

RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW DEVELOPMENT SERVICES LEE'S SUMMIT, MISSOURI

10/06/2020

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

Re: H3-89

SUMMIT HOMES

The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Mid America MO.

Pages or sheets covered by this seal: I42970371 thru I42970400

My license renewal date for the state of Missouri is December 31, 2021.

Missouri COA: Engineering 001193

September 28,2020

Sevier, Scott

,Engineer

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

RELEASE FOR Job Truss Truss Type SUMMIT HOMES CONSTRUCTION Diagonal Hip Girder AS NOTED ON PLANS REVIE 142970371 CJ1 H3-89 **DEVELOPMENT SERVICES** DEVELOPMENT SERVICES | Job Reference (optional)

LEE'S SUMMIT, MISSOUR 8.420 s Aug 25 2020 MiTek Industries, Inc. Fri Sep 25 14:30:53 2020 Page 1

ID:Z_Eg7_y5DGhi_ENvQbP05Vz4M0m-5RoSihgJTXH?XG?4p3u4FxUO7MDGqTuN0O?x9yya3KG Mid America Truss, Jefferson City, MO - 65101, 10/06/2020⁶⁻¹⁰⁻⁵ 1-2-14 Scale = 1:19.0 2x4 || 3 3.54 12 Special Special 4x4 = 0-11-4 4 Special 4x4 = 6-10-5 LOADING (psf) SPACING-CSI. DEFL. **PLATES** GRIP 2-0-0 (loc) I/defl L/d 20.0 TCLL (roof)

Vert(LL)

Vert(CT)

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

0.01

-0.12

-0.00

4-5

4-5

except end verticals

>999

>650

n/a

Rigid ceiling directly applied or 10-0-0 oc bracing.

360

240

n/a

Structural wood sheathing directly applied or 6-0-0 oc purlins,

LUMBER-

TCDI

BCLL

BCDL

TOP CHORD 2x4 SP No.1 2x4 SP No.2

10.0

0.0

10.0

BOT CHORD WEBS 2x4 SP No.2

Snow (Pf/Pg) 15.4/20.0

REACTIONS.

5=0-4-9, 4=Mechanical (size) Max Horz 5=91(LC 8) Max Uplift 5=-57(LC 7), 4=-22(LC 8) Max Grav 5=374(LC 16), 4=301(LC 16)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Plate Grip DOL

Rep Stress Incr

Code IRC2018/TPI2014

Lumber DOL

TOP CHORD 2-5=-306/96

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

1.15

1.15

NO

TC

BC

WB

Matrix-P

0.85

0.43

0.01

- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 2 degree rotation about its center.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 4.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 63 lb down and 36 lb up at 4-1-7, and 63 lb down and 36 lb up at 4-1-7 on top chord, and 13 lb down and 5 lb up at 4-1-7, and 13 lb down and 5 lb up at 4-1-7 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15. Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-2=-51, 2-3=-51, 4-5=-20

Concentrated Loads (lb)

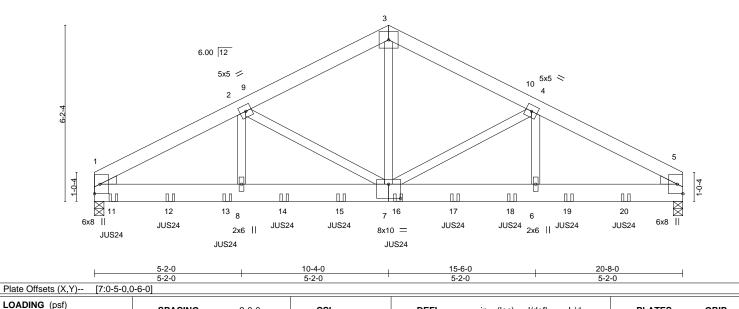
Vert: 7=-31(F=-16, B=-16) 8=-6(F=-3, B=-3)

244/190

FT = 3%

MT20

Weight: 36 lb



RELEASE FOR Job Truss Truss Type SUMMIT HOMES CONSTRUCTION 142970372 AS NOTED ON PLANS, REVIE G1 H3-89 Common Girder **DEVELOPMENT SERVICES** DEVELOPMENT SERVICES | Z | Job Reference (optional)

LEE'S SUMMIT, MISSOUR 6.420 s Aug 25 2020 MiTek Industries, Inc. Fri Sep 25 14:30:56 2020 Page 1

ID:Z_Eg7_y5DGhi_ENvQbP05\vz4M0m-W?UaKjiCmSfaOkjfVBSntZ60vaGm1kGpiMDbmHya3KD Mid America Truss, Jefferson City, MO - 65101, 15-6-0 20-8-0 10/06/2020 5-2-0 5-2-0 Scale = 1:40.5 7x8 =

DEFL.

Vert(LL)

Vert(CT)

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

in (loc)

6-7

6-7

5

-0.05

-0.08

0.02

I/defl

>999

>999

n/a

Rigid ceiling directly applied or 10-0-0 oc bracing.

L/d

360

240

n/a

Structural wood sheathing directly applied or 6-0-0 oc purlins.

LUMBER-

TCLL (roof)

TCDL

BCLL

BCDL

Snow (Pf/Pg)

TOP CHORD 2x6 SP No.1 BOT CHORD 2x8 SP 2400F 2.0E WEBS 2x4 SP No.2

WEDGE

Left: 2x4 SP No.2, Right: 2x4 SP No.2

REACTIONS. (size) 1=0-4-0, 5=0-4-0

20.0

10.0

10.0

0.0

15.4/20.0

Max Horz 1=-64(LC 45)

Max Uplift 1=-400(LC 11), 5=-334(LC 12) Max Grav 1=3334(LC 2), 5=3331(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-4959/573, 2-3=-3697/438, 3-4=-3697/438, 4-5=-5215/566

SPACING-

Plate Grip DOL

Rep Stress Incr

Code IRC2018/TPI2014

Lumber DOL

2-0-0

1.15

1.15

NO

CSI

TC

ВС

WB

Matrix-SH

0.43

0.31

0.36

BOT CHORD 1-8=-494/4190, 7-8=-494/4190, 6-7=-428/4412, 5-6=-428/4412

WEBS 3-7=-319/2912, 4-7=-1383/215, 4-6=-121/1434, 2-7=-1125/223, 2-8=-178/1176

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x8 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 6) Unbalanced snow loads have been considered for this design.
- 7) Plates checked for a plus or minus 2 degree rotation about its center.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=400 5=334
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Use USP JUS24 (With 4-10d nails into Girder & 2-10d nails into Truss) or equivalent spaced at 2-0-0 oc max. starting at 0-8-0 from the left end to 18-8-0 to connect truss(es) to back face of bottom chord.
- 11) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

Continued on page 2

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANS/TPI1 Qu
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PLATES

Weight: 304 lb

MT20

GRIP

244/190

FT = 3%

September 28,2020

RELEASE FOR Job Truss Truss Type G1 H3-89 Common Girder

CONSTRUCTION

10/06/2020

SUMMIT HOMES

142970372

AS NOTED ON PLANS REVIEW
DEVELOPMENT SERVICES

2 Job Reference (optional)

LEE'S SUMMIT, MISSOURI8.420 s Aug 25 2020 MiTek Industries, Inc. Fri Sep 25 14:30:56 2020 Page 2

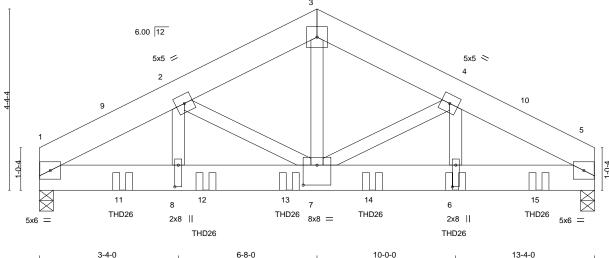
ID:Z_Eg7_y5DGhi_ENvQbP05\Z4M0m-W?UaKjiCmSfaOkjfVBSntZ60vaGm1kGpiMDbmHya3KD

LOAD CASE(S) Standard

Mid America Truss, Jefferson City, MO - 65101,

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-51, 3-5=-51, 1-5=-20


Concentrated Loads (lb)

Vert: 11=-299(B) 12=-294(B) 13=-290(B) 14=-290(B) 15=-521(B) 16=-417(B) 17=-417(B) 18=-417(B) 19=-417(B) 20=-547(B)

RELEASE FOR Job Truss Truss Type SUMMIT HOMES CONSTRUCTION Roof Special Girder AS NOTED ON PLANS REVIE 142970373 H3-89 G2 **DEVELOPMENT SERVICES** DEVELOPMENT SERVICES | Z | Job Reference (optional)

LEE'S SUMMIT, MISSOURI8.420 s Aug 25 2020 MiTek Industries, Inc. Fri Sep 25 14:30:58 2020 Page 1

ID:Z_Eg7_y5DGhi_ENvQbP05Vz4M0m-SOcLIPkSl3wHd1t1ccUFy_BRMNyZVbY69giir9ya3KB Mid America Truss, Jefferson City, MO - 65101, 10-0-0 13-4-0 10/06/2020 3-4-0 3-4-0 3-4-0 3-4-0 Scale = 1:27.7 6x6 = 3

LOADING (psf) DEFL. SPACING-CSI. in (loc) I/defl L/d **PLATES** GRIP 20.0 TCLL (roof) Plate Grip DOL 1.15 TC 0.11 Vert(LL) -0.03 6-7 >999 360 MT20 244/190 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 ВС 0.29 Vert(CT) -0.06 6-7 >999 240 TCDL 10.0 Rep Stress Incr NO WB 0.56 Horz(CT) 0.02 5 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 FT = 3% Matrix-P Weight: 216 lb BCDL 10.0

BRACING-

TOP CHORD

BOT CHORD

3-4-0

LUMBER-

REACTIONS.

Plate Offsets (X,Y)--

TOP CHORD 2x8 SP 2400F 2.0E BOT CHORD 2x8 SP 2400F 2.0E **BOT CHORD**

WEBS 2x4 SP No.2

> (size) 1=0-4-0, 5=0-4-0 Max Horz 1=-42(LC 7)

Max Uplift 1=-42(LC 11), 5=-46(LC 12)

Max Grav 1=4984(LC 2), 5=5466(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

3-4-0

[6:0-6-4,0-1-0], [7:0-4-0,0-5-12], [8:0-6-4,0-1-0]

1-2=-7582/66, 2-3=-5745/75, 3-4=-5743/75, 4-5=-7685/69 TOP CHORD **BOT CHORD** 1-8=-60/6242, 7-8=-60/6242, 6-7=-24/6327, 5-6=-24/6327

WFBS 3-7=-29/4595, 4-7=-1378/65, 4-6=0/2428, 2-7=-1279/62, 2-8=0/2313

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x8 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x8 - 2 rows staggered at 0-6-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc, Except member 4-6 2x4 - 1 row at 0-5-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 6) Unbalanced snow loads have been considered for this design
- 7) Plates checked for a plus or minus 2 degree rotation about its center.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Use USP THD26 (With 18-16d nails into Girder & 12-10d x 1-1/2 nails into Truss) or equivalent spaced at 2-0-0 oc max. starting at 2-0-0 from the left end to 12-0-0 to connect truss(es) to back face of bottom chord.
- 11) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-51, 3-5=-51, 1-5=-20

3-4-0

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

September 28,2020

Continued on page 2

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not Lessign value for use only with full lekes connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

RELEASE FOR Job Truss Truss Type CONSTRUCTION H3-89 G2

SUMMIT HOMES

142970373

Mid America Truss, Jefferson City, MO - 65101, Roof Special Girder AS NOTED ON PLANS REVIEW DEVELOPMENT SERVICES 2 Job Reference (optional)

LEE'S SUMMIT, MISSOURI8.420 s Aug 25 2020 MiTek Industries, Inc. Fri Sep 25 14:30:58 2020 Page 2

ID:Z_Eg7_y5DGhi_ENvQbP05Vz4M0m-SOcLIPkSl3wHd1t1ccUFy_BRMNyZVbY69giir9ya3KB 10/06/2020

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 6=-1386(B) 11=-1386(B) 12=-1386(B) 13=-1386(B) 14=-1386(B) 15=-1386(B)

RELEASE FOR CONSTRUCTION Job Truss Truss Type SUMMIT HOMES 142970374 AS NOTED ON PLANS REVIE H3-89 Н1 Hip Girder **DEVELOPMENT SERVICES** Job Reference (optional) LEE'S SUMMIT, MISSOUR 8.420 s Aug 25 2020 MiTek Industries, Inc. Fri Sep 25 14:31:05 2020 Page 1
ID:Z_Eg7_y5DGhi_ENvQbPq5Vz4M0m-lkX_DopreDolz6vOWa6ukT_YUCNket_8mFvZaFya3K4 Mid America Truss, Jefferson City, MO - 65101, 12-0-0 12-10-8 1**0/06/2020** 0-10-8 4-11-4 4-11-4 0-10-8 Scale = 1:22.4 5x8 = 4x5 = 4 5 5.00 12 4x4 > 10 5x5 = 2x4 || 4x6 -11 4x6 || HJC26 HJC26 7-0-12 12-0-0 Plate Offsets (X,Y)--[4:0-5-12,0-2-8]

TCLL (roof) 20.0 Snow (Pf/Pg) 20.4/20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO	CSI. TC 0.50 BC 0.13 WB 0.07	DEFL. in (loc) l/defl L/d Vert(LL) -0.02 10 >999 360 Vert(CT) -0.04 10 >999 240 Horz(CT) 0.01 7 n/a n/a	PLATES GRIP MT20 244/190
BCLL 0.0 BCDL 10.0	Code IRC2018/TPI2014	Matrix-P	11012(01) 0.01 1 1/4 1/4	Weight: 138 lb FT = 3%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x6 SP No.1

WEBS 2x4 SP No.2 Left 2x4 SP No.2 -t 2-8-14, Right 2x4 SP No.2 -t 2-8-14 SLIDER

REACTIONS. (size) 2=0-3-8, 7=0-3-8 Max Horz 2=-25(LC 60)

Max Uplift 2=-81(LC 11), 7=-81(LC 12)

Max Grav 2=1113(LC 34), 7=1113(LC 34)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-4=-1744/145, 4-5=-1479/146, 5-7=-1750/145 TOP CHORD BOT CHORD 2-10=-100/1444. 9-10=-102/1473. 7-9=-94/1449

WEBS 4-10=-30/540, 5-9=-36/571

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0 Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 6) Unbalanced snow loads have been considered for this design.
- 7) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 8) Provide adequate drainage to prevent water ponding.
- 9) Plates checked for a plus or minus 2 degree rotation about its center.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 7.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 13) Use USP HJC26 (With 16-16d nails into Girder & 10d nails into Truss) or equivalent spaced at 2-0-12 oc max. starting at 4-11-10 from the left end to 7-0-6 to connect truss(es) to back face of bottom chord.

14) Fill all nail holes where hanger is in contact with lumber.

Structural wood sheathing directly applied or 6-0-0 oc purlins, except

2-0-0 oc purlins (6-0-0 max.): 4-5.

Rigid ceiling directly applied or 10-0-0 oc bracing

September 28,2020

Continued on page 2
LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANS/TPI1 Qu
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type H3-89 H1 Hip Girder

RELEASE FOR CONSTRUCTION

SUMMIT HOMES

142970374

AS NOTED ON PLANS REVIEW
DEVELOPMENT SERVICES

2 Job Reference (optional)

LEE'S SUMMIT, MISSOURI8.420 s Aug 25 2020 MiTek Industries, Inc. Fri Sep 25 14:31:05 2020 Page 2

ID:Z_Eg7_y5DGhi_ENvQbPq5Vz4M0m-lkX_DopreDolz6vOWa6ukT_YUCNket_8mFvZaFya3K4

10/06/2020

Mid America Truss,

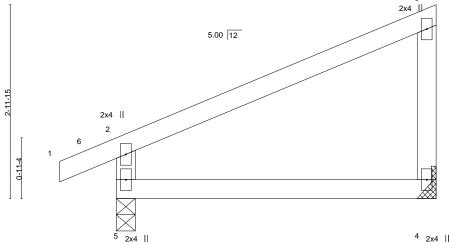
Jefferson City, MO - 65101,

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 10=-472(B) 9=-472(B)


Vert: 1-4=-51, 4-5=-61, 5-8=-51, 2-7=-20 Concentrated Loads (lb)

RELEASE FOR Job Truss Truss Type SUMMIT HOMES CONSTRUCTION 142970375 AS NOTED ON PLANS REVIE H3-89 J1 MONO TRUSS **DEVELOPMENT SERVICES** DEVELOPMENT SERVICES | Job Reference (optional)

LEE'S SUMMIT, MISSOUR 8.420 s Aug 25 2020 MiTek Industries, Inc. Fri Sep 25 14:31:09 2020 Page 1

ID:Z_Eg7_y5DGhi_ENvQbP05Vz4M0m-dWmV39tMiRtjRkD9lQBquJ9F0pkVai3jhttnj0ya3K0 Mid America Truss, Jefferson City, MO - 65101,

10/06/2020 1-4 4-11-4

4-11-4 LOADING (psf) SPACING-2-0-0 CSI. DEFL. I/defI L/d **PLATES** GRIP (loc) 20.0 TCLL (roof) Plate Grip DOL Vert(LL) -0.01 >999 MT20 244/190 1.15 TC 0.34 4-5 360 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 вс 0.14 Vert(CT) -0.02 4-5 >999 240 TCDI 10.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 n/a n/a BCLL 0.0 Code IRC2018/TPI2014 Matrix-R Weight: 21 lb FT = 3% BCDL 10.0

LUMBER-BRACING-

-0-10-8

0-10-8

TOP CHORD Structural wood sheathing directly applied or 4-11-4 oc purlins, 2x4 SP No.2 TOP CHORD BOT CHORD 2x4 SP No.2 except end verticals. **WEBS** 2x4 SP No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing

REACTIONS. 5=0-3-8, 4=Mechanical (size)

Max Horz 5=92(LC 8) Max Uplift 5=-16(LC 7), 4=-18(LC 8) Max Grav 5=296(LC 16), 4=220(LC 16)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-5=-262/47

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 2 degree rotation about its center.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 4.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Scale = 1:17.8

September 28,2020

RELEASE FOR Job Truss Truss Type SUMMIT HOMES CONSTRUCTION 142970376 AS NOTED ON PLANS REVIE DEVELOPMENT SERVICES H3-89 J2 Jack-Open DEVELOPMENT SERVICES | Job Reference (optional)

LEE'S SUMMIT, MISSOUR 8.420 s Aug 25 2020 MiTek Industries, Inc. Fri Sep 25 14:31:16 2020 Page 1

ID:Z_Eg7_y5DGhi_ENvQbP05Vz4M0m-wsh8XYyl3bBknoFVgOpThnxWpe9ZjsollT3fS6ya3Jv Mid America Truss, Jefferson City, MO - 65101,

10/06/2626-15 2-10-15

5.00 12 2x4 || 2-1-13 2-1

2-10-15										
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.11 BC 0.05 WB 0.00	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.00 4-5 -0.00 4-5 -0.00 3		L/d 360 240 n/a	PLATES MT20	GRIP 244/190		
BCDI 10.0	Code IRC2018/TPI2014	Matrix-R					Weight: 11 lb	FT = 3%		

2-10-15

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing

LUMBER-BRACING-

-0-10-8

0-10-8

TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 2-10-15 oc purlins, 2x4 SP No.2 BOT CHORD except end verticals.

REACTIONS. 5=0-3-8, 3=Mechanical, 4=Mechanical (size)

Max Horz 5=43(LC 8)

2x4 SP No.2

Max Uplift 5=-10(LC 7), 3=-28(LC 11)

Max Grav 5=216(LC 16), 3=84(LC 16), 4=29(LC 16)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

WEBS

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 2 degree rotation about its center.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Scale = 1:13.7

RELEASE FOR Job Truss Truss Type SUMMIT HOMES CONSTRUCTION 142970377 AS NOTED ON PLANS REVIE H3-89 S1 ROOF SPECIAL DEVELOPMENT SERVICES DEVELOPMENT SERVICES | Job Reference (optional)

LEE'S SUMMIT, MISSOUR 8.420 s Aug 25 2020 MiTek Industries, Inc. Fri Sep 25 14:31:22 2020 Page 1

ID:Z_Eg7_y5DGhi_ENvQbP05Vz4M0m-l02Poc1WeRxtVjjf0fwtw2BL130N7OZehPWzgmya3Jp Mid America Truss, Jefferson City, MO - 65101, 40-0-0 -0₇10-8 2-8-13 0-10-8 2-8-13 18-9-0 3-6-3 6-3-0 6-3-0 6-3-0 6-3-0 2-6-0 Scale = 1:71.5 6x6 = 8 5.00 12 4x5 = 19 4x5 > 4x5 / 4x5 > 6 10 4x4 || 3x8 =

8x10 =5.00 12 16-0-0 25-0-0 34-0-0 40-0-0 2-8-13 5-3-3 9-0-0 [18:0-3-8,0-1-12] Plate Offsets (X,Y)--LOADING (psf) SPACING-2-0-0 CSI DEFL. in (loc) I/defl L/d **PLATES** GRIP

15

6x6 =

14

6x10 =

except end verticals.

1 Row at midpt

TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.90 Vert(LL) -0.25 15-16 >999 360 MT20 244/190 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 ВС 0.79 Vert(CT) -0.55 15-16 >872 240 **TCDL** 10.0 Rep Stress Incr YES WB 0.81 Horz(CT) 0.27 12 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 FT = 3% Weight: 246 lb Matrix-SH BCDL 10.0

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2 *Except*

15-17: 2x4 SP No.1 **WEBS** 2x4 SP No.2 *Except*

10x12 =

2-17: 2x4 SP No.1

(size) 18=0-4-0, 12=0-4-0

4x5

16

4x5 =

Max Horz 18=158(LC 8)

Max Uplift 18=-52(LC 11), 12=-1(LC 12) Max Grav 18=1650(LC 2), 12=1588(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-18=-1670/121, 2-3=-4992/277, 3-4=-4883/315, 4-6=-3722/165, 6-7=-2673/128,

7-8=-1696/104, 8-9=-1697/116, 9-10=-1429/50

BOT CHORD 17-18=-163/288, 16-17=-243/3721, 15-16=-130/2813, 14-15=-41/2129, 13-14=0/1460,

12-13=-27/727

WEBS 2-17=-213/4276, 4-17=-141/942, 4-16=-560/141, 6-16=-36/816, 6-15=-702/143,

7-15=-13/789, 7-14=-992/148, 8-14=-12/905, 9-13=-586/59, 10-13=0/884,

10-12=-1693/38

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Plates checked for a plus or minus 2 degree rotation about its center.
- 7) Bearing at joint(s) 18 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 18, 12.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

4-1-4

4x5 =

13

6x6 =

Structural wood sheathing directly applied or 1-7-12 oc purlins,

7-14, 9-14

Rigid ceiling directly applied or 10-0-0 oc bracing

9

September 28,2020

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANS/TPI1 Qu
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

RELEASE FOR Job Truss Truss Type SUMMIT HOMES CONSTRUCTION 142970378 AS NOTED ON PLANS REVIE H3-89 S1A Roof Special **DEVELOPMENT SERVICES** Job Reference (optional) LEE'S SUMMIT, MISSOURI8.420 s Aug 25 2020 MiTek Industries, Inc. Fri Sep 25 14:31:26 2020 Page 1 Mid America Truss, Jefferson City, MO - 65101, ID:Z_Eg7_y5DGhi_ENvQbP05Vz4M0m-enlwdz40igRJ_L0QFV_p5uM5ZgSi3CYEb0UApXya3JI 10/06/2020-2-0 3-0-8 31-3-0 -0₁10-8 2-8-13 0-10-8 2-8-13 43-9-0 48-0-0 37-6-0 3-6-3 6-3-0 6-3-0 3-2-8 3-1-0 6-3-0 6-3-0 4-3-0

6x6 = 4x4 || 2x6 II 5.00 12 8 10 4x5 / 4x5 > 26 11 4x5 = 4x5 < 6 3x8 = 3x8 > 13 4x5 / 4x5 < 14 4x4 || 15 5x5 / 1-9-4 21 6x12 23 22 18 17 10x12 = 20 19 16 4x5 = 4x5 = 25 4x5 = 6x6 = 4x4 = 7x10 =4x5 = 4x4 = 5.00 12

2-8-13 2-8-13 5-3-3 5-10-0 5-11-8 Plate Offsets (X,Y)--[19:0-4-8,0-2-12] LOADING (psf) SPACING-2-0-0 CSI DEFL. in (loc) I/defl L/d **PLATES** GRIP TCLL (roof) 20.0 -0.10 23-24 Plate Grip DOL 1.15 TC 0.61 Vert(LL) >999 360 MT20 244/190 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 ВС 0.51 Vert(CT) -0.24 22-23 >999 240 **TCDL** 10.0 Rep Stress Incr YES WB 0.82 Horz(CT) 0.09 19 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 FT = 3% Weight: 336 lb Matrix-SH BCDL 10.0

28-2-0

21-11-8

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 WEBS 2x4 SP No.2

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 3-9-4 oc purlins,

8-21

42-0-0

except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing. Except:

BOT CHORD 1 Row at midpt

34-0-0

WEBS 1 Row at midpt 7-21, 10-19, 11-19

2 Rows at 1/3 pts

REACTIONS. (size) 25=0-4-0, 19=0-4-0, 16=Mechanical

Max Horz 25=104(LC 11)

Max Uplift 25=-29(LC 11), 19=-40(LC 11), 16=-134(LC 29) Max Grav 25=802(LC 29), 19=2903(LC 2), 16=440(LC 30)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-25=-805/88, 2-3=-2147/167, 3-4=-2099/208, 4-6=-1290/86, 6-7=-359/62, 7-8=0/480, 8-9=0/490, 9-10=0/1296, 10-11=0/1291, 11-12=-49/860, 12-14=-403/404

16-0-0

23-24=-141/1411, 22-23=-43/654, 18-19=-911/141, 17-18=-602/135, 16-17=-252/397

2-24=-117/1797, 4-24=-116/622, 4-23=-452/132, 6-23=-22/694, 6-22=-671/144,

7-22=-25/744, 7-21=-834/120, 19-21=-687/114, 9-21=-87/969, 9-19=-1794/71, 10-19=-264/52, 11-19=-807/114, 11-18=-18/711, 12-18=-628/119, 12-17=0/505,

14-17=-282/83, 14-16=-469/336

NOTES-

WEBS

BOT CHORD

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Plates checked for a plus or minus 2 degree rotation about its center.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Bearing at joint(s) 25 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 25, 19 except (jt=lb) 16=134.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

48-0-0

Scale = 1:83.6

September 28,2020

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANS/TPI1 Qu
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

RELEASE FOR Job Truss Truss Type SUMMIT HOMES CONSTRUCTION 142970379 AS NOTED ON PLANS REVIE H3-89 S1B Roof Special **DEVELOPMENT SERVICES** Job Reference (optional) LEE'S SUMMIT, MISSOURI8.420 s Aug 25 2020 MiTek Industries, Inc. Fri Sep 25 14:31:31 2020 Page 1 Mid America Truss, Jefferson City, MO - 65101, ID:Z_Eg7_y5DGhi_ENvQpP05Vz4M0m-_k5phh89XC4c46vN22a_ny3yMhAxkStzllCxUlya3Jg 31-3-0 1-10-8 2-8-13 1-10-8 2-8-13 **6/2020** 3-2-0 18-9-0 37-6-0 43-9-0 48-0-0 3-6-3 6-3-0 6-3-0 3-2-8 3-1-0 6-3-0 6-3-0 4-3-0

6x6 =

4x4 || 2x6 || 5.00 12 10 4x5 / 8 4x5 > 26 11 4x5 / 4x5 < 12 6 3x8 = 3x8 < 13 4x5 4x5 < 14 4x4 15 5x5 / 21 6x12 22 23 18 17 10x12 = 20 19 16 4x5 = 4x5 = 25 6x6 = 4x5 = 4x4 =6x10 =4x5 = 4x4 = 5.00 12

2-8-13 2-8-13 5-10-0 5-11-8 Plate Offsets (X,Y)--[19:0-4-8,0-2-0] LOADING (psf) SPACING-2-0-0 CSI DEFL. in (loc) I/defl L/d **PLATES** GRIP TCLL (roof) 20.0 -0.09 23-24 Plate Grip DOL 1.15 TC 0.60 Vert(LL) >999 360 MT20 244/190 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 ВС 0.51 Vert(CT) -0.23 22-23 >999 240 **TCDL** 10.0 Rep Stress Incr YES WB 0.81 Horz(CT) 0.09 19 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 FT = 3% Weight: 337 lb Matrix-SH BCDL 10.0

28-2-0

21-11-8

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 WEBS 2x4 SP No.2

BRACING-

WEBS

TOP CHORD Structural wood sheathing directly applied or 3-10-7 oc purlins,

except end verticals.

34-0-0

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. Except: 1 Row at midpt 8-21

42-0-0

1 Row at midpt 7-21, 10-19, 11-19 2 Rows at 1/3 pts

REACTIONS. (size) 25=0-4-0, 19=0-4-0, 16=Mechanical

Max Horz 25=113(LC 11)

Max Uplift 25=-41(LC 11), 19=-37(LC 11), 16=-125(LC 29) Max Grav 25=871(LC 29), 19=2886(LC 2), 16=443(LC 30)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-25=-842/95, 2-3=-2059/153, 3-4=-2003/192, 4-6=-1282/85, 6-7=-368/64, 7-8=0/467,

8-9=0/477, 9-10=0/1279, 10-11=0/1273, 11-12=-46/843, 12-14=-407/391

BOT CHORD 23-24=-138/1395, 22-23=-44/658, 18-19=-895/138, 17-18=-588/132, 16-17=-242/400 2-24=-114/1796, 4-24=-102/537, 4-23=-438/130, 6-23=-19/678, 6-22=-664/143, **WEBS**

16-0-0

7-22=-24/738, 7-21=-830/120, 19-21=-675/112, 9-21=-87/967, 9-19=-1780/68,

10-19=-267/52, 11-19=-806/114, 11-18=-18/709, 12-18=-626/119, 12-17=0/501,

14-17=-279/83, 14-16=-474/323

NOTES-

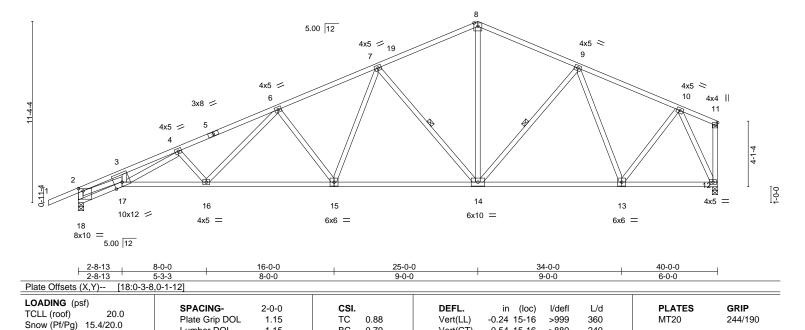
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Plates checked for a plus or minus 2 degree rotation about its center.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Bearing at joint(s) 25 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 25, 19 except (jt=lb) 16=125.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

48-0-0

Scale = 1:83.8

September 28,2020

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see


ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANS/TPI1 Qu
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

RELEASE FOR Job Truss Truss Type SUMMIT HOMES CONSTRUCTION 142970380 AS NOTED ON PLANS REVIE H3-89 S1C Roof Special **DEVELOPMENT SERVICES** DEVELOPMENT SERVICES | Job Reference (optional)

LEE'S SUMMIT, MISSOUR 8.420 s Aug 25 2020 MiTek Industries, Inc. Fri Sep 25 14:31:35 2020 Page 1 Mid America Truss, Jefferson City, MO - 65101, ID:Z_Eg7_y5DGhi_ENvQbP05Vz4M0m-tWLKW2BfaRa1ZjC9HtfwyoDayISQgGoYgwA9dWya3Jc 1-10-8 2-8-13 1-10-8 2-8-13 40-0-0 10/06/2020 0 37-6-0 3-6-3 6-3-0 6-3-0 6-3-0 6-3-0 2-6-0 Scale = 1:72.1 6x6 =

LUMBER-

TCDL

BCLL

BCDL

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2 *Except*

15-17: 2x4 SP No.1 2x4 SP No.2 *Except*

10.0

10.0

0.0

WEBS 2-17: 2x4 SP No.1

REACTIONS. (size) 18=0-4-0, 12=0-4-0

Max Horz 18=165(LC 8)

Max Uplift 18=-63(LC 11), 12=-1(LC 12) Max Grav 18=1713(LC 2), 12=1585(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Lumber DOL

Rep Stress Incr

Code IRC2018/TPI2014

TOP CHORD 2-18=-1700/128, 2-3=-4882/259, 3-4=-4766/295, 4-6=-3695/161, 6-7=-2664/126,

7-8=-1692/103, 8-9=-1693/115, 9-10=-1427/50

BOT CHORD $16\text{-}17\text{=-}237/3686,\ 15\text{-}16\text{=-}127/2800,\ 14\text{-}15\text{=-}40/2122,\ 13\text{-}14\text{=}0/1457,\ 12\text{-}13\text{=-}27/726}$ **WEBS**

2-17=-207/4255, 4-17=-127/855, 4-16=-544/138, 6-16=-34/799, 6-15=-695/142,

1.15

YES

ВС

WB

Matrix-SH

0.79

0.81

Vert(CT)

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

WEBS

-0.54 15-16

except end verticals.

1 Row at midpt

6-0-0 oc bracing: 17-18.

12

0.26

>880

n/a

240

n/a

Structural wood sheathing directly applied or 1-8-12 oc purlins,

7-14, 9-14

Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

7-15=-12/783, 7-14=-987/147, 8-14=-11/902, 9-13=-584/59, 10-13=0/883,

10-12=-1690/38

NOTES-

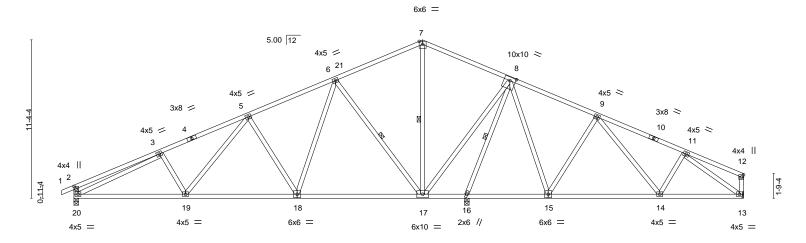
1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Plates checked for a plus or minus 2 degree rotation about its center.
- 7) Bearing at joint(s) 18 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 18, 12.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

FT = 3%

Weight: 247 lb

September 28,2020


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANS/TPI1 Qu
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

RELEASE FOR Job Truss Truss Type SUMMIT HOMES CONSTRUCTION 142970381 AS NOTED ON PLANS REVIE H3-89 T1 Common DEVELOPMENT SERVICES Job Reference (optional) LEE'S SUMMIT, MISSOURI8.420 s Aug 25 2020 MiTek Industries, Inc. Fri Sep 25 14:31:38 2020 Page 1 Mid America Truss, Jefferson City, MO - 65101, ID:Z_Eg7_y5DGhi_ENvQbP05Vz4M0m-H50T94DYtMycQBxjy0CdaQr8fVY5tad?MuOpErya3JZ 43-9-0 -0₁10₁8 0-10-8 18-9-25-010/06/2020 6-3-0 31-3-0 37-6-0 48-0-0 6-3-0 6-3-0 6-3-0 6-3-0 6-3-0 6-3-0 4-3-0

8-0-0 5-10-0 8-0-0 Plate Offsets (X,Y)--[2:0-2-0,0-1-12], [8:0-5-0,0-3-0] LOADING (psf) SPACING-2-0-0 CSI DEFL. in (loc) I/defl L/d **PLATES** GRIP 20.0 TCLL (roof) Plate Grip DOL 1.15 TC 0.66 Vert(LL) -0.07 18-19 >999 360 MT20 244/190 15.4/20.0 Snow (Pf/Pg) Lumber DOL 1.15 ВС 0.54 Vert(CT) -0.25 17-18 >999 240 **TCDL** 10.0 Rep Stress Incr YES WB 1.00 Horz(CT) 0.04 13 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 FT = 3% Weight: 305 lb Matrix-SH BCDL 10.0

BRACING-

TOP CHORD

BOT CHORD

WEBS

28-2-0

34-0-0

except end verticals.

1 Row at midpt

42-0-0

Structural wood sheathing directly applied or 4-5-14 oc purlins,

6-17, 7-17, 8-16

Rigid ceiling directly applied or 5-7-11 oc bracing.

48-0-0

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2

WEBS 2x4 SP No.2

REACTIONS. (size) 13=Mechanical, 20=0-4-0, 16=0-4-0

Max Horz 20=104(LC 11)

8-0-0

Max Uplift 13=-39(LC 12), 20=-45(LC 11), 16=-2(LC 11) Max Grav 13=650(LC 30), 20=1036(LC 29), 16=2285(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-431/77, 3-5=-1488/103, 5-6=-876/102, 8-9=-269/174, 9-11=-740/99, 2-20=-383/81 **BOT CHORD** 19-20=-134/1418, 18-19=-64/1037, 17-18=0/537, 16-17=-1002/106, 14-15=-13/439,

16-0-0

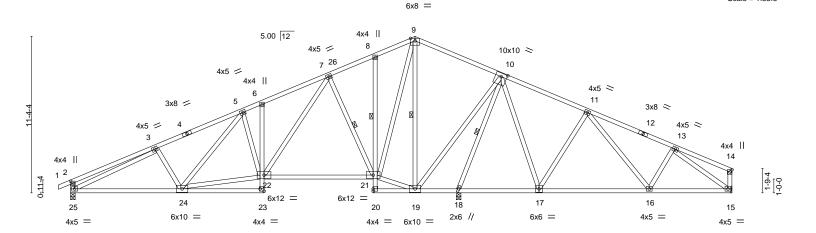
13-14=-52/663

WEBS 5-19=-13/444, 5-18=-574/129, 6-18=-7/709, 6-17=-937/142, 7-17=-387/0, 8-17=-28/1569, 8-15=-11/609, 9-15=-516/119, 9-14=0/333, 11-13=-805/63,

3-20=-1229/12, 8-16=-2355/31

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Plates checked for a plus or minus 2 degree rotation about its center.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 13, 20, 16.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


Scale = 1:82.6

RELEASE FOR Job Truss Truss Type SUMMIT HOMES CONSTRUCTION 142970382 AS NOTED ON PLANS REVIE H3-89 T1A Roof Special **DEVELOPMENT SERVICES** Job Reference (optional) LEE'S SUMMIT, MISSOURI8.420 s Aug 25 2020 MiTek Industries, Inc. Fri Sep 25 14:31:41 2020 Page 1 Mid America Truss, Jefferson City, MO - 65101, ID:Z_Eg7_y5DGhi_ENvQbP05Vz4M0m-hgibn6FQAHKBHegId8mKB3TeEjZs4y2R2sdTrAya3JW 48-0-0 14-0-8 31-3-0 37-6-0 43-9-0 -0₁10₇8 0-10-8 + 15/06/2020 6-3-0 6-3-0 1-6-8 4-8-3-2-8 6-3-0 6-3-0 6-3-0 4-3-0

	0-0-0	17-0-0		11-0	23-0-0	20-2-0	3 4 -0-0		72-0-0	70-0-0	I
	8-0-0	6-0-8	7-	11-0	3-0-8	3-2-0	5-10-0		8-0-0	6-0-0	
Plate Offse	ets (X,Y) [2:0-2-0,0	-1-12], [10:0-5-0,0-3-0], [23	3:Edge,0-2-0]							
LOADING TCLL (roo Snow (Pf/F TCDL BCLL BCDL	f) 20.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TPI2	2-0-0 1.15 1.15 YES 2014	BC 0	1.64 1.53 1.96 SH	DEFL. Vert(LL) Vert(CT) Horz(CT	in (loc) -0.08 21-22 -0.30 21-22) 0.05 15	>999	L/d 360 240 n/a	PLATES MT20 Weight: 350 lb	GRIP 244/190 FT = 3%

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2

WEBS 2x4 SP No.2

REACTIONS. (size) 25=0-4-0, 15=Mechanical, 18=0-4-0

Max Horz 25=104(LC 11)

Max Uplift 25=-45(LC 11), 15=-46(LC 12)

Max Grav 25=1010(LC 29), 15=629(LC 30), 18=2350(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. $2\text{-}3\text{--}427/72,\ 3\text{-}5\text{--}1421/103,\ 5\text{-}6\text{--}1147/114,\ 6\text{-}7\text{--}1168/153,\ 7\text{-}8\text{--}286/96,}$ TOP CHORD

8-9=-273/133, 10-11=-225/252, 11-13=-707/111, 2-25=-379/79

24-25=-138/1367, 21-22=0/514, 18-19=-1085/112, 17-18=-320/93, 16-17=-81/402,

15-16=-62/637 **WEBS** 22-24=-35/1120, 5-22=-396/98, 7-22=-83/954, 7-21=-798/137, 9-21=-80/1030,

9-19=-1218/33, 10-19=-48/1587, 10-17=-12/611, 11-17=-524/117, 11-16=0/354,

3-25=-1175/22, 13-15=-773/75, 10-18=-2380/54

NOTES-

BOT CHORD

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Plates checked for a plus or minus 2 degree rotation about its center.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 25, 15.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

42-0-0

Structural wood sheathing directly applied or 4-7-0 oc purlins,

Rigid ceiling directly applied or 5-4-12 oc bracing. Except:

8-21

7-21, 9-19, 10-18

except end verticals.

1 Row at midpt

1 Row at midpt

Scale = 1:83.6

September 28,2020

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not Design Valid to Use Only with New Controlled S. This costign is based only upon parameters shown, and is for an individual druining Component, not a fundamental property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

RELEASE FOR Job Truss Truss Type SUMMIT HOMES CONSTRUCTION 142970383 AS NOTED ON PLANS REVIE H3-89 Т1В Roof Special DEVELOPMENT SERVICES DEVELOPMENT SERVICES | Job Reference (optional)

LEE'S SUMMIT, MISSOUR 8.420 s Aug 25 2020 MiTek Industries, Inc. Fri Sep 25 14:31:45 2020 Page 1 Mid America Truss,

Jefferson City, MO - 65101, ID:Z_Eg7_y5DGhi_ENvQbP05Vz4M0m-aRx6dTlxEVrdmGz4s_qGMveKlKsa0lS1zUbh_xya3JS 25 00/06/2020 31-3-0 37-6-0 43-9-0 48-0-0 12-1-8 18-9

1-2-0 Scale = 1:86.4

6x6 =

19

6x10 =

5.00 12 6x10 = 10x10 > 26 10 8 4x5 > 4x4 || 11 3x8 = 3x8 > 12 4x5 / 4x5 > 6x10 = 13 4x4 || 6x10 = 4x4 || 3 0-11-4 22

2-4-0	12-1-8 9-9-8	16-0-0 3-10-8	25-0-0 9-0-0	28-2-0 + 3-2-0	34-0-0 5-10-0	42-0-0 8-0-0	48-0-0 6-0-0	\dashv
	0-1-12], [4:0-3-4,0-3-0], [10		9-0-0	3-2-0	3-10-0	8-0-0	0-0-0	
COADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TPI	2-0-0 1.15 1.15 YES 2014	CSI. TC 0.70 BC 0.87 WB 0.99 Matrix-SH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.13 22-23 -0.56 22-23 0.13 18	l/defl L/d >999 360 >594 240 n/a n/a	PLATES MT20 Weight: 320 lb	GRIP 244/190

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD**

WEBS 2x4 SP No.2

REACTIONS.

(size) 15=Mechanical, 25=0-4-0, 18=0-4-0

Max Horz 25=104(LC 13)

5x5 =

4x5

Max Uplift 15=-63(LC 12), 25=-31(LC 11), 18=-34(LC 11) Max Grav 15=547(LC 30), 25=889(LC 29), 18=2635(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

3-4=-2346/172, 4-5=-2822/166, 5-7=-1078/52, 7-8=-1057/132, 8-9=0/481, 9-10=0/480, TOP CHORD

10-11=-57/602, 11-13=-576/204

BOT CHORD 24-25=-112/637, 23-24=-53/443, 22-23=-180/1586, 7-22=-348/130, 19-20=0/265, 18-19=-1538/155, 17-18=-656/133, 16-17=-382/257, 15-16=-94/535

3-24=-596/89, 3-23=-193/1906, 5-23=-24/1155, 5-22=-699/162, 20-22=0/369,

8-22=-122/1022, 8-19=-960/144, 9-19=-665/27, 10-19=-60/1916, 10-17=-6/651,

21

6x12 =

4x4 =

6x6 =

11-17=-566/113, 11-16=0/436, 13-15=-644/137, 3-25=-942/23, 10-18=-2724/64

NOTES-

WEBS

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Plates checked for a plus or minus 2 degree rotation about its center.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 15, 25, 18.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1

September 28,2020

17

except end verticals.

1 Row at midpt

6x6 =

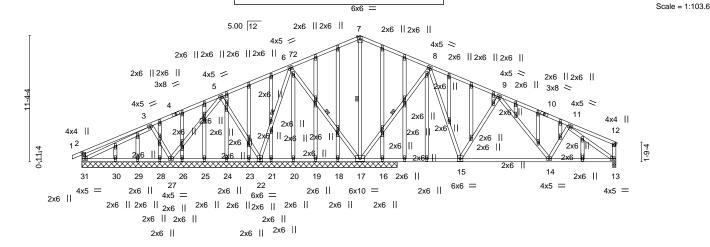
18

2x6 //

16

Structural wood sheathing directly applied or 2-11-13 oc purlins,

8-19, 9-19, 10-18


Rigid ceiling directly applied or 4-6-4 oc bracing.

4x5 =

15

4x5 =

RELEASE FOR Job Truss Truss Type SUMMIT HOMES CONSTRUCTION 142970384 AS NOTED ON PLANS REVIE H3-89 T1GE GABLE **DEVELOPMENT SERVICES** Job Reference (optional) LEE'S SUMMIT, MISSOURI8.420 s Aug 25 2020 MiTek Industries, Inc. Fri Sep 25 14:31:51 2020 Page 1 Mid America Truss, Jefferson City, MO - 65101, ID:Z_Eg7_y5DGhi_ENvQbP05\v24M0m-PbINtWNipLbmUBQDDFxgbAuMDl1qQbivLP2?Bbya3JM -0-10-8 0-10-8 31-3-0 37-6-0 43-9-0 48-0-0 10/06/2020 6-3-0 6-3-0 6-3-0 6-3-0 6-3-0 6-3-0 4-3-0

	1 0-0-0	10-0-0	23-0-0	1 34-0-0	42-0-0	40-0-0	
l l	8-0-0	8-0-0	9-0-0	9-0-0	8-0-0	6-0-0	
Plate Offsets (X,Y) [2:0-2-0),0-1-12], [32:0-2-14,0-1	-0], [34:0-2-14,0-1-	0], [43:0-2-9,0-1-0], [45:0	-2-9,0-1-0], [52:0-2-14,0-1	-0], [55:0-2-14,0-1-0]		
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Inci Code IRC2018	1.15 r YES	CSI. TC 0.67 BC 0.37 WB 0.43 Matrix-SH	DEFL. in Vert(LL) -0.03 1 Vert(CT) -0.12 1 Horz(CT) 0.01		PLATES MT20 Weight: 451 lb	GRIP 244/190 FT = 3%

LUMBER-**BRACING-**

TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 5-11-1 oc purlins, **BOT CHORD** 2x4 SP No.2 except end verticals.

2x4 SP No.2 **BOT CHORD**

16.0.0

WEBS Rigid ceiling directly applied or 6-0-0 oc bracing. **OTHERS** 2x4 SP No.2 WEBS 1 Row at midpt 6-22, 6-17, 7-17, 8-17

REACTIONS. All bearings 28-4-0 except (jt=length) 13=0-3-8.

Max Horz 31=104(LC 11) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 31, 13 except 22=-157(LC 11), 27=-133(LC 11), 17=-174(LC 12) Max Grav All reactions 250 lb or less at joint(s) 18, 19, 20, 21, 23, 24, 25, 26, 28, 29, 30, 16 except 22=410(LC 29), 27=440(LC 29), 17=1593(LC 2), 31=306(LC 29), 13=723(LC 30)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 5-6=0/274, 6-7=0/469, 7-8=0/469, 8-9=-422/98, 9-11=-855/83, 2-31=-301/91 **BOT CHORD** 14-15=0/571, 13-14=-39/753 WEBS 3-27=-362/137, 5-22=-306/110, 6-17=-342/81, 7-17=-649/4, 8-17=-851/145, 8-15=-12/599, 9-15=-483/123, 9-14=0/252, 11-13=-917/47

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 7) Plates checked for a plus or minus 2 degree rotation about its center.
- 8) Gable studs spaced at 2-0-0 oc.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 31, 13 except (it=lb) 22=157 27=133 17=174
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

September 28,2020

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANS/TPI1 Qu
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

RELEASE FOR Job Truss Truss Type SUMMIT HOMES CONSTRUCTION 142970385 AS NOTED ON PLANS REVIE H3-89 T2 ROOF SPECIAL DEVELOPMENT SERVICES DEVELOPMENT SERVICES | Job Reference (optional)

LEE'S SUMMIT, MISSOUR 8.420 s Aug 25 2020 MiTek Industries, Inc. Fri Sep 25 14:31:57 2020 Page 1 Mid America Truss, Jefferson City, MO - 65101, ID:Z_Eg7_y5DGhi_ENvQbP0\$Vz4M0m-Dlge8aSTPBLwC6uNZV24rR8KTAzeqEfokLVJPEya3JG 40-0-0 25-0-0 18-9-0 1-3-0 37-6-0 10/06<mark>/20</mark>20 3-6-3 6-3-0 6-3-0 -3-0 6-3-0 2-6-0 6x8 = Scale = 1:74.5 4x4 || 22 5.00 12 4x5 4x5 < 9 4x5 = 4x5 > 10 4x4 || 3x8 = 5-1-4 0-0 16 19 17 13 10x12 = 15 14 12 4x5 = 6x6 = 20 4x5 = 4x4 4x5 = 5.00 12 6x10 = 2-8-13 2-8-13 16-0-0 23-9-8 34-0-0 40-0-0 25-0-0 Plate Offsets (X,Y)--[20:Edge,0-2-0] LOADING (psf) DEFL. **PLATES** SPACING-2-0-0 CSI in (loc) I/defl L/d GRIP 20.0 TCLL (roof) Plate Grip DOL 1.15 TC 0.88 Vert(LL) -0.26 17 >999 360 MT20 244/190 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 ВС 0.79 Vert(CT) -0.59 16-17 >806 240 **TCDL** 10.0 Rep Stress Incr YES WB 0.72 Horz(CT) 0.33 12 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 FT = 3% Weight: 284 lb Matrix-SH BCDL 10.0 LUMBER-**BRACING-**TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 1-8-14 oc purlins, **BOT CHORD** 2x4 SP No.2 *Except* except end verticals. 17-19: 2x4 SP No.1 **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing, Except: **WEBS** 2x4 SP No.2 *Except* 6-0-0 oc bracing: 15-16. 1 Row at midpt

WEBS

1 Row at midpt

1-19: 2x4 SP No.1

REACTIONS. (size) 20=0-4-0, 12=Mechanical Max Horz 20=164(LC 8)

Max Uplift 20=-42(LC 11), 12=-1(LC 12) Max Grav 20=1588(LC 2), 12=1588(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-20=-1590/100, 1-2=-5032/258, 2-3=-4943/299, 3-5=-3729/159, 5-6=-2678/126,

6-7=-1784/112, 7-8=-1660/143, 8-9=-1557/122, 9-10=-1241/61

BOT CHORD 18-19=-220/3730, 17-18=-112/2821, 16-17=-22/2126, 13-14=0/1289, 12-13=-29/604

1-19=-206/4368, 3-19=-132/994, 3-18=-563/137, 5-18=-32/816, 5-17=-709/145, 6-17=-14/805, 6-16=-955/130, 14-16=0/1751, 8-16=-108/1921, 8-14=-1014/36,

9-14=-50/260, 9-13=-663/56, 10-13=0/915, 10-12=-1641/38

NOTES-

WEBS

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 2 degree rotation about its center.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Bearing at joint(s) 20 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 20, 12.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

6-16, 8-14, 9-14, 9-13, 10-12

RELEASE FOR Job Truss Truss Type SUMMIT HOMES CONSTRUCTION COMMON SUPPORTED ON PLANS REVIES DEVELOPMENT SERVICES 142970386 H3-89 T2GE Job Reference (optional) LEE'S SUMMIT, MISSOURI8.420 s Aug 25 2020 MiTek Industries, Inc. Fri Sep 25 14:32:00 2020 Page 1 Mid America Truss, Jefferson City, MO - 65101, ID:Z_Eg7_y5DGhi_ENvQbP05Vz4M0m-eJLnmbULi6kU3ZcyFebnT3m1eN9h1lkEQJj_0Zya3JD 10/06/2020 25-0 15-0-0 Scale = 1:79.2 6x6 = 2x6 2x6 || 14 15 5.00 12 2x6 || 2x6 || 13 2x6 || 16 2x6 II 12 45 2x6 || 11 17 2x6 || 18 2x6 || 2x6 II 10 2x6 || 2x6 || 19 2x6 || 2x6 II 4x4 || 2x6 || 20 8 3x8 = 21 22 2x6 || ₅ 6 2x6 || 2x6 || 4x4 0-11-4

40-0-0 Plate Offsets (X,Y)-- [23:Edge,0-2-0]

35

33

3x8 =

2x6 || 2x6 ||

32

31

30

29

28

2x6 || 2x6 ||

27

26

25

24 23

2x6 ||

4x4 =

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.12 BC 0.13 WB 0.13	DEFL. in (loc) Vert(LL) n/a - Vert(CT) n/a - Horz(CT) -0.00 23	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2018/TPI2014	Matrix-R			Weight: 321 lb	FT = 3%

LUMBER-**BRACING-**

2x4 SP No.2 TOP CHORD **BOT CHORD** 2x4 SP No.2 WEBS 2x4 SP No.2 2x4 SP No.2

44

4x4 =

43

42

41

40

39

2x6 || 2x6 ||

38

37

36

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **WEBS** 14-31, 13-32, 12-33, 11-35, 15-30, 16-29, 1 Row at midpt

17-28

REACTIONS. All bearings 40-0-0.

Max Horz 44=163(LC 8) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 23, 32, 33, 35, 36, 37, 38, 39, 40, 41, 43, 30, 29, 28, 27, 26,

25, 24

Max Grav All reactions 250 lb or less at joint(s) 44, 23, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 30,

29, 28, 27, 26, 25, 24

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

OTHERS

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) Plates checked for a plus or minus 2 degree rotation about its center.
- 7) Gable requires continuous bottom chord bearing.
- 8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 9) Gable studs spaced at 2-0-0 oc.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 23, 32, 33, 35, 36, 37, 38, 39, 40, 41, 43, 30, 29, 28, 27, 26, 25, 24.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

September 28,2020

RELEASE FOR Job Truss Truss Type SUMMIT HOMES CONSTRUCTION 142970387 AS NOTED ON PLANS REVIE DEVELOPMENT SERVICES H3-89 Т3 Common DEVELOPMENT SERVICES | Job Reference (optional)

LEE'S SUMMIT, MISSOUR 8.420 s Aug 25 2020 MiTek Industries, Inc. Fri Sep 25 14:32:05 2020 Page 1

ID:Z_Eg7_y5DGhi_ENvQbP05\/z4M0m-?H9gpJYUWfMn9KVw1BByA6TiGOqMi0CzZbRkhnya3J8 Mid America Truss, Jefferson City, MO - 65101, 6-8-0 10/06/2020 6-8-0 6-8-0 Scale = 1:27.0 4x5 = 2 6.00 12 3x4 <> 3x4 / 3 5 4x8 = 2x4 -11 2x4 11 LOADING (psf) SPACING-2-0-0 CSI. DEFL. I/defI L/d **PLATES** GRIP (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC Vert(LL) -0.01 >999 360 244/190 0.89 5 MT20 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 вс 0.29 Vert(CT) -0.06 4-5 >999 240 TCDI 10.0 Rep Stress Incr YES WB 0.11 Horz(CT) -0.00 4 n/a n/a

BRACING-

TOP CHORD

BOT CHORD

Matrix-P

LUMBER-

BCLL

BCDL

TOP CHORD 2x4 SP No.1 2x4 SP No.2 **BOT CHORD**

0.0

10.0

WEBS 2x4 SP No.2

REACTIONS.

6=0-4-0, 4=0-4-0 (size) Max Horz 6=61(LC 8) Max Uplift 6=-6(LC 11), 4=-6(LC 12) Max Grav 6=522(LC 2), 4=522(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Code IRC2018/TPI2014

1-2=-568/10, 2-3=-568/0, 1-6=-472/35, 3-4=-472/35 TOP CHORD

1-5=0/449, 3-5=0/449 **WEBS**

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 2 degree rotation about its center.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 4.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Weight: 68 lb

Structural wood sheathing directly applied or 2-2-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

FT = 3%

					RELEASE	FOR				
Job	Truss		Truss Type	С	ONSTRUC	CTION	Ply	SUMMIT HOMES		
H3-89	T3GE		Common Suppo	orted Gable DEV	TED ON PLA	NS REVIE	N 1	Job Reference (optional)		142970388
Mid America Truss,	Jefferson City	, MO - 65101,	'	LEE	'S SUMMIT, I	MISSOURI8	.420 s Au	g 25 2020 MiTek Industries, Inc.	Fri Sep 25 14:32:10 2	2020 Page 1
			6-8-0				hi_ENvQ	bP05Vz4M0m-LFyZs0ccLB_4G6 13-4-0	Ntqkn7tAAloPbQNHiijt	8VM_ya3J3
			6-8-0		10/06/202	20		6-8-0		
					4x5 =					Scale = 1:27.0
T					4					
		6.00 1	2 2x4				2x4	+ II		
			3				,			
							To.			
		2x4	///					2x4 6		
4		2						16		
4-4		15								
2x4	/								2x4	
224	"//								7	
1										Ţ
4										4-
1-0-4										1-0-1
1 1			***********			**********				1
	14	13 2x4	2x4	12	11	0	10 4	9	⁸ 2x4	
2)	x4	2X4	2x4	· 11	2x4	2X	4 11	2x4		
					13-4-0					
	·			1	13-4-0				· ·	
LOADING (psf)	0	SPACING-	2-0-0	CSI.		DEFL.	in	(loc) I/defl L/d	PLATES	GRIP
TCLL (roof) 20. Snow (Pf/Pg) 15.4/20.0		Plate Grip DOL	1.15	TC	0.07	Vert(LL)	n/a		MT20	244/190

LUMBER-

TCDL

BCLL

BCDL

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

2x4 SP No.2 WEBS **OTHERS** 2x4 SP No.2 BRACING-

Vert(CT)

Horz(CT)

0.04

0.03

вс

WB

Matrix-R

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,

n/a

n/a

999

n/a

except end verticals.

n/a

0.00

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

8

REACTIONS. All bearings 13-4-0.

10.0

0.0

10.0

(lb) -Max Horz 14=61(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 14, 8, 12, 13, 10, 9 Max Grav All reactions 250 lb or less at joint(s) 14, 8, 11, 12, 13, 10, 9

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Lumber DOL

Rep Stress Incr

Code IRC2018/TPI2014

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

1.15

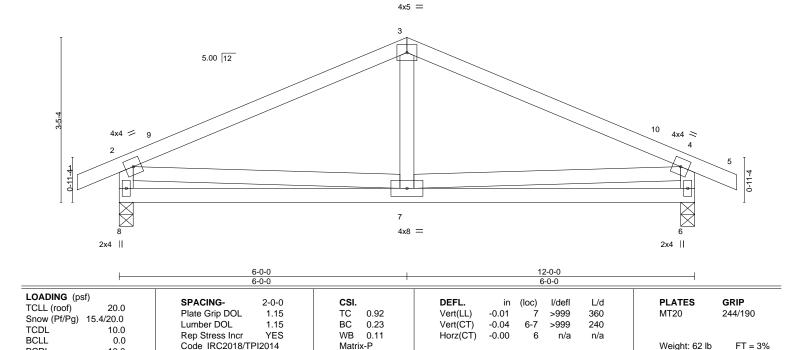
YES

- 5) Unbalanced snow loads have been considered for this design.
- 6) Plates checked for a plus or minus 2 degree rotation about its center.
- Gable requires continuous bottom chord bearing.
- 8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 9) Gable studs spaced at 2-0-0 oc.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 8, 12, 13, 10,
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Weight: 63 lb

FT = 3%

September 28,2020


Design valid for use only with MTRek connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSITP1 Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSITPI1 Qu
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

RELEASE FOR Job Truss Truss Type SUMMIT HOMES CONSTRUCTION 142970389 AS NOTED ON PLANS REVIE H3-89 Т4 Common **DEVELOPMENT SERVICES** Job Reference (optional) LEE'S SUMMIT, MISSOUR 8.420 s Aug 25 2020 MiTek Industries, Inc. Fri Sep 25 14:32:11 2020 Page 1 Mid America Truss, Jefferson City, MO - 65101, ID:Z_Eg7_y5DGhi_ENvQbP05Vz4M0m-pRWx4MdF6V6wuFy3ORIMPNjjIpuh6jhryWu3vQya3J2 -0-10-8 0-10-8 6-0-0 6-0-0 12-10-8 10/06/2020 6-0-0 0-10-8

BRACING-

TOP CHORD

BOT CHORD

Matrix-P

LUMBER-

BCDL

TOP CHORD 2x4 SP No.2 2x4 SP No.2

10.0

BOT CHORD WEBS 2x4 SP No.2

REACTIONS.

8=0-3-8, 6=0-3-8 (size) Max Horz 8=22(LC 10) Max Uplift 8=-18(LC 11), 6=-18(LC 12) Max Grav 8=532(LC 16), 6=532(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-546/3, 3-4=-546/0, 2-8=-487/44, 4-6=-487/44 TOP CHORD

WEBS 2-7=0/456, 4-7=0/456

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Plates checked for a plus or minus 2 degree rotation about its center.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Weight: 62 lb

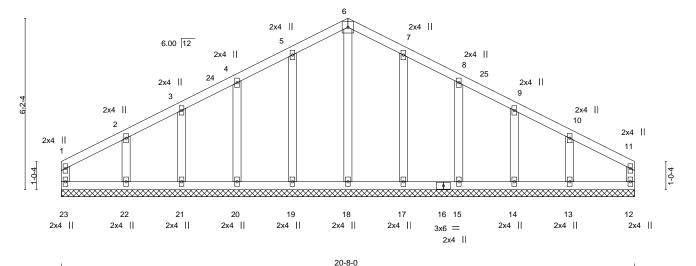
Structural wood sheathing directly applied or 2-2-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

FT = 3%

Scale: 1/2"=1'



RELEASE FOR Job Truss Truss Type SUMMIT HOMES CONSTRUCTION 142970390 COMMON SUPPORTED GAB ON PLANS REVIES

DEVELOPMENT SERVICES H3-89 T4GE Job Reference (optional) LEE'S SUMMIT, MISSOURI8.420 s Aug 25 2020 MiTek Industries, Inc. Fri Sep 25 14:32:13 2020 Page 1 Mid America Truss, Jefferson City, MO - 65101, ID:Z_Eg7_y5DGhi_ENvQbP05\v24M0m-mqehV2eVe6Me7Z6SVsKqUooGCcc1adn8PqNAzJya3J0 20-8-0 10/06/2020 10-4-0 10-4-0 Scale = 1:41.5 5x5 =

					20-8-0)						
Snow (Pf/Pg) 15.4/20 TCDL 10	0.0 .0 0.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI. TC BC WB	0.06 0.04 0.07	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
	0.0	Code IRC2018/TP	12014	Matri	x-R						Weight: 113 lb	FT = 3%

BRACING-LUMBER-

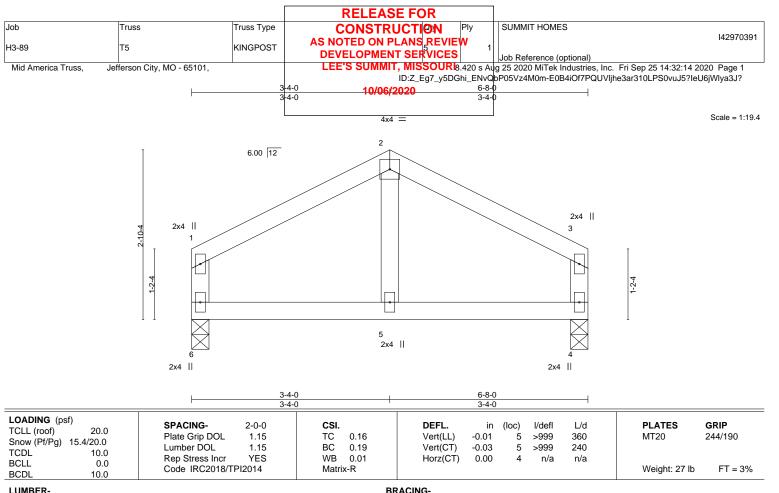
2x4 SP No.2 TOP CHORD TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, 2x4 SP No.2 BOT CHORD except end verticals.

2x4 SP No.2 **WEBS** BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **OTHERS** 2x4 SP No.2

REACTIONS. All bearings 20-8-0. (lb) -Max Horz 23=-82(LC 7)

Max Uplift All uplift 100 lb or less at joint(s) 23, 12, 19, 20, 21, 22, 17, 15, 14, 13 Max Grav All reactions 250 lb or less at joint(s) 23, 12, 18, 19, 20, 21, 22, 17, 15, 14, 13

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) Plates checked for a plus or minus 2 degree rotation about its center.
- 7) Gable requires continuous bottom chord bearing.
- 8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 9) Gable studs spaced at 2-0-0 oc.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 23, 12, 19, 20, 21, 22, 17, 15, 14, 13.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.2

REACTIONS. 6=0-3-8, 4=0-3-8 (size) Max Horz 6=47(LC 8)

Max Uplift 6=-3(LC 11), 4=-3(LC 12) Max Grav 6=263(LC 15), 4=263(LC 16)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

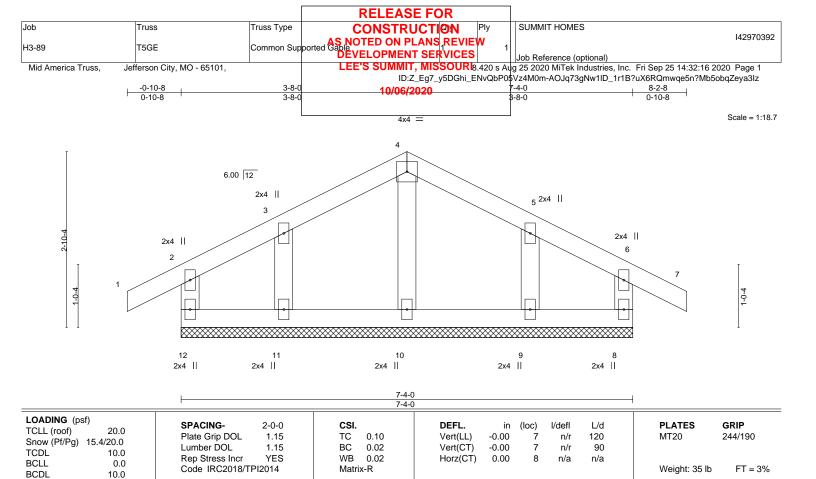
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 2 degree rotation about its center.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 4.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

September 28,2020



Design valid for use only with MiTek® cannectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-

LUMBER-

TOP CHORD 2x4 SP No.2

2x4 SP No.2 BOT CHORD 2x4 SP No.2 **WEBS OTHERS**

TOP CHORD

BOT CHORD 2x4 SP No.2

REACTIONS. All bearings 7-4-0. Max Horz 12=-50(LC 9) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 12, 8, 11, 9 Max Grav All reactions 250 lb or less at joint(s) 12, 8, 10, 11, 9

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 7) Plates checked for a plus or minus 2 degree rotation about its center.
- 8) Gable requires continuous bottom chord bearing.
- 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 8, 11, 9.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

September 28,2020

Structural wood sheathing directly applied or 7-4-0 oc purlins,

Rigid ceiling directly applied or 6-0-0 oc bracing.

except end verticals

RELEASE FOR Job Truss Truss Type SUMMIT HOMES CONSTRUCTION 142970393 AS NOTED ON PLANS REVIE DEVELOPMENT SERVICES H3-89 Ιт6 Common Job Reference (optional) LEE'S SUMMIT, MISSOUR 8.420 s Aug 25 2020 MiTek Industries, Inc. Fri Sep 25 14:32:18 2020 Page 1
ID:Z_Eg7_y5DGhi_ENvQbfP05Vz4M0m-6nRaYlieSe?xDK?PIPw?BsV?ddDbEk3tZ64xeWya3lx Mid America Truss, Jefferson City, MO - 65101, 22-10-8 0-10-8 10-10-8 0-10-8 11-0-0 16-6-0 22-0-0 10/06/2020 5-6-0 5-6-0 5-6-0 5-6-0

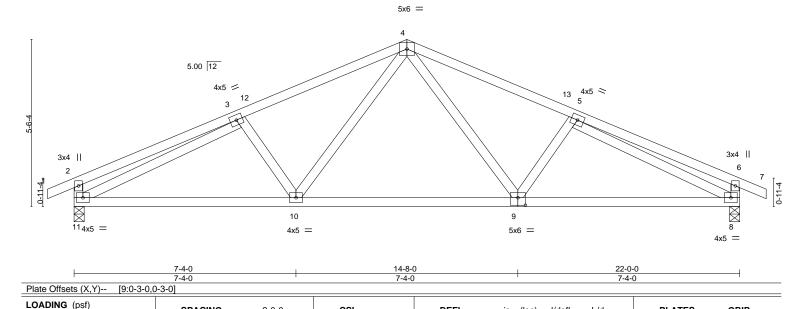


Plate Grip DOL 1.15 TC 0.53 Vert(LL) -0.05 9-10 >999 360 MT20 244/190 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 ВС 0.47 Vert(CT) -0.13 9-10 >999 240 **TCDL** 10.0 Rep Stress Incr YES WB 0.71 Horz(CT) 0.04 8 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 FT = 3% Weight: 118 lb Matrix-SH BCDL 10.0

BRACING-

TOP CHORD

BOT CHORD

CSI

DEFL.

in (loc)

except end verticals.

I/defl

L/d

Structural wood sheathing directly applied or 4-3-8 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing

LUMBER-TOP CHORD 2x4 SP No.2

TCLL (roof)

REACTIONS.

2x4 SP No.2 BOT CHORD

20.0

WEBS 2x4 SP No.2

(size) 11=0-4-0, 8=0-4-0 Max Horz 11=36(LC 11)

Max Uplift 11=-24(LC 11), 8=-24(LC 12) Max Grav 11=930(LC 2), 8=930(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

SPACING-

TOP CHORD $2\text{-}3\text{-}329/52,\ 3\text{-}4\text{-}-1286/51,\ 4\text{-}5\text{-}-1286/51,\ 5\text{-}6\text{-}-329/52,\ 2\text{-}11\text{-}-322/64,\ 6\text{-}8\text{-}-322/64}$

BOT CHORD 10-11=-36/1231, 9-10=0/905, 8-9=-0/1231

4-9=-12/413, 4-10=-12/413, 3-11=-1121/0, 5-8=-1121/0 WFBS

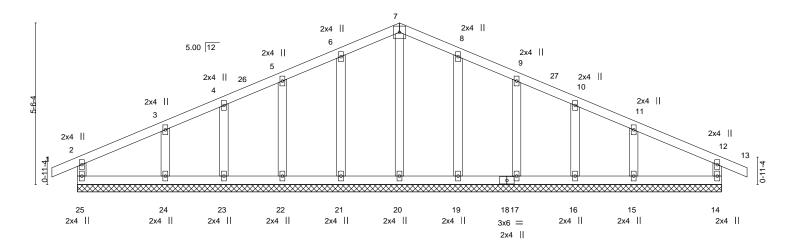
NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

2-0-0

- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Plates checked for a plus or minus 2 degree rotation about its center.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11, 8.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

PLATES


GRIP

Scale = 1:38.1

RELEASE FOR Job Truss Truss Type SUMMIT HOMES CONSTRUCTION 142970394 Common Supported Gable VELOPMENT SERVICES H3-89 T6GE Job Reference (optional) LEE'S SUMMIT, MISSOUR 8.420 s Aug 25 2020 MiTek Industries, Inc. Fri Sep 25 14:32:20 2020 Page 1
ID:Z_Eg7_y5DGhi_ENvQbP\p5Vz4M0m-2AZLzRku_GFfTe8oQqyTHHbSwR?iipmA0QZ1iPya3Iv Mid America Truss, Jefferson City, MO - 65101, 70-10-8 0-10-8 22-10-8 0-10-8 11-0-0 22-0-0 10/06/2020 11-0-0 11-0-0 Scale = 1:39.4

5x5 =

<u> </u>	22-0-0 22-0-0								
CADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.10 BC 0.04 WB 0.06 Matrix-R	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.00 -0.00 0.00	(loc) I 12 12 14	l/defl n/r n/r n/a	L/d 120 90 n/a	PLATES MT20 Weight: 114 lb	GRIP 244/190 FT = 3%

LUMBER-BRACING-

2x4 SP No.2 TOP CHORD TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, BOT CHORD 2x4 SP No.2 except end verticals. 2x4 SP No.2 **WEBS** BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 22-0-0. (lb) -Max Horz 25=36(LC 11)

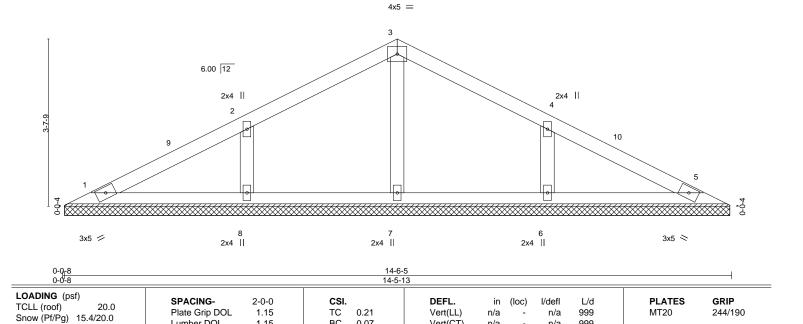
2x4 SP No.2

Max Uplift All uplift 100 lb or less at joint(s) 25, 14, 21, 22, 23, 24, 19, 17, 16, 15 Max Grav All reactions 250 lb or less at joint(s) 25, 14, 20, 21, 22, 23, 24, 19, 17, 16, 15

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

OTHERS


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads
- 7) Plates checked for a plus or minus 2 degree rotation about its center.
- 8) Gable requires continuous bottom chord bearing.
- 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 25, 14, 21, 22,
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

September 28,2020

RELEASE FOR Job Truss Truss Type SUMMIT HOMES CONSTRUCTION 142970395 AS NOTED ON PLANS REVIE H3-89 V1 Valley **DEVELOPMENT SERVICES** Job Reference (optional) LEE'S SUMMIT, MISSOUR 8.420 s Aug 25 2020 MiTek Industries, Inc. Fri Sep 25 14:32:21 2020 Page 1
ID:Z_Eg7_y5DGhi_ENvQbP05Vz4M0m-XM6jAnkWlZNW4oj_zYTipU7brrkWRGJKF4JbErya3lu Mid America Truss, Jefferson City, MO - 65101, 10/06/2020 7-3-2

Vert(CT)

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

n/a

0.00

n/a

n/a

Rigid ceiling directly applied or 10-0-0 oc bracing.

5

999

n/a

Structural wood sheathing directly applied or 6-0-0 oc purlins.

LUMBER-

TCDL

BCLL

BCDL

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2

OTHERS 2x4 SP No.2

REACTIONS. All bearings 14-5-5. Max Horz 1=-38(LC 7) (lb) -

10.0

0.0

10.0

Max Uplift All uplift 100 lb or less at joint(s) 6, 8

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 6=382(LC 16), 8=382(LC 15)

1.15

YES

вс

WB

Matrix-P

0.07

0.04

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Lumber DOL

Rep Stress Incr

Code IRC2018/TPI2014

4-6=-306/97, 2-8=-306/97 **WEBS**

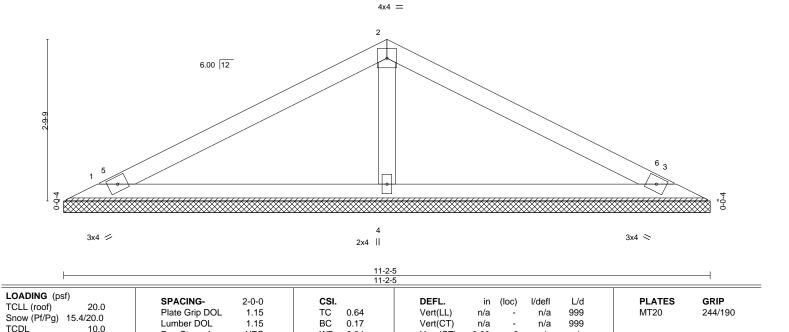
NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 2 degree rotation about its center.
- 6) Gable requires continuous bottom chord bearing.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 8.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Weight: 52 lb

FT = 3%

Scale = 1:25.0


September 28,2020

RELEASE FOR Job Truss Truss Type SUMMIT HOMES CONSTRUCTION 142970396 AS NOTED ON PLANS REVIE H3-89 V2 **GABLE DEVELOPMENT SERVICES** Job Reference (optional) LEE'S SUMMIT, MISSOUR 8.420 s Aug 25 2020 MiTek Industries, Inc. Fri Sep 25 14:32:24 2020 Page 1 Mid America Truss, Jefferson City, MO - 65101, ID:Z_Eg7_y5DGhi_ENvQbP05Vz4M0m-xxosopnO2UI4xFSZfg1PR7l?K2LZed0mx2XFrAya3Ir 10/06/2020 5-7-2 Scale = 1:19.9

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

0.00

3

n/a

Rigid ceiling directly applied or 10-0-0 oc bracing.

n/a

Structural wood sheathing directly applied or 6-0-0 oc purlins.

LUMBER-

BCLL

BCDL

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD

0.0

10.0

OTHERS 2x4 SP No.2

REACTIONS.

1=11-2-5, 3=11-2-5, 4=11-2-5 (size) Max Horz 1=28(LC 8) Max Uplift 1=-21(LC 11), 3=-26(LC 12)

Max Grav 1=238(LC 15), 3=238(LC 16), 4=394(LC 2)

Rep Stress Incr

Code IRC2018/TPI2014

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-4=-270/44 **WEBS**

NOTES-

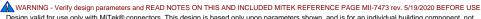
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

YES

WB

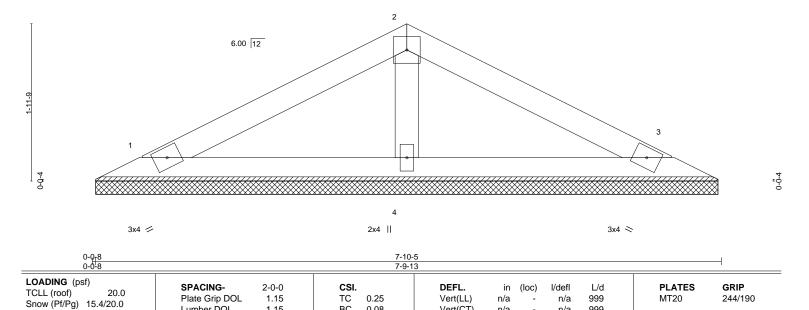
Matrix-P

0.04


- 4) Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 2 degree rotation about its center.
- 6) Gable requires continuous bottom chord bearing.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Weight: 36 lb

FT = 3%



RELEASE FOR Job Truss Truss Type SUMMIT HOMES CONSTRUCTION 142970397 AS NOTED ON PLANS REVIE H3-89 V3 Valley **DEVELOPMENT SERVICES** Job Reference (optional) LEE'S SUMMIT, MISSOUR 8.420 s Aug 25 2020 MiTek Industries, Inc. Fri Sep 25 14:32:28 2020 Page 1
ID:Z_Eg7_y5DGhi_ENvQbP\p5Vz4M0m-pi2MeAqv6jFWQtlKuW5LbzwnWtj?aQHMsgVS_xya3In Mid America Truss, Jefferson City, MO - 65101, 10/06/2020 3-11-2 3-11-2 4x4 = Scale = 1:14.4

LUMBER-

TCDI

BCLL

BCDL

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD

10.0

10.0

0.0

OTHERS 2x4 SP No.2

REACTIONS.

1=7-9-5, 3=7-9-5, 4=7-9-5 (size) Max Horz 1=19(LC 8) Max Uplift 1=-14(LC 11), 3=-17(LC 12)

Max Grav 1=155(LC 15), 3=155(LC 16), 4=262(LC 2)

Lumber DOL

Rep Stress Incr

Code IRC2018/TPI2014

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

1.15

YES

вс

WB

Matrix-P

0.08

0.02

Vert(CT)

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

n/a

0.00

n/a

n/a

Rigid ceiling directly applied or 10-0-0 oc bracing.

3

999

n/a

Structural wood sheathing directly applied or 6-0-0 oc purlins.

- 4) Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 2 degree rotation about its center.
- 6) Gable requires continuous bottom chord bearing.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Weight: 25 lb

FT = 3%

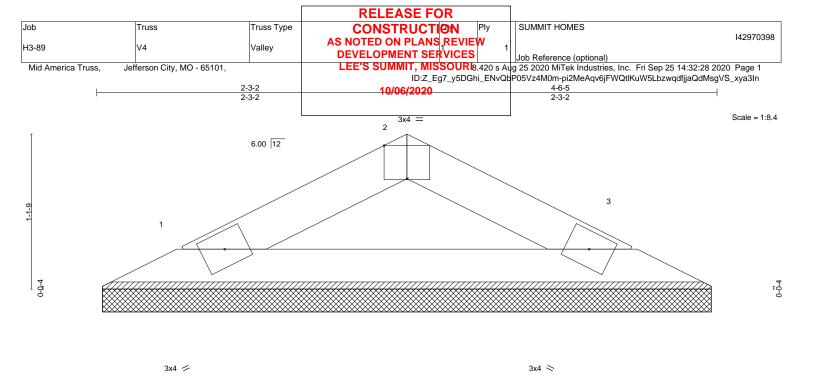


Plate Offsets (X,Y)--[2:0-2-0,Edge] LOADING (psf) SPACING-DEFL. **PLATES** GRIP 2-0-0 in (loc) I/defI L/d 20.0 TCLL (roof) Plate Grip DOL 1.15 TC 0.05 Vert(LL) 999 MT20 244/190 n/a n/a Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 ВС 0.10 Vert(CT) n/a n/a 999 **TCDL** 10.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 3 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 FT = 3% Matrix-P Weight: 12 lb

LUMBER-

BCDL

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD

BRACING-

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 4-6-5 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

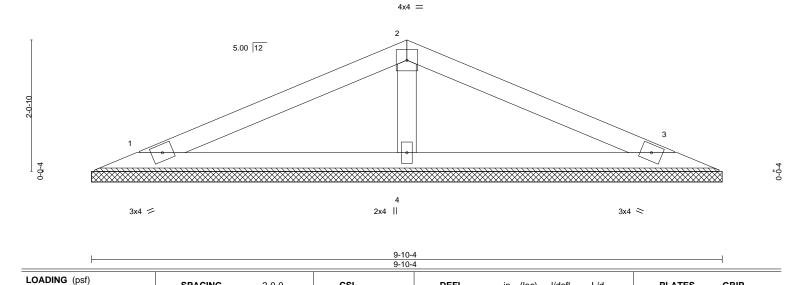
REACTIONS.

1=4-5-5, 3=4-5-5 (size) Max Horz 1=-9(LC 7) Max Uplift 1=-2(LC 11), 3=-2(LC 12) Max Grav 1=131(LC 2), 3=131(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 2 degree rotation about its center.
- 6) Gable requires continuous bottom chord bearing.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



RELEASE FOR Job Truss Truss Type SUMMIT HOMES CONSTRUCTION 142970399 AS NOTED ON PLANS REVIE H3-89 V5 GABLE **DEVELOPMENT SERVICES** Job Reference (optional) LEE'S SUMMIT, MISSOUR 8.420 s Aug 25 2020 MiTek Industries, Inc. Fri Sep 25 14:32:29 2020 Page 1
ID:Z_Eg7_y5DGhi_ENvQbP0\$Vz4M0m-lvblsWqXs1NN20KXRDda8ATvf33XJtQV5KF0WOya3Im Mid America Truss, Jefferson City, MO - 65101, 10/06/2020 4-11-2 4-11-2

DEFL.

Vert(LL)

Vert(CT)

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

n/a

n/a

0.00

I/defI

n/a

n/a

n/a

Rigid ceiling directly applied or 10-0-0 oc bracing.

3

L/d

999

999

n/a

Structural wood sheathing directly applied or 6-0-0 oc purlins.

PLATES

Weight: 30 lb

MT20

GRIP

244/190

FT = 3%

LUMBER-

REACTIONS.

TCLL (roof)

TCDI

BCLL

BCDL

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD

Snow (Pf/Pg) 15.4/20.0

20.0

10.0

0.0

10.0

OTHERS 2x4 SP No.2

> 1=9-10-4, 3=9-10-4, 4=9-10-4 (size)

Max Horz 1=18(LC 11)

Max Uplift 1=-17(LC 11), 3=-20(LC 12)

Max Grav 1=194(LC 15), 3=194(LC 16), 4=339(LC 2)

SPACING-

Plate Grip DOL

Rep Stress Incr

Code IRC2018/TPI2014

Lumber DOL

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

2-0-0

1.15

1.15

YES

CSI.

TC

вс

WB

Matrix-P

0.42

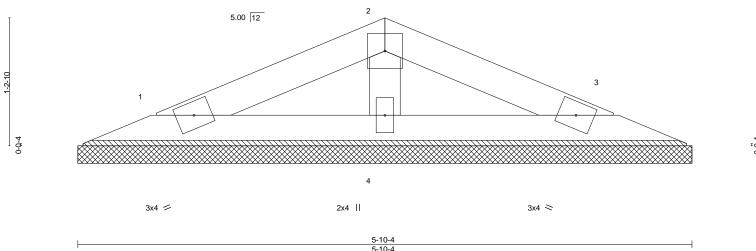
0.12

0.03

- 4) Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 2 degree rotation about its center.
- 6) Gable requires continuous bottom chord bearing.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Scale = 1:18.0

September 28,2020



RELEASE FOR Job Truss Truss Type SUMMIT HOMES CONSTRUCTION 142970400 AS NOTED ON PLANS REVIE H3-89 V6 GABLE **DEVELOPMENT SERVICES** Job Reference (optional) LEE'S SUMMIT, MISSOUR 8.420 s Aug 25 2020 MiTek Industries, Inc. Fri Sep 25 14:32:30 2020 Page 1
ID:Z_Eg7_y5DGhi_ENvQbP05Vz4M0m-m5973sr9dKVEfAvj?x8phO?9STQ92KveJ__Z3qya3II Mid America Truss, Jefferson City, MO - 65101, 10/06/2020 2-11-2 2-11-2 Scale = 1:11.0 4x4 =

Structural wood sheathing directly applied or 5-10-4 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LOADING (psf) SPACING-2-0-0 CSI. DEFL. L/d **PLATES** GRIP I/defI TCLL (roof) 20.0 Plate Grip DOL Vert(LL) MT20 244/190 1.15 TC 0.09 n/a n/a 999 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 вс 0.03 Vert(CT) 999 n/a n/a TCDI 10.0 Rep Stress Incr YES WB 0.01 Horz(CT) 0.00 3 n/a n/a BCLL 0.0 Code IRC2018/TPI2014 Matrix-P Weight: 16 lb FT = 3% BCDL 10.0

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD**

OTHERS 2x4 SP No.2

> 1=5-10-4, 3=5-10-4, 4=5-10-4 (size)

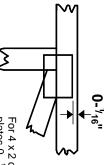
Max Horz 1=10(LC 11) Max Uplift 1=-9(LC 11), 3=-10(LC 12)

Max Grav 1=94(LC 15), 3=94(LC 16), 4=177(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 2 degree rotation about its center.
- 6) Gable requires continuous bottom chord bearing.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



Symbols

PLATE LOCATION AND ORIENTATION

offsets are indicated. Center plate on joint unless x, y and fully embed teeth Apply plates to both sides of truss Dimensions are in ft-in-sixteenths

plates 0- 1/16" from outside For 4 x 2 orientation, locate edge of truss.

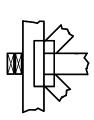
connector plates. required direction of slots in This symbol indicates the

REVIEUS Plate location details available in MiTek 20/20

NOTED ON PLANE SIZE

NOTED ON PLANE SIZE

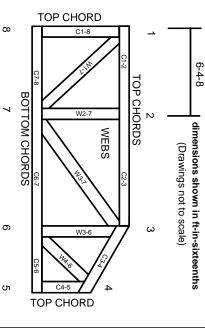
The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots. width measured perpendicular The first dimension is the plate


RELEASE FOR CONSTRUCTION

LATERAL BRACING LOCATION

by text in the bracing section of the output. Use T or I bracing if indicated. Indicated by symbol shown and/or

BEARING


Min size shown is for crushing only reaction section indicates joint Indicates location where bearings number where bearings occur. (supports) occur. Icons vary but

Industry Standards:

National Design Specification for Metal **Building Component Safety Information** Guide to Good Practice for Handling Design Standard for Bracing. Connected Wood Trusses. Installing & Bracing of Metal Plate Plate Connected Wood Truss Construction.

DSB-89: ANSI/TPI1:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

truss unless otherwise shown. Trusses are designed for wind loads in the plane of the

established by others. section 6.3 These truss designs rely on lumber values Lumber design values are in accordance with ANSI/TPI 1

© 2012 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473 rev. 5/19/2020

General Safety Notes

Damage or Personal Injury Failure to Follow Could Cause Property

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For bracing should be considered. may require bracing, or alternative Tor I wide truss spacing, individual lateral braces themselves

9

Never exceed the design loading shown and never stack materials on inadequately braced trusses.

ω

4

- Provide copies of this truss design to the building all other interested parties. designer, erection supervisor, property owner and
- Cut members to bear tightly against each other.
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.

ტ Ģ

- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.

9

- 10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted
- Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable project engineer before use. environmental, health or performance risks. Consult with
- Review all portions of this design (front, back, words is not sufficient. and pictures) before use. Reviewing pictures alone
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.