954 118.4 17.4681 17.4681 1.1364 H1-1b*
58	M58	HSS5	0.0844	0	25	0.0089	17.5044	У	2	53.3449 118.4 17.4681 17.4681 1.1364 H1-1b*
59	M59	HSS5	0.0751	17.6785	23	0.0077	17.6785	у	5	122.50111118.4117.4681117.468111.1364 H1-1b*
60		W12X	0.036	3.415	/	0.0027	0.03	Z	/	02.4017 124.5. 4.7405 33.085 1.1364 H1-1b
67	Neo	W12X	0.0269	3.415	9	0.0024	0.83	Z	9	22.4017 124.5. 4.7405 33.085 1.1364 H1-1b
62		WIZA	0.0478	3.415	 	0.0103		у у		13.3903 124.3. 4.7403 30.0193 I H1-1D
64	Mea	ич IZA	0.0498	0.415	<u>∠</u> 3 21		3.67	y	5	124.0 4.1400 00.0180 I HI-ID
65	M65	HSS4	0.0865	0	19	0.007	3.67	у У	19	87 7386 92 8263 10 7655 10 7655 1 6673 H1-1b
66	M66	HSS4	0.0000	0	23	0.0118	2.33	7	7	90 7411 92 8263 10 7655 10 7655 1 6653 H1-15
_ 55	14100	P. 100 T	10.0002	<u> </u>	20	10.0110	2.00	~	'	

Asd360 (Continued)

	Member	Shape	Code	Loc [ft]	LC	Shear	Loc [ft]	Dir	LC	Pnc/o	Pnt/o…	Mnyy/	Mnzz/	Cb	Eqn
67	M67	HSS4	0.1161	0	21	0.0128	2.33	у	21	90.7411	92.8263	10.7655	10.7655	1.6667	H1-1b
68	M68	W12X	0.0389	4.085	3	0.0103	0	y	1	65.6536	124.5	4.7405	43.4132	1	H1-1b
69	M69	W12X	0.0392	4.085	5	0.0101	0	y	1	65.6536	124.5	4.7405	43.4132	1	H1-1b
70	M70	W12X	0.0355	4.085	1	0.0187	8.17	y	1	65.6536	124.5	4.7405	43.4132	1	H1-1b
71	M71	L3X3X3	0.0366	2.6622	3	0.0028	5.3244	y V	3	12.5665	23.497	0.8783	1.5563	1.1364	H2-1
72	M72	L3X3X3	0.036	2.6622	2	0.0026	5.3244	ý	5	12.5665	23.497	0.8783	1.5563	1.1364	H2-1
73	M73	L3X3X3	0.0387	2.6622	5	0.0025	5.3244	ý	3	12.5665	23.497	0.8783	1.5563	1.1364	H2-1
74	M74	L3X3X3	0.034	2.6622	4	0.0025	5.3244	y V	5	12.5665	23.497	0.8783	1.5563	1.1364	H2-1
75	M75	L3X3X3	0.184	4.837	8	0.0027	9.674	v	5	4.1747	23.497	0.8783	1.237	1.1364	H2-1
76	M76	L3X3X3	0.8372	7.7717	7	0.0051	15.5434	v	19	1.6171	23.497	0.8783	0.9995	1.1364	H2-1
77	M77	L3X3X3	0.8548	7.7717	9	0.0051	15.5434	v	19	1.6171	23.497	0.8783	0.9995	1.1364	H2-1
78	M78	L3X3X3	0.1981	5.0505	6	0.0028	10.101	v	21	3.8292	23.497	0.8783	1.2099	1.1364	H2-1
79	M79	L3X3X3	0.0331	1.996	5	0.0011	3.9919	v	2	15.8992	23.497	0.8783	1.6794	1.1364	H2-1
80	M80	L3X3X3	0.0276	2.4579	4	0.0024	4.9158	v	19	13.7826	23.497	0.8783	1.5922	1.1364	H2-1
81	M81	L3X3X3	0.0568	4.1571	4	0.0028	8.3141	v	21	5.6521	23.497	0.8783	1.3272	1.1364	H2-1
82	M82	L3X3X3	0.0687	4.1571	3	0.0029	8.3141	v	21	5.6521	23.497	0.8783	1.3272	1.1364	H2-1
83	M83	L3X3X3	0.037	2.4579	5	0.0024	4.9158	v	19	13.7826	23.497	0.8783	1.5922	1.1364	H2-1
84	M84	L3X3X3	0.0474	1.996	5	0.0011	3.9919	v	2	15.8992	23.497	0.8783	1.6794	1.1364	H2-1
85	M85	L3X3X3	0.105	3.886	7	0.0043	7.772	v	19	6.4681	23.497	0.8783	1.3652	1.1364	H2-1
86	M86	L3X3X3	0.0695	3.886	9	0.0023	7.772	v	21	6.4681	23,497	0.8783	1.3652	1.1364	H2-1
87	M87	L3X3X3	0.0695	4.2254	7	0.0035	8.4508	v	1	5.4708	23.497	0.8783	1.3178	1.1364	H2-1
88	M88	L3X3X3	0.1063	4.2254	3	0.003	8.4508	v	1	5.4708	23.497	0.8783	1.3178	1.1364	H2-1
89	M89	L3X3X3	0.0873	4.3757	9	0.0023	8,7514	v	2	5.1014	23,497	0.8783	1.2974	1.1364	H2-1
90	M90	1 3X3X3	0.2025	4.3757	2	0.0043	8,7514	v	1	5.1014	23 497	0.8783	1.2974	1.1364	H2-1
91	M91	1 3X3X3	0 1788	3 8482	5	0.0026	7 6964	v	19	6 5957	23 497	0 8783	1 3706	1 1364	H2-1
92	M92	1 3X3X3	0.0255	1 996	3	0.0015	3 9919	v	19	15 8992	23 497	0.8783	1 6794	1 1364	H2-1
93	M93	L 3X3X3	0.1068	3.886	9	0.0043	7,772	y V	1	6.4681	23,497	0.8783	1.3652	1.1364	H2-1
94	M94	1 3X3X3	0.0664	3 886	6	0.0023	7 772	v	21	6 4681	23 497	0 8783	1 3652	1 1364	H2-1
95	M95	1 3X3X3	0.0721	4 2254	3	0.0035	8 4 5 0 8	y V	1	5 4708	23 497	0.8783	1.3178	1 1364	H2-1
96	M96	13X3X3	0.0851	4 2254	3	0.003	8 4508	y V	1	5 4708	23 497	0.8783	1.3178	1 1364	H2-1
97	M97	1 3X3X3	0.0001	4 3757	7	0.0023	8 7514	y V	6	5 1014	23 497	0.8783	1 2974	1 1364	H2-1
98	M98	L3X3X3	0.103	4.3757	2	0.0044	8.7514	v	1	5.1014	23,497	0.8783	1.2974	1,1364	H2-1
99	M99	L3X3X3	0.1387	3.8482	6	0.0027	7.6964	v	19	6.5957	23,497	0.8783	1.3706	1.1364	H2-1
100	M100	1 3X3X3	0.056	1 996	2	0.0012	3 9919	y V	3	15 8992	23 497	0.8783	1 6794	1 1364	H2-1
101	M101	1 3X3X3	0.0349	2 4579	2	0.0024	4 9158	y V	21	13 7826	23 497	0.8783	1.5922	1 1364	H2-1
102	M102	1 3X3X3	0 1214	4 0951	5	0.0031	8 1903	y v	19	5 8243	23 497	0.8783	1.3358	1 1364	H2-1
103	M103	1 3X3X3	0 1292	4 2 1 9	5	0.0031	8 4381	v	19	5 4873	23 497	0 8783	1 3187	1 1364	H2-1
104	M104	1 3X3X3	0.0252	2 4579	5	0.0024	4 9158	v	21	13 7826	23 497	0.8783	1 5922	1 1364	H2-1
105	M105	1 3X3X3	0.5237	7.2183	9	0.004	14,4366	y v	21	1.8746	23 497	0.8783	1.0681	1.1364	H2-1
106	M106	1 3X3X3	0.3836	7 2183	8	0.0041	14 4366	v	19	1.8746	23 497	0.8783	1.0681	1.1364	H2-1
107	M107	1 3X3X3	0.2246	7 4065	6	0.0044	14 813	y V	1	1 7805	23 497	0.8783	1.0438	1 1364	H2-1
108	M108	1 3X3X3	0.2355	7 4065	9	0.0043	14 813	y V	19	1 7805	23 497	0.8783	1.0438	1 1364	H2-1
109	M109	13X3X3	0.5518	7 4933	3	0.0045	14 9866	y V	1	1 7395	23 497	0.8783	1.0329	1 1364	H2-1
110	M110	13X3X3	0.5931	7 4933	6	0.0040	14 9866	y V	19	1 7395	23 497	0.8783	1.0020	1 1364	H2-1
111	M111	13X3X3	0.0001	7 254	8	0.0041	14 508	y V	21	1.8562	23 497	0.0700	1.0020	1 1364	H2_1
112	M112	13X3X3	0.1701	4 0266	7	0.0040	8 0531	y V	1	6.0244	23.497	0.0703	1 3453	1 1 3 6 4	H2-1
113	M113	13X3X3	0.4603	7 2183	6	0.0039	14 4366	y V	21	1 8746	23 497	0.8783	1 0681	1 1364	H2-1
114	M114	13X3X3	0 4112	7 2183	7	0.0042	14 4366	y V	19	1 8746	23 497	0.8783	1.0681	1 1364	H2-1
115	M115	13X3X3	0 2799	7 4065	9	0.0044	14 813	y V	21	1 7805	23 497	0.8783	1.0438	1 1364	H2-1
116	M116	13X3X3	0 1989	7 4065	2	0.0043	14 813	y V	19	1 7805	23 497	0.8783	1.0438	1 1364	H2-1
117	M117	13X3X3	0 4025	7 4933	2	0.0046	14 9866	y V	1	1 7395	23 497	0.8783	1 0329	1 1364	H2-1
118	M118	13X3X3	0.682	7 4933	9	0.0041	14 9866	y V	19	1 7395	23 497	0.8783	1 0329	1 1364	H2-1
110	M110	132323	0.3013	4 5635	3	0.0031	9 1271	y V	21	4 69	23 / 97	0.8783	1 2724	1 1364	H2_1
		Lovovo	0.0010	1.0000		10.0001	0.1211	y 1	<u> </u>	1.00	20.407	0.0100	1.2124	1.100+	112-1

BOB D. CAMPBELL & COMPANY Project LSR7 Athletic Faultitics STRUCTURAL ENGINEERS Date_ 4338 Belleview • Kansas City, MO 64111 816/531-4144 LSW Pross Box - CMU Column Reinforcing Anchors

• Excess Load from New Video deck => P = (150 pst)(12')(12.75')= 22950 Ws · (18) 1/2" & Epoxy Anchors w/ 41/2" Embedment Load per ancher - Pa = 22950 165/18 anchors = 1275 165/anchor · Per Hilti HIT-HY 270 Allowable Load Table 2 Va = 1495 165/anchor for Spacing = 8" -> Spacing Reduction Factor, \$\$ = 1.0 La Edge Distance = 4" => Edge Dist. Reducting Factor, Pe = 1.0 Lo Va = (1495 16s/andror) (1.0) (1.0) = 1495 16s/anchor < 1275 16s/anchor VOK

Page

913/642-2687

Overland Park, KS

Bob D. Campbell & Co.	LSW Concessions Canopy	SK-1
Bob D. Campbell & Co. SJB	LSW Concessions Canopy	SK-1 Oct 02, 2020

reserver to	source to source	HSEN
Deb D. Comrtiall 9. Co		
Bob D. Campbell & Co.	LSW Concessions Canopy	SK-3
Bob D. Campbell & Co. SJB	LSW Concessions Canopy	SK-3 Oct 02, 2020

Member Code Checks Displayed Results for LC 1, D+S LSW Concessions Canopy Bob D. Campbell & Co. LSW Concessions Canopy SJB Oct 02, 2020 GEA2012 Concessions Canopy r3d		est	Code Check (LC 1) No Calc > 1.0 .90-1.0 .7590 .5075 .050
Bob D. Campbell & Co. LSW Concessions Canopy SK-6 SJB Oct 02, 2020 GEA2012 Concessions Canopy r3d	Nember Code Checks Displayed Results for LC 1, D+S		
SJB Oct 02, 2020 Concessions Canopy r3d	Bob D. Campbell & Co.	LSW Concessions Canopy	SK-6
GEA2012 Concessions Canopy r3d	SJB		Oct 02, 2020
	GEA2012		Concessions Canopy.r3d

Nodes

	Label	X [ft]	Y [ft]	Z [ft]	Temp [deg F]	Detach From Diaphragm
1	N1	0	0	0		
2	N2	8	0	0		
3	N3	32.6667	0	0		
4	N4	8	0	5		
5	N5	32.6667	0	5		
6	N6	0	0	12.3333		
7	N7	8	0	12.3333		
8	N8	32.6667	0	12.3333		
9	N9	0	0	6.1667		
10	N10	8	0	6.1667		

Boundary Conditions

	Node Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot [k-ft/rad]	Y Rot [k-ft/rad]
1	N5	Reaction	Reaction	Reaction		Reaction
2	N4	Reaction	Reaction	Reaction		Reaction
3	N7	Reaction	Reaction	Reaction		Reaction
4	N6	Reaction	Reaction	Reaction		Reaction
5	N8	Reaction	Reaction	Reaction		Reaction

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm. Coeff. [1e⁵°F⁻¹]	Density [k/ft³]	Yield [ksi]	Ry	Fu [ksi]	Rt
1	A992	29000	11154	0.3	0.65	0.49	50	1.1	65	1.1
2	A36 Gr.36	29000	11154	0.3	0.65	0.49	36	1.5	58	1.2
3	A572 Gr.50	29000	11154	0.3	0.65	0.49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	0.3	0.65	0.527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	0.3	0.65	0.527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	0.3	0.65	0.49	35	1.6	60	1.2
7	A1085	29000	11154	0.3	0.65	0.49	50	1.25	65	1.15
8	A913 Gr.65	29000	11154	0.3	0.65	0.49	65	1.1	80	1.1

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Nodal	Point	Distributed
1	D	None		-1				2
2	S	None						2

Load Combinations

	Description	Solve	PDelta	SRSS	BLC	Factor	BLC	Factor
1	D+S	Yes	Y		1	1	2	1
2	S	Yes	Y		2	1		

Node Reactions

	LC	Node Label	X [k]	Y [k]	Z [k]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
1	1	N5	0	3.504	0	Ō	Ō	0
2	1	N4	0	10.2651	0	0	0	0
3	1	N7	0	-3.1335	0	0	0	0
4	1	N6	0	0.9619	0	0	0	0
5	1	N8	0	-1.2878	0	0	0	0
6	1	Totals:	0	10.3096	0			
7	1	COG (ft):	X: 12.5561	Y: 0	Z: 2.5393			

Node Deflections

	LC	Node Label	X [in]	Y [in]	Z [in]	X Rotation [rad]	Y Rotation [rad]	Z Rotation [rad]
1	1	N1	0	-0.7645	0	-1.0212e-02	0	3.651e-03
2	1	N2	0	-0.5191	0	-1.0212e-02	0	-4.0388e-05
3	1	N3	0	-0.2251	0	-4.6147e-03	0	6.5383e-03

Node Deflections (Continued)

	LC	Node Label	X [in]	Y [in]	Z [in]	X Rotation [rad]	Y Rotation [rad]	Z Rotation [rad]
4	1	N4	0	0	0	-5.0719e-03	0	-4.0388e-05
5	1	N5	0	0	0	-2.1666e-03	0	6.5383e-03
6	1	N6	0	0	0	-7.612e-03	0	3.651e-03
7	1	N7	0	0	0	2.4302e-03	0	-4.0388e-05
8	1	N8	0	0	0	1.0294e-03	0	6.5383e-03
9	1	N9	0	-0.5012	0	-5.0505e-03	0	3.651e-03
10	1	N10	0	0.0538	0	-2.8407e-03	0	-4.0388e-05

Asd360

	LC	Member	Shape	UC Max	Loc [ft]	Shear	Loc [ft]	Dir	Pnc/o…	Pnt/o…	Mnyy/	Mnzz/	Cb	Eqn
1	1	M1	HSS8	0.1925	7.3229	0.0192	7.4514	У	219.68	268.28	32.8244	53.9421	1	H1-1b
2	1	M2	HSS8	0.4626	7.3229	0.0522	7.4514	y	219.68	268.28	32.8244	53.9421	1	H1-1b
3	1	M3	HSS8	0.2317	24.8403	0.0588	24.5	У	70.2316	268.28	32.8244	52.8805	1	H1-1b
4	1	M4	HSS8	0.1788	6.0382	0.0171	0	У	120.35	144.33	17.7773	30.5289	1	H1-1b
5	1	M5	HSS8	0.1025	4	0.0681	8	y	133.71	144.33	17.7773	30.5289	1	H1-1b

Title Block Line 1 You can change this area using the "Settings" menu item and then using the "Printing & Title Block" selection. Title Block Line 6

Cantilevered Retaining Wall

Lic. # : KW-06011403

DESCRIPTION: Site Wall

Criteria		
Retained Height	=	6.00 ft
Wall height above soil	=	0.00 ft
Slope Behind Wall	=	0.00 : 1
Height of Soil over Toe	=	24.00 in
Water height over heel	=	0.0 ft
Vertical component of ac Lateral soil pressure opti NOT USED for Soil NOT USED for Slidii NOT USED for Over	tive ons: Pressui ng Resi rturning	re. istance. Resistance.

Design Summary

Wall Stability Ratios Overturning Sliding	=	1.47 Ratio < 1.5! 2.47 OK
Total Bearing Loadresultant ecc.	= =	2,077 lbs 11.37 in
Soil Pressure @ Toe Soil Pressure @ Heel Allowable Soil Pressure Less	= = Than Al	2,504 psf OK 0 psf OK 3,000 psf lowable
ACI Factored @ Toe	=	3,005 psf
ACI Factored @ Heel	=	0 psf
Footing Shear @ Toe	=	9.3 psi OK
Footing Shear @ Heel	=	9.9 psi OK
Allowable	=	88.7 psi
Sliding Calcs (Vertical Co	ompone	ent NOT Used)
Lateral Sliding Force	=	967.5 lbs
less 100% Passive Force	= -	1,556.0 lbs
less 100% Friction Force	= -	83 0.6 lbs
Added Force Req'd	=	0.0 lbs OK
for 1.5 : 1 Stability	=	0.0 lbs OK
Load Factors Dead Load Live Load Earth, H Wind, W Seismic, E		1.200 1.600 1.600 1.600 1.000

Printed: 2 OCT 2020, 2:01PM
File: LSW Site Walls.ec6
Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.17
Bob D. Campbell and Co., Inc.

Soil Data					Calculations per ACI 318-14,	TMS 402-16, IBC 2018,
Allow Soil Bearing	= 3	,000.0	psf			CBC 2019, ASCE 7-16
Equivalent Fluid Pressure Met	hod					
Heel Active Pressure	=	45.0	psf/ft			
Toe Active Pressure	=	30.0	psf/ft			
Passive Pressure	=	389.0	psf/ft			
Soil Density, Heel	= 1	10.00	pcf			
Soil Density, Toe	= 1	10.00	pcf			
Friction Coeff btwn Ftg & Soil	=	0.400				
Soil height to ignore for passive pressure	= .	12.00 i	n			
Stem Construction			Top S	Stem		
			S	Stem OK		
Design Height Above	⊦tg	ft =	~	0.00		
.5! Wall Material Above "	Ht"	=	Co	ncrete		
I NICKNESS		in =		# 4		
Rebai Size		= in		# 4		
Rebai Spacing		111 =		12.00		
Design Data		=	026	i spec		
fb/FB + fa/Fa		=		0.553		
Total Force @ Section	n	lbs =	1	,200.0		
MomentActual		ft-l =	2	.528.0		
MomentAllowable		ft-l =	4	,573.3		
ShearActual		psi =		19.0		
ShearAllowable		psi =		88.7		
Wall Weight		psf =		100.0		
Rebar Depth 'd'		in =		5.25		
Lap splice if above		in =		15.82		
Lap splice if below		in =		7.10		
Hook embed into foot	ing	in =		7.10		
Concrete Data ——	•					
f'c		psi =	3	,500.0		
Fy		psi =				

Title Block Line 1 You can change this area using the "Settings" menu item and then using the "Printing & Title Block" selection. Title Block Line 6

Cantilevered Retaining Wall

Lic. # : KW-06011403

DESCRIPTION: Site Wall

Footing Dimensio	ns & S	Strength	าร	
Toe Width Heel Width Total Footing Width Footing Thickness		=	1 1 3 12	.17 ft . <u>83</u> .00 .00 in
Key Width Key Depth Key Distance from ⊺	Гое	= = =	12 0 2	.00 in .00 in .00 ft
f'c = 3,500 p Footing Concrete De Min. As % Cover @ Top	ensity 2.00	Fy = = @ Bt	60,0 150 0.00 m.=	00 psi .00 pcf 118 3.00 in

Footing Design Res	ults	i	
Factored Pressure Mu' : Upward Mu' : Downward	= = =	<u>Toe</u> 3,005 1,566 302	Heel 0 psf 0 ft-lb 661 ft-lb
Mu: Design	=	1,264	661 ft-lb
Actual 1-Way Shear Allow 1-Way Shear	=	9.25 88.74	9.94 psi 88.74 psi
Toe Reinforcing Heel Reinforcing Key Reinforcing	= = -	# 5 @ 12.00 in # 5 @ 12.00 in None Spec'd	
Other Acceptable Sizes	- s & S	Spacings	
Toe: Not req'd, Mu	1 < 5	S*Fr	

Heel: Not req'd, Mu < S * Fr Key: Not req'd, Mu < S * Fr

Summary of Overturning & Resisting Forces & Moments

Item	_	0' Force Ibs	VERTURNING Distance ft	Moment ft-lb
Heel Active Pressure	=	1,102.5	2.33	2,572.5
Surcharge over Heel	=			
Toe Active Pressure	=	-135.0	1.00	-135.0
Surcharge Over Toe	=			
Adjacent Footing Load	=			
Added Lateral Load	=			
Load @ Stem Above Soil	=			
Total	=	967.5	O.T.M. =	2,437.5
Resisting/Overturning F Vertical Loads used	Ratio for Se	oil Pressure	= = 2,076.5	1.47 5 lbs

_		RE Force Ibs	SISTING Distance ft	Moment ft-lb				
Soil Over Heel	=	769.8	2.42	1,860.4				
Sloped Soil Over Heel	=							
Surcharge Over Heel	=							
Adjacent Footing Load	=							
Axial Dead Load on Stem	=							
Axial Live Load on Stem	=							
Soil Over Toe	=	256.7	0.58	149.8				
Surcharge Over Toe	=							
Stem Weight(s)	=	600.0	1.50	900.2				
Earth @ Stem Transitions	=							
Footing Weight	=	450.0	1.50	675.0				
Key Weight	=		2.50					
Vert. Component	=		_					
Tota	al =	2,076.5 ll	bs R.M. =	3,585.4				
Axial live load NOT included in total displayed, or used for overturning								

* Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation.

Project Title: LSW Site Retaining Wall Engineer: Project ID: Project Descr:

Printed: 2 OCT 2020, 2:01PM File: LSW Site Walls.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.17 Bob D. Campbell and Co., Inc.