

RE: 400383 Lot 85 MN MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: N/A Roof Load: 45.0 psf

Design Program: MiTek 20/20 8.2 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 78 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	I40861142	A1	6/29/2020	27	I40861168	E1	6/29/2020
2	I40861143	A2	6/29/2020	28	I40861169	E2	6/29/2020
3	I40861144	A3	6/29/2020	29	I40861170	J1	6/29/2020
4	140861145	A4	6/29/2020	30	I40861171	J2	6/29/2020
5	I40861146	A5	6/29/2020	31	I40861172	J3	6/29/2020
6	I40861147	A6	6/29/2020	32	I40861173	J4	6/29/2020
7	I40861148	B1	6/29/2020	33	I40861174	J5	6/29/2020
8	140861149	B2	6/29/2020	34	140861175	J6	6/29/2020
9	140861150	B3	6/29/2020	35	140861176	J7	6/29/2020
10	I40861151	B4	6/29/2020	36	I40861177	J8	6/29/2020
11	140861152	B5	6/29/2020	37	I40861178	J 9	6/29/2020
12	140861153	B6	6/29/2020	38	I40861179	J10	6/29/2020
13	140861154	B7	6/29/2020	39	I40861180	J11	6/29/2020
14	I40861155	C1	6/29/2020	40	I40861181	J12	6/29/2020
15	140861156	C2	6/29/2020	41	I40861182	J13	6/29/2020
16	140861157	D1	6/29/2020	42	I40861183	J14	6/29/2020
17	140861158	D2	6/29/2020	43	I40861184	J15	6/29/2020
18	140861159	D3	6/29/2020	44	I40861185	J16	6/29/2020
19	I40861160	D4	6/29/2020	45	I40861186	J17	6/29/2020
20	I40861161	D5	6/29/2020	46	I40861187	J18	6/29/2020
21	I40861162	D6	6/29/2020	47	I40861188	J19	6/29/2020
22	I40861163	D7	6/29/2020	48	I40861189	J20	6/29/2020
23	I40861164	D8	6/29/2020	49	I40861190	J21	6/29/2020
24	I40861165	D9	6/29/2020	50	I40861191	J22	6/29/2020
25	I40861166	D10	6/29/2020	51	I40861192	J23	6/29/2020
26	I40861167	D11	6/29/2020	52	I40861193	J24	6/29/2020

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Garcia, Juan

My license renewal date for the state of Kansas is April 30, 2022. Kansas COA: E-943

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Garcia, Juan

RE: 400383 - Lot 85 MN

Site Information:

Project Customer: Project Name: Lot/Block: Address: City, County:

,,			
No.	Seal#	Truss Name	Date
53	I40861194	J25	6/29/2020
54	I40861195	J26	6/29/2020
55	I40861196	J27	6/29/2020
56	I40861197	J28	6/29/2020
57	I40861198	J29	6/29/2020
58	I40861199	J30	6/29/2020
59	I40861200	J31	6/29/2020
60	I40861201	LAY1	6/29/2020
61	I40861202	LAY2	6/29/2020
62	I40861203	LAY3	6/29/2020
63	I40861204	LAY4	6/29/2020
64	I40861205	P1	6/29/2020
65	I40861206	P2	6/29/2020
66	140861207	R1	6/29/2020
67	I40861208	V1	6/29/2020
68	I40861209	V2	6/29/2020
69	I40861210	V3	6/29/2020
70	I40861211	V4	6/29/2020
71	I40861212	V5	6/29/2020
72	I40861213	V6	6/29/2020
73	I40861214	V7	6/29/2020
74	I40861215	V8	6/29/2020
75	I40861216	V9	6/29/2020
76	140861217	V10	6/29/2020
77	I40861218	V11	6/29/2020
78	l40861219	V12	6/29/2020

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

Subdivision:

State:

RE: 400383 Lot 85 MN MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: N/A Roof Load: 45.0 psf Design Program: MiTek 20/20 8.2 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 78 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	140861142	A1	6/29/2020	27	140861168	E1	6/29/2020
2	140861143	A2	6/29/2020	28	140861169	E2	6/29/2020
3	140861144	A3	6/29/2020	29	140861170	J1	6/29/2020
4	140861145	A4	6/29/2020	30	I40861171	J2	6/29/2020
5	140861146	A5	6/29/2020	31	140861172	J3	6/29/2020
6	140861147	A6	6/29/2020	32	I40861173	J4	6/29/2020
7	I40861148	B1	6/29/2020	33	I40861174	J5	6/29/2020
8	I40861149	B2	6/29/2020	34	I40861175	J6	6/29/2020
9	I40861150	B3	6/29/2020	35	I40861176	J7	6/29/2020
10	I40861151	B4	6/29/2020	36	I40861177	J8	6/29/2020
11	140861152	B5	6/29/2020	37	I40861178	J9	6/29/2020
12	I40861153	B6	6/29/2020	38	I40861179	J10	6/29/2020
13	I40861154	B7	6/29/2020	39	I40861180	J11	6/29/2020
14	140861155	C1	6/29/2020	40	I40861181	J12	6/29/2020
15	140861156	C2	6/29/2020	41	I40861182	J13	6/29/2020
16	140861157	D1	6/29/2020	42	I40861183	J14	6/29/2020
17	I40861158	D2	6/29/2020	43	I40861184	J15	6/29/2020
18	I40861159	D3	6/29/2020	44	I40861185	J16	6/29/2020
19	140861160	D4	6/29/2020	45	I40861186	J17	6/29/2020
20	I40861161	D5	6/29/2020	46	I40861187	J18	6/29/2020
21	I40861162	D6	6/29/2020	47	I40861188	J19	6/29/2020
22	I40861163	D7	6/29/2020	48	I40861189	J20	6/29/2020
23	I40861164	D8	6/29/2020	49	I40861190	J21	6/29/2020
24	I40861165	D9	6/29/2020	50	I40861191	J22	6/29/2020
25	I40861166	D10	6/29/2020	51	I40861192	J23	6/29/2020
26	I40861167	D11	6/29/2020	52	I40861193	J24	6/29/2020

The truss drawing(s) referenced above have been prepared by

MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

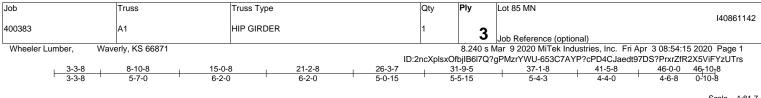
Truss Design Engineer's Name: Garcia, Juan

My license renewal date for the state of Missouri is December 31, 2020. Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

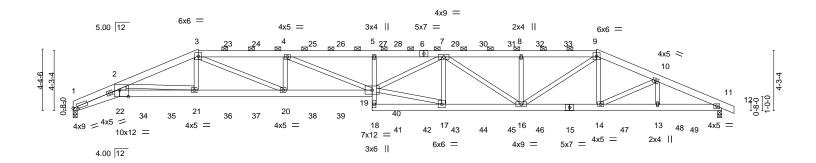
RE: 400383 - Lot 85 MN

Site Information:


Project Customer: Project Name: Lot/Block: Address: City, County:

,,			
No.	Seal#	Truss Name	Date
53	I40861194	J25	6/29/2020
54	I40861195	J26	6/29/2020
55	I40861196	J27	6/29/2020
56	I40861197	J28	6/29/2020
57	I40861198	J29	6/29/2020
58	I40861199	J30	6/29/2020
59	I40861200	J31	6/29/2020
60	I40861201	LAY1	6/29/2020
61	I40861202	LAY2	6/29/2020
62	I40861203	LAY3	6/29/2020
63	I40861204	LAY4	6/29/2020
64	I40861205	P1	6/29/2020
65	I40861206	P2	6/29/2020
66	140861207	R1	6/29/2020
67	I40861208	V1	6/29/2020
68	I40861209	V2	6/29/2020
69	I40861210	V3	6/29/2020
70	I40861211	V4	6/29/2020
71	I40861212	V5	6/29/2020
72	I40861213	V6	6/29/2020
73	I40861214	V7	6/29/2020
74	I40861215	V8	6/29/2020
75	I40861216	V9	6/29/2020
76	140861217	V10	6/29/2020
77	I40861218	V11	6/29/2020
78	l40861219	V12	6/29/2020

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200


Subdivision:

State:

Scale = 1:81.7

16023 Swingley Ridge Rd Chesterfield, MO 63017

3-3-8	8-10-8	15-0-8	21-2-8	26-3-7	31-9-5	37-1-8	41-5-8	46-0-0
3-3-8	5-7-0	6-2-0	6-2-0	5-0-15	5-5-15	5-4-3	4-4-0	4-6-8
Plate Offsets (X,Y)	[1:0-3-13,0-1-9], [22:0-7	-8,Edge]	1					
LOADING (psf) TCLL 25.0	SPACING- Plate Grip DOL	2-0-0 1.15	CSI. TC 0.58	DEFL. Vert(LL)	()	l/defl L/d >999 360	PLATES MT20	GRIP 197/144
TCDL 10.0	Lumber DOL	1.15	BC 0.51	Vert(CT)		>760 240		
BCLL 0.0 * BCDL 10.0	Rep Stress Incr Code IRC2018/T	NO PI2014	WB 0.63 Matrix-S	Horz(CT) Wind(LL)	0.24 11 0.53 19-20	n/a n/a >999 240	Weight: 808	lb FT = 10%
BOT CHORD 2x6 \$ 5-18: WEBS 2x4 \$	SPF No.2 SP 2400F 2.0E *Except* 2x4 SPF No.2 SPF No.2 *Except*			BRACING TOP CHO BOT CHO	RD Structura 2-0-0 oc	purlins (6-0-0 max.		I-0 oc purlins, except J.
2-22:	2x6 SPF No.2							
Max Max	ize) 1=0-3-8, 11=0-3-8 Horz 1=-74(LC 34) Uplift 1=-1231(LC 4), 11= Grav 1=2924(LC 1), 11=3						IT E	F MISS
TOP CHORD 1-2	x. Comp./Max. Ten All fo =-13403/5849, 2-3=-8301/	/3858, 3-4=-105	38/5133, 4-5=-11736/574	41, 5-7=-11588/56	71,		10:	JUAN
BOT CHORD 1-2 5-1	3=-7558/3656, 8-9=-7560/3 2=-5360/12309, 21-22=-4(9=-459/354, 17-18=-556/	611/10559, 20-2 138, 16-17=-41	21=-3513/7668, 19-20=-5	025/10537,			*	GARCIA
WEBS 2-2 4-1	14=-2418/5700, 11-13=-24 2=-1568/3700, 2-21=-285 9=-676/1394, 17-19=-364 6=-555/406, 9-16=-1300/2	9/1208, 3-21=-3 1/7675, 7-19=-1	658/3371, 7-17=-1460/80	01, 7-16=-1400/70	,		- 2.	IUMBER 000162101
NOTES-							1 SS	
1) 3-ply truss to be co Top chords conne	onnected together with 100 cted as follows: 2x6 - 2 rov nnected as follows: 2x6 - 2	ws staggered at	0-9-0 oc.	at 0-9-0 oc.			Participant and	JNAL
Webs connected a 2) All loads are consi	as follows: 2x6 - 2 rows sta dered equally applied to a	aggered at 0-9-0 Il plies, except i	oc, 2x4 - 1 row at 0-9-0 f noted as front (F) or bac	oc. k (B) face in the L		ection. Ply to	11110	AN GARCIA
	ave been provided to distri ve loads have been consid			s otherwise indica	ated.		S	CENSE
4) Wind: ASCE 7-16;	Vult=115mph (3-second g e) gable end zone; cantilev	gust) Vasd=91m	nph; TCDL=6.0psf; BCDL			osed; 1.60 plate		
 5) Provide adequate 6) This truss has bee 	drainage to prevent water in designed for a 10.0 psf	bottom chord liv					PRO	10952 JE
will fit between the	een designed for a live load bottom chord and any oth 1 considers parallel to gra	ner members.						ANSAS CIT
capacity of bearing		Ū			0		111	ONALEN
1=1231, 11=1265.			ig plate capable of WILLSI	anung 100 ib upi	a junita) excep	(()(—iD)		April 3,2
Continued on page 2							1	
Design valid for use a truss system. Befor building design. Bra	ify design parameters and REAL only with MiTek® connectors. Th ore use, the building designer mu acing indicated is to prevent buck or stability and to prevent collaps	his design is based ist verify the applica ling of individual tru	only upon parameters shown, ar bility of design parameters and p ss web and/or chord members o	nd is for an individual b properly incorporate thi only. Additional tempor	uilding component, no s design into the overa ary and permanent bra	: //	MiTe	, K

 building design.
 bracing indicated is to prevent bucking of individual truss web and/or chord members only.
 Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage.
 For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

 Ansurprin Quality Criteria, DSB-89 and BCSI Building Component Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 85 MN
400000					I40861142
400383	A1	HIP GIRDER	1	3	Job Reference (optional)
Wheeler Lumber, Wave	erly, KS 66871				lar 9 2020 MiTek Industries, Inc. Fri Apr 3 08:54:15 2020 Page 2

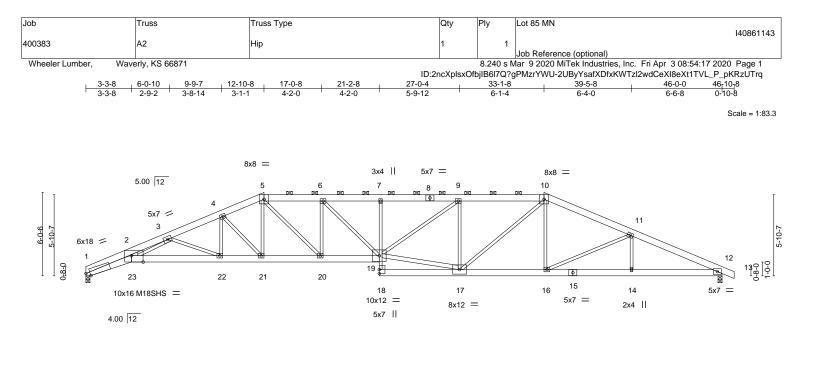
ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-653C7AYP?cPD4CJaedt97DS?PrxrZfR2X5ViFYzUTrs

NOTES-

- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 110 lb down and 121 lb up at 8-10-8, 115 lb down and 121 lb up at 10-11-4, 115 lb down and 121 lb up at 12-11-4, 115 lb down and 121 lb up at 12-11-4, 115 lb down and 121 lb up at 12-11-4, 115 lb down and 121 lb up at 12-0-12, 114 lb down and 121 lb up at 12-0-12, 114 lb down and 121 lb up at 22-0-12, 114 lb down and 121 lb up at 22-0-12, 114 lb down and 118 lb up at 22-0-12, 114 lb down and 118 lb up at 22-0-12, 114 lb down and 118 lb up at 33-0-12, and 114 lb down and 118 lb up at 35-0-12, and 108 lb down and 118 lb up at 35-0-12, and 108 lb down and 128 lb up at 35-0-12, and 108 lb down and 118 lb up at 35-0-12, and 108 lb down and 118 lb up at 32-0-0, 37 lb down and 24 lb up at 12-11-4, 37 lb down and 24 lb up at 12-11-4, 37 lb down and 24 lb up at 12-11-4, 37 lb down and 24 lb up at 12-11-4, 37 lb down and 24 lb up at 12-11-4, 37 lb down and 24 lb up at 23-0-0, 37 lb down and 23 lb up at 25-0-12, 37 lb down and 23 lb up at 29-0-12, 37 lb down and 23 lb up at 33-0-12, 37 lb down and 23 lb up at 33-0-12, 37 lb down and 23 lb up at 33-0-12, 37 lb down and 23 lb up at 33-0-12, 37 lb down and 23 lb up at 33-0-12, 37 lb down and 23 lb up at 33-0-12, 37 lb down and 23 lb up at 33-0-12, 37 lb down and 23 lb up at 33-0-12, 37 lb down and 23 lb up at 33-0-12, 37 lb down and 23 lb up at 33-0-12, 37 lb down and 23 lb up at 33-0-12, 37 lb down and 23 lb up at 33-0-12, 37 lb down and 23 lb up at 33-0-12, 37 lb down and 23 lb up at 33-0-12, 37 lb down and 23 lb up at 33-0-12, 37 lb down and 75 lb up at 41-0-12, and 142 lb down and 76 lb up at 43-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

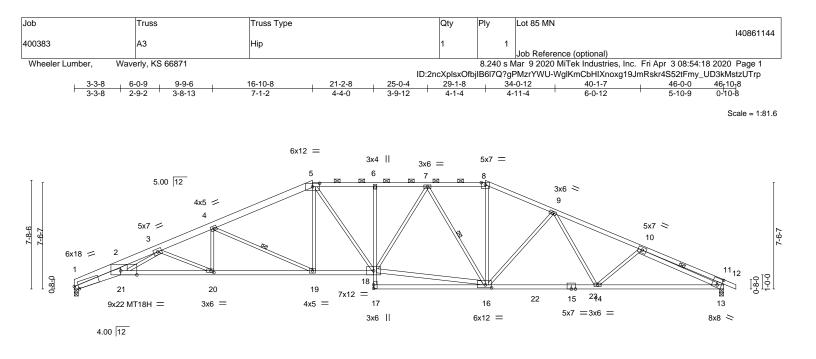
1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf)

Vert: 1-3=-70, 3-9=-70, 9-12=-70, 1-22=-20, 19-22=-20, 11-18=-20

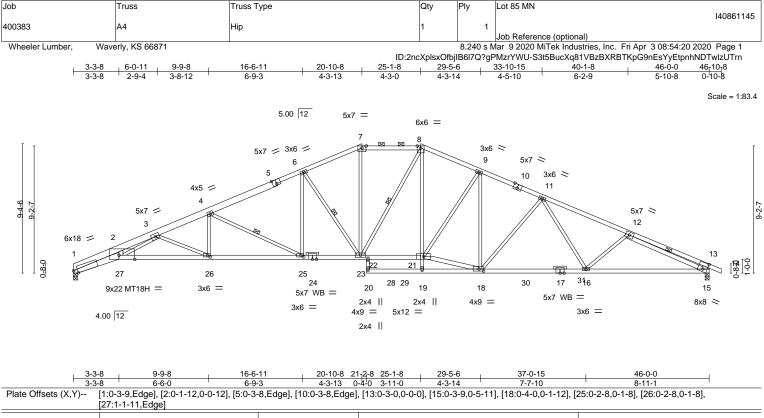
Concentrated Loads (lb)

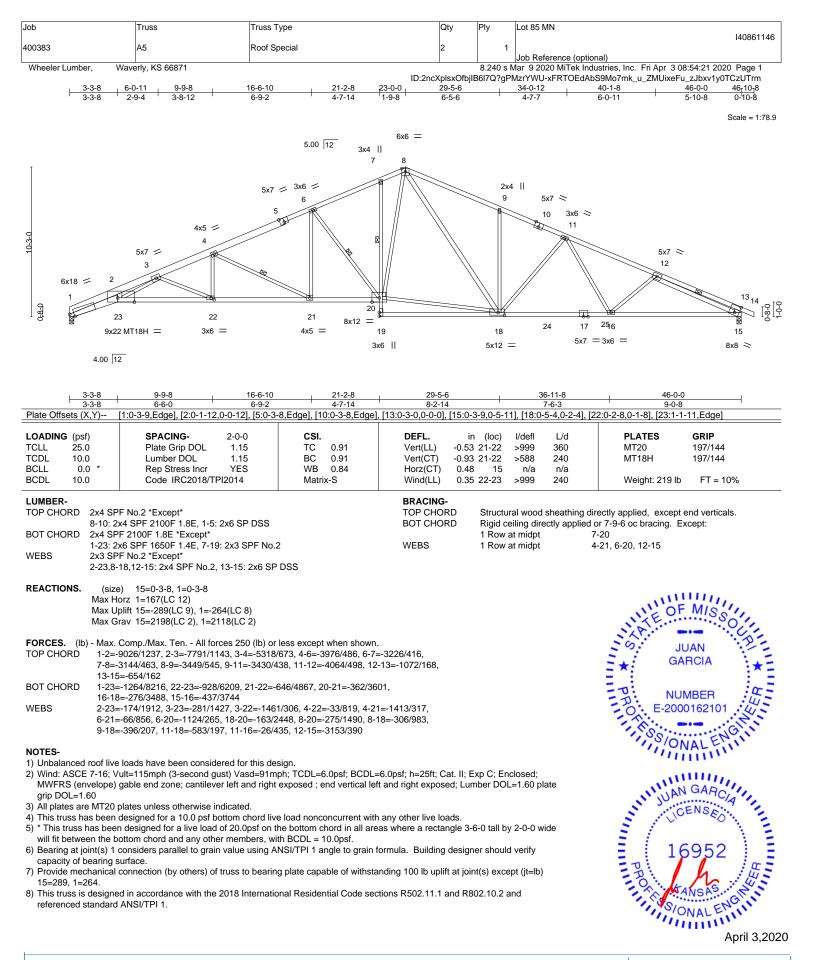
Vert: 3=-48(F) 6=-48(F) 15=-23(F) 21=-22(F) 20=-22(F) 4=-48(F) 9=-48(F) 14=-23(F) 23=-48(F) 24=-48(F) 25=-48(F) 26=-48(F) 27=-48(F) 28=-48(F) 29=-48(F) 30=-48(F) 31=-48(F) 31=-48(F) 32=-48(F) 33=-48(F) 35=-139(F) 35=-139(F) 35=-22(F) 37=-22(F) 38=-22(F) 39=-22(F) 40=-22(F) 41=-23(F) 42=-23(F) 43=-23(F) 44=-23(F) 45=-23(F) 46=-23(F) 46=-23(F) 47=-139(F) 48=-139(F) 49=-142(F)



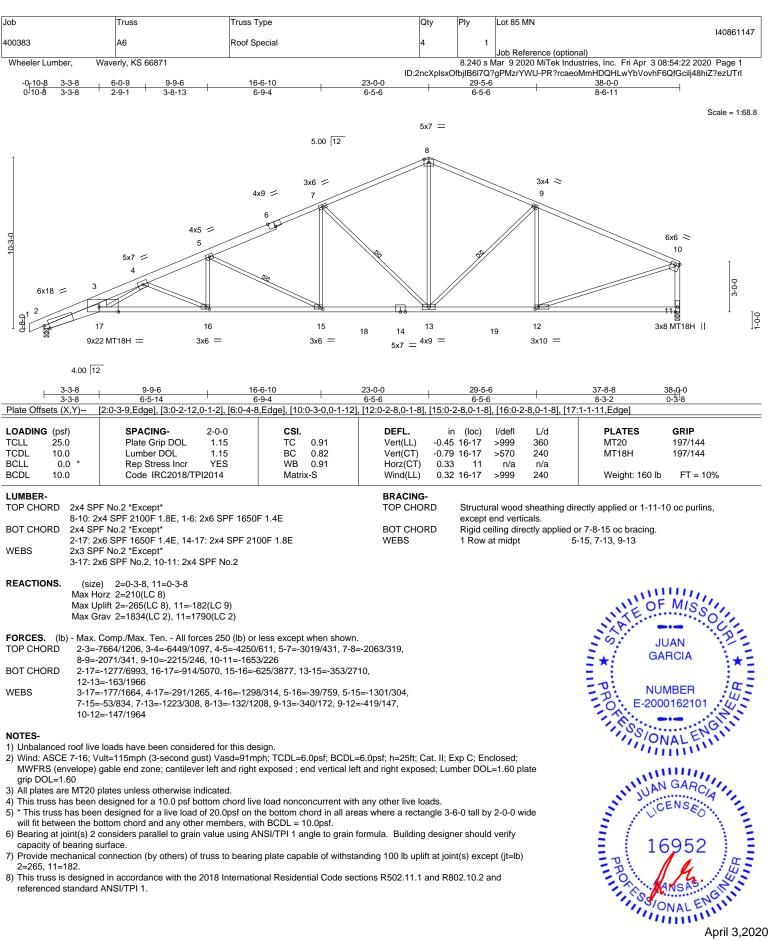
<u>3-3</u> 3-3	-8 6-6-0 3-	10-8 17-0-8 21-2-8 1-1 4-2-0 4-2-0	27-0-4 5-9-12	33-1-8 6-1-4	39-5-8 6-4-0	46-0-0 6-6-8
Plate Offsets (X,Y)	[1:0-3-9,Edge], [2:0-2-12,0-1-2], [23:0-10-2,Edge]				
LOADING(psf)TCLL25.0TCDL10.0BCLL0.0BCDL10.0	SPACING- 2-0 Plate Grip DOL 1. Lumber DOL 1. Rep Stress Incr YE Code IRC2018/TPI201	15 TC 0.82 15 BC 0.92 IS WB 0.98	Vert(LL) -0.54 Vert(CT) -0.96 Horz(CT) 0.45	5 19-20 >569 5 12 n/a	L/d PLATE 360 MT20 240 M18SH n/a 240 Weight	197/144
BOT CHORD 2x6 3 1-23 WEBS 2x3 3	2x6 SP DSS		BRACING- TOP CHORD BOT CHORD	except 2-0-0 oc purlins (2		
Max Max	ize) 1=0-3-8, 12=0-3-8 Horz 1=-102(LC 13) Uplift 1=-234(LC 4), 12=-266(LC Grav 1=2056(LC 1), 12=2129(L	,				E OF MISSO
TOP CHORD 1-2 6-7 BOT CHORD 1-2 7- WEBS 2-2 5-2 10- NOTES-	=-8977/1019, 2-3=-7495/918, 3- =-5269/821, 7-9=-5262/821, 9-10 3=-914/8181, 22-23=-734/6193, 19=-332/136, 17-18=-41/327, 16- 3=-163/1990, 3-23=-165/1111, 3 1=-92/649, 6-19=-97/545, 17-19: 17=-203/1162, 10-16=-18/397, 1	50 (lb) or less except when shown. 1=-5281/692, 4-5=-4583/670, 5-6=-4 2-4245/684, 10-11=-3851/563, 11- 21-22=-538/4813, 20-21=-484/4234 17=-376/3482, 14-16=-427/3918, 12 -22=-1489/269, 4-22=-41/779, 4-21 -494/3974, 9-19=-183/1309, 9-17= 1-16=-491/210, 5-20=-204/1204, 6-	12=-4392/539 4, 19-20=-614/4979, 2-14=-427/3918 =-837/168, -1304/307,		S * PROKES	JUAN GARCIA NUMBER E-2000162101
 Wind: ASCE 7-16 MWFRS (envelop grip DOL=1.60 Provide adequate All plates are MT2 All plates are 4x5 This truss has bee * This truss has be 	e) gable end zone; cantilever left drainage to prevent water pondii 0 plates unless otherwise indicated MT20 unless otherwise indicated an designed for a 10.0 psf bottom een designed for a live load of 20	asd=91mph; TCDL=6.0psf; BCDL= and right exposed ; end vertical left ng. ed. chord live load nonconcurrent with .0psf on the bottom chord in all area	and right exposed; Lu	nber DOL=1.60 plat	S. S. S.	JUAN GARCIA
 Bearing at joint(s) capacity of bearin Provide mechanic 1=234, 12=266. 	g surface. al connection (by others) of truss gned in accordance with the 201	mbers. e using ANSI/TPI 1 angle to grain fo to bearing plate capable of withstar 8 International Residential Code se	nding 100 lb uplift at joi	nt(s) except (jt=lb)	PROFIL	16952
		e size or the orientation of the purlir	n along the top and/or b	oottom chord.		April 3,2020
Design valid for us	only with MiTek® connectors. This desig	ON THIS AND INCLUDED MITEK REFEREN n is based only upon parameters shown, and nor the anolicability of design narameters and nor	l is for an individual building c	omponent, not		

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Mitek[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

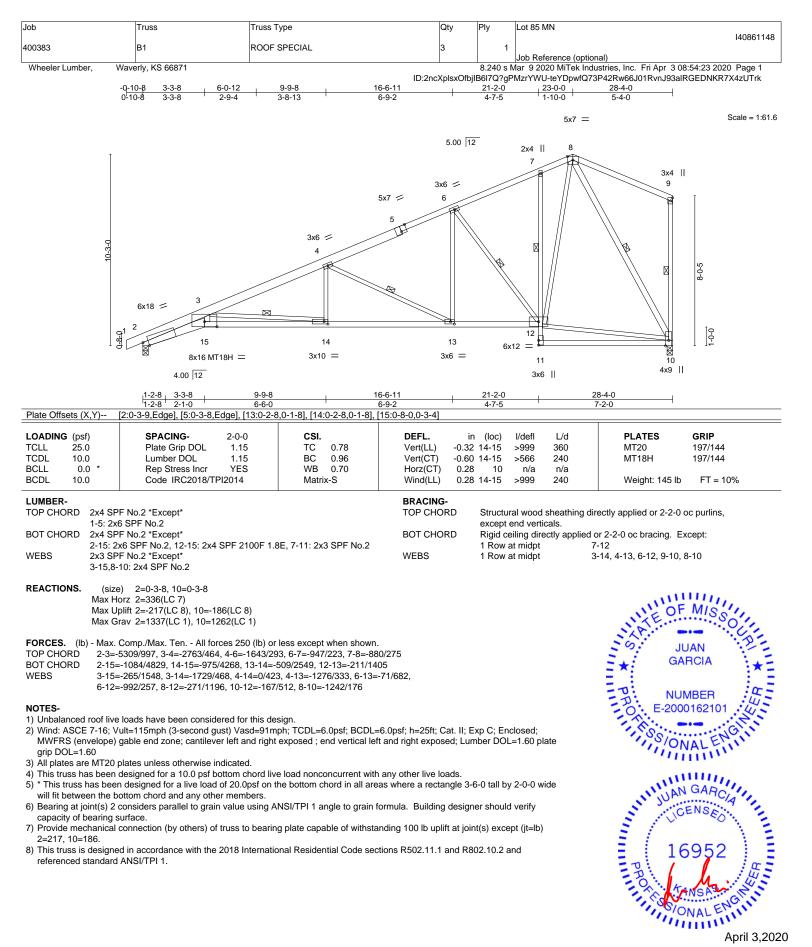

Plate Offsets (X,Y) [1:0-3-9,Edge], [2:0-2-12,0-1-2], [5:0-6-0,0-2-15], [11:0-3-0,0-0-0], [13:0-3-9,0-5-11], [16:0-5-4,0-2-8], [20:0-2-8,0-1-8], [21:1-1-11,Edge] LOADING (psf) TCLL SPACING- 25:0 2-0-0 Plate Grip DOL CSI. 1.15 DEFL. in (loc) I/deft Plate MT20 TCDL 0.0 Lumber DOL 1.15 TC 0.87 Vert(L1) -0.53 19-20 >999 360 MT20 BCLL 0.0 Rep Stress Incr YES WB 0.83 Horz(CT) 0.49 13 n/a M120 BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Wind(LL) 0.32 20-21 >999 240 Weight: 213 LUMBER- TOP CHORD 2x4 SPF No.2 *Except* TOP CHORD Structural wood sheathing directly applied or 1-1- except end verticals, and 2-0-0 oc purlins (2-8-1 BOT CHORD 2x4 SPF No.2 *Except* BOT CHORD Structural wood sheathing directly applied or 1-0-0-0 oc bracing 2-2-0 oc bracing 1-21, 20-21. WEBS 1 Row at midpt 4-19, 7-16, 10-13 WEBS 2x3 SPF No.2 *Except* WEBS 1 Row at midpt 4-19, 7-16, 10-13 Max		<u> 21-2-8</u> 4-4-0	9-9-6 <u>16-10-8</u> 6-5-15 7-1-2	3-3-8				
TCLL 25.0 Plate Grip DOL 1.15 TC 0.87 Vert(LL) -0.53 19-20 >999 360 MT20 TCDL 10.0 Lumber DOL 1.15 BC 0.92 Vert(LL) -0.53 19-20 >577 240 MT18H BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Wind(LL) 0.32 20-21 >999 240 Weight: 213 LUMBER- Code IRC2018/TPI2014 Matrix-S Wind(LL) 0.32 20-21 >999 240 Weight: 213 LUMBER- TC CHORD 2x4 SPF No.2 "Except" TC ChORD Structural wood sheathing directly applied or 10-0 oc braing 1-2 22 20 oc braing: 1-21,20-21. Weight: 213 WEBS 2x3 SPF No.2 16-18,10-13: 2x4 SPF No.2, 11-13: 2x6 SP DSS WEBS 1 Row at midpt 4-19, 7-16, 10-13 REACTIONS. (size) 1=0-3-8, 13=-0-3-8 Max Horz 1=-212(LC 9) Max Horz 1=-212(LC 9), 13=-237(LC 9) WEBS 1 Row at midpt 4-19, 7-16, 10-13 TOP CHORD 1-2=-9173/949, 2-3=-7684/887, 3-4=-5337/528, 4-5=								
TOP CHORD 2x4 SPF No.2 *Except* TOP CHORD Structural wood sheathing directly applied or 1-1- except end verticals, and 2-0-0 oc purlins (2-8-1 BOT CHORD 2x4 SPF 1650F 1.4E, *Except* BOT CHORD BOT CHORD Recept end verticals, and 2-0-0 oc purlins (2-8-1 1-2: 2x6 SPF 1650F 1.4E, 6-17: 2x3 SPF No.2 BOT CHORD BOT CHORD Rigid ceiling directly applied or 10-0-0 oc brains 2-2-0 oc brains; 1-21; 2x6-2-1. WEBS 2x3 SPF No.2 *Except* WEBS WEBS 1-0:3-8, 13=0-3-8 Max Horz 1=-121(LC 9) Max Horz 1=-121(LC 9), 13=-237(LC 9) Max Grav 1=2118(LC 2), 13=2199(LC 2) 1 Row at midpt 4-19, 7-16, 10-13 FORCES. (lb) -Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-9173/949, 2-3=-768/4887, 3-4=-5337/528, 4-5=-3962/471, 5-6=-3860/509, 6-7=-3851/507, 7-8=-3117/416, 8-9=-3420/433, 9-10=-4068/412, 10-11=-1075/156, 11-13=-658/158 BOT CHORD 1-21=-954/8366, 20-21=-674/6204, 19-20=-444/4892, 18-19=-258/3623, 6-18=-310/121, 14-16=-270/3492, 13-14=-331/3744 WEBS 2-21=-108/2067, 3-21=-236/1325, 3-20=-1426/250, 4-20=-8/810, 4-19=-1415/318, 5-19=-58/845, 5-18=-104/598, 16-18=-297/3355, 7-18=-66/643, 7-16=-1016/179, 8-16=-76/1077, 9-16=-583/227, 9-14=-27/423, 10-13=-3152/344	.87 Vert(LL) -0.53 19-20 >999 360 MT20 197/144 .92 Vert(CT) -0.95 19-20 >577 240 MT18H 197/144 .83 Horz(CT) 0.49 13 n/a n/a 14	TC 0.87 BC 0.92 WB 0.83	Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	TCLL 25.0 TCDL 10.0 BCLL 0.0 *				
Max Horz 1=-121(LC 9) Max Uplift 1=-212(LC 8), 13=-237(LC 9) Max Grav 1=2118(LC 2), 13=2199(LC 2) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-9173/949, 2-3=-7684/887, 3-4=-5337/528, 4-5=-3982/471, 5-6=-3860/509, 6-7=-3851/507, 7-8=-3117/416, 8-9=-3420/433, 9-10=-4068/412, 10-11=-1075/156, 11-13=-658/158 BOT CHORD 1-21=-954/8366, 20-21=-674/6204, 19-20=-444/4892, 18-19=-258/3623, 6-18=-310/121, 14-16=-270/3492, 13-14=-331/3744 WEBS 2-21=-108/2067, 3-21=-236/1325, 3-20=-1426/250, 4-20=-8/810, 4-19=-1415/318, 5-19=-58/845, 5-18=-104/598, 16-18=-297/3355, 7-18=-66/643, 7-16=-1016/179, 8-16=-76/1077, 9-16=-583/227, 9-14=-27/423, 10-13=-3152/344	TOP CHORDStructural wood sheathing directly applied or 1-10-13 oc purlins, except end verticals, and 2-0-0 oc purlins (2-8-13 max.): 5-8.BOT CHORDRigid ceiling directly applied or 10-0-0 oc bracing, 2-2-0 oc bracing: 1-21,20-21.WEBS1 Row at midpt4-19, 7-16, 10-13		6 SP DSS F 2100F 1.8E *Except* x6 SPF 1650F 1.4E, 6-17: 2x3 SPF No. F No.2 *Except*	TOP CHORD 2x4 SP 1-5: 2x BOT CHORD 2x4 SP 1-21: 2 WEBS 2x3 SP				
TOP CHORD 1-2=-9173/949, 2-3=-7684/887, 3-4=-5337/528, 4-5=-3982/471, 5-6=-3860/509, 6-7=-3851/507, 7-8=-3117/416, 8-9=-3420/433, 9-10=-4068/412, 10-11=-1075/156, 11-13=-658/158 BOT CHORD 1-21=-954/8366, 20-21=-674/6204, 19-20=-444/4892, 18-19=-258/3623, 6-18=-310/121, 14-16=-270/3492, 13-14=-331/3744 WEBS 2-21=-108/2067, 3-21=-236/1325, 3-20=-1426/250, 4-20=-8/810, 4-19=-1415/318, 5-19=-58/845, 5-18=-104/598, 16-18=-297/3355, 7-18=-66/643, 7-16=-1016/179, 8-16=-76/1077, 9-16=-583/227, 9-14=-27/423, 10-13=-3152/344	OF MISSO		orz 1=-121(LC 9) plift 1=-212(LC 8), 13=-237(LC 9)	Max H Max U				
14-16=-270/3492, 13-14=-331/3744 WEBS 2-21=-108/2067, 3-21=-236/1325, 3-20=-1426/250, 4-20=-8/810, 4-19=-1415/318, 5-19=-58/845, 5-18=-104/598, 16-18=-297/3355, 7-18=-66/643, 7-16=-1016/179, 8-16=-76/1077, 9-16=-583/227, 9-14=-27/423, 10-13=-3152/344	I71, 5-6≕-3860/509, /412, 10-11≕-1075/156, GARCIA	8, 4-5=-3982/471, 5-6=-3 3, 9-10=-4068/412, 10-1	9173/949, 2-3=-7684/887, 3-4=-5337/52 3851/507, 7-8=-3117/416, 8-9=-3420/43 ==-658/158	TOP CHORD 1-2=- 6-7=- 11-13				
 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) All plates are MT20 plates unless otherwise indicated. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 	/810, 4-19=-1415/318, .43, 7-16=-1016/179,	BOT CHORD 1-21=-954/8366, 20-21=-674/6204, 19-20=-444/4892, 18-19=-258/3623, 6-18=-310/121, 14-16=-270/3492, 13-14=-331/3744 WEBS 2-21=-108/2067, 3-21=-236/1325, 3-20=-1426/250, 4-20=-8/810, 4-19=-1415/318, 5-19=-58/845, 5-18=-104/598, 16-18=-297/3355, 7-18=-66/643, 7-16=-1016/179,						
 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 7) Bearing at joint(s) 1 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=212, 13=237. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 	vertical left and right exposed; Lumber DOL=1.60 plate surrent with any other live loads. d in all areas where a rectangle 3-6-0 tall by 2-0-0 wide Opsf. e to grain formula. Building designer should verify e of withstanding 100 lb uplift at joint(s) except (jt=lb) I Code sections R502.11.1 and R802.10.2 and	oh; TCDL=6.0psf; BCDL= exposed ; end vertical lef e load nonconcurrent with the bottom chord in all are th BCDL = 10.0psf. NSI/TPI 1 angle to grain f g plate capable of withsta nal Residential Code sec	ult=115mph (3-second gust) Vasd=91m gable end zone; cantilever left and right ainage to prevent water ponding. plates unless otherwise indicated. designed for a 10.0 psf bottom chord liv n designed for a live load of 20.0psf on t ottom chord and any other members, wi considers parallel to grain value using A surface. connection (by others) of truss to bearin d in accordance with the 2018 Internatio ANSI/TPI 1.	 Unbalanced roof live Wind: ASCE 7-16; V MWFRS (envelope) grip DOL=1.60 Provide adequate dr All plates are MT20 This truss has been * This truss has been * This truss has been * This truss has been the b Bearing at joint(s) 1 capacity of bearing s Provide mechanical 1=212, 13=237. This truss is designe referenced standard 				

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property dmage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



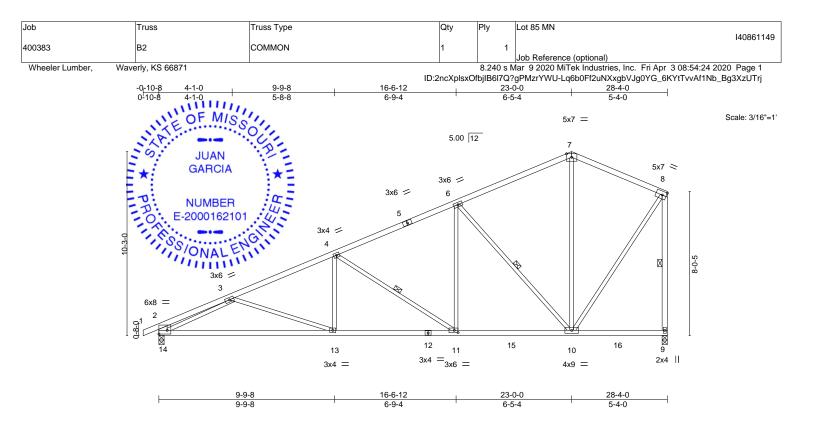
	[27:1-1-11,Edge]							
LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.89 BC 0.96 WB 0.81 Matrix-S	Vert(LL) -0.56 Vert(CT) -0.97 Horz(CT) 0.50	(loc) l/defl 25-26 >974 25-26 >563 15 n/a 26-27 >999	L/d 360 240 n/a 240	PLATES MT20 MT18H Weight: 222 lb	GRIP 197/144 197/144 FT = 10%	
BOT CHORD 2x4 SF	PF No.2 *Except* 6 SP DSS PF 2100F 1.8E *Except* x6 SPF 1650F 1.4E, 21-24: 2x4 SPF No	0.2	BRACING- TOP CHORD BOT CHORD WEBS	2-0-0 oc purlins	(3-0-2 max.): 7-8 ectly applied or 2	tly applied, except 6 8. 2-2-0 oc bracing. 5, 6-23, 8-23, 12-15	end verticals, and	
2-27,12 OTHERS 2x3 SP	№ No.2 *Except* 2-15,18-21: 2x4 SPF No.2, 13-15: 2x6 S № No.2	P DSS				<u></u>	1996	
Max H Max U	e) 1=0-3-8, 15=0-3-8 orz 1=151(LC 12) plift 1=-248(LC 8), 15=-273(LC 9) irav 1=2178(LC 2), 15=2262(LC 2)					S. JU	MISSOUT	
TOP CHORD 1-2=- 7-8=-	Comp./Max. Ten All forces 250 (lb) or 9296/1143, 2-3=-8026/1063, 3-4=-5510 3179/373, 8-9=-3475/354, 9-11=-3578/4 5=-654/162	, 618, 4-6=-4136/438, 6-7	=-3487/380,				MBER	
BOT CHORD 1.27=-1161/8462, 26-27=-846/6409, 25-26=-580/5046, 23-25=-300/3746, 22-23=-103/3185, 21-22=-103/3185, 16-18=-243/3623, 15-16=-402/3872 WEBS 2-27=-151/1970, 3-27=-267/1455, 3-26=-1483/290, 4-26=-26/836, 4-25=-1451/312, 0 E-2000162101								
 Wind: ASCE 7-16; V MWFRS (envelope) grip DOL=1.60 Provide adequate dr All plates are MT20 This truss has been * This truss has bee will fit between the b 	e loads have been considered for this de /ult=115mph (3-second gust) Vasd=91m gable end zone; cantilever left and right rainage to prevent water ponding. plates unless otherwise indicated. designed for a 10.0 psf bottom chord liv n designed for a live load of 20.0psf on t vottom chord and any other members, wi	ph; TCDL=6.0psf; BCDL= exposed ; end vertical le e load nonconcurrent with he bottom chord in all are th BCDL = 10.0psf.	ft and right exposed; Lur h any other live loads. eas where a rectangle 3-	nber DOL=1.60 pi 6-0 tall by 2-0-0 w	late	PRO 16	GARCIA ENSEO 952	
capacity of bearing s 8) Provide mechanical 1=248, 15=273.	considers parallel to grain value using A surface. connection (by others) of truss to bearin ed in accordance with the 2018 Internatio	g plate capable of withsta	anding 100 lb uplift at joir	nt(s) except (jt=lb)		ROCK SOIO	NALENGILL	
referenced standard 10) Graphical purlin rep	ANSI/TPI 1. presentation does not depict the size or	the orientation of the purl	in along the top and/or b	ottom chord.			April 3,2020	
Design valid for use o a truss system. Before building design. Braci is always required for fabrication, storage, d	design parameters and READ NOTES ON THIS A nly with MiTek® connectors. This design is based a use, the building designer must verify the applicat ing indicated is to prevent buckling of individual trus stability and to prevent collapse with possible pers- elivery, erection and bracing of trusses and truss s available from Truss Plate Institute, 2670 Crain Hig	only upon parameters shown, ar pility of design parameters and p ss web and/or chord members o onal injury and property damage rstems, see ANSITTP	Id is for an individual building co roperly incorporate this design nly. Additional temporary and p b. For general guidance regardi I Quality Criteria, DSB-89 and	omponent, not into the overall permanent bracing ng the	ponent	16023 Swingle Chesterfield, N		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


16023 Swingley Ridge Rd Chesterfield, MO 63017

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH1</u> Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH1</u> Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

April 3,2020

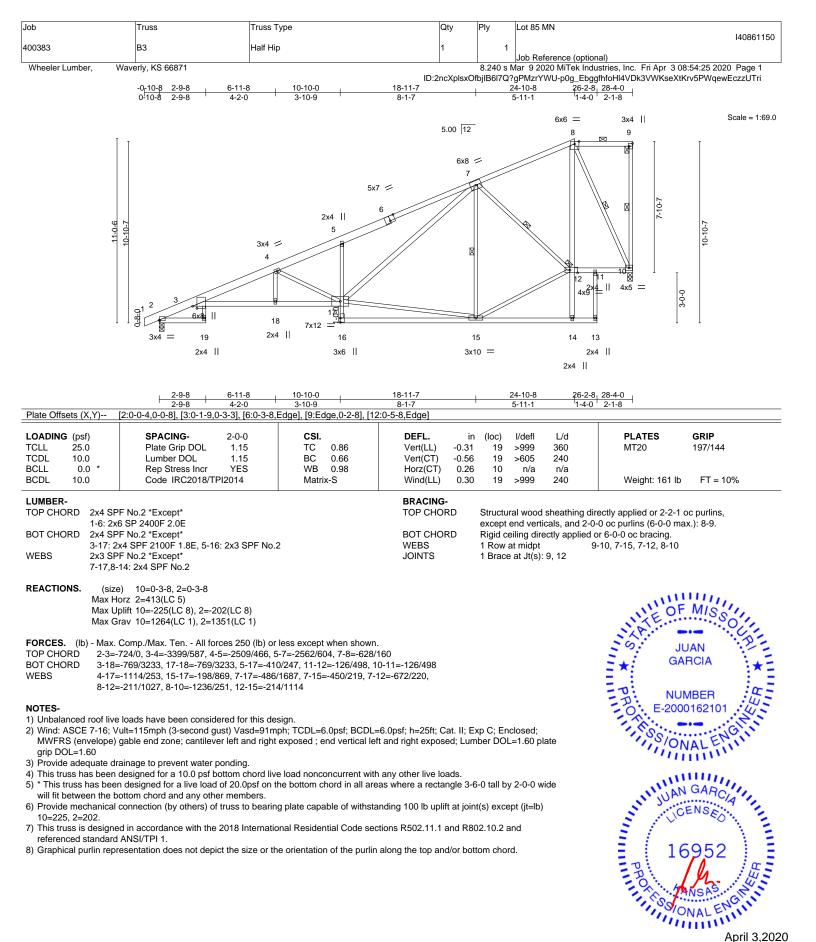
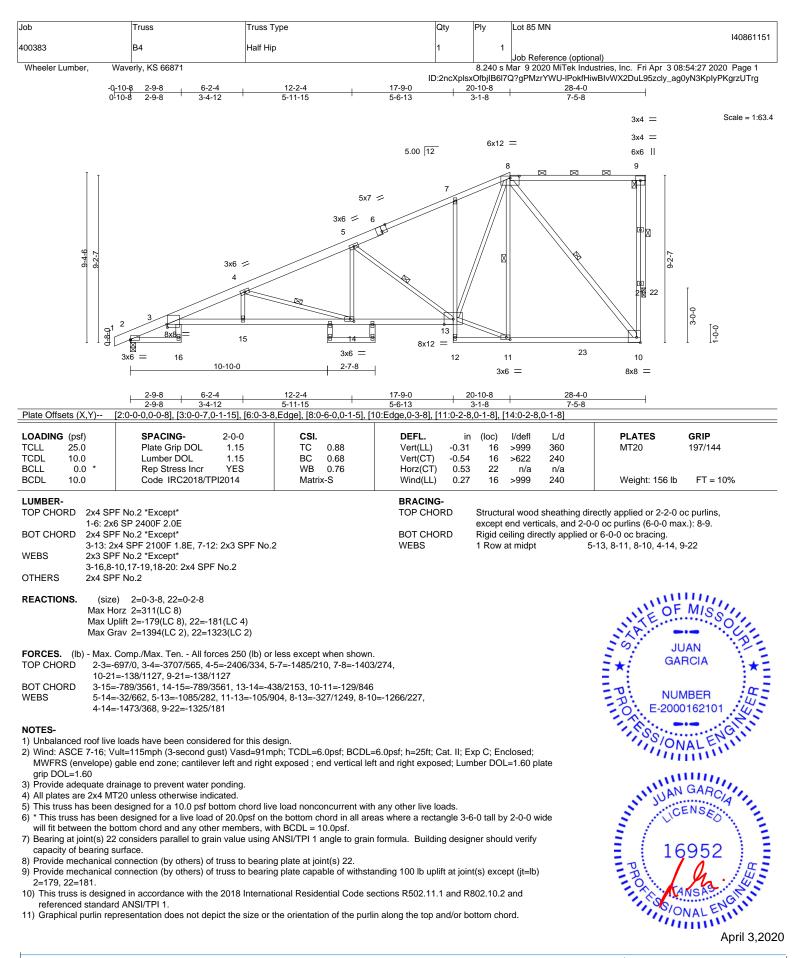


Plate Offsets (X,Y) [2:Edge,0-)-2-8], [2:0-2-12,0-1-2], [11:0-2-	8,0-1-8]						
TCLL 25.0 Pla TCDL 10.0 Lur BCLL 0.0 * Rej	ACING-2-0-0ate Grip DOL1.15mber DOL1.15p Stress IncrYESode IRC2018/TPI2014	CSI. TC 0.53 BC 0.96 WB 0.92 Matrix-S	Vert(LL) -0.23 Vert(CT) -0.47 Horz(CT) 0.07	n (loc) l/defl 3 13-14 >999 7 13-14 >712 7 9 n/a 9 11-13 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 124 lb	GRIP 197/144 FT = 10%	
LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2 *E 2-14: 2x6 SPF No.2	Except* 10.2, 8-9: 2x4 SPF No.2		BRACING- TOP CHORD BOT CHORD WEBS	except end vert	cals. ectly applied o	rectly applied or 3-7-7 o or 2-2-0 oc bracing. -11, 6-10, 8-9	oc purlins,	
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-719/30, 3-4=-2182/319, 4-6=-1477/261, 6-7=-721/184, 7-8=-695/207, 2-14=-448/85, 8-9=-1260/220 BOT CHORD 13-14=-514/2033, 11-13=-355/1962, 10-11=-190/1296 WEBS 4-13=0/352, 4-11=-797/197, 6-11=-37/682, 6-10=-1067/288, 3-14=-1691/389, 8-10=-138/1052								
 NOTES- 1) Unbalanced roof live loads have 2) Wind: ASCE 7-16; Vult=115mg MWFRS (envelope) gable end grip DOL=1.60 3) This truss has been designed * This truss is designed in accorreferenced standard ANSI/TPI 	ph (3-second gust) Vasd=91m d zone; cantilever left and right for a 10.0 psf bottom chord live d for a live load of 20.0psf on ti ord and any other members, wi in (by others) of truss to bearing rdance with the 2018 Internation	ph; TCDL=6.0psf; BCDL= exposed ; end vertical lef e load nonconcurrent with he bottom chord in all are th BCDL = 10.0psf. g plate capable of withsta	ft and right exposed; Lui n any other live loads. eas where a rectangle 3- anding 100 lb uplift at joi	nber DOL=1.60 p 6-0 tall by 2-0-0 w nt(s) except (jt=lb)	ide	PROFILE	GARCIA ENSEO 952 MALENO April 3,2020	

Mitek° 16023 Swingley Ridge Rd Chesterfield, MO 63017

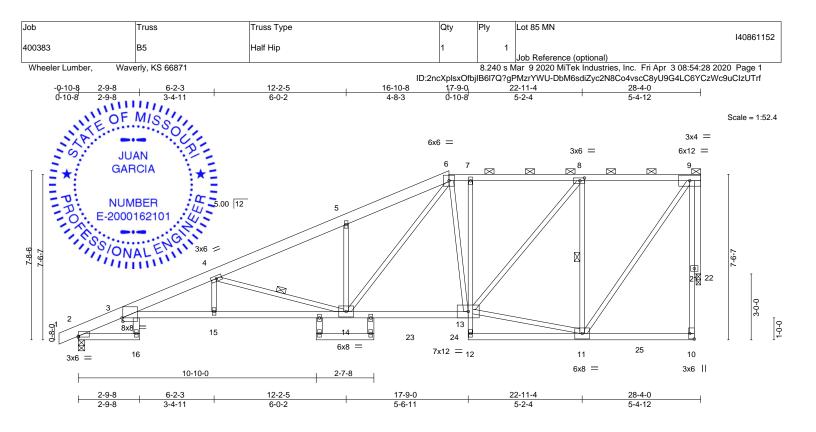
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH1</u> Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

April 3,2020



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

Plate Off	sets (X,Y)	[2:0-0-0,0-0-8], [3:0-0-7,0)-1-15], [8:0-2-	8,0-1-8], [10:	Edge,0-2-8]						-	
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	25.0	Plate Grip DOL	1.15	TC	0.89	Vert(LL)	-0.31	16	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.68	Vert(CT)	-0.54	16	>626	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.59	Horz(CT)	0.46	22	n/a	n/a		
BCDL	10.0	Code IRC2018/T	PI2014	Matri	k-S	Wind(LL)	0.25	16	>999	240	Weight: 156 lb	FT = 10%
LUMBER- TOP CHORD 2x6 SP 2400F 2.0E *Except*				BRACING- TOP CHOR		Structu	iral wood	sheathing d	irectly applied or 2-2-0	oc purlins,		

	6-9: 2x4 SPF No.2		except end verticals,	and 2-0-0 oc purlins (4-9-3 max.): 6-9			
BOT CHORD	2x4 SPF No.2 *Except*	BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc bracing.				
	3-13: 2x4 SPF 2100F 1.8E, 7-12: 2x3 SPF No.2	WEBS	1 Row at midpt	4-14, 8-11			
WEBS	2x3 SPF No.2 *Except*						
	3-16,17-19,18-20: 2x4 SPF No.2						
OTHERS	2x4 SPF No.2						
REACTIONS.	(size) 2=0-3-8, 22=0-2-8						
	Max Horz 2=245(LC 5)						
	Max Uplift 2=-176(LC 8), 22=-197(LC 4)						
	Max Grav 2=1397(LC 2), 22=1324(LC 2)						
FORCES. (Ib) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown.						
TOP CHORD	2-3=-682/0, 3-4=-3733/525, 4-5=-2401/294, 5-6=-2361/386, 6-7=-1412/199),					
	7-8=-1408/200, 8-9=-822/133						
BOT CHORD	3-15=-678/3589, 14-15=-678/3589, 13-14=-227/1442, 7-13=-252/109						
WEBS	4-14=-1515/366, 5-14=-324/193, 6-14=-279/1165, 11-13=-144/810, 8-13=-	164/928,		IN GAR			
	8-11=-1093/262, 9-11=-196/1336, 9-22=-1327/198			IN UAN CAR	10		
				CENS			
NOTES-				LICENSK	:0		

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding

4) All plates are 2x4 MT20 unless otherwise indicated.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

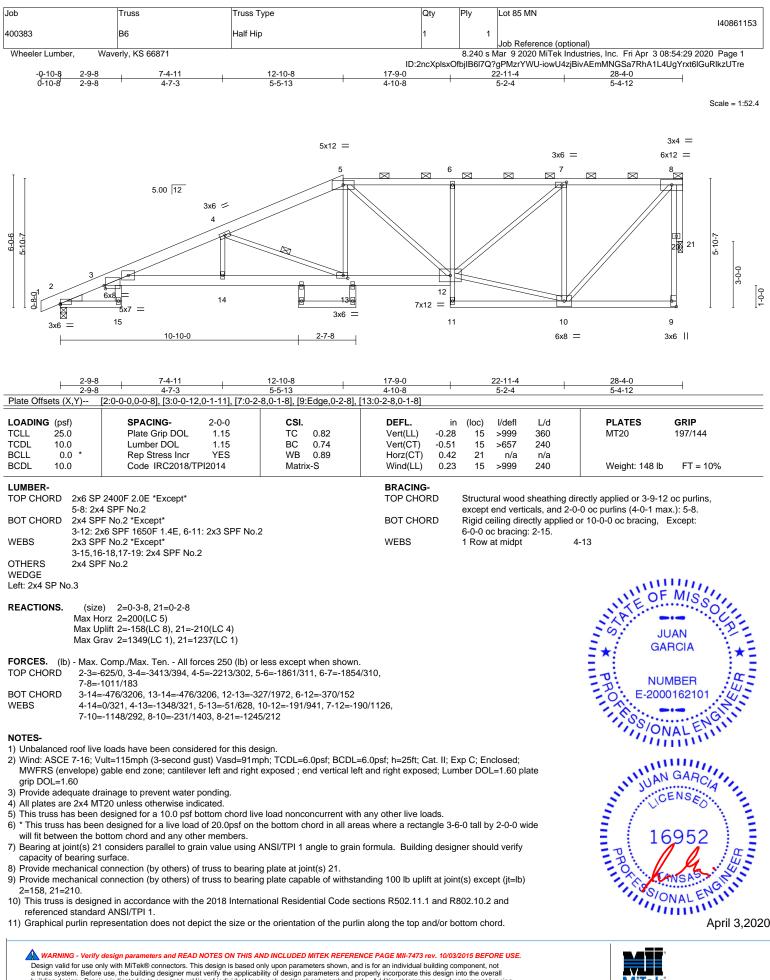
6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Bearing at joint(s) 22 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

Confirmedeomechanical connection (by others) of truss to bearing plate at joint(s) 22.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITeKe connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

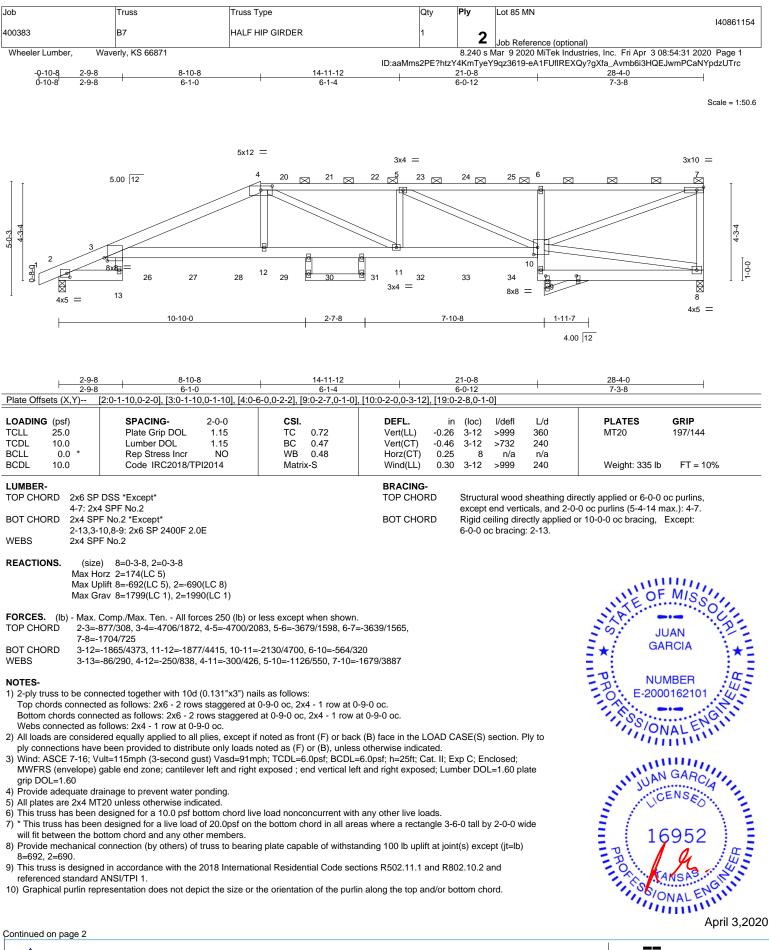
April 3,2020


	Job	Truss	Truss Type	Qty	Ply	Lot 85 MN
	400383	DE	Half Hip	1	1	I40861152
	400363	B5	пан пр	1	· ·	Job Reference (optional)
ι	Wheeler Lumber. Wave	erlv. KS 66871				far 9 2020 MiTek Industries, Inc. Fri Apr 3 08:54:28 2020 Page 2
ID:2ncXplsxOfbjlB6l7Q?gPMzrYWU-DbM6sdiZyc2N8Co4vscC8yU90						

NOTES-

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=176, 22=197.
10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH1</u> Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Plv	Lot 85 MN
565	11033	indisa rype	Qty	,	140861154
400383	B7	HALF HIP GIRDER	1	-	
400000	5.			2	Job Reference (optional)
Wheeler Lumber.	Waverly, KS 66871			8.240 s N	Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 08:54:31 2020 Page 2

ID:aaMms2PE?htzY4KmTyeY9qz3619-eA1FUfIREXQy?gXfa_Avmb6i3HQEJwmPCaNYpdzUTrc

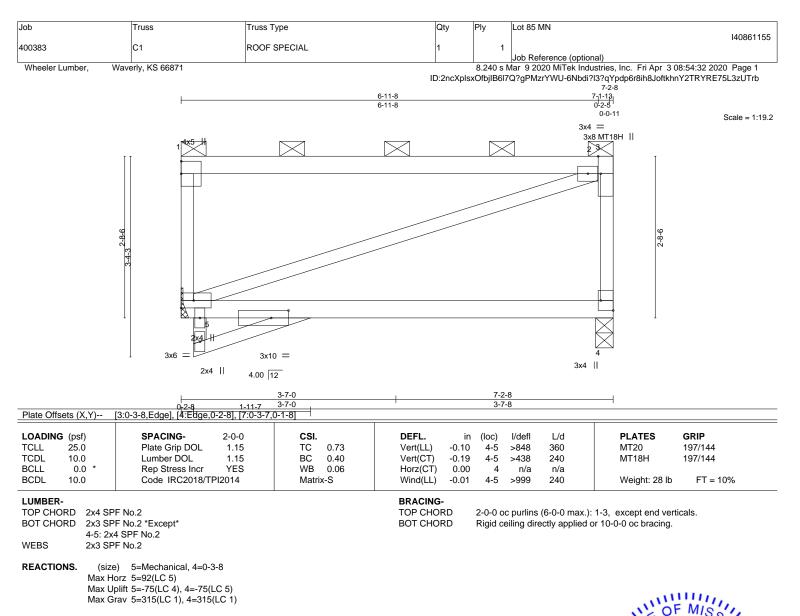
NOTES-

11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 110 lb down and 105 lb up at 9-11-4, 114 lb down and 118 lb up at 11-11-4, 115 lb down and 121 lb up at 13-11-4, 115 lb down and 121 lb up at 13-11-4, 115 lb down and 121 lb up at 13-11-4, and 115 lb down and 121 lb up at 13-11-4, and 115 lb down and 121 lb up at 19-11-4 on top chord, and 171 lb down and 108 lb up at 3-11-4, 139 lb down and 80 lb up at 5-11-4, 142 lb down and 95 lb up at 7-11-4, 63 lb down and 25 lb up at 9-11-4, 37 lb down and 24 lb up at 13-11-4, 37 lb down and 24 lb up at 13-11-4, 37 lb down and 24 lb up at 13-11-4, 37 lb down and 24 lb up at 19-11-4, and 146 lb up at 21-2-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)


Vert: 1-4=-70, 4-7=-70, 2-13=-20, 3-10=-20, 8-9=-20

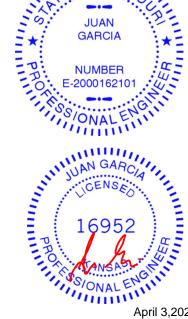
Concentrated Loads (lb)

Vert: 10=-289(B) 20=-44(B) 21=-48(B) 22=-48(B) 23=-48(B) 24=-48(B) 25=-48(B) 26=-171(B) 27=-139(B) 28=-139(B) 29=-45(B) 30=-23(B) 31=-22(B) 33=-22(B) 33=-22(B) 34=-22(B) 34=-22

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

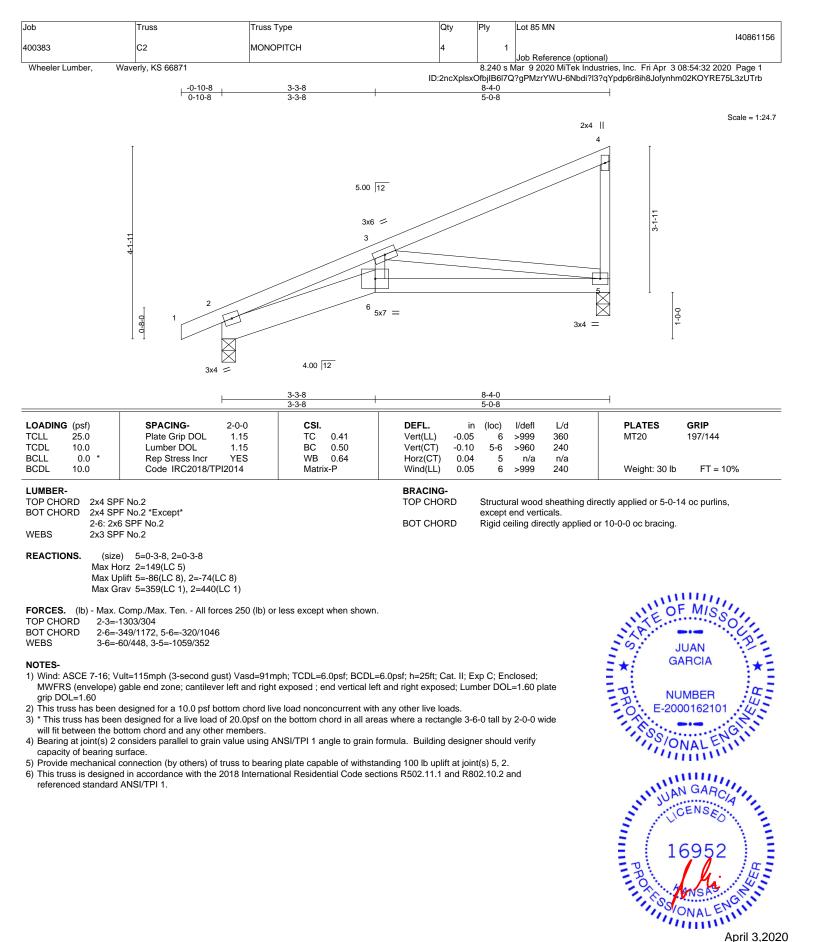
NOTES-


1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

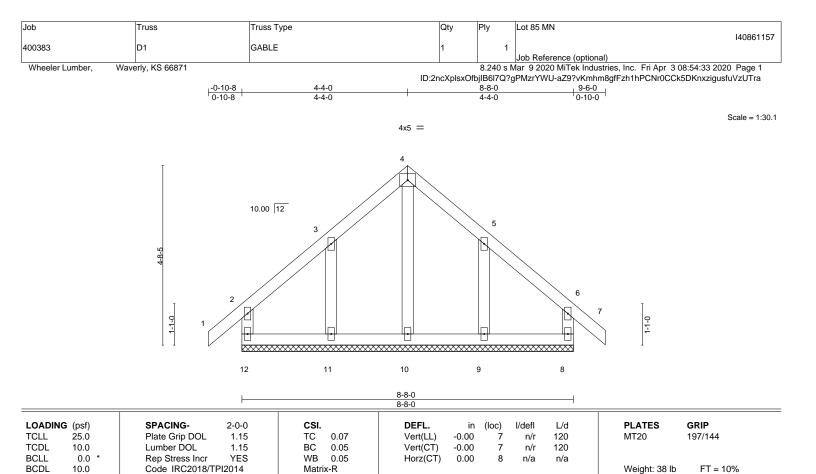
3) All plates are MT20 plates unless otherwise indicated.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5) will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 4.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.


9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

April 3,2020

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTeKe connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



🍌 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITeKe connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

April 3,2020

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 OTHERS 2x4 SPF No.2

REACTIONS. All bearings 8-8-0.

(lb) -Max Horz 12=146(LC 7)

Max Uplift All uplift 100 lb or less at joint(s) 12, 8 except 11=-123(LC 8), 9=-122(LC 9) Max Grav All reactions 250 lb or less at joint(s) 12, 8, 10, 11, 9

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

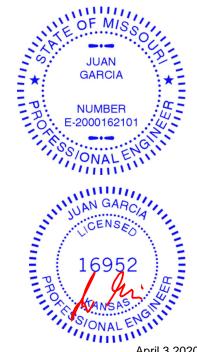
1) Unbalanced roof live loads have been considered for this design

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.


6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

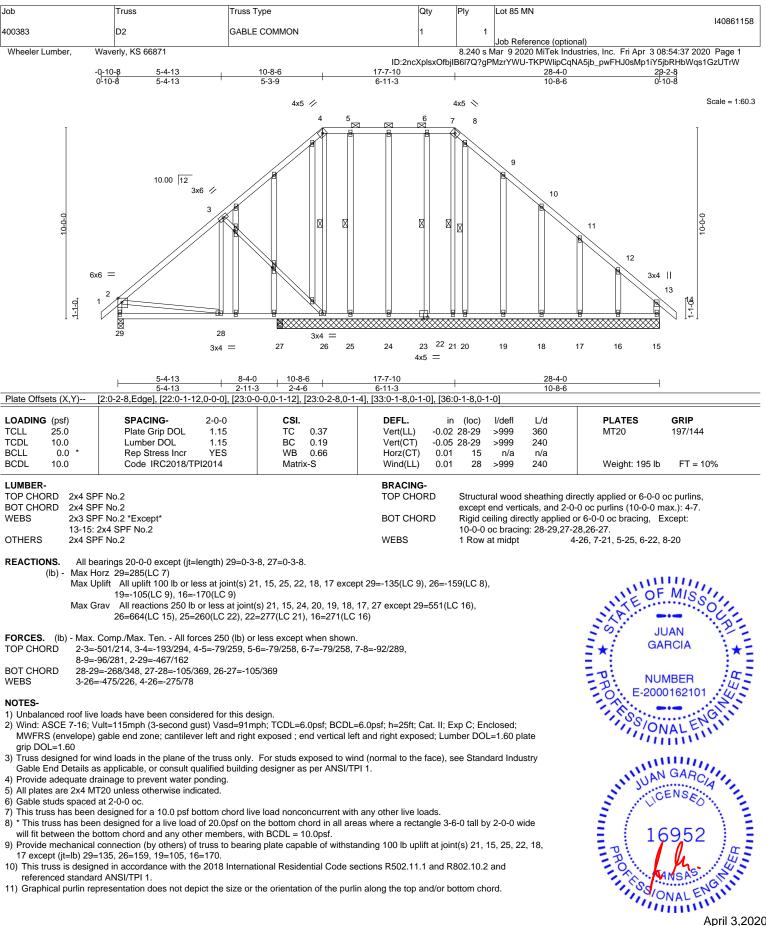
10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 8 except (jt=lb) 11=123, 9=122.

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing

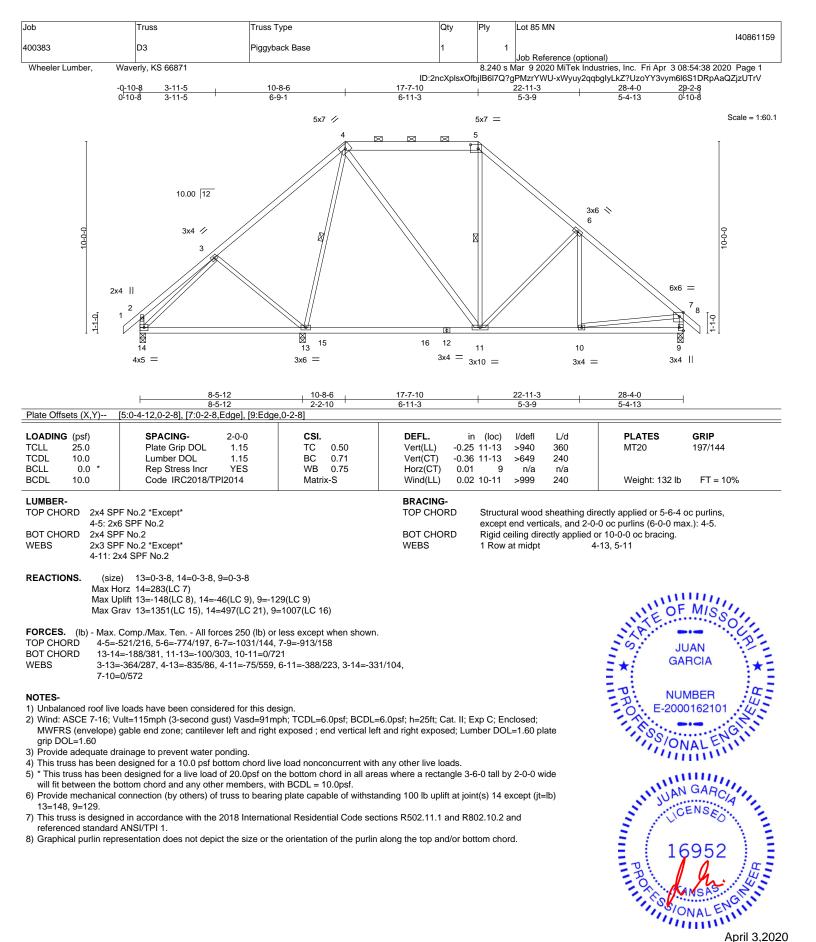
except end verticals


April 3,2020

111111

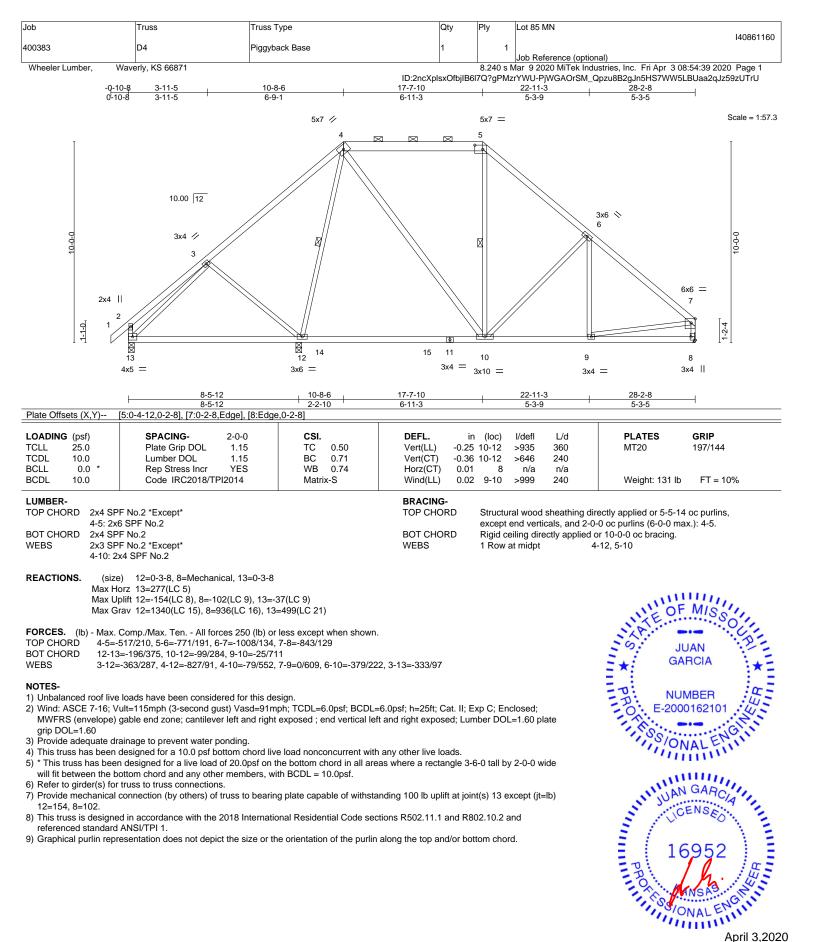
🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH1</u> Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

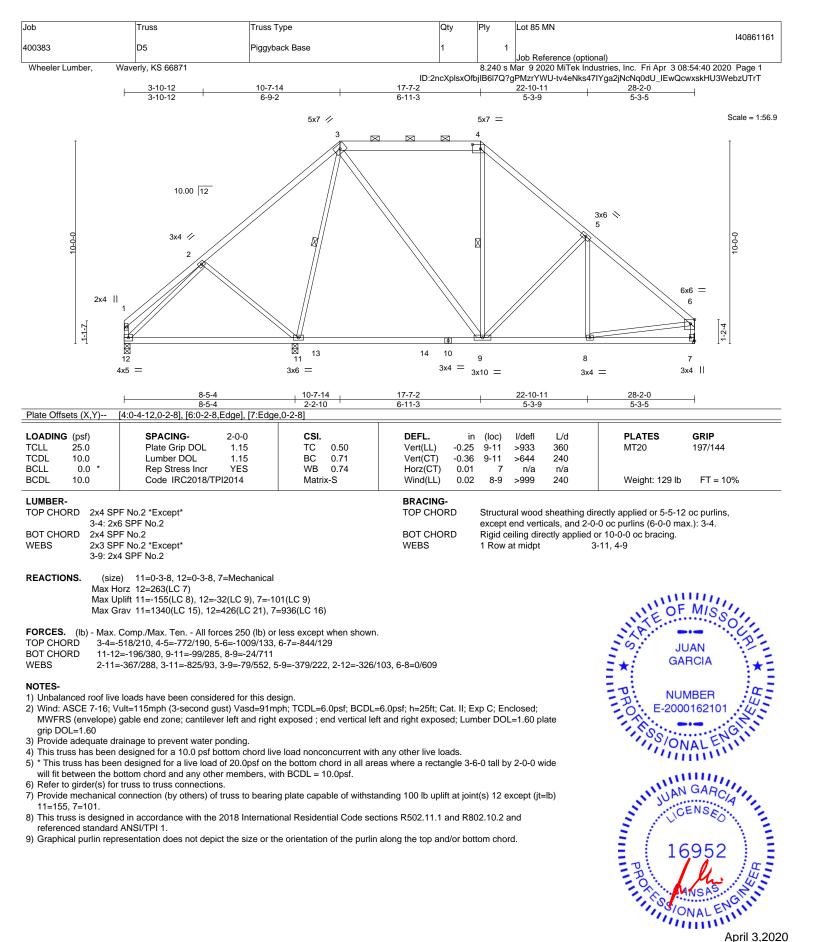
 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



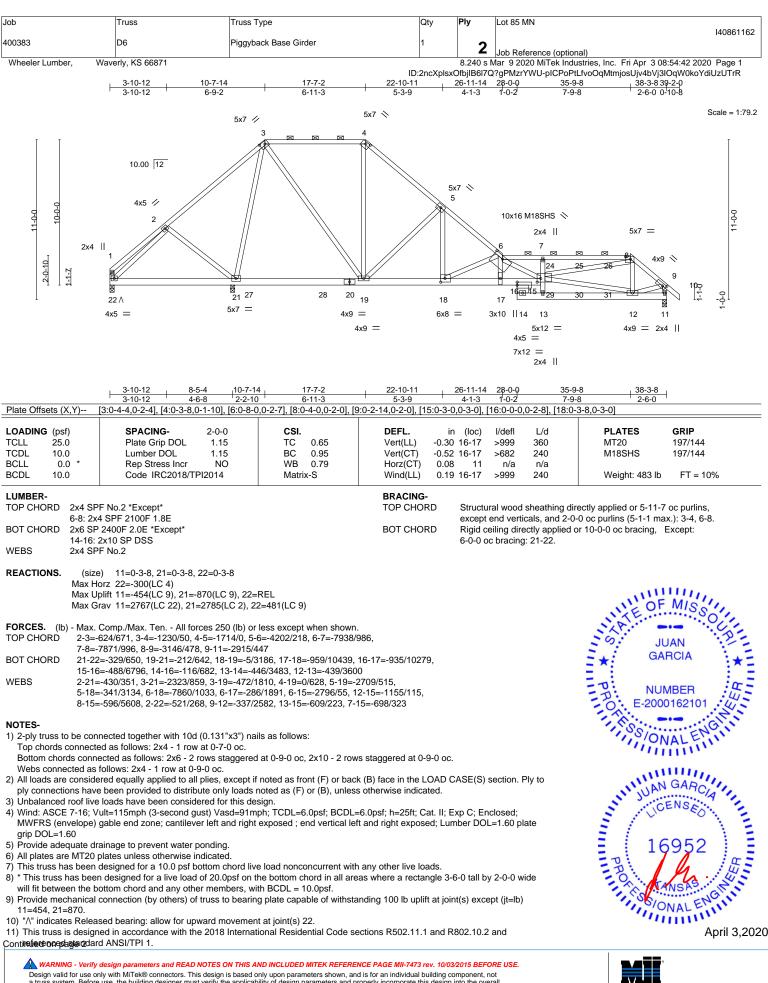
🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH1</u> Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


April 3,2020


MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTeKe connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



16023 Swingley Ridge Rd Chesterfield, MO 63017

MITEK[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

Design valid for use only with MiTeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 85 MN
					140861162
400383	D6	Piggyback Base Girder	1	2	
				_	Job Reference (optional)
Wheeler Lumber, Waverly, KS 66871			8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 08:54:42 2020 Page 2		
ID:2ncXplsxOfbjlB6I7Q?gPMzrYWU-pICPoPtLfvoOqMtmjosUjv4bVj3IOqW0ko`				gPMzrYWU-pICPoPtLfvoOqMtmjosUjv4bVj3IOqW0koYdiUzUTrR	

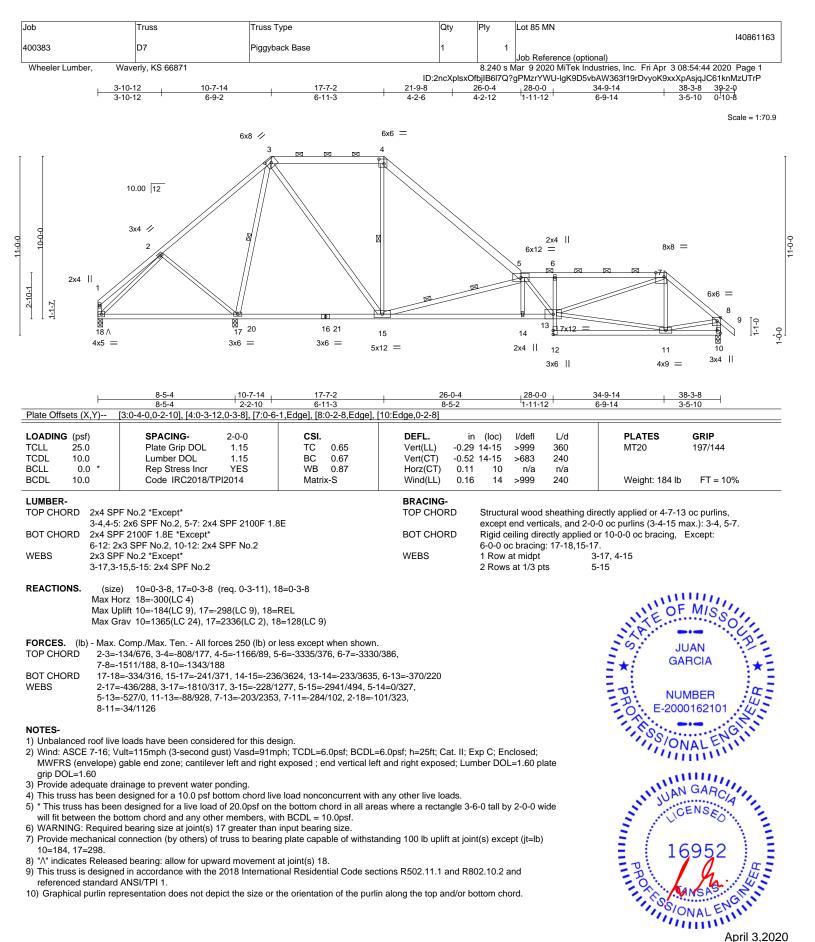
NOTES-

- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 162 lb down and 99 lb up at 30-2-12, and 162 lb down and 99 lb up at 32-2-12, and 162 lb down and 99 lb up at 34-2-12 on top chord, and 1218 lb down and 265 lb up at 28-1-12, 69 lb down at 30-2-12, 69 lb down at 32-2-12, and 69 lb down at 34-2-12, and 230 lb down and 123 lb up at 35-9-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

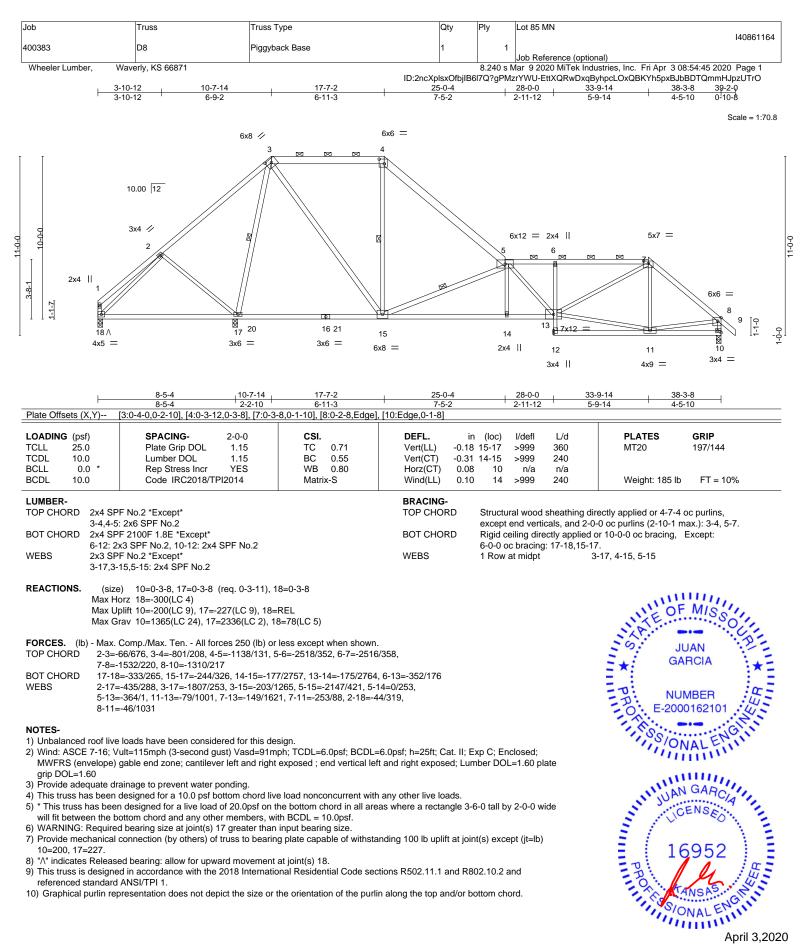
Uniform Loads (plf)


Vert: 1-3=-70, 3-4=-70, 4-6=-70, 6-8=-70, 8-9=-70, 9-10=-70, 16-22=-20, 11-14=-20

Concentrated Loads (lb)

Vert: 16=-1218(F) 12=-230(F) 24=-112(F) 25=-112(F) 26=-112(F) 29=-53(F) 30=-53(F) 31=-53(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

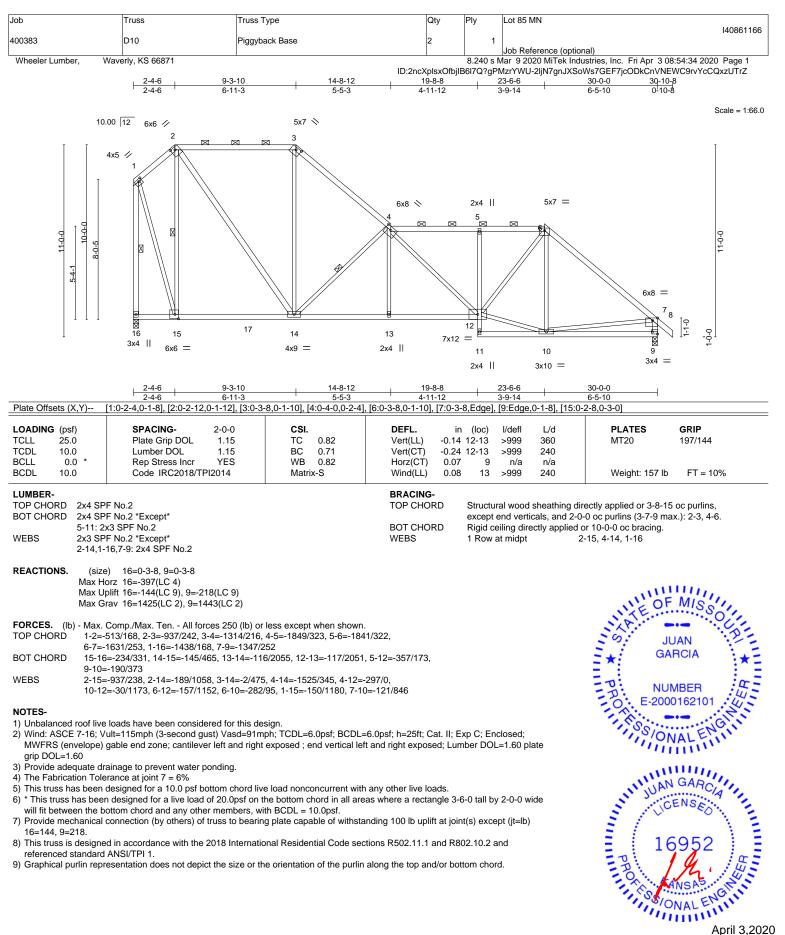


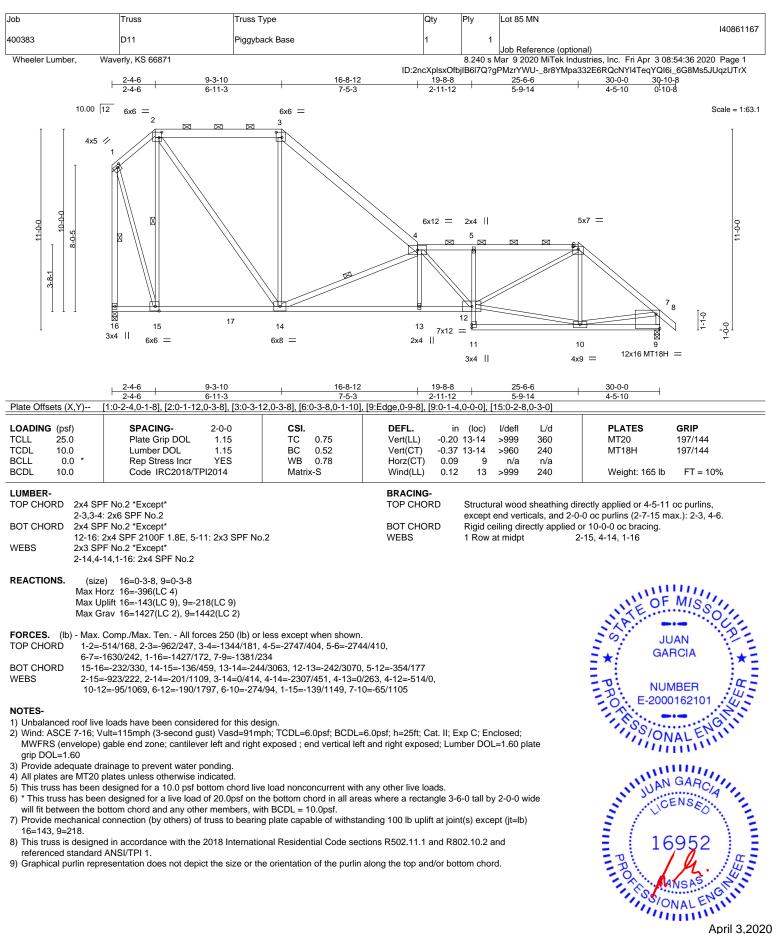
MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH1</u> Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

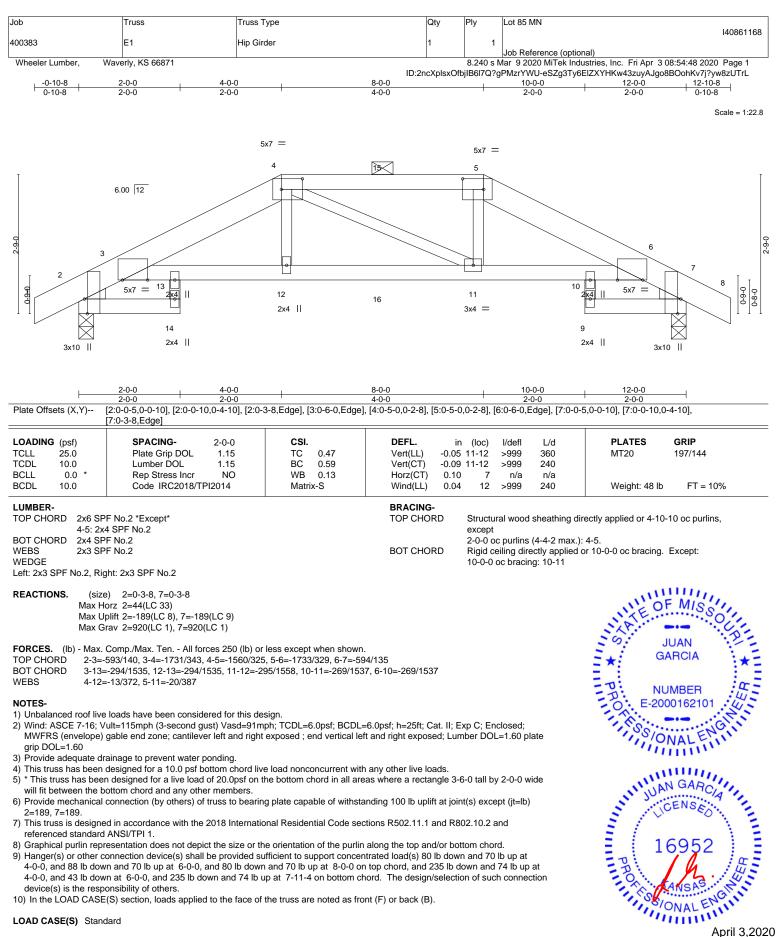

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH1</u> Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu


 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with ever connectors. This besign is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH1</u> Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOAD CASE(S) Standard

Continued on page 2

👠 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH1</u> Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

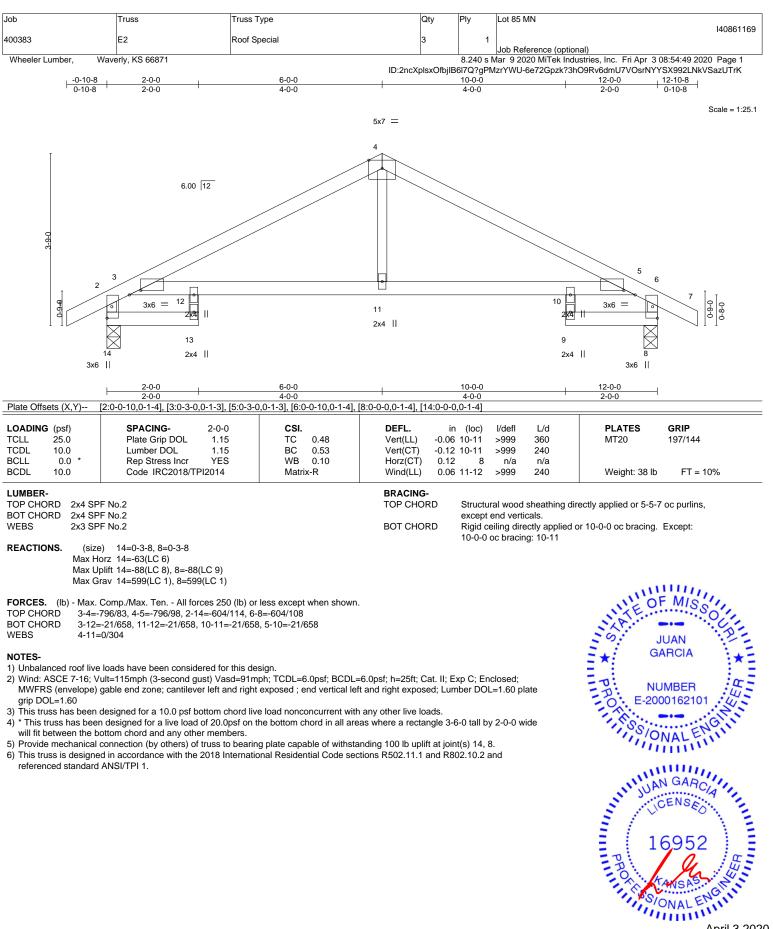
 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

April 3,2020

Job	Truss	Truss Type	Qty	Ply	Lot 85 MN
					140861168
400383	E1	Hip Girder	1	1	
					Job Reference (optional)
Wheeler Lumber, Waverly, KS 66871				8.240 s N	lar 9 2020 MiTek Industries, Inc. Fri Apr 3 08:54:48 2020 Page 2

ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-eSZg3Ty6EIZXYHKw43zuyAJgo8BOohKv7j?yw8zUTrL

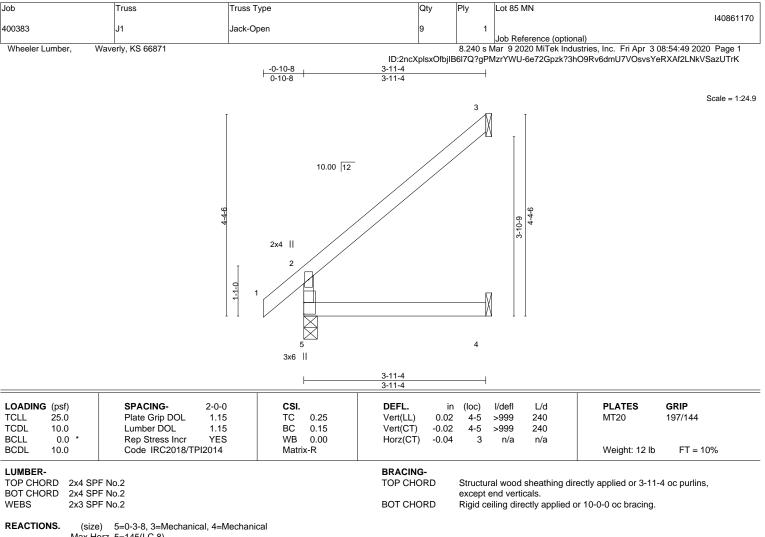
LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-4=-70, 4-5=-70, 5-8=-70, 2-14=-20, 10-13=-20, 7-9=-20 Concentrated Loads (lb)

Vert: 4=-46(B) 5=-46(B) 12=-235(B) 11=-235(B) 15=-46(B) 16=-36(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

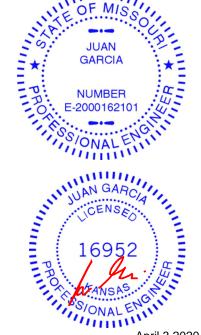


April 3,2020

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MITeKe connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Max Horz 5=145(LC 8)

Max Uplift 3=-109(LC 8), 4=-3(LC 8) Max Grav 5=247(LC 1), 3=133(LC 15), 4=73(LC 3)

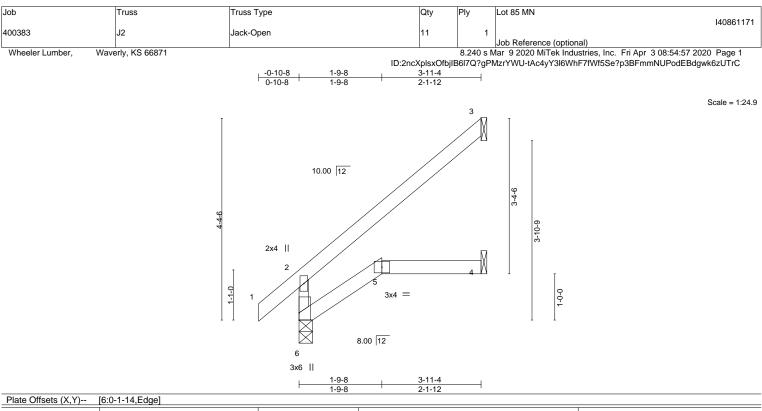

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 3=109.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



11111

AGE MII-7473 rev. 10/03/2015 BEFORE USE. an individual building component, not incorporate this design into the overall

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MITEK° 16023 Swingley Ridge Rd Chesterfield, MO 63017

LOADING (psf) SPACING- 2-0-0 CSI. TCLL 25.0 Plate Grip DOL 1.15 TC 0.26 TCDL 10.0 Lumber DOL 1.15 BC 0.14 BCLL 0.0 * Rep Stress Incr YES WB 0.00 BCDL 10.0 Code IRC2018/TPI2014 Matrix-R 10.0<	DEFL. in (loc) l/defl L/d Vert(LL) 0.02 5 >999 240 Vert(CT) -0.02 5 >999 240 Horz(CT) -0.05 3 n/a n/a	PLATES GRIP MT20 197/144 Weight: 13 lb FT = 10%
---	---	---

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2

BRACING-TOP CHORD

Structural wood sheathing directly applied or 3-11-4 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (size) 6=0-3-8, 3=Mechanical, 4=Mechanical

Max Horz 6=144(LC 8) Max Uplift 3=-112(LC 8), 4=-4(LC 8)

Max Grav 6=247(LC 1), 3=135(LC 15), 4=73(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

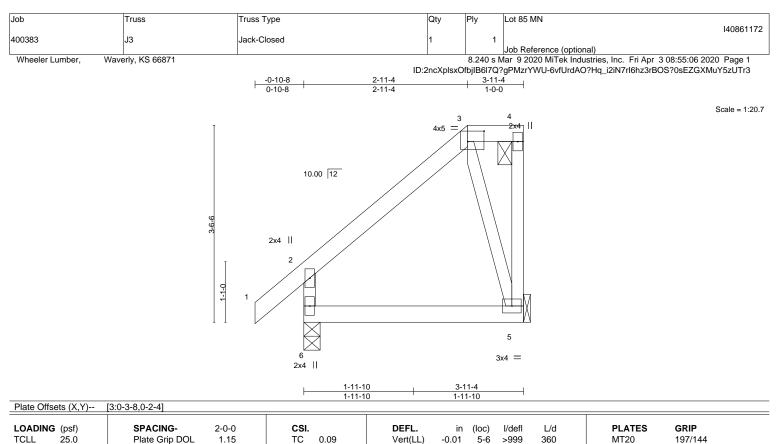
- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 3=112.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11111 MIS

JUAN


0

April 3,2020

🍌 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only design parameters and READ works on Inscrete Minute REPERCICE PAGE Minutes and the second secon
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD

BOT CHORD

LUMBER	२-			BRACING-			
BCDL	10.0	Code IRC2018/TPI2014	Matrix-S	Wind(LL) 0.01	5-6	>999 240	١
BCLL	0.0 *	Rep Stress Incr YES	WB 0.04	Horz(CT) -0.00	5	n/a n/a	
TCDL	10.0	Lumber DOL 1.15	BC 0.11	Vert(CT) -0.02	5-6	>999 240	
TOLL	25.0	Plate Grip DOL 1.15	10 0.09	Ven(LL) -0.01	5-6	>999 300	

LU

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2

REACTIONS.

(size) 6=0-3-8, 5=Mechanical Max Horz 6=142(LC 5) Max Uplift 6=-28(LC 8), 5=-70(LC 5)

Max Grav 6=245(LC 1), 5=159(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 5.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

11111 MIS

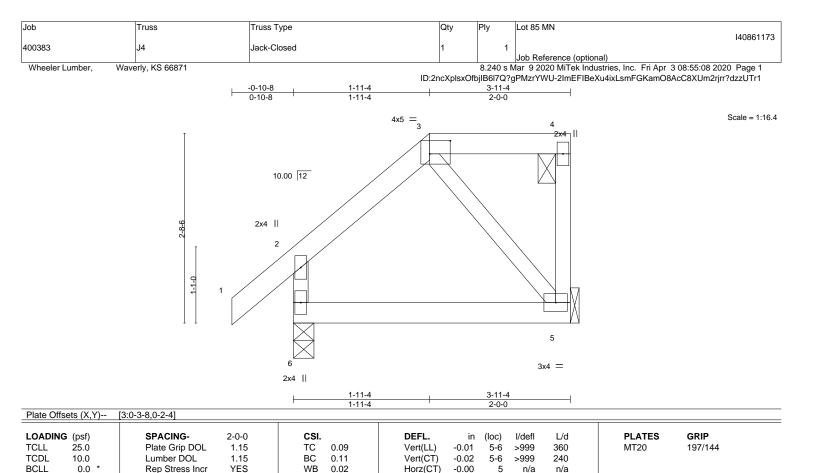
0

Weight: 17 lb

Structural wood sheathing directly applied or 3-11-4 oc purlins,

except end verticals, and 2-0-0 oc purlins: 3-4.

Rigid ceiling directly applied or 10-0-0 oc bracing


FT = 10%

April 3,2020

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLODED MITER REFERENCE PAGE MIT-F473 rev. Towascurs Beroke osc. Design valid for use only with MITeKe connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Wind(LL)

BRACING-

TOP CHORD

BOT CHORD

0.00

>999

5-6

240

except end verticals, and 2-0-0 oc purlins: 3-4.

Rigid ceiling directly applied or 10-0-0 oc bracing

Structural wood sheathing directly applied or 3-11-4 oc purlins,

Weight: 16 lb

FT = 10%

REACTIONS.

WEBS

BCDL

LUMBER-

BOT CHORD

10.0

TOP CHORD 2x4 SPF No.2

2x4 SPF No.2

2x3 SPF No.2

(size) 6=0-3-8, 5=Mechanical Max Horz 6=109(LC 5) Max Uplift 6=-34(LC 8), 5=-55(LC 5)

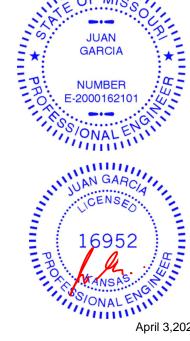
Max Grav 6=245(LC 1), 5=159(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Code IRC2018/TPI2014

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

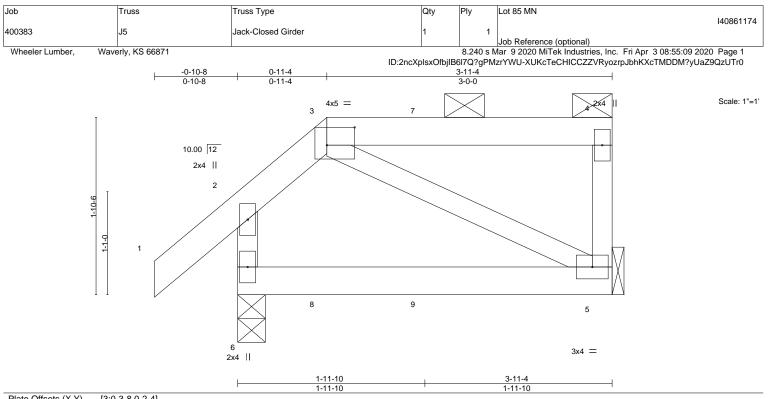

Matrix-S

2) Provide adequate drainage to prevent water ponding.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 4) will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 5.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


11111 MIS

0

F

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl L/d	PLATES GRIP
TCLL 25.0	Plate Grip DOL 1.15	TC 0.14	Vert(LL) -0.01	5-6	>999 360	MT20 197/144
TCDL 10.0	Lumber DOL 1.15	BC 0.14	Vert(CT) -0.02	5-6	>999 240	
BCLL 0.0 *	Rep Stress Incr NO	WB 0.02	Horz(CT) -0.00	5	n/a n/a	
BCDL 10.0	Code IRC2018/TPI2014	Matrix-S	Wind(LL) -0.00	5-6	>999 240	Weight: 15 lb FT = 10%

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2

REACTIONS. (size) 6=0-3-8, 5=Mechanical

Max Horz 6=76(LC 7) Max Uplift 6=-67(LC 8), 5=-56(LC 5) Max Grav 6=231(LC 1), 5=162(LC 1)

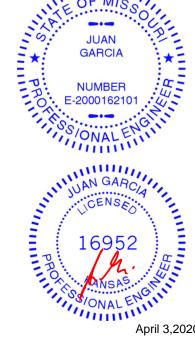
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 5.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 36 lb down and 91 lb up at 0-11-4, and 68 lb down and 47 lb up at 2-0-0 on top chord, and 7 lb down and 11 lb up at 0-11-4, and 16 lb down at 2-0-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15. Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-70, 2-3=-70, 3-4=-70, 5-6=-20 Concentrated Loads (lb) Vert: 3=25(F) 7=-11(F) 8=5(F) 9=-9(F)

ALLIN MIS

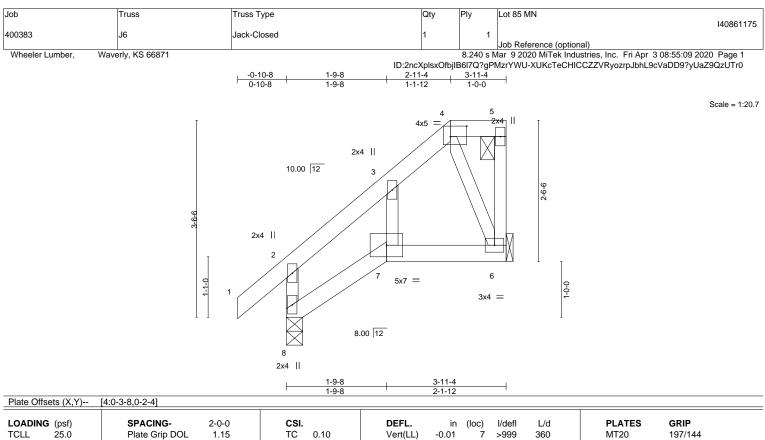
JUAN

0

¢

Structural wood sheathing directly applied or 3-11-4 oc purlins,

except end verticals, and 2-0-0 oc purlins: 3-4.


Rigid ceiling directly applied or 10-0-0 oc bracing.

April 3,2020

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS NET REPORT PARTY of a 1043 refer to 1000 Sec. Design valid for use only with MTR Key connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TCLL 25.0 TCDL 10.0	Plate Grip DOL 1.15 Lumber DOL 1.15	TC 0.10 BC 0.06	Vert(LL) Vert(CT)	-0.01 -0.01	7	>999 >999	360 240	MT20	197/144
BCLL 0.0 *	Rep Stress Incr YES	WB 0.03	Horz(CT)	0.01	6	>333 n/a	n/a		
BCDL 10.0	Code IRC2018/TPI2014	Matrix-S	Wind(LL)	0.01	7	>999	240	Weight: 17 lb	FT = 10%
LUMBER-			BRACING-						

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2

REACTIONS. (size) 8=0-3-8, 6=Mechanical

Max Horz 8=128(LC 5) Max Uplift 8=-23(LC 8), 6=-71(LC 5) Max Grav 8=245(LC 1), 6=159(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 4) will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

6) Bearing at joint(s) 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6.

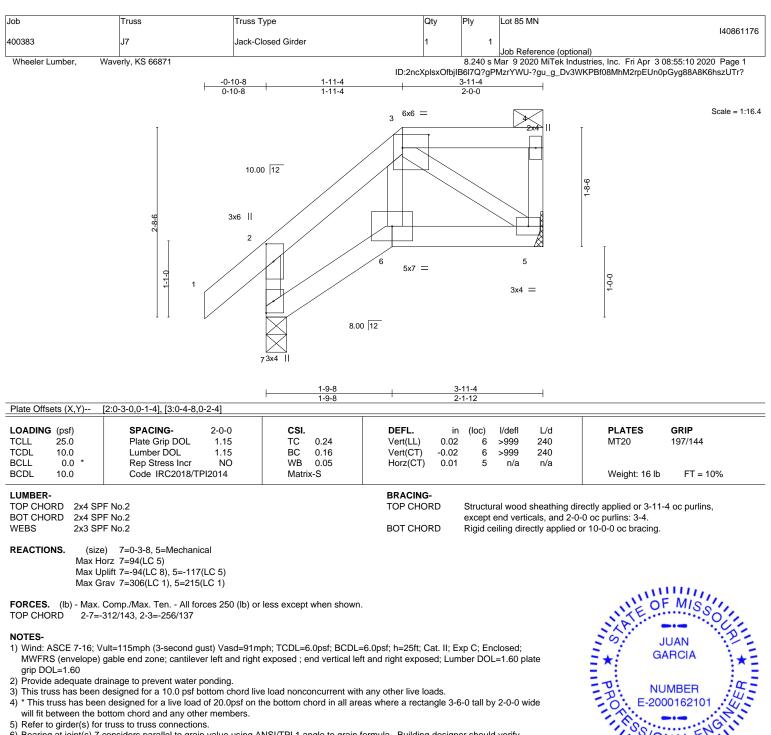
8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

11111 MIS

0

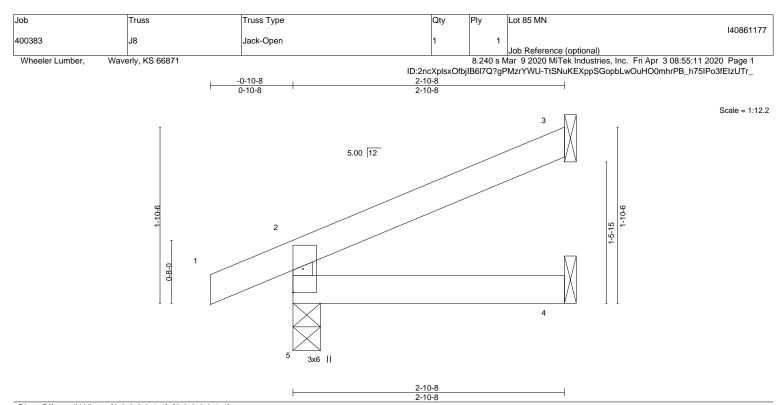
Structural wood sheathing directly applied or 3-11-4 oc purlins,


except end verticals, and 2-0-0 oc purlins: 4-5.

Rigid ceiling directly applied or 10-0-0 oc bracing

April 3,2020

🍌 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITeKe connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


- 6) Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7 except (jt=lb) 5=117.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 141 lb down and 190 lb up at 1-11-4 on top chord, and 67 lb down and 0 lb up at 1-9-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-70, 2-3=-70, 3-4=-70, 6-7=-20, 5-6=-20 Concentrated Loads (lb) Vert: 6=-34(B) 3=-84(B) NUMBER E-2000162101 UAN GARCIA CENSED 16952 DO AANSAS ONAL ENGINE

> 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 25.0	Plate Grip DOL 1.15	TC 0.09	Vert(LL)	-0.00	4-5	>999	360	MT20	197/144
TCDL 10.0	Lumber DOL 1.15	BC 0.06	Vert(CT)	-0.01	4-5	>999	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT)	-0.00	3	n/a	n/a		
BCDL 10.0	Code IRC2018/TPI2014	Matrix-R	Wind(LL)	0.00	4-5	>999	240	Weight: 8 lb	FT = 10%

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS

2x3 SPF No.2

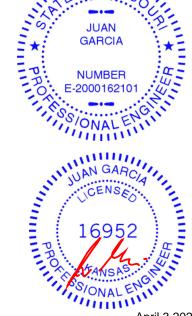
BRACING-TOP CHORD

Structural wood sheathing directly applied or 2-10-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing

REACTIONS. (size) 5=0-3-8, 3=Mechanical, 4=Mechanical

Max Horz 5=55(LC 8) Max Uplift 5=-32(LC 8), 3=-44(LC 8)

Max Grav 5=203(LC 1), 3=81(LC 1), 4=51(LC 3)

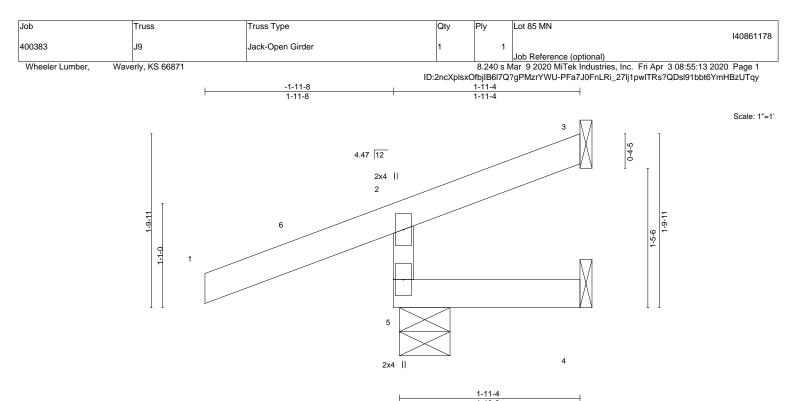

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


11111 MIS

JUAN

0

						I		1-10-8				
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	25.0	Plate Grip DOL	1.15	тс	0.22	Vert(LL)	0.00	5	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	-0.00	5	>999	240		
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.00	Horz(CT)	-0.01	3	n/a	n/a		
BCDL	10.0	Code IRC2018/TPI	2014	Matri	x-R						Weight: 8 lb	FT = 10%

BRACING-

TOP CHORD

BOT CHORD

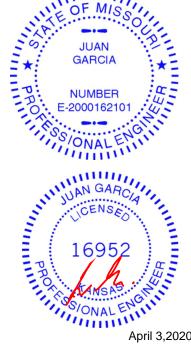
LUMBER-

TOP CHORD 2x4 SPF No 2 2x4 SPF No.2 BOT CHORD

WEBS 2x3 SPF No.2

REACTIONS. (size) 5=0-6-5, 3=Mechanical, 4=Mechanical Max Horz 5=69(LC 7) Max Uplift 5=-115(LC 12), 3=-22(LC 17), 4=-5(LC 16)

Max Grav 5=155(LC 1), 3=15(LC 4), 4=24(LC 3)


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4 except (jt=lb) 5=115.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 25 lb down and 9 lb up at -1-11-8, and 25 lb down and 9 lb up at -1-11-8 on top chord. The design/selection of such connection device(s) is the responsibility of others
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

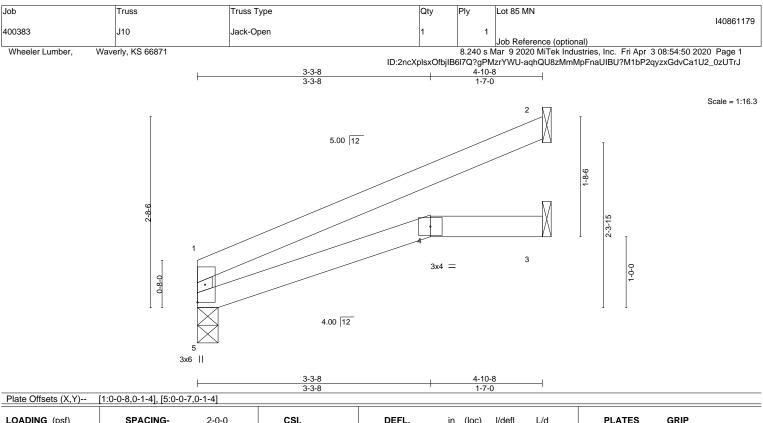
- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Concentrated Loads (lb)
 - Vert: 1=-38(F=-19, B=-19)
- Trapezoidal Loads (plf)
 - Vert: 1=-0(F=35, B=35)-to-6=-33(F=19, B=19), 6=0(F=35, B=35)-to-2=-17(F=26, B=26), 2=-17(F=26, B=26)-to-3=-50(F=10, B=26)-to-3=-50(F=10 B=10), 5=-5(F=8, B=8)-to-4=-14(F=3, B=3)

ALL DI

Structural wood sheathing directly applied or 1-11-4 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing

except end verticals.



16023 Swingley Ridge Rd Chesterfield, MO 63017

April 3,2020

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS NET REPORT PARTY of a 1043 refer to 1000 Sec. Design valid for use only with MTR Key connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

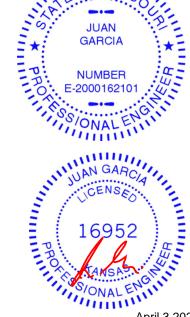
 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	25.0	Plate Grip DOL	1.15	TC	0.37	Vert(LL)	-0.02	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.20	Vert(CT)	-0.06	4-5	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.02	2	n/a	n/a		
BCDL	10.0	Code IRC2018/T	PI2014	Matri	x-R	Wind(LL)	0.02	4-5	>999	240	Weight: 12 I	b FT = 10%

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2

BRACING-TOP CHORD

Structural wood sheathing directly applied or 4-10-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.


REACTIONS. (size) 5=0-3-8, 2=Mechanical, 3=Mechanical

Max Horz 5=74(LC 8) Max Uplift 5=-15(LC 8), 2=-78(LC 8)

Max Grav 5=212(LC 1), 2=154(LC 1), 3=90(LC 3)

NOTES-

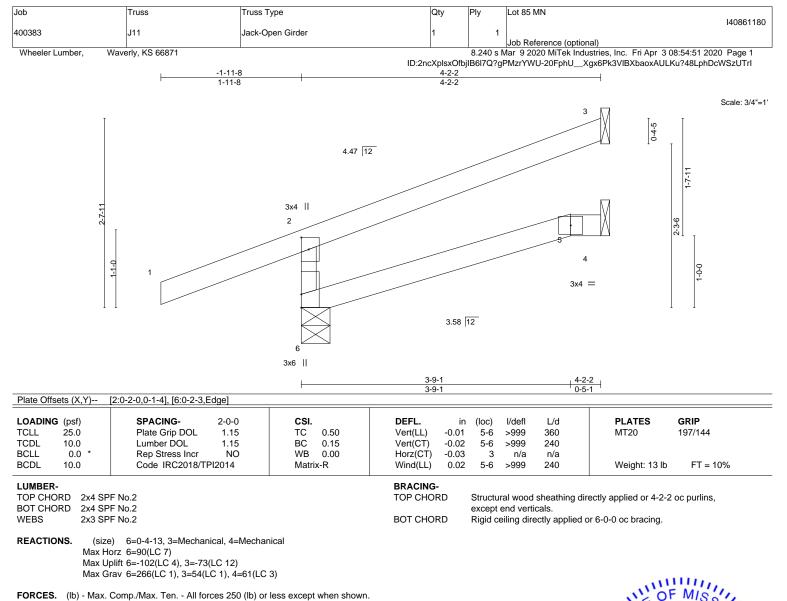
- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.

11111 MIS

JUAN

GARCIA

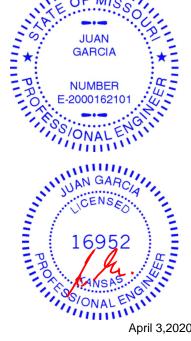
NUMBER


0

April 3,2020

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

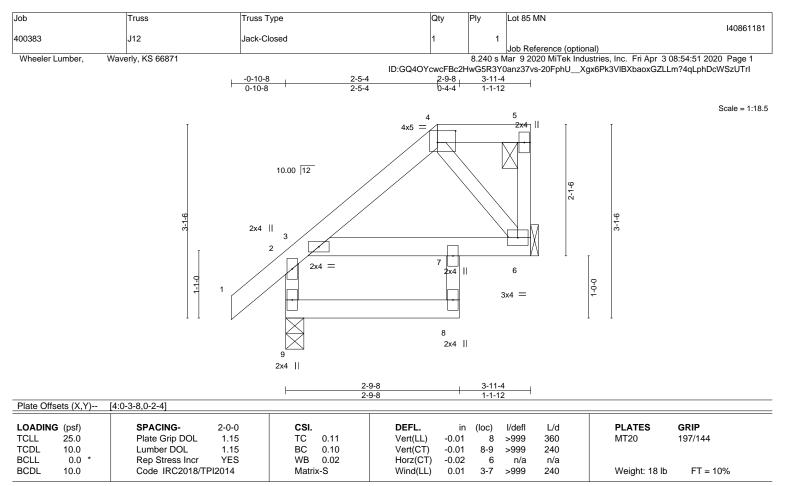
NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3 except (jt=lb) 6=102.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 60 lb down and 23 lb up at -1-11-8, and 60 lb down and 23 lb up at -1-11-8 on top chord. The design/selection of such connection device(s) is the responsibility of others.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Concentrated Loads (lb)
- Vert: 1=-92(F=-46, B=-46)
- Trapezoidal Loads (plf)
 - Vert: 1=-0(F=35, B=35)-to-2=-51(F=9, B=9), 2=-2(F=34, B=34)-to-3=-73(F=-2, B=-2), 6=-0(F=10, B=10)-to-5=-19(F=0, B=0), 0=-0(F=10, B=10)-to-5=-19(F=10, B=10) 5=-19(F=0, B=0)-to-4=-21(F=-0, B=-0)

0


F

April 3,2020

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH1</u> Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2

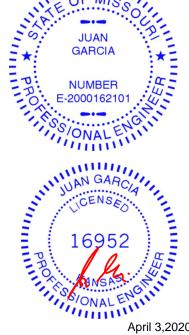
REACTIONS.

9=0-3-8, 6=Mechanical (size) Max Horz 9=109(LC 5) Max Uplift 9=-29(LC 8), 6=-60(LC 5)

Max Grav 9=245(LC 1), 6=159(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 4) will fit between the bottom chord and any other members.

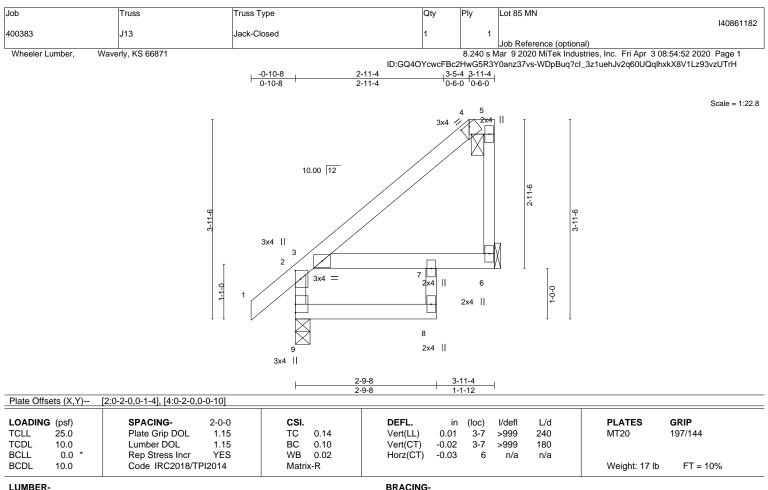
5) Refer to girder(s) for truss to truss connections.

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 6.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

11111 MIS

0

F


Structural wood sheathing directly applied or 3-11-4 oc purlins,

except end verticals, and 2-0-0 oc purlins: 4-5.

Rigid ceiling directly applied or 10-0-0 oc bracing

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2

REACTIONS. 9=0-3-8, 6=Mechanical (size)

Max Horz 9=142(LC 5) Max Uplift 9=-18(LC 8), 6=-75(LC 5) Max Grav 9=245(LC 1), 6=178(LC 15)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 6.

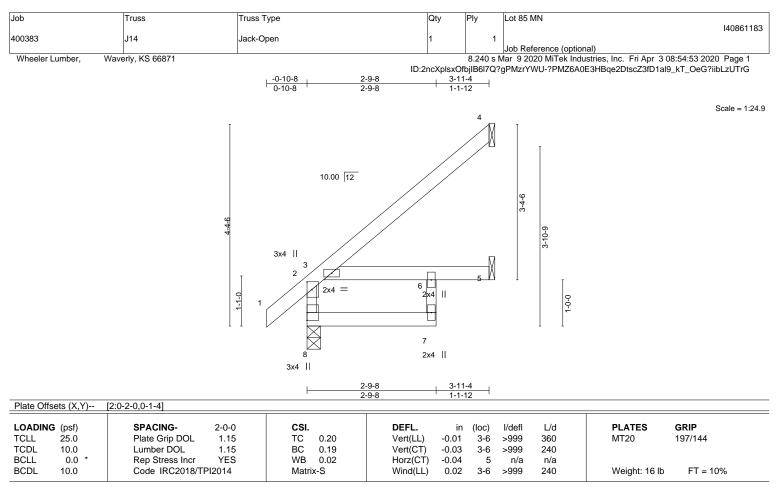
8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

11111 MIS

0

Structural wood sheathing directly applied or 3-11-4 oc purlins,


except end verticals, and 2-0-0 oc purlins: 4-5.

Rigid ceiling directly applied or 10-0-0 oc bracing

April 3,2020

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2

BRACING-TOP CHORD

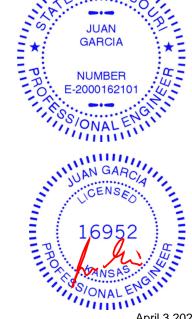
Structural wood sheathing directly applied or 3-11-4 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing

REACTIONS. (size) 8=0-3-8, 4=Mechanical, 5=Mechanical

Max Horz 8=145(LC 8) Max Uplift 4=-97(LC 8), 5=-5(LC 8)

Max Grav 8=276(LC 1), 4=127(LC 15), 5=103(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-8=-254/0

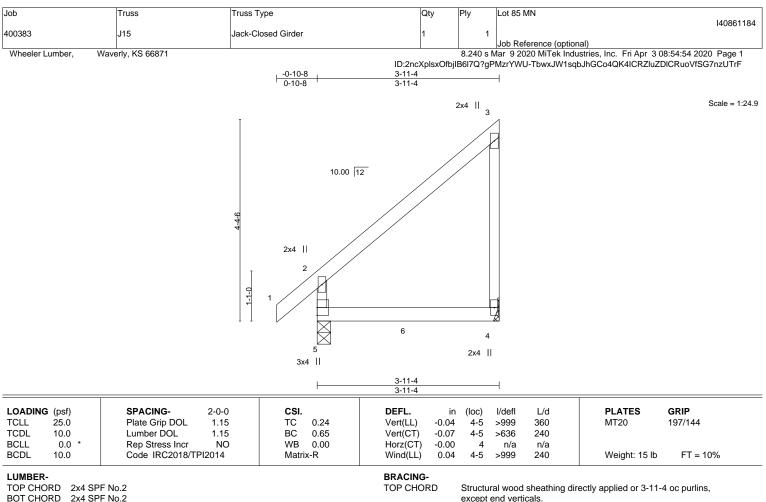

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



11111 MIS

0

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing

BOT CHORD WEBS 2x3 SPF No.2

5=0-3-8, 4=Mechanical REACTIONS. (size) Max Horz 5=170(LC 5) Max Uplift 5=-58(LC 8), 4=-126(LC 5)

Max Grav 5=390(LC 1), 4=318(LC 31)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb)
- 4=126. 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.

7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 295 lb down and 95 lb up at 2-0-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

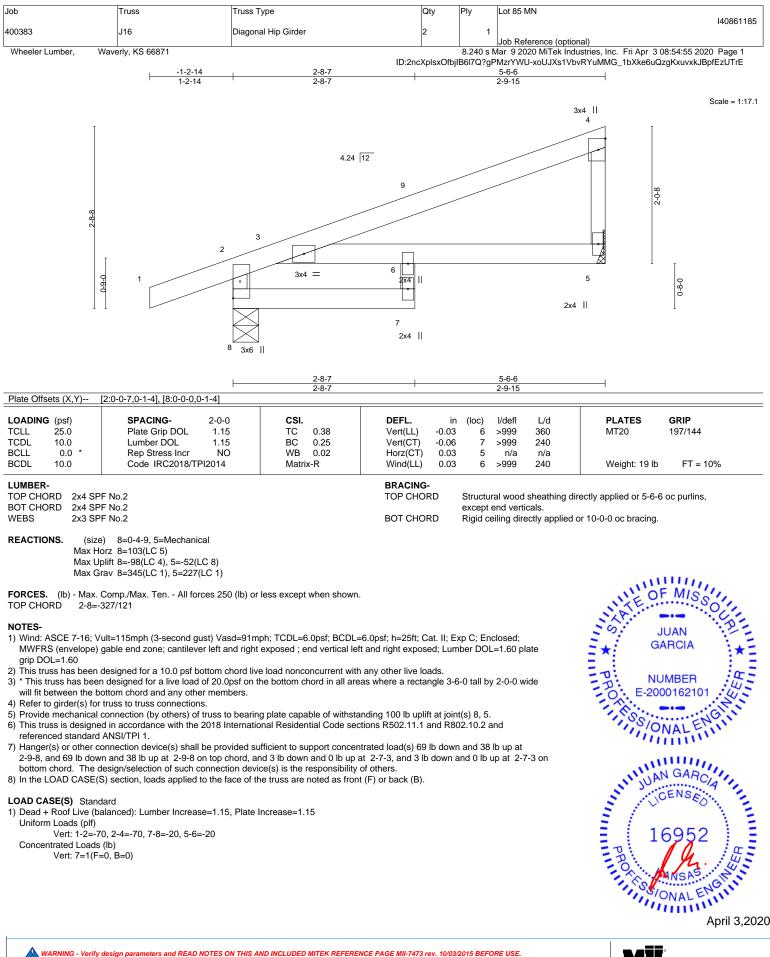
8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

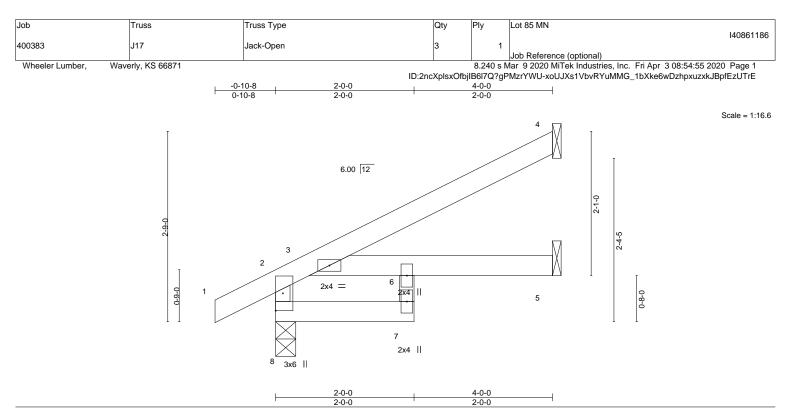
1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-70, 2-3=-70, 4-5=-20 Concentrated Loads (Ib)

Vert: 6=-295(B)



April 3,2020


11111

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MITeKe connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Design valid for use only with MITeKe connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Mitek° 16023 Swingley Ridge Rd Chesterfield, MO 63017

Plate Offs	ets (X,Y)	[2:0-0-10,0-1-4], [8:0-0-0	,0-1-4]									
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	25.0	Plate Grip DOL	1.15	TC	0.20	Vert(LL)	-0.01	6	>999	360	MT20	197/144
CDL	10.0	Lumber DOL	1.15	BC	0.15	Vert(CT)	-0.03	6	>999	240		
SCLL	0.0 *	Rep Stress Incr	YES	WB	0.01	Horz(CT)	0.01	5	n/a	n/a		
BCDL	10.0	Code IRC2018/T	PI2014	Matri	x-S	Wind(LL)	0.02	6	>999	240	Weight: 13 lb	FT = 10%

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x3 SPF No.2

BRACING-TOP CHORD BOT CHORD

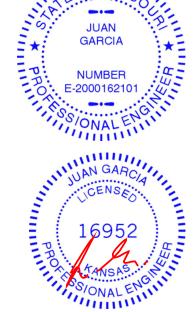
Structural wood sheathing directly applied or 4-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 8=0-3-8, 4=Mechanical, 5=Mechanical

Max Horz 8=88(LC 8) Max Uplift 8=-15(LC 8), 4=-61(LC 8)

Max Grav 8=270(LC 1), 4=116(LC 1), 5=83(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-8=-258/41

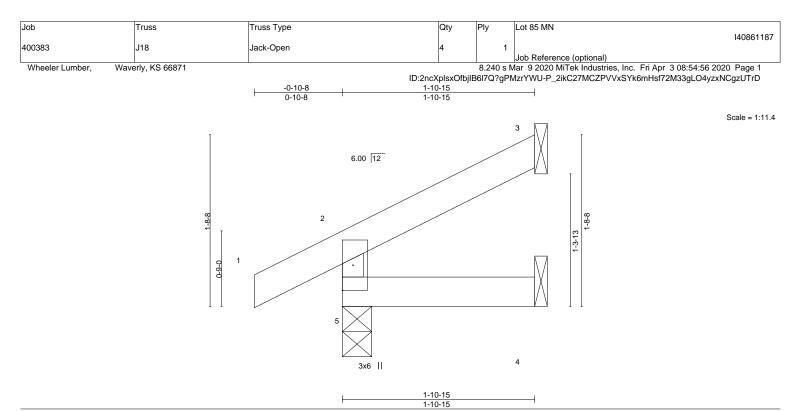

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 4.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


FMIS

0

April 3,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y) [2	2:0-0-10,0-1-4], [5:0-0-0,0-1-4]						
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES GRIP
TCLL 25.0	Plate Grip DOL 1.15	TC 0.07	Vert(LL) -0.0	0 5	>999	360	MT20 197/144
TCDL 10.0	Lumber DOL 1.15	BC 0.02	Vert(CT) -0.0	0 4-5	>999	240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.0	0 3	n/a	n/a	
BCDL 10.0	Code IRC2018/TPI2014	Matrix-R	Wind(LL) 0.0	0 5	>999	240	Weight: 6 lb FT = 10%

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS

2x3 SPF No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 1-10-15 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing

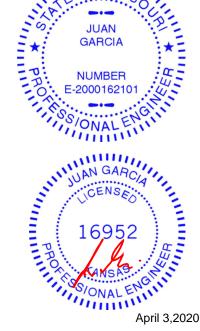
REACTIONS. (size) 5=0-3-8, 3=Mechanical, 4=Mechanical

Max Horz 5=47(LC 8) Max Uplift 5=-23(LC 8), 3=-33(LC 8)

Max Grav 5=168(LC 1), 3=46(LC 1), 4=34(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

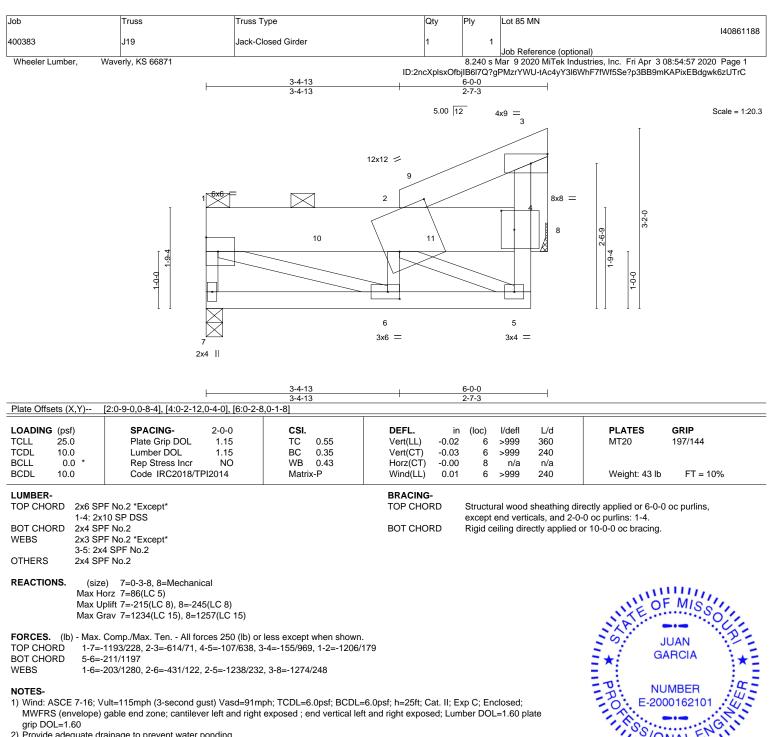

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



11111 MIS

0

🍌 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. WARNING - Verify design parameters and KEAD NOTES ON THIS AND INCLODED MITER KETERENCE PAGE MIT-14's rev. 10/04/2019 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Provide adequate drainage to prevent water ponding.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=215, 8=245.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1080 lb down and 184 lb up at 2-0-12, and 1080 lb down and 184 lb up at 4-0-12 on top chord. The design/selection of such connection device(s) is the responsibility of others
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

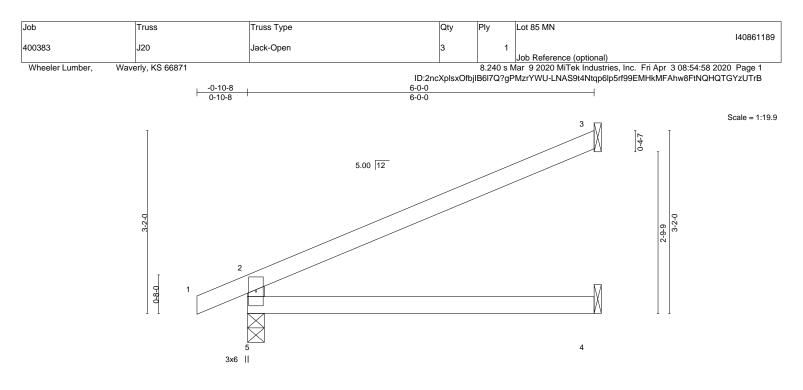
LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Continued on page 2

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH1</u> Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job	Truss	Truss Type	Qty	Ply	Lot 85 MN
					I40861188
400383	J19	Jack-Closed Girder	1	1	
					Job Reference (optional)
Wheeler Lumber, Wave	rly, KS 66871			8.240 s N	lar 9 2020 MiTek Industries, Inc. Fri Apr 3 08:54:57 2020 Page 2

ID:2ncXplsxOfbjlB6l7Q?gPMzrYWU-tAc4yY3l6WhF7fWf5Se?p3BB9mKAPixEBdgwk6zUTrC

LOAD CASE(S) Standard Uniform Loads (plf) Vert: 2-3=-70, 5-7=-20, 1-2=-70 Concentrated Loads (lb) Vert: 9=-984(B) 10=-984(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	<u>6-0-0</u> <u>6-0-0</u>										
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP			
TCLL 25.0	Plate Grip DOL 1.15	TC 0.53	Vert(LL) -	-0.05 4-5	>999	360	MT20	197/144			
TCDL 10.0	Lumber DOL 1.15	BC 0.32	Vert(CT) -	-0.12 4-5	>596	240					
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT)	0.03 3	n/a	n/a					
BCDL 10.0	Code IRC2018/TPI2014	Matrix-R	Wind(LL)	0.05 4-5	>999	240	Weight: 16 lb	FT = 10%			

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS

2x4 SPF No.2

REACTIONS. 5=0-3-8, 3=Mechanical, 4=Mechanical (size) Max Horz 5=107(LC 8) Max Uplift 5=-46(LC 8), 3=-90(LC 8) Max Grav 5=338(LC 1), 3=182(LC 1), 4=109(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-5=-295/100

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

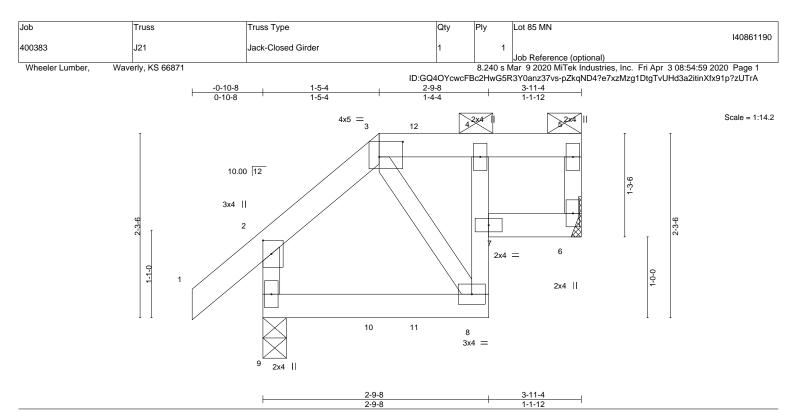
With TRACIN JUAN GARCIA NUMBER F -2000162101 IGO JOIN 11111

111

0

MIS

April 3,2020


🍌 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. WARNING - Verify design parameters and KEAD NOTES ON THIS AND INCLODED MITER KETERENCE PAGE MIT-14's rev. 10/04/2019 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Plate Offsets (X,Y)	[2:0-2-0,0-1-4], [3:0-3-8,0-2-4]				
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/det	efl L/d	PLATES GRIP
TCLL 25.0	Plate Grip DOL 1.15	TC 0.14	Vert(LL) -0.01 8 >999	9 360	MT20 197/144
TCDL 10.0	Lumber DOL 1.15	BC 0.22	Vert(CT) -0.01 8 >999	9 240	
BCLL 0.0 *	Rep Stress Incr NO	WB 0.02	Horz(CT) -0.01 6 n/a	/a n/a	
BCDL 10.0	Code IRC2018/TPI2014	Matrix-S	Wind(LL) 0.01 8 >999	9 240	Weight: 15 lb FT = 10%

TOP CHORD	2x4 SPF No.2
BOT CHORD	2x4 SPF No.2 *Except*
	4-8: 2x3 SPF No.2
WEBS	2x3 SPF No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-11-4 oc purlins, except end verticals, and 2-0-0 oc purlins: 3-5. Rigid ceiling directly applied or 10-0-0 oc bracing

REACTIONS. (size) 9=0-3-8, 6=Mechanical

Max Horz 9=76(LC 5) Max Uplift 9=-100(LC 8), 6=-88(LC 5) Max Grav 9=274(LC 1), 6=191(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

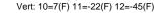
1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 6.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

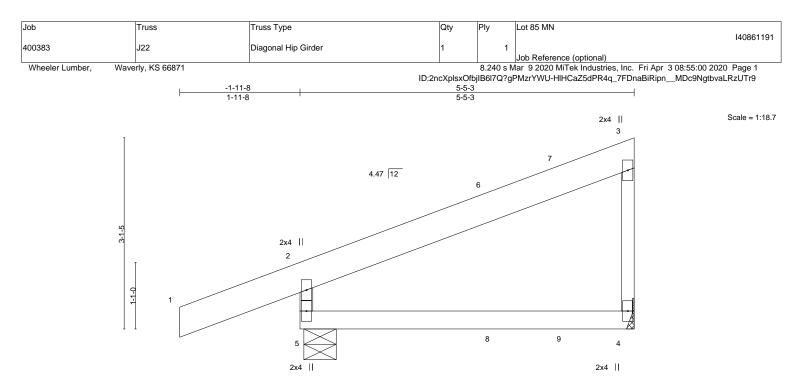

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 45 lb down and 100 lb up at 1-5-4, and 79 lb down and 69 lb up at 2-0-0 on top chord, and 7 lb down and 15 lb up at 1-5-4, and 30 lb down at 2-0-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-70, 2-3=-70, 8-9=-20, 6-7=-20, 3-5=-70 Concentrated Loads (lb)


11111 MIS

0

April 3,2020

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MITeKe connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			5-4-7	
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 25.0	Plate Grip DOL 1.15	TC 0.20	Vert(LL) -0.03 4-5 >999 360	MT20 197/144
TCDL 10.0	Lumber DOL 1.15	BC 0.27	Vert(CT) -0.07 4-5 >895 240	
BCLL 0.0 *	Rep Stress Incr NO	WB 0.00	Horz(CT) -0.00 4 n/a n/a	Weight: 23 lb FT = 10%
BCDL 10.0	Code IRC2018/TPI2014	Matrix-R	Wind(LL) 0.02 4-5 >999 240	

BRACING-

TOP CHORD

BOT CHORD

5-5-3

except end verticals.

LUMBER-

TOP CHORD 2x6 SPF No 2 2x4 SPF No.2 BOT CHORD WEBS 2x3 SPF No.2

REACTIONS. 5=0-6-5, 4=Mechanical (size)

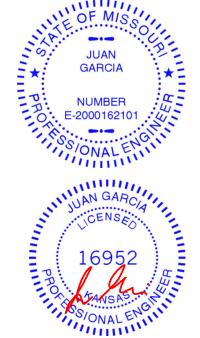
Max Horz 5=132(LC 5) Max Uplift 5=-143(LC 4), 4=-101(LC 5)

Max Grav 5=418(LC 1), 4=253(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-5=-365/171

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 5=143, 4=101,
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 71 lb down and 40 lb up at 3-2-6, and 116 lb down and 95 lb up at 4-4-6 on top chord, and 12 lb down and 20 lb up at 3-2-6, and 29 lb down at 4-4-6 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

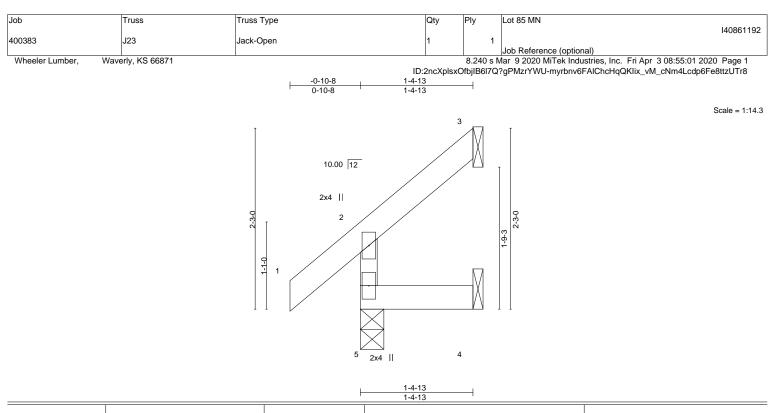
8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-70, 2-3=-70, 4-5=-20

Concentrated Loads (lb) Vert: 7=-43(B) 8=1(F) 9=-14(B)

Structural wood sheathing directly applied or 5-5-3 oc purlins,


Rigid ceiling directly applied or 10-0-0 oc bracing.

April 3,2020

11111

🍌 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITeKe connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

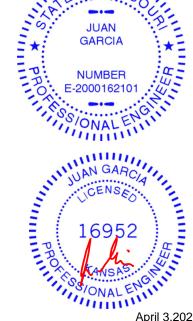
LOADING TCLL TCDL	25.0 10.0	SPACING- Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI. TC BC	0.08 0.03	DEFL. Vert(LL) Vert(CT)	in 0.00 -0.00	(loc) 5 5	l/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 197/144
BCLL BCDL	0.0 * 10.0	Rep Stress Incr Code IRC2018/TP	YES 12014	WB Matri	0.00 x-R	Horz(CT)	-0.00	3	n/a	n/a	Weight: 6 lb	FT = 10%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-


TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2

REACTIONS. 5=0-3-8, 3=Mechanical, 4=Mechanical (size) Max Horz 5=60(LC 8) Max Uplift 3=-41(LC 8), 4=-13(LC 8) Max Grav 5=152(LC 1), 3=34(LC 15), 4=24(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

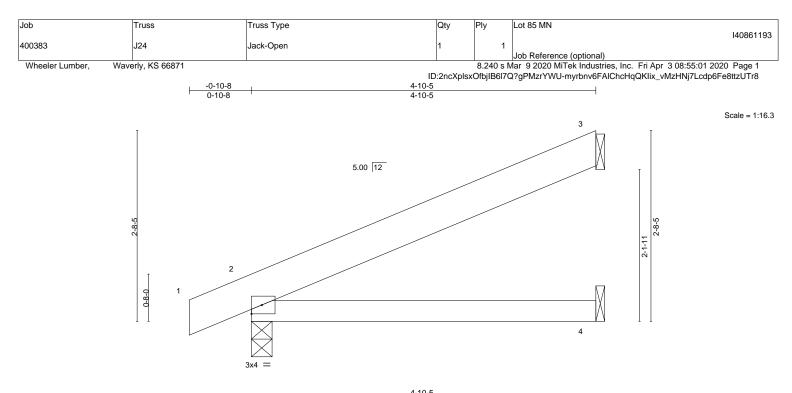
- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11111

0

MIS

Structural wood sheathing directly applied or 1-4-13 oc purlins,


Rigid ceiling directly applied or 10-0-0 oc bracing

except end verticals.

April 3,2020

🍌 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. WARNING - Verify design parameters and KEAD NOTES ON THIS AND INCLODED MITER KETERENCE PAGE MIT-14's rev. 10/04/2019 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			4-10-5					
LOADING (psf) TCLL 25.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.16		in (loc) 0.03 2-4	>999	L/d 360	PLATES MT20	GRIP 197/144
TCDL 10.0 BCLL 0.0 * BCDL 10.0	Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	BC 0.22 WB 0.00 Matrix-P	Horz(CT) -0	0.06 2-4 0.00 3 0.00 2	>994 3 n/a 2 ****	240 n/a 240	Weight: 17 lb	FT = 10%

TOP CHORD 2x6 SPF No.2 BOT CHORD 2x4 SPF No.2

REACTIONS. 3=Mechanical, 2=0-3-8, 4=Mechanical (size)

Max Horz 2=96(LC 8) Max Uplift 3=-87(LC 8), 2=-42(LC 8)

Max Grav 3=155(LC 1), 2=289(LC 1), 4=93(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

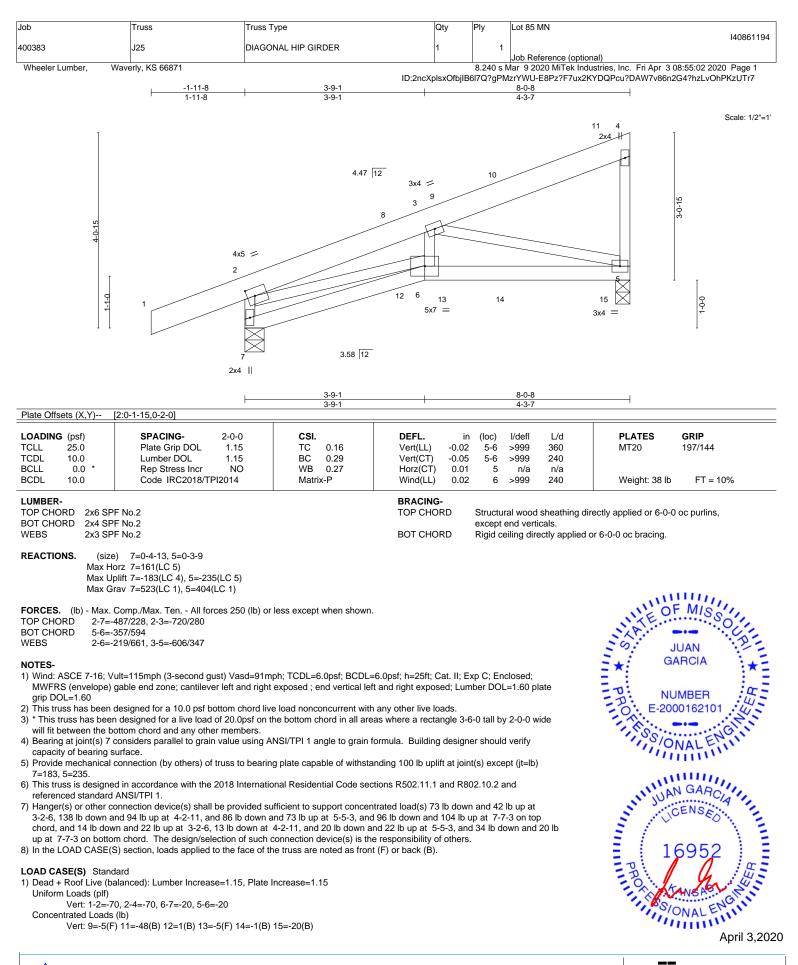
4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

TIS * PROTI JUAN GARCIA NUMBER F -2000162101 SIONAL SIONAL UNIT SUAN GARCI ICENSEC 1695 VIIIIIIIIIIII JOIT

MIS

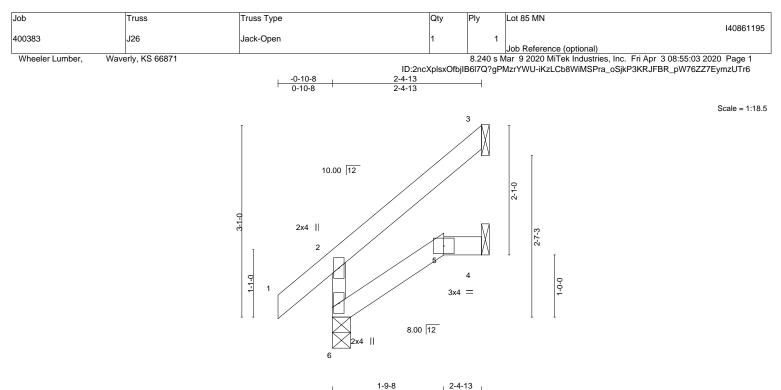
0


April 3,2020

🍌 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. WARNING - Verify design parameters and KEAD NOTES ON THIS AND INCLODED MITER KETERENCE PAGE MIT-14's rev. 10/04/2019 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-10-5 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.



🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH1</u> Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

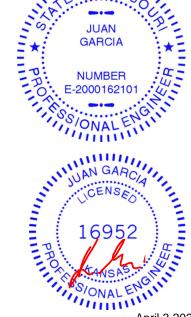
MiTek

16023 Swingley Ridge Rd Chesterfield, MO 63017

						1-9-8	0-7-5	5				
LOADIN TCLL	G (psf) 25.0	SPACING- 2 Plate Grip DOL	2-0-0 1.15	CSI. TC	0.13	DEFL. Vert(LL)	in 0.00	(loc) 5	l/defl >999	L/d 240	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.07	Vert(CT)	-0.00	5-6	>999	180	WI 20	137/144
BCLL BCDL	0.0 * 10.0	Rep Stress Incr Code IRC2018/TPI20	YES 014	WB Matrix	0.00 (-R	Horz(CT)	-0.01	3	n/a	n/a	Weight: 9 lb	FT = 10%

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2

BRACING-TOP CHORD BOT CHORD

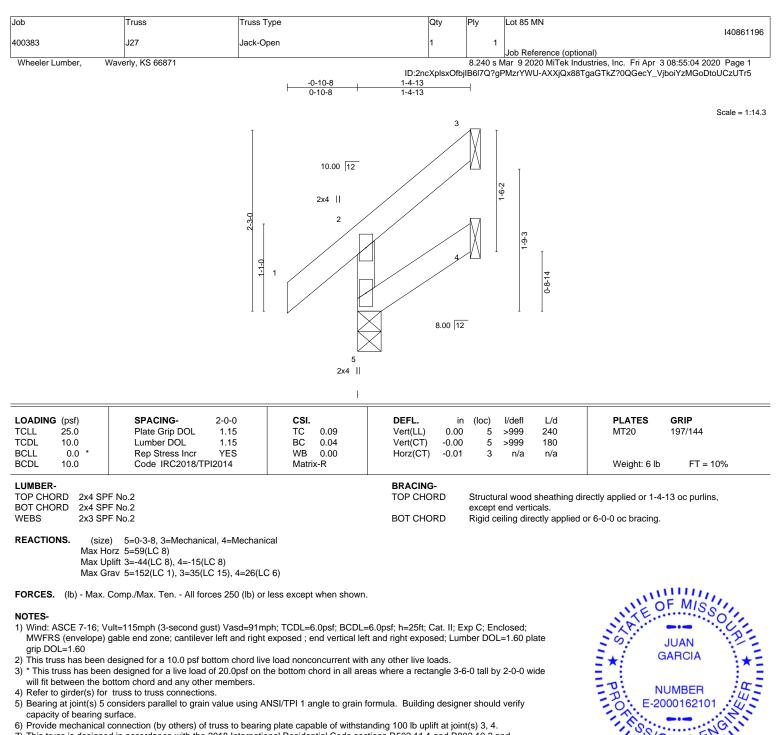

Structural wood sheathing directly applied or 2-4-13 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. 6=0-3-8, 3=Mechanical, 4=Mechanical (size) Max Horz 6=91(LC 8) Max Uplift 3=-72(LC 8), 4=-9(LC 8) Max Grav 6=184(LC 1), 3=77(LC 15), 4=43(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

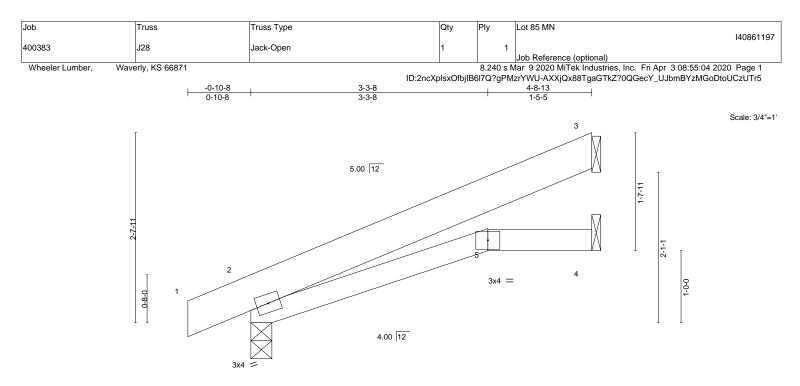
NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


11111 MIS

JUAN

0



- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

		<u>3-3-8</u> <u>3-3-8</u>	4-8-13 1-5-5	
LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. DEFL. TC 0.18 Vert(LL) BC 0.14 Vert(CT, WB 0.00 Horz(CT Matrix-P Wind(LL)	,	PLATES GRIP MT20 197/144 Weight: 17 lb FT = 10%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x6 SPF No.2BOT CHORD2x4 SPF No.2

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=94(LC 8) Max Uplift 3=-76(LC 8), 2=-41(LC 8)

Max Grav 3=152(LC 1), 2=283(LC 1), 4=75(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

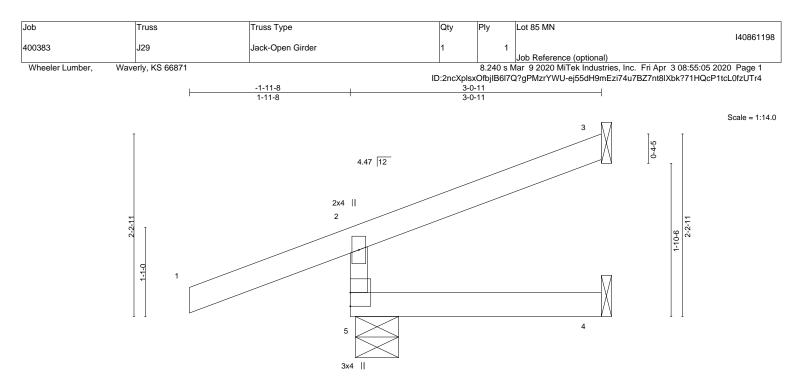
4) Refer to girder(s) for truss to truss connections.

- 5) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

JUAN GARCIA D. NUMBER E-2000162101 SS/ONALENGIN JUAN GARCIA ICENSED 16952 BOTH SCONALENGIN

MIS

0


Structural wood sheathing directly applied or 4-8-13 oc purlins.

Rigid ceiling directly applied or 6-0-0 oc bracing.

April 3,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

				I			
LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2018/TPI2014	CSI. TC 0.39 BC 0.10 WB 0.00 Matrix-R	Vert(CT) - Horz(CT) -	in (loc) -0.00 4-5 -0.00 4-5 -0.01 3 0.00 4-5	l/defl L/c >999 360 >999 240 n/a n/a >999 240) MT20	GRIP 197/144 FT = 10%

BRACING-

TOP CHORD

BOT CHORD

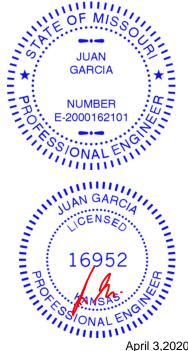
LUMBER-

TOP CHORD 2x4 SPF No 2 2x4 SPF No.2 BOT CHORD

WEBS 2x3 SPF No.2

REACTIONS. (size) 5=0-6-5, 3=Mechanical, 4=Mechanical Max Horz 5=81(LC 7) Max Uplift 5=-96(LC 4), 3=-65(LC 12), 4=-7(LC 19)

Max Grav 5=214(LC 1), 3=13(LC 9), 4=38(LC 3)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

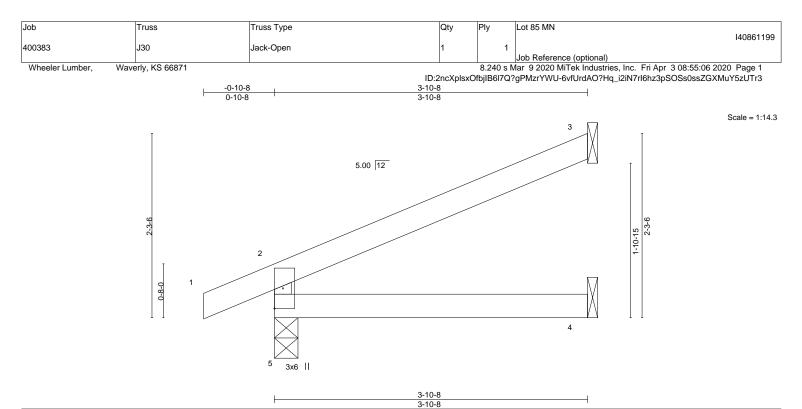
NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3, 4.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.
- 7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 44 lb down and 16 lb up at -1-11-8, and 44 lb down and 16 lb up at -1-11-8 on top chord. The design/selection of such connection device(s) is the responsibility of others.
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Concentrated Loads (lb) Vert: 1=-67(F=-33, B=-33)
- Trapezoidal Loads (plf)
 - Vert; 1=-0(F=35, B=35)-to-2=-51(F=9, B=9), 2=-2(F=34, B=34)-to-3=-54(F=8, B=8), 5=-0(F=10, B=10)-to-4=-15(F=2, B=2)

Structural wood sheathing directly applied or 3-0-11 oc purlins,


Rigid ceiling directly applied or 10-0-0 oc bracing

except end verticals.

April 3,2020

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MITeKe connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offs	sets (X,Y)	[2:0-0-8,0-1-4], [5:0-0-0,0)-1-4]	1								
LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	25.0	Plate Grip DOL	1.15	TC	0.20	Vert(LL)	-0.01	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.12	Vert(CT)	-0.02	4-5	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	3	n/a	n/a		
BCDL	10.0	Code IRC2018/T	PI2014	Matri	x-R	Wind(LL)	0.01	4-5	>999	240	Weight: 11 lb	FT = 10%

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-10-8 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing

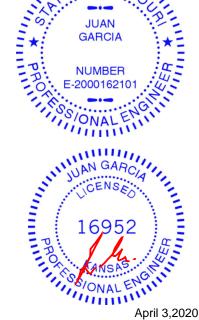
REACTIONS. (size) 5=0-3-8, 3=Mechanical, 4=Mechanical

Max Horz 5=72(LC 8) Max Uplift 5=-36(LC 8), 3=-60(LC 8)

Max Grav 5=244(LC 1), 3=115(LC 1), 4=70(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

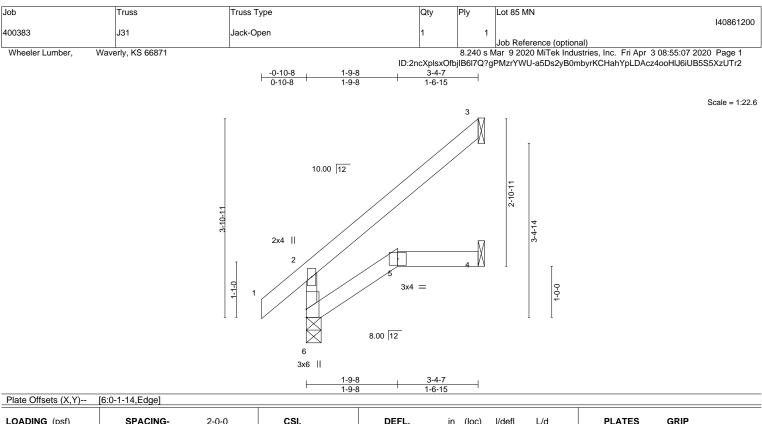

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



1117 11 MIS

0

🍌 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. WARNING - Verify design parameters and KEAD NOTES ON THIS AND INCLODED MITER KETERENCE PAGE MIT-14's rev. 10/04/2019 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

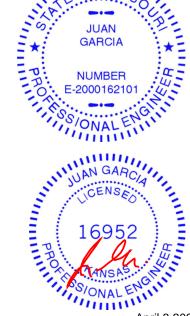
	LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.21 BC 0.11 WB 0.00 Matrix-R	DEFL. i Vert(LL) 0.0 Vert(CT) -0.0 Horz(CT) -0.0	5	l/defl >999 >999 n/a	L/d 240 240 n/a	PLATES MT20 Weight: 12 lb	GRIP 197/144 FT = 10%
--	--	---	---	---	---	-------------------------------	--------------------------	---------------------------------	------------------------------------

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2

BRACING-TOP CHORD

Structural wood sheathing directly applied or 3-4-7 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. 6=0-3-8, 3=Mechanical, 4=Mechanical (size)


Max Horz 6=124(LC 8) Max Uplift 3=-98(LC 8), 4=-6(LC 8)

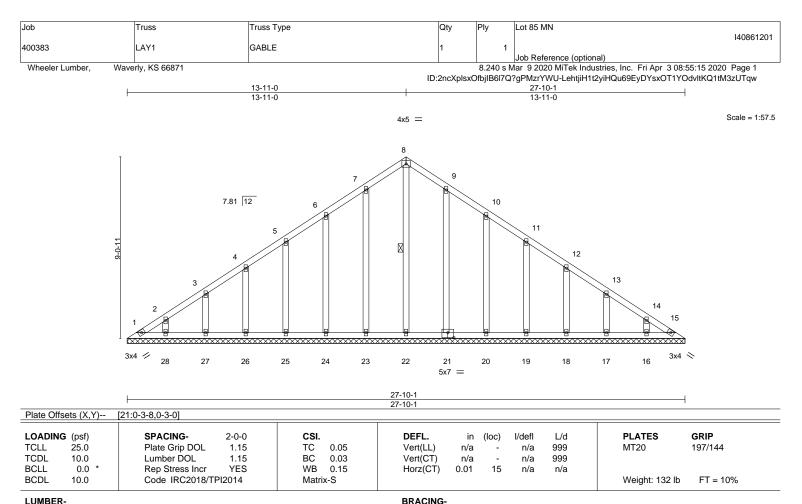
Max Grav 6=223(LC 1), 3=114(LC 15), 4=62(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.

11111 MIS


JUAN

GARCIA

0

TOP CHORD

BOT CHORD

WEBS

LUMBER-

TOP CHORD 2x4 SPF No.2 2x4 SPF No.2 BOT CHORD OTHERS 2x4 SPF No.2

REACTIONS. All bearings 27-10-1.

(lb) -Max Horz 1=-228(LC 4)

Max Uplift All uplift 100 lb or less at joint(s) 1, 15, 23, 24, 25, 26, 27, 28, 21, 20, 19, 18, 17, 16

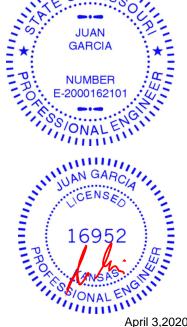
Max Grav All reactions 250 lb or less at joint(s) 1, 15, 22, 23, 24, 25, 26, 27, 28, 21, 20, 19, 18, 17, 16

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are 2x4 MT20 unless otherwise indicated.


4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 6)

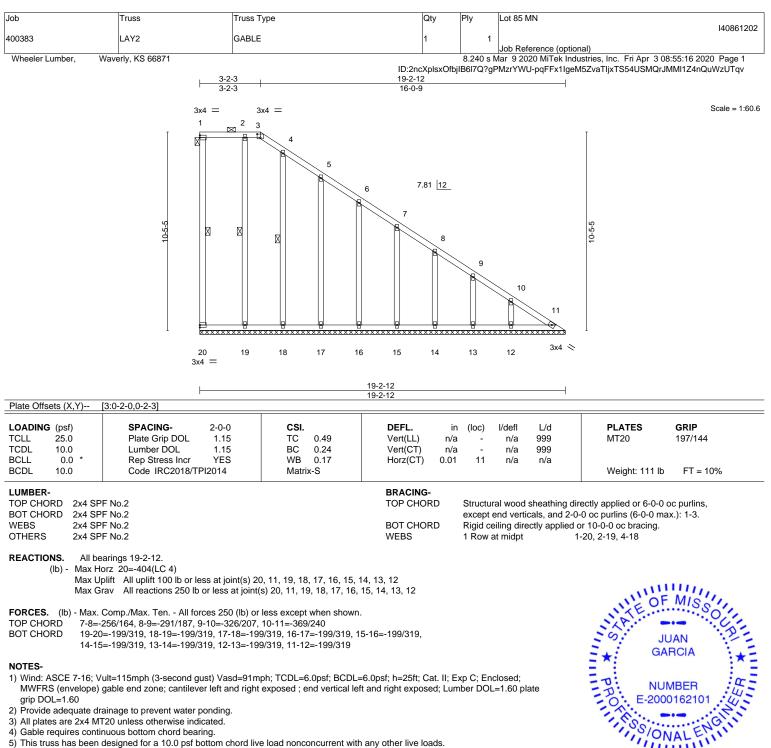
will fit between the bottom chord and any other members. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 15, 23, 24, 25, 26, 27, 28, 21, 20, 19, 18, 17, 16,

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

ALLIN OF MIS

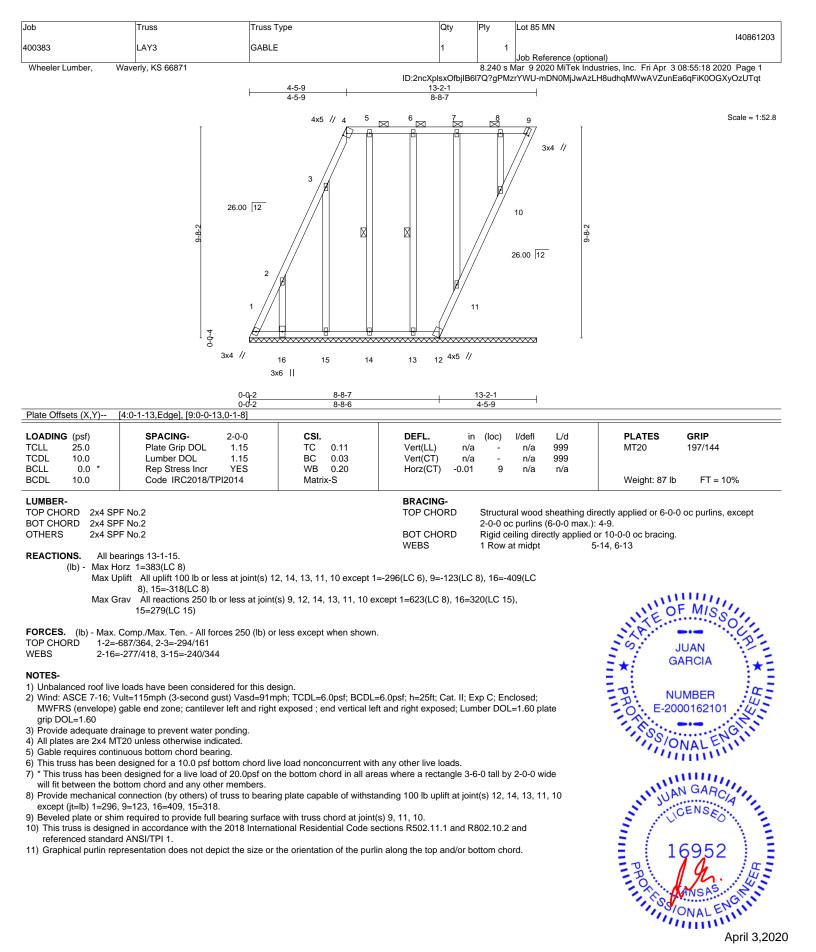
6

Structural wood sheathing directly applied or 6-0-0 oc purlins.

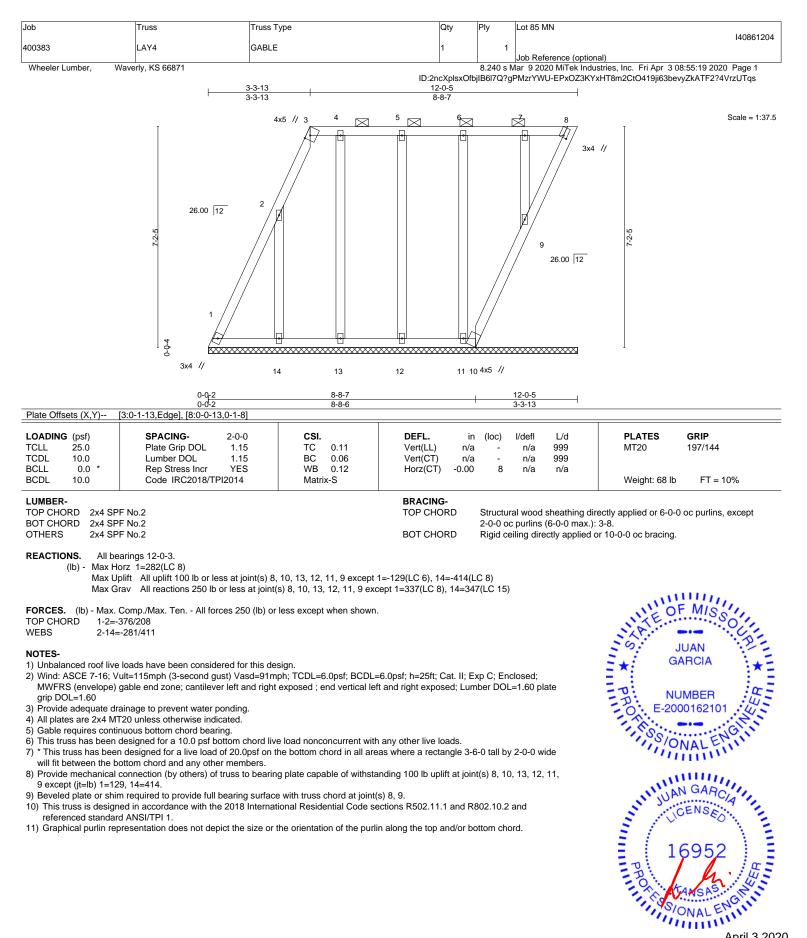

8-22

Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Row at midpt

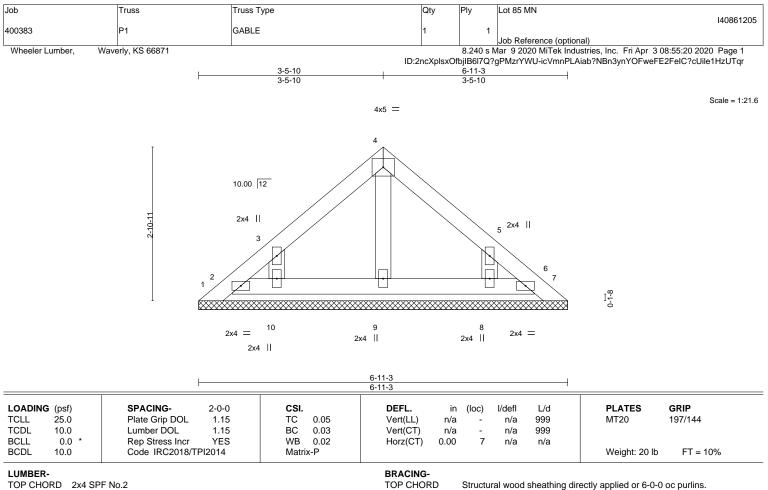


- 2) Provide adequate drainage to prevent water ponding.
- All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 20, 11, 19, 18, 17, 16, 15, 14, 13, 12.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to be only with with ever connectors. This besign is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH1</u> Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



April 3,2020

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a trust system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH1</u> Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing

2x4 SPF No.2 BOT CHORD

OTHERS 2x4 SPF No.2

REACTIONS. All bearings 6-11-3. (lb) -

Max Horz 1=-70(LC 4) Max Uplift All uplift 100 lb or less at joint(s) 1, 7, 6, 8 except 10=-101(LC 8) Max Grav All reactions 250 lb or less at joint(s) 1, 7, 2, 6, 9, 10, 8

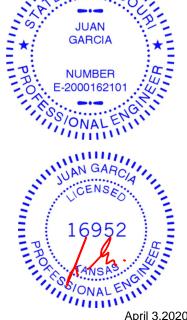
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing.

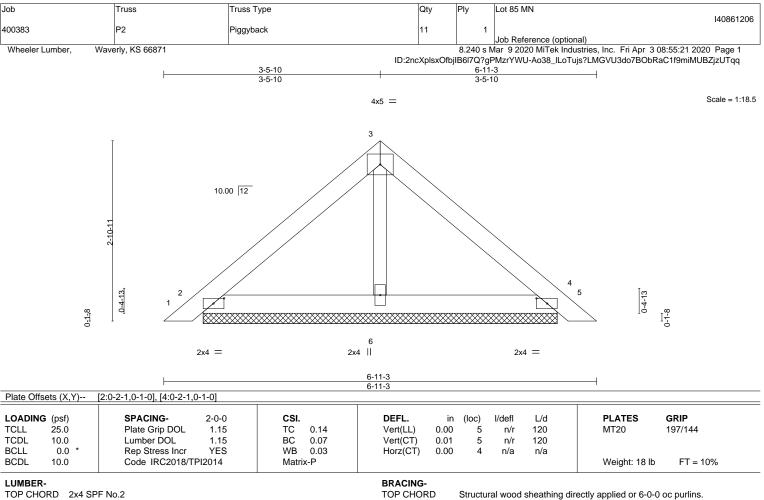

- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 6, 8 except (jt=lb) 10=101.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.



MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

11111 MIS

0

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SPF No.2

BOT CHORD 2x4 SPF No.2 OTHERS 2x3 SPF No.2

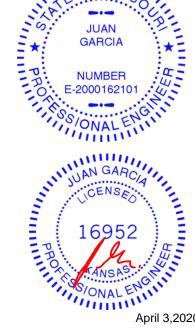
REACTIONS. (size) 2=5-8-1, 4=5-8-1, 6=5-8-1

Max Horz 2=70(LC 7) Max Uplift 2=-43(LC 8), 4=-51(LC 9) Max Grav 2=184(LC 1), 4=184(LC 1), 6=198(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

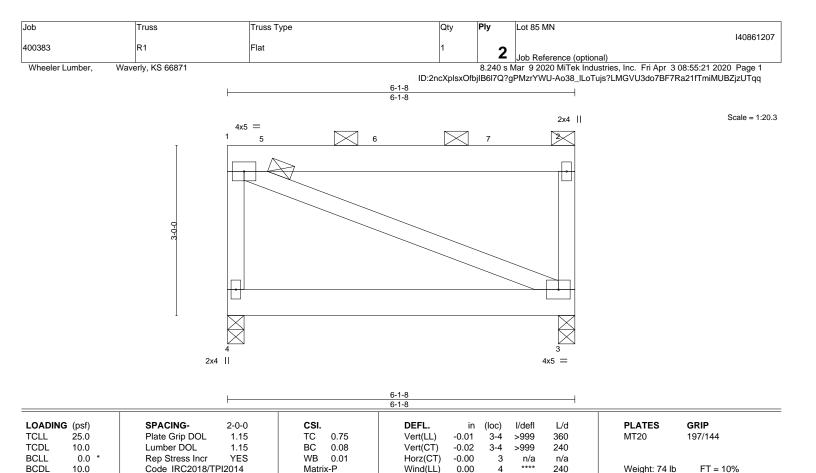

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.


11111 MIS

JUAN

0

BRACING-

TOP CHORD

BOT CHORD

2-0-0 oc purlins: 1-2, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing

LUMBER-

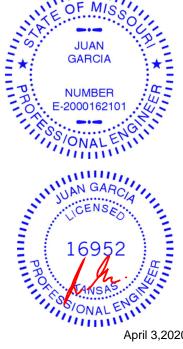
TOP CHORD 2x6 SP DSS 2x6 SPF No.2 BOT CHORD WEBS 2x4 SPF No.2

REACTIONS. 4=0-3-8, 3=0-3-8 (size) Max Horz 4=-97(LC 4) Max Uplift 4=-361(LC 4), 3=-284(LC 5) Max Grav 4=2214(LC 1), 3=1895(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 1-4=-2155/396, 2-3=-1837/298

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:


- Top chords connected as follows: 2x4 1 row at 0-9-0 oc, 2x6 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.
- Webs connected as follows: 2x4 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 4=361, 3=284.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1181 lb down and 200 lb up at 0-9-0, and 1266 lb down and 188 lb up at 2-9-0, and 1265 lb down and 172 lb up at 4-9-0 on top chord. The design/selection of such connection device(s) is the responsibility of others.

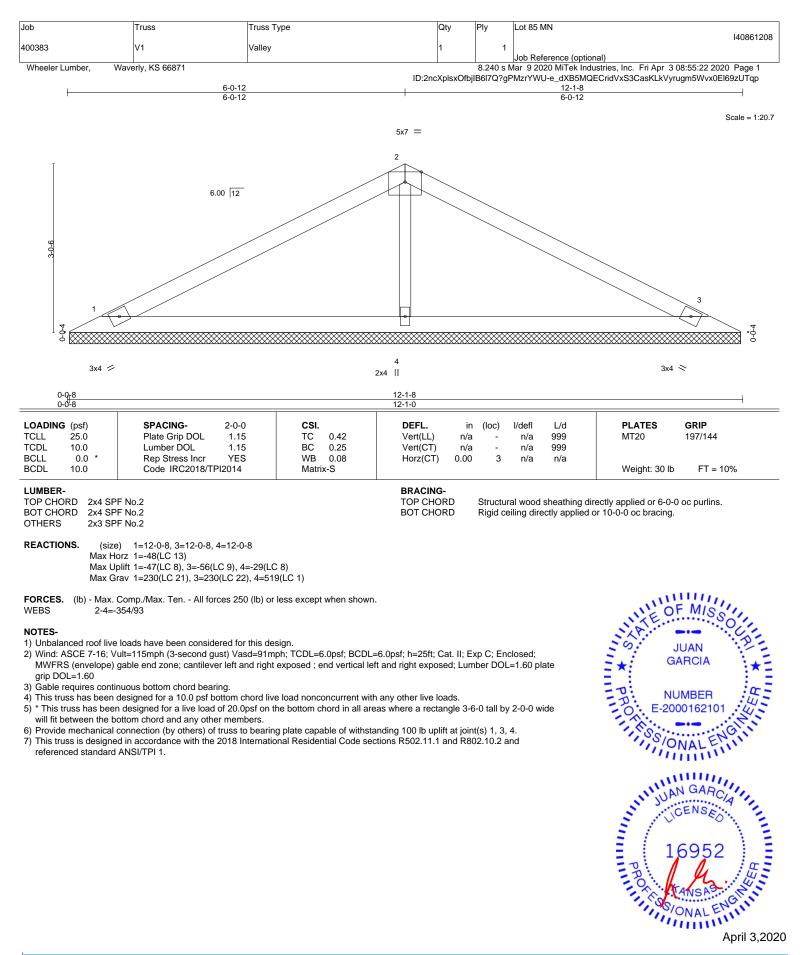
LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-70, 3-4=-20

Continued on page 2

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

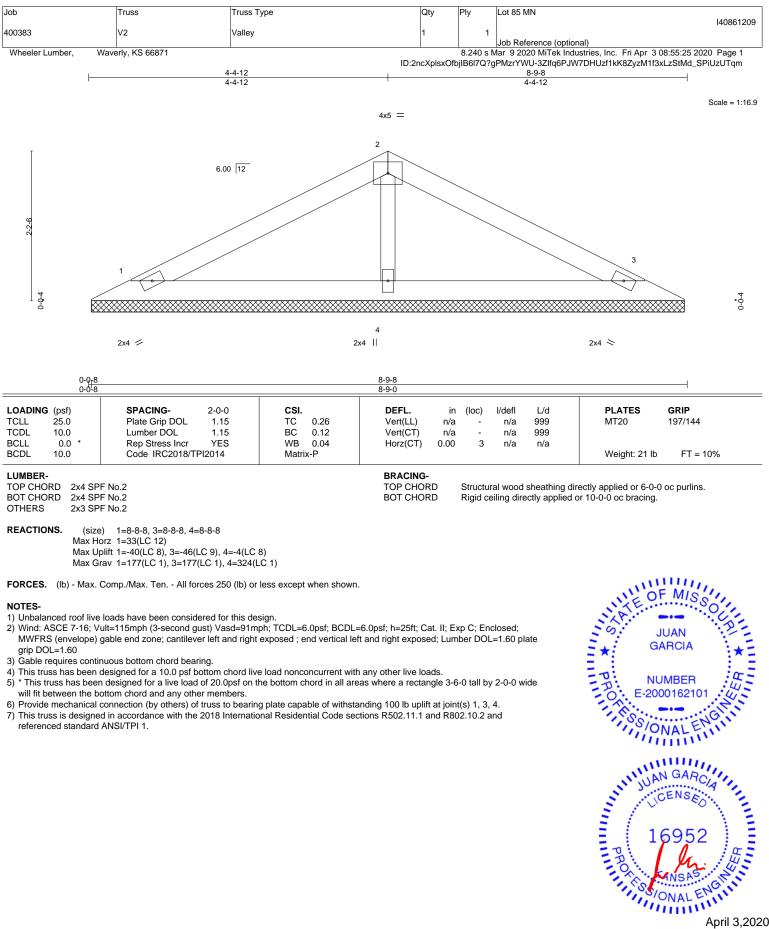
[lob	Truss	Truss Type	Qty	Ply	Lot 85 MN
						140861207
	100383	R1	Flat	1	2	
					_	Job Reference (optional)
	Wheeler Lumber, Wave	erly, KS 66871			8.240 s N	1ar 9 2020 MiTek Industries, Inc. Fri Apr 3 08:55:21 2020 Page 2


8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Apr 3 08:55:21 2020 Page 2 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-Ao38_ILoTujs?LMGVU3do7BF7Ra21fTmiMUBZjzUTqq

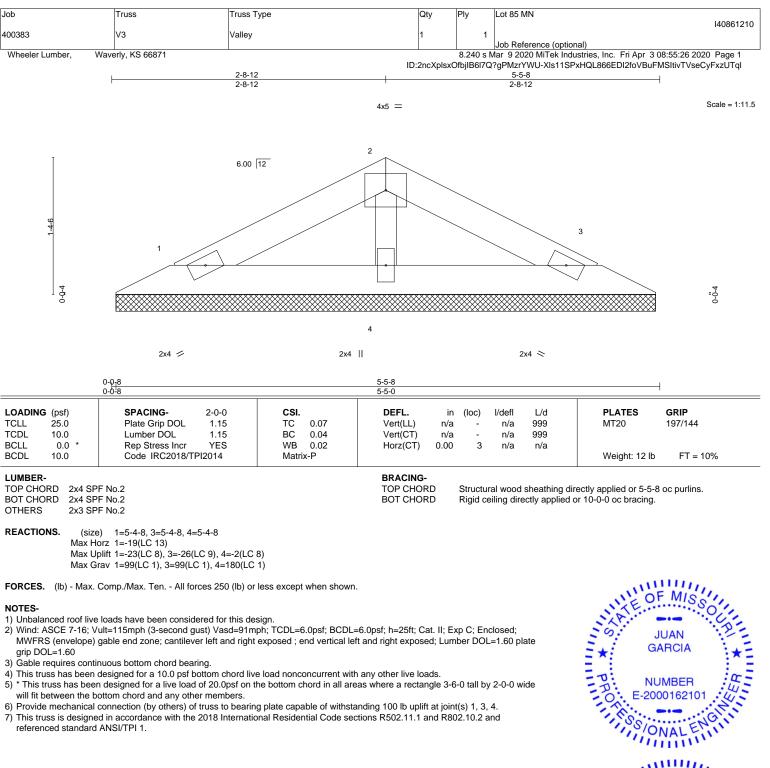
LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 5=-1181 6=-1167 7=-1167

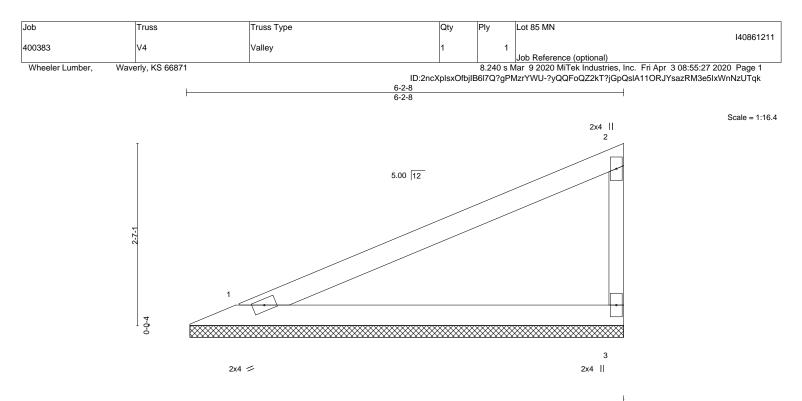
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


16023 Swingley Ridge Rd Chesterfield, MO 63017

JGI



111111

April 3,2020

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (lo	c) l/defl	L/d	PLATES GRIP)
CLL 25.0	Plate Grip DOL 1.15	TC 0.56	Vert(LL)	n/a `	- n/a	999	MT20 197/1	144
CDL 10.0	Lumber DOL 1.15	BC 0.30	Vert(CT)	n/a	- n/a	999		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT)	-0.00	3 n/a	n/a		
3CDL 10.0	Code IRC2018/TPI2014	Matrix-P					Weight: 15 lb F	T = 10%

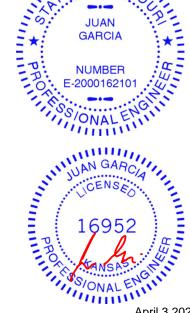
BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No 2 BOT CHORD 2x4 SPF No.2

WEBS 2x3 SPF No.2 REACTIONS.

1=6-1-14, 3=6-1-14 (size) Max Horz 1=98(LC 5) Max Uplift 1=-35(LC 8), 3=-55(LC 8) Max Grav 1=241(LC 1), 3=241(LC 1)


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

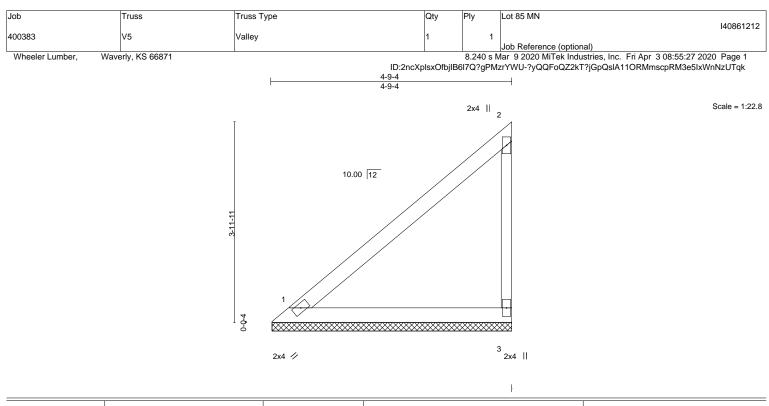
2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

111

0

MIS


Structural wood sheathing directly applied or 6-2-8 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. TC 0.35 BC 0.18 WB 0.00 Matrix-P	DEFL. in (loc) I/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) -0.00 3 n/a n/a	PLATES GRIP MT20 197/144 Weight: 15 lb FT = 10%
LUMBER-			BRACING-	

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No 2 BOT CHORD 2x4 SPF No.2 WEBS

2x3 SPF No.2

REACTIONS. 1=4-8-15, 3=4-8-15 (size) Max Horz 1=142(LC 5) Max Uplift 1=-5(LC 8), 3=-67(LC 8) Max Grav 1=192(LC 1), 3=216(LC 15)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

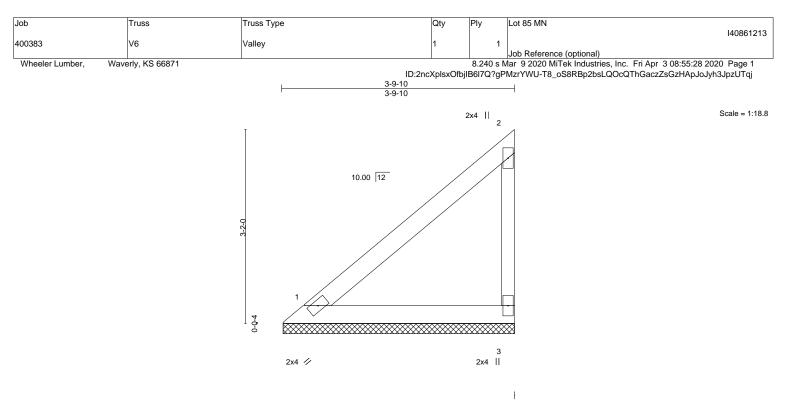
2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

TIS * PROM JUAN GARCIA NUMBER E-2000162101 PROPERTY IN GARON 1111111 JOIT 111111

11111 MIS

0


Structural wood sheathing directly applied or 4-9-4 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. ir	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 25.0	Plate Grip DOL 1.15	TC 0.20	Vert(LL) n/a	-	n/a	999	MT20	197/144
TCDL 10.0	Lumber DOL 1.15	BC 0.11	Vert(CT) n/a	-	n/a	999		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.00	3	n/a	n/a		
BCDL 10.0	Code IRC2018/TPI2014	Matrix-P					Weight: 11 lb	FT = 10%
LUMBER-			BRACING-					

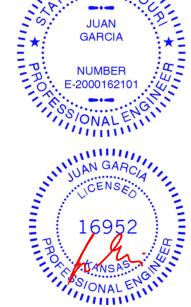
BOT CHORD

LUMBER-TOP CHORD

2x4 SPF No 2 BOT CHORD 2x4 SPF No.2 WEBS

2x3 SPF No.2 REACTIONS. 1=3-9-5, 3=3-9-5 (size)

Max Horz 1=109(LC 5) Max Uplift 1=-4(LC 8), 3=-52(LC 8) Max Grav 1=148(LC 1), 3=167(LC 15)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

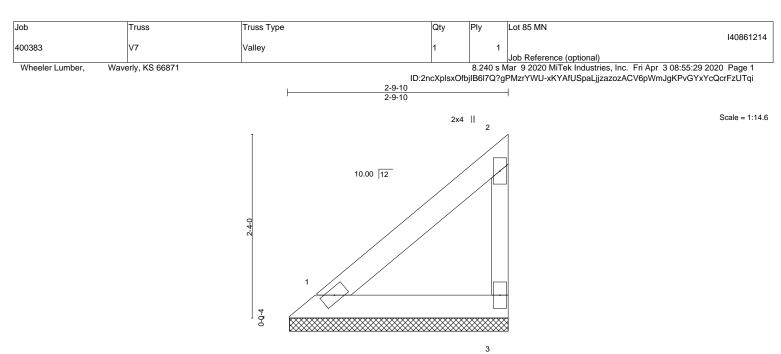
2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

1111 MIS

0

Structural wood sheathing directly applied or 3-9-10 oc purlins,


Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

April 3,2020

🍌 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. WARNING - Verify design parameters and KEAD NOTES ON THIS AND INCLODED MITER KETERENCE PAGE MIT-14's rev. 10/04/2019 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2x4 🥢

2x4 ||

		ł

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing

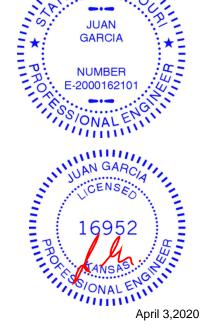
TCDL 10.0 BCLL 0.0 * BCDL 10.0	Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	BC 0.05 WB 0.00 Matrix-P	Vert(CT) n/a - n/a Horz(CT) -0.00 3 n/a		Weight: 8 lb FT = 10%
OADING (psf) CLL 25.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.09	DEFL. in (loc) l/def Vert(LL) n/a - n/a	999	PLATES GRIP MT20 197/144

BOT CHORD

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x3 SPF No.2

REACTIONS. (size) 1=2-9-5, 3=2-9-5 Max Horz 1=76(LC 5) Max Uplift 1=-3(LC 8), 3=-36(LC 8)

Max Grav 1=103(LC 1), 3=116(LC 15)

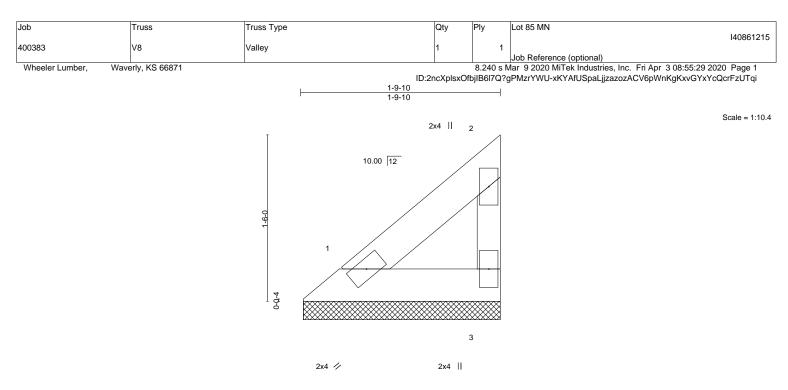

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


FMIS

0

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Mitek[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing

LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.03 BC 0.01 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 5 lb	GRIP 197/144 FT = 10%
LUMBER- TOP CHORD 2x4 SP	F No.2	BRACING- TOP CHORI		Structu	ral wood	sheathing di	rectly applied or 1-9	-10 oc purlins,	

BOT CHORD

BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2

REACTIONS. 1=1-9-5, 3=1-9-5 (size) Max Horz 1=43(LC 5) Max Uplift 1=-1(LC 8), 3=-20(LC 8)

Max Grav 1=58(LC 1), 3=66(LC 15)

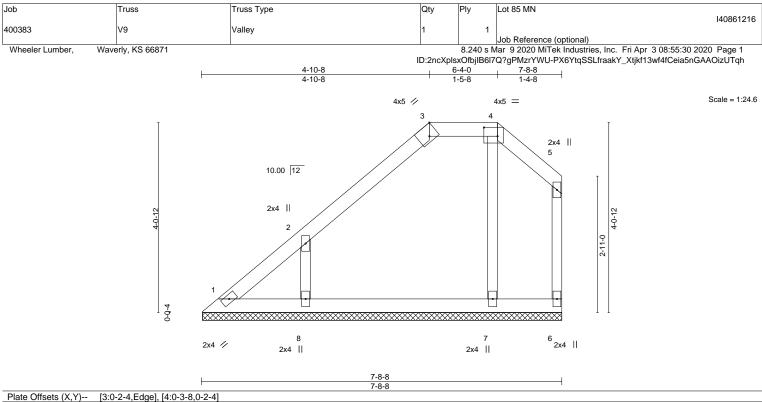
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


1111

11 MIS

0

OADING (psf) CLL 25.0 CDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15	CSI. TC 0.18 BC 0.08		in (loc) n/a - n/a -	l/defl L/d n/a 999 n/a 999	PLATES GRIP MT20 197/144
CLL 0.0 * CDL 10.0	Rep Stress Incr YES Code IRC2018/TPI2014	WB 0.08 Matrix-S	Horz(CT) -0.	00 6	n/a n/a	Weight: 25 lb FT = 10%

OP CHORE BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2 OTHERS 2x3 SPF No.2 BOT CHORD

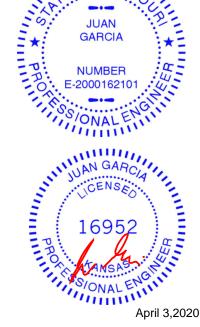
Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 3-4. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 7-8-3.

(lb) -Max Horz 1=134(LC 5)

Max Uplift All uplift 100 lb or less at joint(s) 1, 6, 7 except 8=-134(LC 8)

Max Grav All reactions 250 lb or less at joint(s) 1, 6 except 7=270(LC 1), 8=354(LC 15)

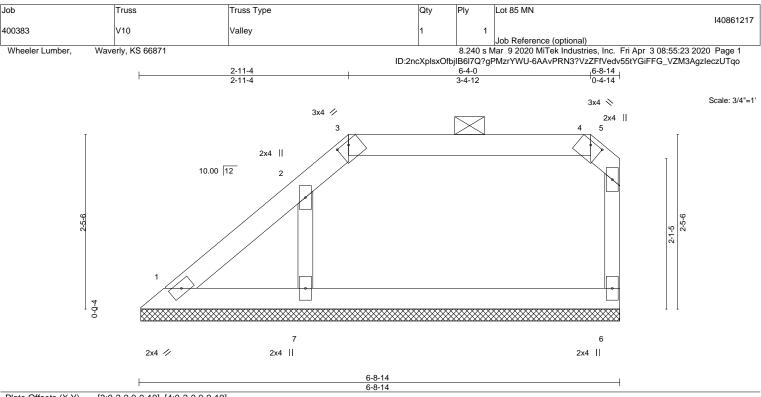

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-8=-285/176

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.

4) Gable requires continuous bottom chord bearing.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 6, 7 except (jt=lb) 8=134.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


11111

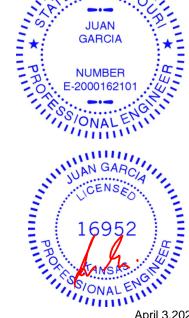
0

MIS

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MITeKe connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl L/d	PLATES GRIP
CLL 25.0	Plate Grip DOL 1.15	TC 0.19	Vert(LL) n	/a -	n/a 999	MT20 197/144
CDL 10.0	Lumber DOL 1.15	BC 0.11	Vert(CT) n	/a -	n/a 999	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.05	Horz(CT) -0.0	0 6	n/a n/a	
3CDL 10.0	Code IRC2018/TPI2014	Matrix-S				Weight: 19 lb FT = 10%

BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2 OTHERS 2x3 SPF No.2

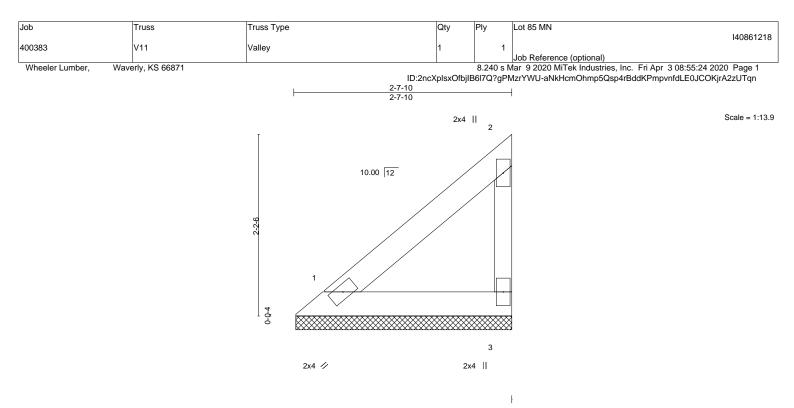

except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 3-4. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=6-8-9, 6=6-8-9, 7=6-8-9 Max Horz 1=82(LC 5) Max Uplift 1=-8(LC 4), 6=-31(LC 4), 7=-63(LC 5) Max Grav 1=76(LC 16), 6=182(LC 22), 7=321(LC 21)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 6, 7.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



11111

0

MIS

OADING (psf) 'CLL 25.0 'CDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.08 BC 0.04 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 8 lb	GRIP 197/144 FT = 10%
UMBER- OP CHORD 2x4 SF	PF No.2		BRACING- TOP CHOR		Structu	ıral wood	sheathing di	rectly applied or 2-7-	-10 oc purlins,

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2

REACTIONS. 1=2-7-6, 3=2-7-6 (size) Max Horz 1=71(LC 5)

Max Uplift 1=-2(LC 8), 3=-33(LC 8) Max Grav 1=96(LC 1), 3=108(LC 15)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

1111

11 MIS

0

April 3,2020

🍌 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. WARNING - Verify design parameters and KEAD NOTES ON THIS AND INCLODED MITER KETERENCE PAGE MIT-14's rev. 10/04/2019 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	Lot 85 MN		Ply	Qty		ре	Truss Type	Truss	
1408612	Job Reference (optional)	1		1			Valley	V12	33
	Job Reference (optional) lar 9 2020 MiTek Industries, Inc. Fri IzrYWU-aNkHcmOhmp5Qsp4rBddKI) s M		XplsxOf	ID:2nd 1-7-10 1-7-10			verly, KS 66871	eeler Lumber, Wav
Scale = 1:			2	4	2				
					10.00 12	1	-0-0-4-6		
			3						
				2x4		2x4 🥢			
		ł							

LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. TC 0.02 BC 0.01 WB 0.00 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) -0.00 3 n/a n/a	PLATES GRIP MT20 197/144 Weight: 4 lb FT = 10%
LUMBER-			BRACING-	

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2

REACTIONS. (size) 1=1-7-6, 3=1-7-6

Max Horz 1=38(LC 5) Max Uplift 1=-1(LC 8), 3=-18(LC 8)

Max Grav 1=51(LC 1), 3=57(LC 15)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

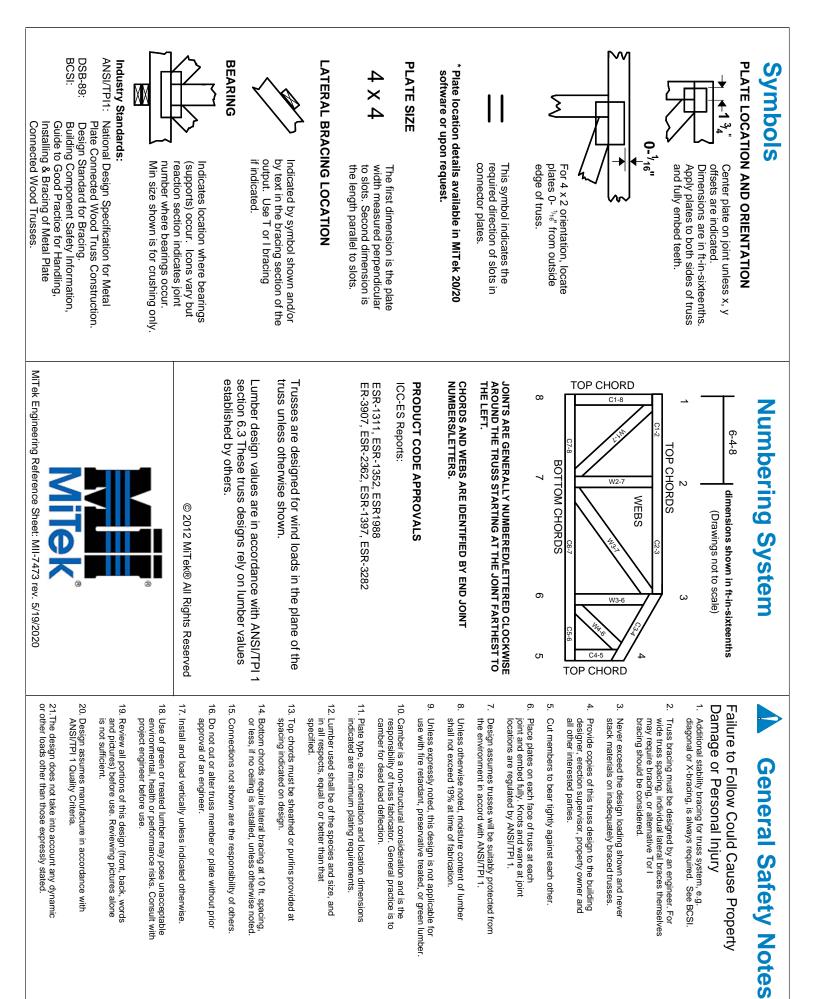
WAS THE PROFILE JUAN GARCIA NUMBER DNALEN DNALEN UAN GARCIA ICENSED 16952 E-2000162101 T MUMILITY .

11111

OF MIS

F

Structural wood sheathing directly applied or 1-7-10 oc purlins,


Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

April 3,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

