

RE: 400281 Lot 28 RT MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

### General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: N/A Roof Load: 45.0 psf

Design Program: MiTek 20/20 8.2 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 86 individual, dated Truss Design Drawings and 0 Additional Drawings.

| No. | Seal#     | Truss Name | Date      | No. | Seal#     | Truss Name | Date      |
|-----|-----------|------------|-----------|-----|-----------|------------|-----------|
| 1   | 141256010 | A1         | 5/11/2020 | 27  | 141256036 | H7         | 5/11/2020 |
| 2   | I41256011 | A2         | 5/11/2020 | 28  | I41256037 | H8         | 5/11/2020 |
| 3   | I41256012 | A3         | 5/11/2020 | 29  | 141256038 | H9         | 5/11/2020 |
| 4   | 141256013 | C1         | 5/11/2020 | 30  | I41256039 | H10        | 5/11/2020 |
| 5   | I41256014 | C2         | 5/11/2020 | 31  | 141256040 | H11        | 5/11/2020 |
| 6   | I41256015 | C3         | 5/11/2020 | 32  | I41256041 | J1         | 5/11/2020 |
| 7   | I41256016 | C4         | 5/11/2020 | 33  | I41256042 | J2         | 5/11/2020 |
| 8   | I41256017 | C5         | 5/11/2020 | 34  | I41256043 | J3         | 5/11/2020 |
| 9   | I41256018 | C6         | 5/11/2020 | 35  | l41256044 | J6         | 5/11/2020 |
| 10  | 141256019 | C7         | 5/11/2020 | 36  | l41256045 | J7         | 5/11/2020 |
| 11  | 141256020 | C8         | 5/11/2020 | 37  | 141256046 | J8         | 5/11/2020 |
| 12  | 141256021 | C9         | 5/11/2020 | 38  | 141256047 | J9         | 5/11/2020 |
| 13  | 141256022 | D1         | 5/11/2020 | 39  | l41256048 | J10        | 5/11/2020 |
| 14  | 141256023 | D2         | 5/11/2020 | 40  | l41256049 | J11        | 5/11/2020 |
| 15  | 141256024 | D3         | 5/11/2020 | 41  | I41256050 | J12        | 5/11/2020 |
| 16  | 141256025 | G1         | 5/11/2020 | 42  | l41256051 | J13        | 5/11/2020 |
| 17  | 141256026 | G2         | 5/11/2020 | 43  | l41256052 | J14        | 5/11/2020 |
| 18  | I41256027 | G3         | 5/11/2020 | 44  | I41256053 | J15        | 5/11/2020 |
| 19  | I41256028 | G4         | 5/11/2020 | 45  | l41256054 | J16        | 5/11/2020 |
| 20  | I41256029 | G5         | 5/11/2020 | 46  | l41256055 | J17A       | 5/11/2020 |
| 21  | I41256030 | H1         | 5/11/2020 | 47  | I41256056 | J18A       | 5/11/2020 |
| 22  | I41256031 | H2         | 5/11/2020 | 48  | l41256057 | J19        | 5/11/2020 |
| 23  | I41256032 | H3         | 5/11/2020 | 49  | I41256058 | J20        | 5/11/2020 |
| 24  | I41256033 | H4         | 5/11/2020 | 50  | I41256059 | J21        | 5/11/2020 |
| 25  | I41256034 | H5         | 5/11/2020 | 51  | I41256060 | J22        | 5/11/2020 |
| 26  | 141256035 | H6         | 5/11/2020 | 52  | l41256061 | J23        | 5/11/2020 |
|     |           |            |           |     |           |            |           |

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Garcia, Juan

My license renewal date for the state of Kansas is April 30, 2022. Kansas COA: E-943

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



Garcia, Juan

RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW CODES ADMINISTR 2000 LEE'S SUMMIT, MISSOURI



RE: 400281 - Lot 28 RT

### Site Information:

Project Customer: Project Name: Lot/Block: Address: City, County:

| City, C | County:   |            |           |
|---------|-----------|------------|-----------|
| No.     | Seal#     | Truss Name | Date      |
| 53      | l41256062 | J24        | 5/11/2020 |
| 54      | l41256063 | J25        | 5/11/2020 |
| 55      | l41256064 | J34        | 5/11/2020 |
| 56      | l41256065 | J36        | 5/11/2020 |
| 57      | I41256066 | J37        | 5/11/2020 |
| 58      | I41256067 | J38        | 5/11/2020 |
| 59      | I41256068 | J39        | 5/11/2020 |
| 60      | I41256069 | J40        | 5/11/2020 |
| 61      | l41256070 | J41        | 5/11/2020 |
| 62      | l41256071 | J42        | 5/11/2020 |
| 63      | l41256072 | K1         | 5/11/2020 |
| 64      | 141256073 | K2         | 5/11/2020 |
| 65      | 141256074 | K3         | 5/11/2020 |
| 66      | 141256075 | K4         | 5/11/2020 |
| 67      | 141256076 | K5         | 5/11/2020 |
| 68      | 141256077 | K6         | 5/11/2020 |
| 69      | 141256078 | L1         | 5/11/2020 |
| 70      | 141256079 | L2         | 5/11/2020 |
| 71      | 141256080 | L3         | 5/11/2020 |
| 72      | 141256081 | L4         | 5/11/2020 |
| 73      | 141256082 | L5         | 5/11/2020 |
| 74      | 141256083 | LAY3       | 5/11/2020 |
| 75      | 141256084 | LAY4       | 5/11/2020 |
| 76      | 141256085 | LAY5       | 5/11/2020 |
| 77      | 141256086 | LAY6       | 5/11/2020 |
| 78      | 141256087 | P1         | 5/11/2020 |
| 79      | 141256088 | P2         | 5/11/2020 |
| 80      | 141256089 | V1         | 5/11/2020 |
| 81      | 141256090 | V2         | 5/11/2020 |
| 82      | 141256091 | V3         | 5/11/2020 |
| 83      | 141256092 | V4         | 5/11/2020 |
| 84      | 141256093 | V5         | 5/11/2020 |
| 85      | 141256094 | V6         | 5/11/2020 |
| 86      | 141256095 | V8         | 5/11/2020 |

16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

MiTek USA, Inc.

RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW CODES ADMINISTRATION LEE'S SUMMIT, MISSOURI

Subdivision:

State:



RE: 400281 Lot 28 RT MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

## General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: N/A Roof Load: 45.0 psf Design Program: MiTek 20/20 8.2 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 86 individual, dated Truss Design Drawings and 0 Additional Drawings.

| No. | Seal#     | Truss Name | Date      | No. | Seal#     | Truss Name | Date      |
|-----|-----------|------------|-----------|-----|-----------|------------|-----------|
| 1   | 141256010 | A1         | 5/11/2020 | 27  | 141256036 | H7         | 5/11/2020 |
| 2   | 141256011 | A2         | 5/11/2020 | 28  | 141256037 | H8         | 5/11/2020 |
| 3   | 141256012 | A3         | 5/11/2020 | 29  | 141256038 | H9         | 5/11/2020 |
| 4   | 141256013 | C1         | 5/11/2020 | 30  | 141256039 | H10        | 5/11/2020 |
| 5   | I41256014 | C2         | 5/11/2020 | 31  | I41256040 | H11        | 5/11/2020 |
| 6   | I41256015 | C3         | 5/11/2020 | 32  | l41256041 | J1         | 5/11/2020 |
| 7   | I41256016 | C4         | 5/11/2020 | 33  | l41256042 | J2         | 5/11/2020 |
| 8   | 141256017 | C5         | 5/11/2020 | 34  | 141256043 | J3         | 5/11/2020 |
| 9   | I41256018 | C6         | 5/11/2020 | 35  | 141256044 | J6         | 5/11/2020 |
| 10  | I41256019 | C7         | 5/11/2020 | 36  | l41256045 | J7         | 5/11/2020 |
| 11  | 141256020 | C8         | 5/11/2020 | 37  | I41256046 | J8         | 5/11/2020 |
| 12  | I41256021 | C9         | 5/11/2020 | 38  | l41256047 | J9         | 5/11/2020 |
| 13  | I41256022 | D1         | 5/11/2020 | 39  | l41256048 | J10        | 5/11/2020 |
| 14  | I41256023 | D2         | 5/11/2020 | 40  | l41256049 | J11        | 5/11/2020 |
| 15  | I41256024 | D3         | 5/11/2020 | 41  | l41256050 | J12        | 5/11/2020 |
| 16  | I41256025 | G1         | 5/11/2020 | 42  | l41256051 | J13        | 5/11/2020 |
| 17  | I41256026 | G2         | 5/11/2020 | 43  | l41256052 | J14        | 5/11/2020 |
| 18  | 141256027 | G3         | 5/11/2020 | 44  | I41256053 | J15        | 5/11/2020 |
| 19  | I41256028 | G4         | 5/11/2020 | 45  | l41256054 | J16        | 5/11/2020 |
| 20  | 141256029 | G5         | 5/11/2020 | 46  | I41256055 | J17A       | 5/11/2020 |
| 21  | I41256030 | H1         | 5/11/2020 | 47  | I41256056 | J18A       | 5/11/2020 |
| 22  | I41256031 | H2         | 5/11/2020 | 48  | l41256057 | J19        | 5/11/2020 |
| 23  | I41256032 | H3         | 5/11/2020 | 49  | I41256058 | J20        | 5/11/2020 |
| 24  | 141256033 | H4         | 5/11/2020 | 50  | I41256059 | J21        | 5/11/2020 |
| 25  | I41256034 | H5         | 5/11/2020 | 51  | I41256060 | J22        | 5/11/2020 |
| 26  | I41256035 | H6         | 5/11/2020 | 52  | I41256061 | J23        | 5/11/2020 |
|     |           |            |           |     |           |            |           |

The truss drawing(s) referenced above have been prepared by

MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Garcia, Juan

My license renewal date for the state of Missouri is December 31, 2020. Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



Garcia, Juan

RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW CODES ADMINISTRADOO LEE'S SUMMIT, MISSOURI

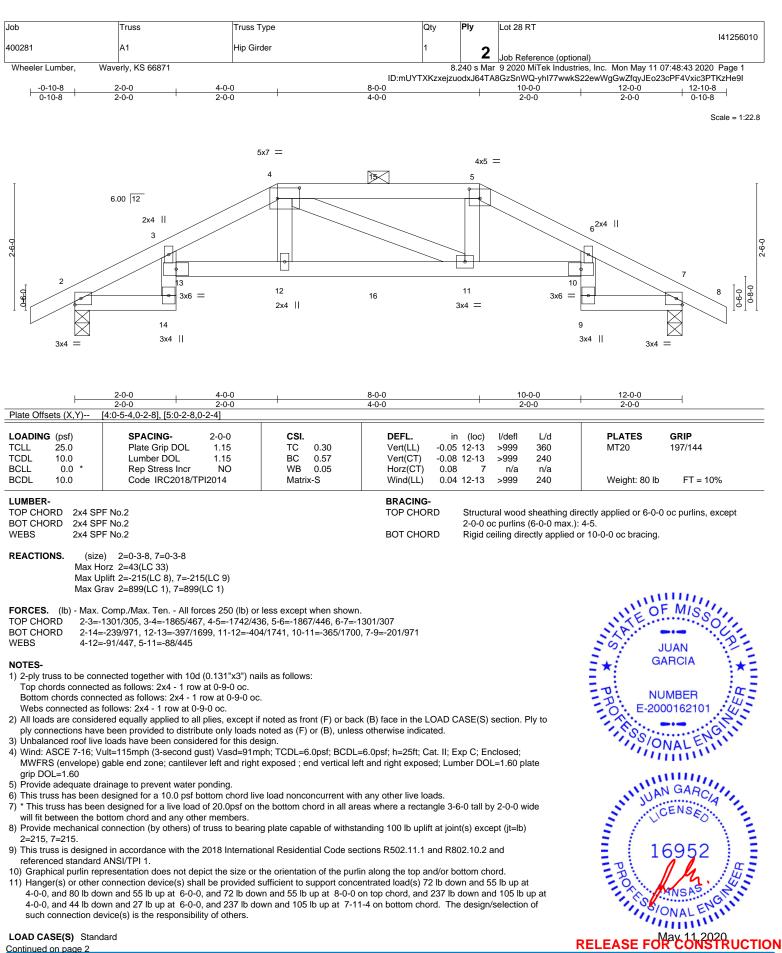


RE: 400281 - Lot 28 RT

### Site Information:

Project Customer: Project Name: Lot/Block: Address: City, County:

| City, C | County:   |            |           |
|---------|-----------|------------|-----------|
| No.     | Seal#     | Truss Name | Date      |
| 53      | l41256062 | J24        | 5/11/2020 |
| 54      | l41256063 | J25        | 5/11/2020 |
| 55      | l41256064 | J34        | 5/11/2020 |
| 56      | l41256065 | J36        | 5/11/2020 |
| 57      | I41256066 | J37        | 5/11/2020 |
| 58      | I41256067 | J38        | 5/11/2020 |
| 59      | I41256068 | J39        | 5/11/2020 |
| 60      | I41256069 | J40        | 5/11/2020 |
| 61      | l41256070 | J41        | 5/11/2020 |
| 62      | l41256071 | J42        | 5/11/2020 |
| 63      | l41256072 | K1         | 5/11/2020 |
| 64      | 141256073 | K2         | 5/11/2020 |
| 65      | 141256074 | K3         | 5/11/2020 |
| 66      | 141256075 | K4         | 5/11/2020 |
| 67      | 141256076 | K5         | 5/11/2020 |
| 68      | 141256077 | K6         | 5/11/2020 |
| 69      | 141256078 | L1         | 5/11/2020 |
| 70      | 141256079 | L2         | 5/11/2020 |
| 71      | 141256080 | L3         | 5/11/2020 |
| 72      | 141256081 | L4         | 5/11/2020 |
| 73      | 141256082 | L5         | 5/11/2020 |
| 74      | 141256083 | LAY3       | 5/11/2020 |
| 75      | 141256084 | LAY4       | 5/11/2020 |
| 76      | 141256085 | LAY5       | 5/11/2020 |
| 77      | 141256086 | LAY6       | 5/11/2020 |
| 78      | 141256087 | P1         | 5/11/2020 |
| 79      | 141256088 | P2         | 5/11/2020 |
| 80      | 141256089 | V1         | 5/11/2020 |
| 81      | 141256090 | V2         | 5/11/2020 |
| 82      | 141256091 | V3         | 5/11/2020 |
| 83      | 141256092 | V4         | 5/11/2020 |
| 84      | 141256093 | V5         | 5/11/2020 |
| 85      | 141256094 | V6         | 5/11/2020 |
| 86      | 141256095 | V8         | 5/11/2020 |


16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

MiTek USA, Inc.

RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW CODES ADMINISTRATION LEE'S SUMMIT, MISSOURI

Subdivision:

State:



📣 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid for dise only with with every connectors. This design is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

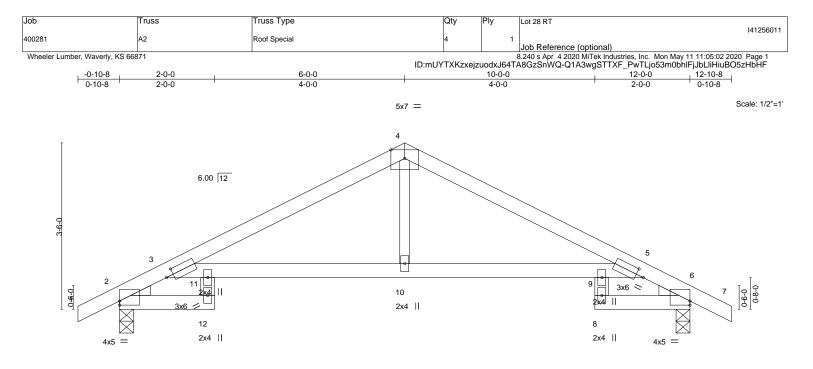


| Job                  | Truss          | Truss Type | Qty | Ply       | Lot 28 RT                                                     |
|----------------------|----------------|------------|-----|-----------|---------------------------------------------------------------|
|                      |                |            |     |           | I41256010                                                     |
| 400281               | A1             | Hip Girder | 1   | 2         |                                                               |
|                      |                |            |     | 2         | Job Reference (optional)                                      |
| Wheeler Lumber, Wave | erly, KS 66871 |            | 8.2 | 240 s Mar | 9 2020 MiTek Industries, Inc. Mon May 11 07:48:43 2020 Page 2 |

8.240 s Mar 9 2020 MiTek Industries, Inc. Mon May 11 07:48:43 2020 Page 2 ID:mUYTXKzxejzuodxJ64TA8GzSnWQ-yhl77wwkS22ewWgGwZfqyJEo23cPF4Vxic3PTKzHe9I

### LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)


Vert: 1-4=-70, 4-5=-70, 5-8=-70, 2-14=-20, 10-13=-20, 7-9=-20 Concentrated Loads (lb)

Vert: 4=-27(F) 5=-27(F) 12=-237(F) 11=-237(F) 15=-27(F) 16=-44(F)

### **RELEASE FOR CONSTRUCTION**

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.





|                     | 2-0-0                     |                   | 6-0-0                     |          | 10-0-0     |        |     | 12-0-0        |          |
|---------------------|---------------------------|-------------------|---------------------------|----------|------------|--------|-----|---------------|----------|
|                     | 2-0-0                     |                   | 4-0-0                     |          | 4-0-0      |        | 1   | 2-0-0         |          |
| Plate Offsets (X,Y) | [2:Edge,0-1-1], [3:0-1-15 | 5,0-1-8], [5:0-1- | 15,0-1-8], [6:Edge,0-1-1] |          |            |        |     |               |          |
| LOADING (psf)       | SPACING-                  | 2-0-0             | CSI.                      | DEFL.    | in (loc)   | l/defl | L/d | PLATES        | GRIP     |
| TCLL 25.0           | Plate Grip DOL            | 1.15              | TC 0.54                   | Vert(LL) | -0.11 9-10 | >999   | 360 | MT20          | 197/144  |
| TCDL 10.0           | Lumber DOL                | 1.15              | BC 0.75                   | Vert(CT) | -0.20 9-10 | >709   | 240 |               |          |
| BCLL 0.0 *          | Rep Stress Incr           | YES               | WB 0.10                   | Horz(CT) | 0.18 6     | n/a    | n/a |               |          |
| BCDL 10.0           | Code IRC2018/T            | PI2014            | Matrix-S                  | Wind(LL) | 0.09 10-11 | >999   | 240 | Weight: 37 lb | FT = 10% |

TOP CHORD

BOT CHORD

### LUMBER-

| TOP CHORD | 2x4 SPF No.2          |
|-----------|-----------------------|
| BOT CHORD | 2x4 SPF No.2          |
| WEBS      | 2x4 SPF No.2 *Except* |
|           | 4-10: 2x3 SPF No.2    |

WEDGE

Left: 2x3 SPF No.2, Right: 2x3 SPF No.2

| REACTIONS. | (lb/size)  | 2=598/0-3-8, 6=598/0-3-8 |
|------------|------------|--------------------------|
|            | Max Horz   | 2=61(LC 12)              |
|            | Max Uplift | 2=-89(LC 8), 6=-89(LC 9) |

4-10=0/329

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-359/80, 3-4=-858/80, 4-5=-858/102, 5-6=-359/67

BOT CHORD 3-11=-31/728, 10-11=-31/728, 9-10=-31/728, 5-9=-31/728

### WEBS NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

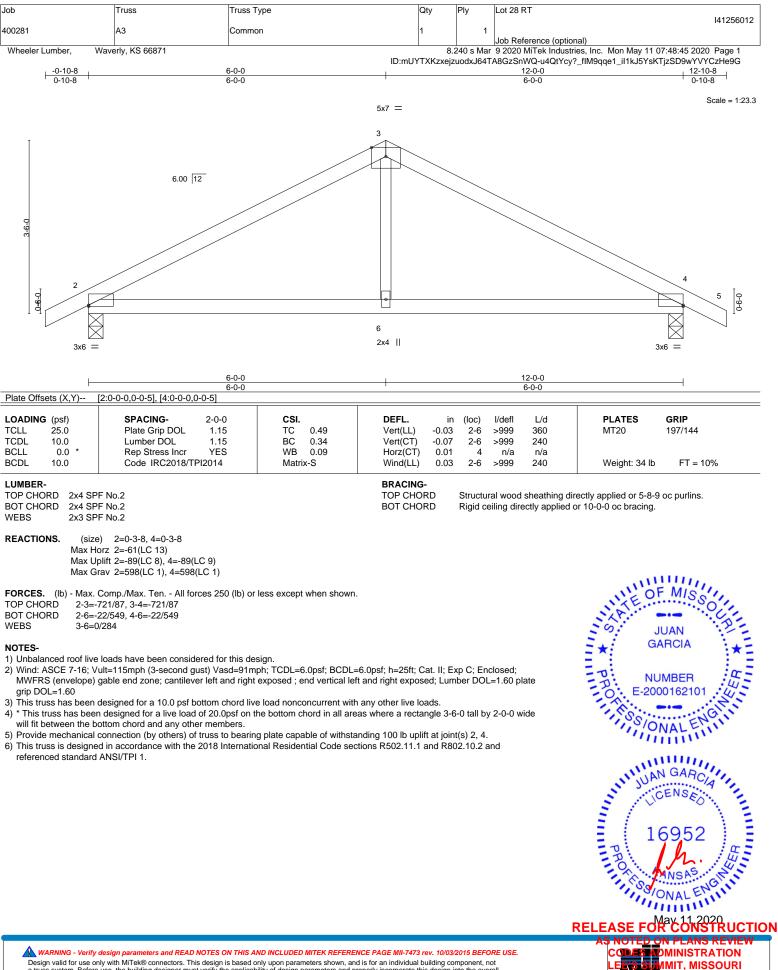
5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 89 lb uplift at joint 2 and 89 lb uplift at ioint 6.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

## Wint PRUM JUAN GARCIA NUMBER E-2000162101 0 IG9 VIIIIIIIIIIII JGIT RELEASE FOR CONSTRUCTION

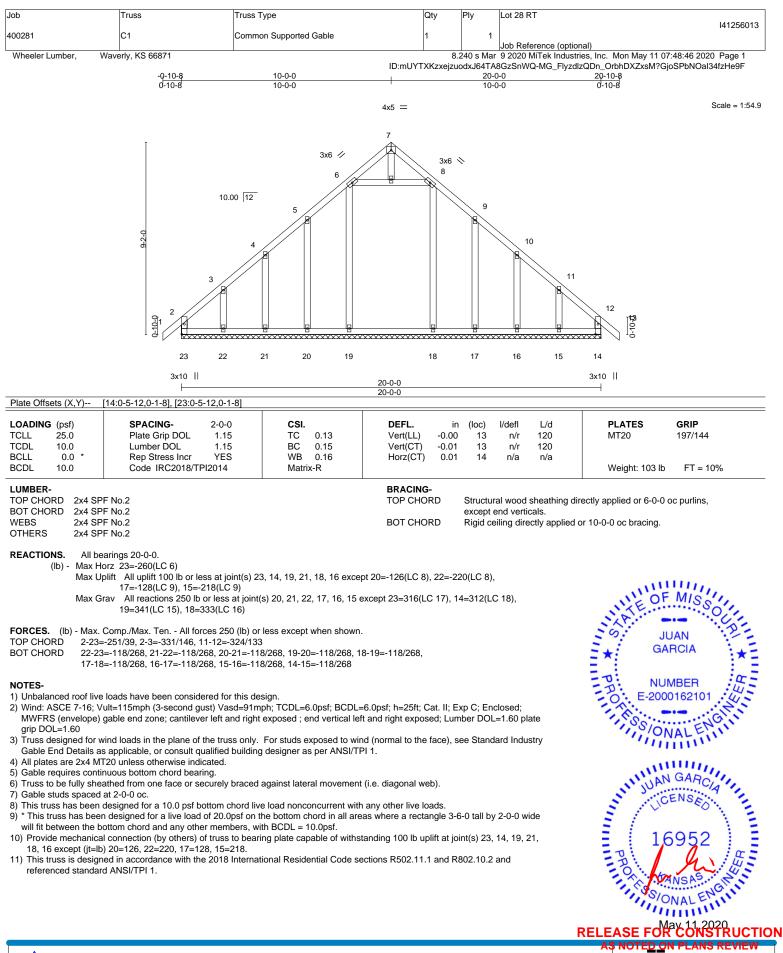
11111 MIS

0


Structural wood sheathing directly applied or 5-1-10 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing. Except:

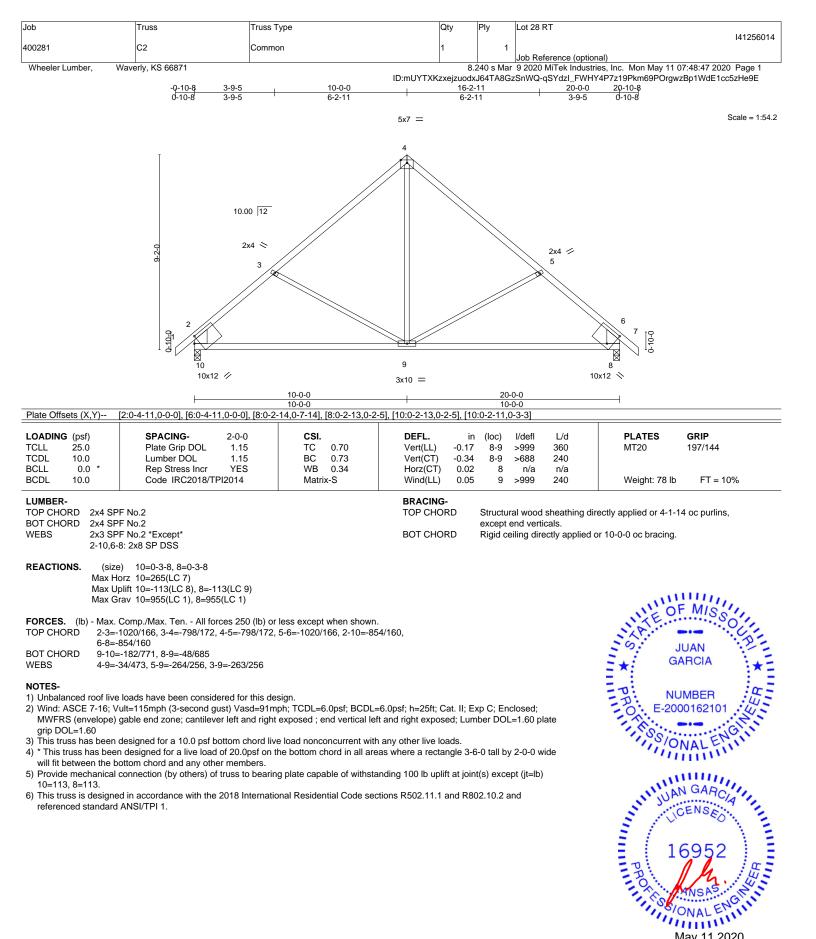
10-0-0 oc bracing: 9-10


🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

D ON PLANS REVIE MIT, MISSOURI MiTek 16023 Swingley Ridge Ro Chesterfield, MO 63017



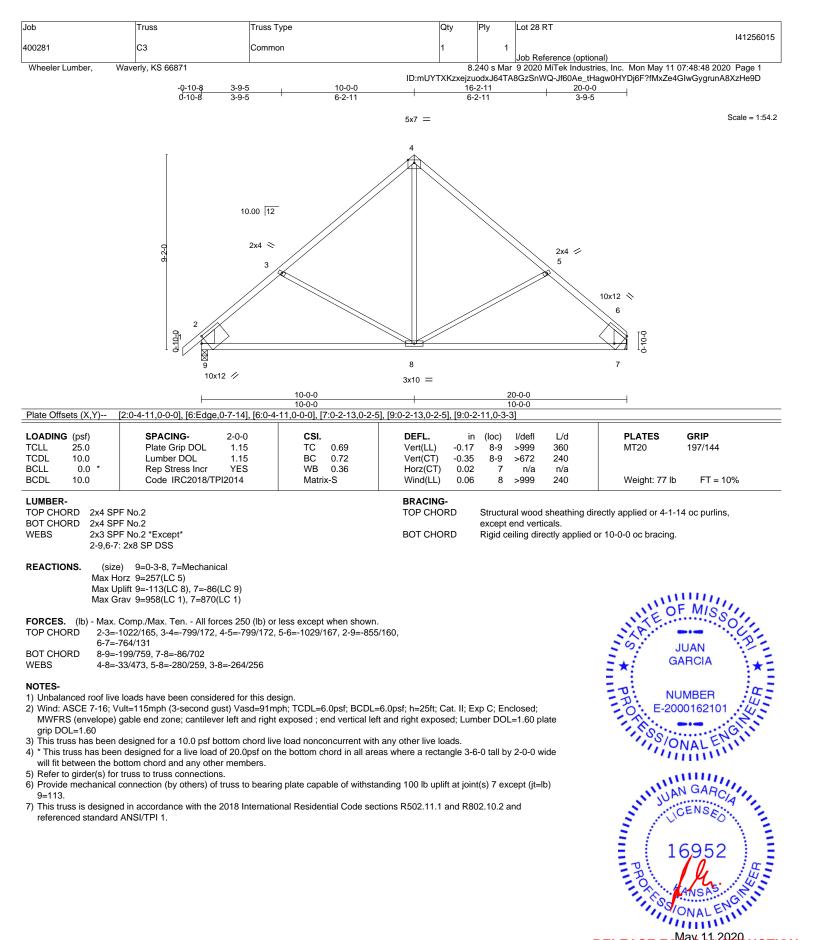
Mitek\* 16023 Swingley Kage R Chesterfield, MO 63017


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oullapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Storage to an advise from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

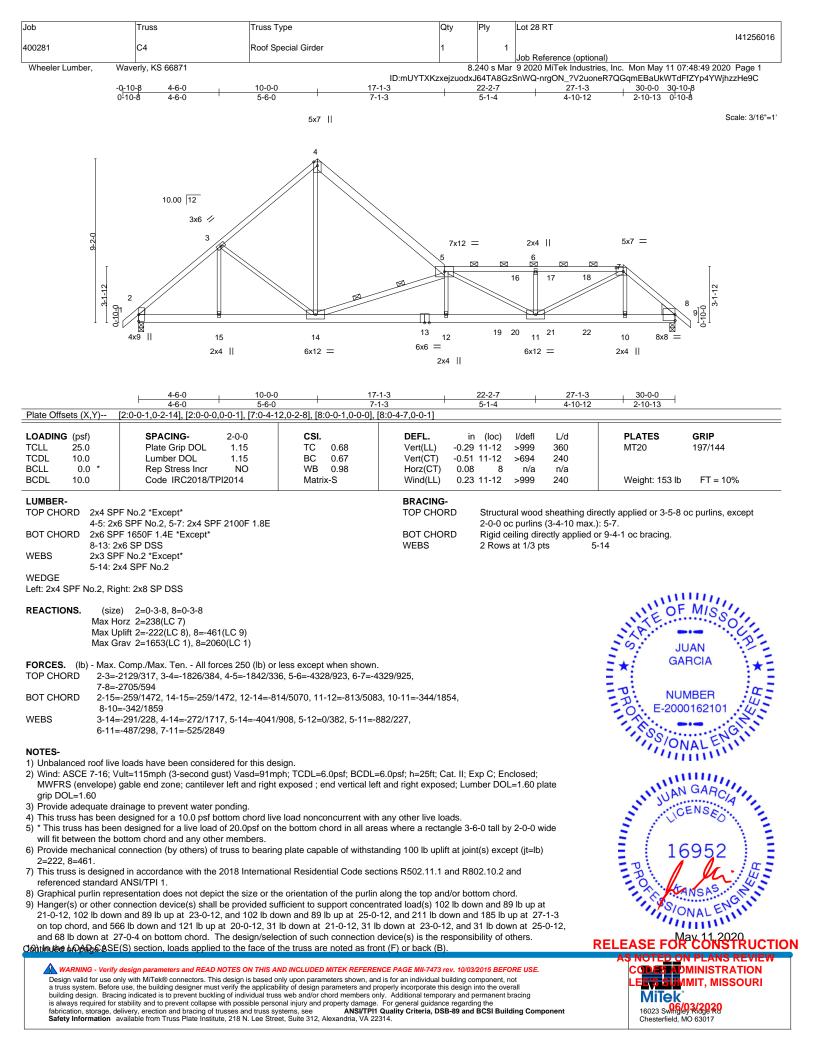
### S NOTED ON PLANS REVIE CODES ADMINISTRATION LETTS SUMMIT, MISSOURI


Mitek 16023 Swifey Kige Ku Chesterfield, MO 63017



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek@ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oucling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

### RELEASE FOR CONSTRUCTION






WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

## RELEASE FOR CONSTRUCTION



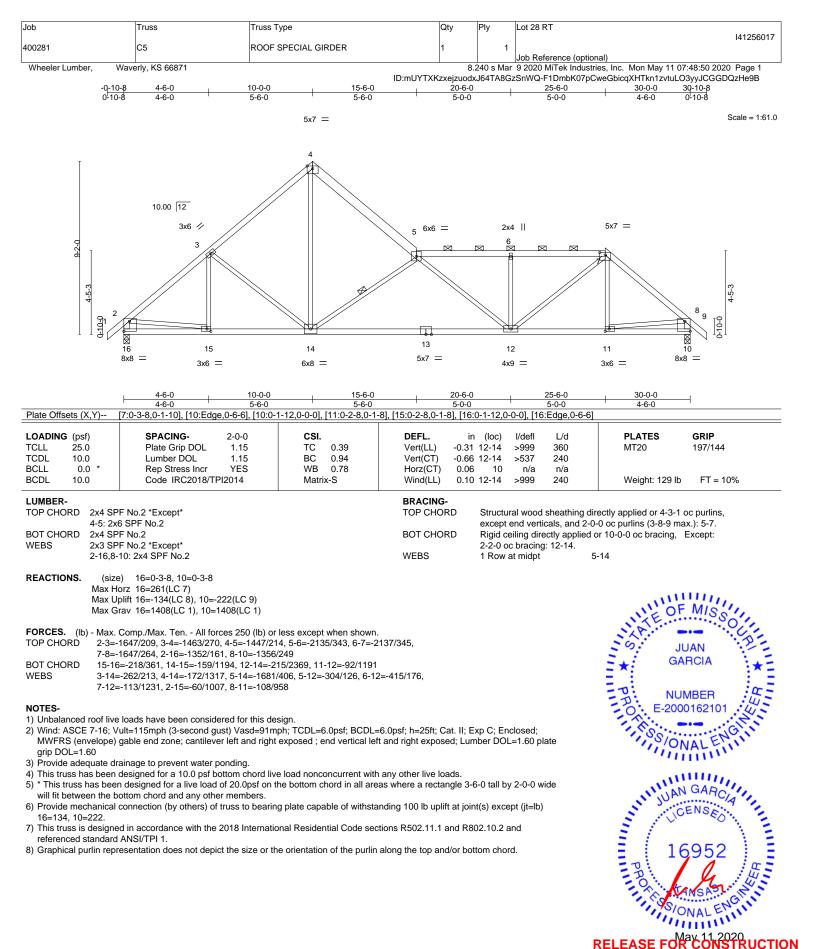


| Job                  | Truss          | Truss Type          | Qty       | Ply     | Lot 28 RT                                                     |
|----------------------|----------------|---------------------|-----------|---------|---------------------------------------------------------------|
| 400281               | C4             | Roof Special Girder | 1         | 1       | 141256016                                                     |
| +00201               | C4             | Rooi Special Gilder | 1         |         | Job Reference (optional)                                      |
| Wheeler Lumber, Wave | erly, KS 66871 |                     | 8.        |         | 9 2020 MiTek Industries, Inc. Mon May 11 07:48:49 2020 Page 2 |
|                      |                | ID:mUYTXKz          | xejzuodxJ | 64TA8Gz | SnWQ-nrgON_?V2uoneR7QGqmEBaUkWTdFfZYp4YWjhzzHe9C              |

### LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-70, 4-5=-70, 5-7=-70, 7-9=-70, 2-8=-20

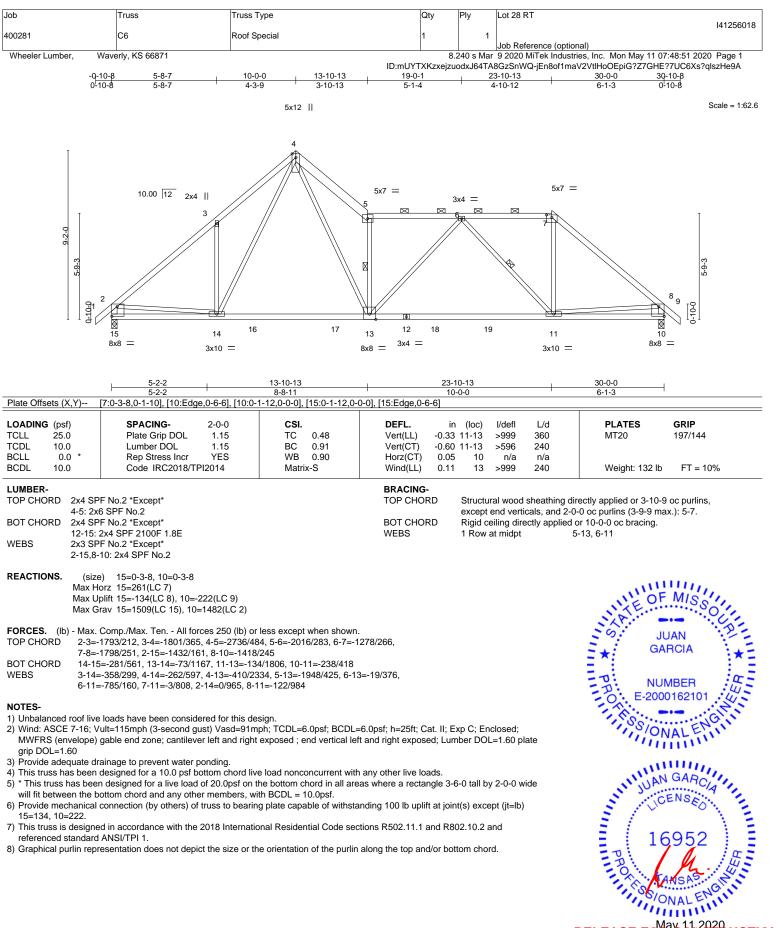

Concentrated Loads (lb)

Vert: 7=-84(F) 10=-42(F) 16=-45(F) 17=-45(F) 18=-45(F) 19=-566(F) 20=-23(F) 21=-23(F) 22=-23(F)

### **RELEASE FOR CONSTRUCTION**

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

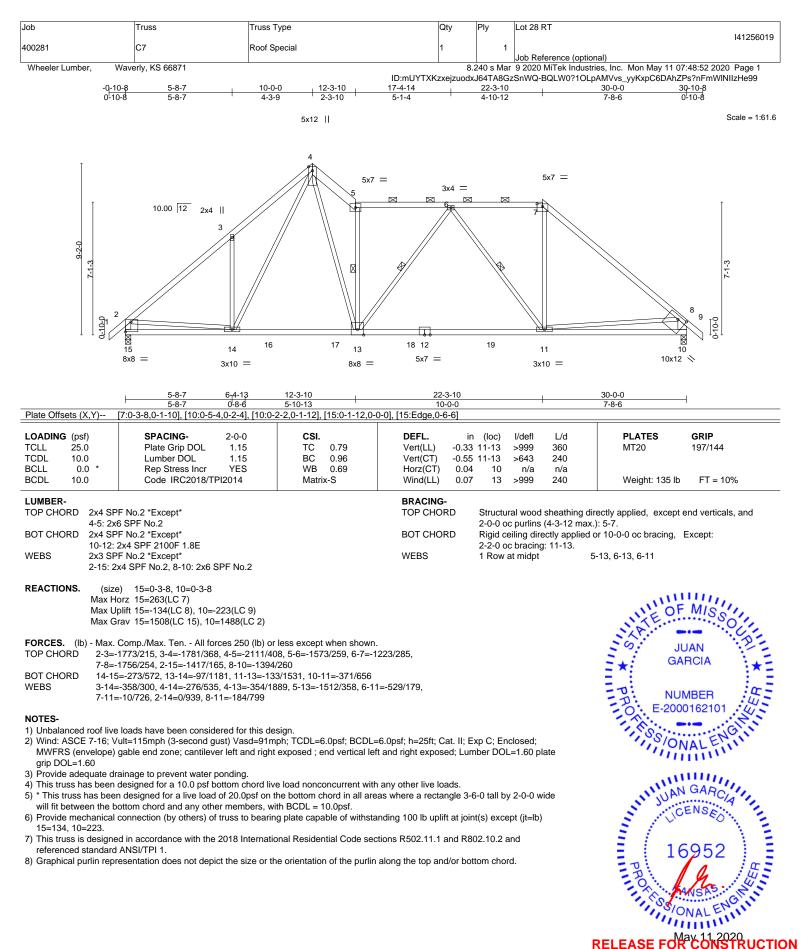





ON PLANS REVIE

Mitek\* 16023 Swingley Kage R Chesterfield, MO 63017

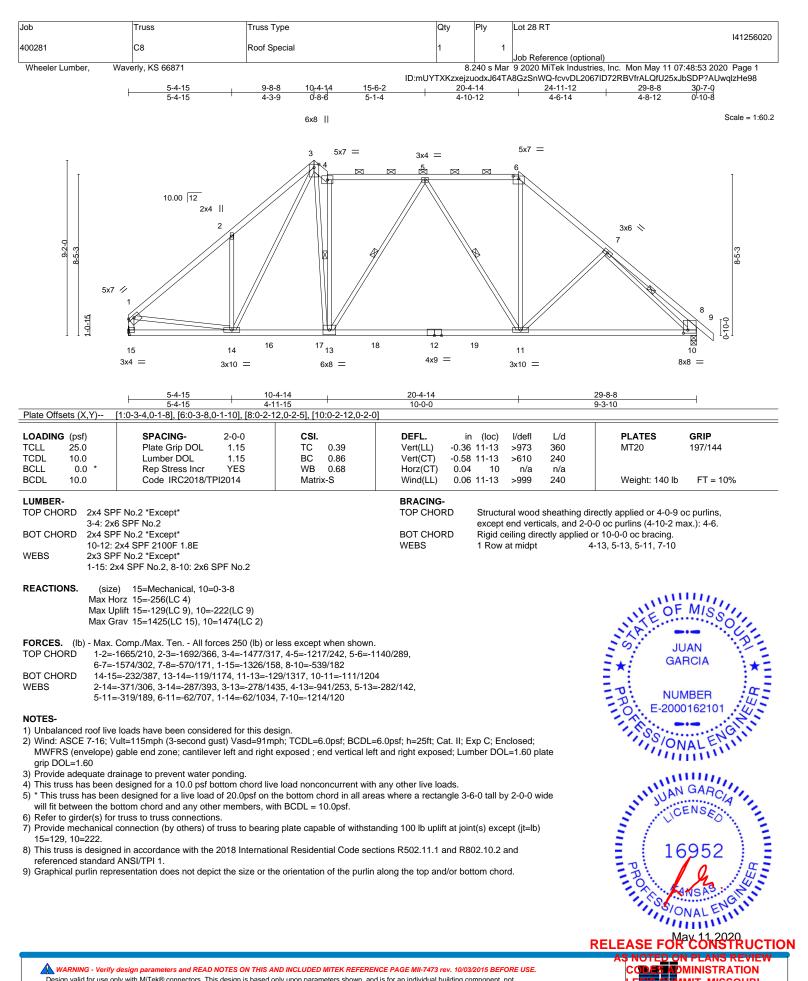
MIT, MISSOURI


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



## RELEASE FOR CONSTRUCTION

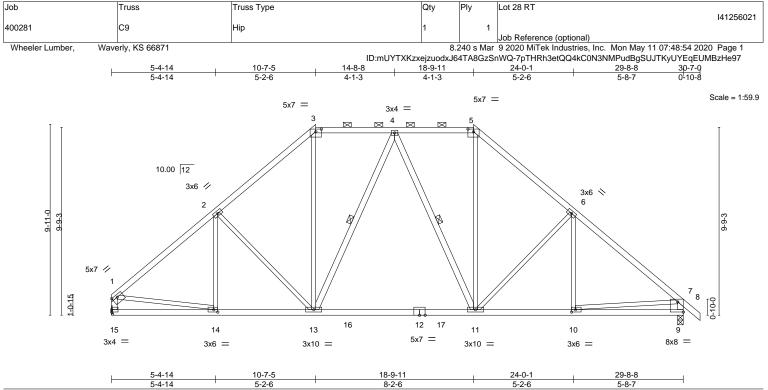
AS NOTED ON PLANS REVIEW CODESCOMMINISTRATION LEEVESCOMMIT, MISSOURI MITEK® 16023 SWN5/03/2020 Chesterfield, MO 63017


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. ELEASE FOR CONSTRUCTIO

Mitek\* 16023 Swingley Koge Rd Chesterfield, MO 63017


IMIT, MISSOURI

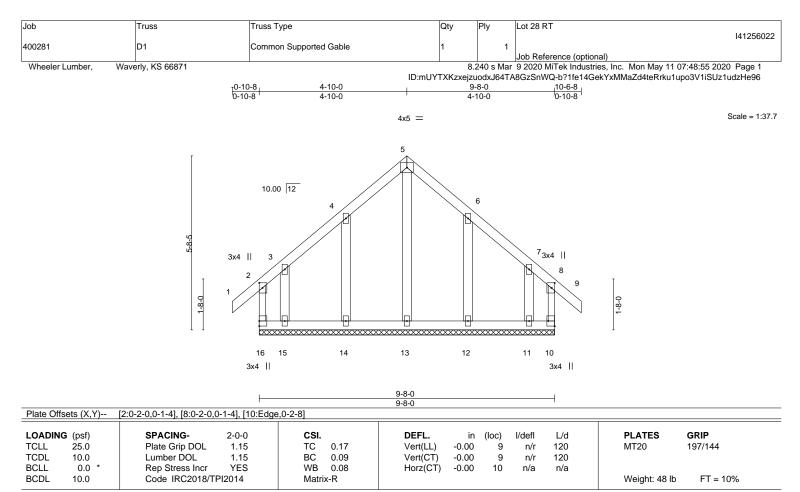


IMIT, MISSOURI

Mitek\* 16023 Swingley Kage R Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.




| Plate Offsets (X,Y)                                                                                                                                          | [1:0-3-4,0-1-8], [3:0-3-8,0-1-10], [5:0-3-8                                                                                                                                                                                                       | 3,0-1-10], [9:Edge,0-6-6],                                                     | [9:0-1-12,0-0-0], [10:0-2                               | -8,0-1-8], [1                 | 4:0-2-8,0-1-8]                                            |                                                                                            |                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------|
| LOADING         (psf)           TCLL         25.0           TCDL         10.0           BCLL         0.0 *           BCDL         10.0                       | SPACING- 2-0-0<br>Plate Grip DOL 1.15<br>Lumber DOL 1.15<br>Rep Stress Incr YES<br>Code IRC2018/TPI2014                                                                                                                                           | CSI.<br>TC 0.35<br>BC 0.73<br>WB 0.49<br>Matrix-S                              | Vert(LL) -0.23                                          | 3 11-13 =<br>7 11-13 =<br>1 9 | //defl L/d<br>>999 360<br>>944 240<br>n/a n/a<br>>999 240 | PLATES<br>MT20<br>Weight: 144 lb                                                           | <b>GRIP</b><br>197/144<br>FT = 10% |
|                                                                                                                                                              |                                                                                                                                                                                                                                                   |                                                                                | BRACING-<br>TOP CHORD<br>BOT CHORD<br>WEBS              | except er                     | nd verticals, and 2-0 ing directly applied of             | rectly applied or 4-3-8 (<br>-0 oc purlins (5-7-14 m<br>or 10-0-0 oc bracing.<br>-13, 4-11 |                                    |
| Max H<br>Max U                                                                                                                                               | <ul> <li>b) 15=Mechanical, 9=0-3-8</li> <li>b) 15=-274(LC 4)</li> <li>b) 15=-113(LC 8), 9=-140(LC 9)</li> <li>c) 15=1396(LC 2), 9=1456(LC 2)</li> </ul>                                                                                           |                                                                                |                                                         |                               |                                                           | NUL OF                                                                                     | MIS                                |
| TOP CHORD 1-2=-<br>6-7=-<br>BOT CHORD 14-15<br>WEBS 2-13=                                                                                                    | Comp./Max. Ten All forces 250 (lb) or<br>1638/150, 2-3=-1446/206, 3-4=-1030/21<br>1713/158, 1-15=-1297/143, 7-9=-1351/1<br>i=-244/379, 13-14=-170/1299, 11-13=-9<br>-327/222, 3-13=-52/617, 4-13=-300/176<br>e-373/226, 1-14=0/1034, 7-10=-15/906 | 9, 4-5=-1041/221, 5-6=-1<br>72<br>6/1093, 10-11=0/1236, 9-                     | 459/209,<br>10=-119/367                                 |                               |                                                           |                                                                                            | JAN<br>RCIA                        |
| <ol> <li>Wind: ASCE 7-16; V<br/>MWFRS (envelope)<br/>grip DOL=1.60</li> <li>Provide adequate dr</li> </ol>                                                   | e loads have been considered for this de<br>ult=115mph (3-second gust) Vasd=91m<br>gable end zone; cantilever left and right<br>ainage to prevent water ponding.<br>designed for a 10.0 psf bottom chord liv                                      | ph; TCDL=6.0psf; BCDL=<br>exposed ; end vertical lef                           | It and right exposed; Lur                               |                               |                                                           | BO E-2000                                                                                  | MBER<br>D162101                    |
| <ul> <li>5) * This truss has been<br/>will fit between the b</li> <li>6) Refer to girder(s) for</li> <li>7) Provide mechanical<br/>15=113, 9=140.</li> </ul> | n designed for a live load of 20.0psf on t<br>ottom chord and any other members, wi<br>truss to truss connections.<br>connection (by others) of truss to bearin<br>ed in accordance with the 2018 Internatio                                      | he bottom chord in all are<br>th BCDL = 10.0psf.<br>g plate capable of withsta | as where a rectangle 3-<br>anding 100 lb uplift at join | nt(s) except                  | t (jt=lb)                                                 | STATE JUAN                                                                                 | GARCIA                             |
| referenced standard                                                                                                                                          |                                                                                                                                                                                                                                                   |                                                                                |                                                         |                               |                                                           | 16                                                                                         | 952                                |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WAL ENGINI RELEASE FOR CONSTRUCTION

SS/ONAL ENG





### LUMBER-

 TOP CHORD
 2x4 SPF No.2

 BOT CHORD
 2x4 SPF No.2

 WEBS
 2x3 SPF No.2

 OTHERS
 2x4 SPF No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 9-8-0.

(lb) - Max Horz 16=178(LC 7)

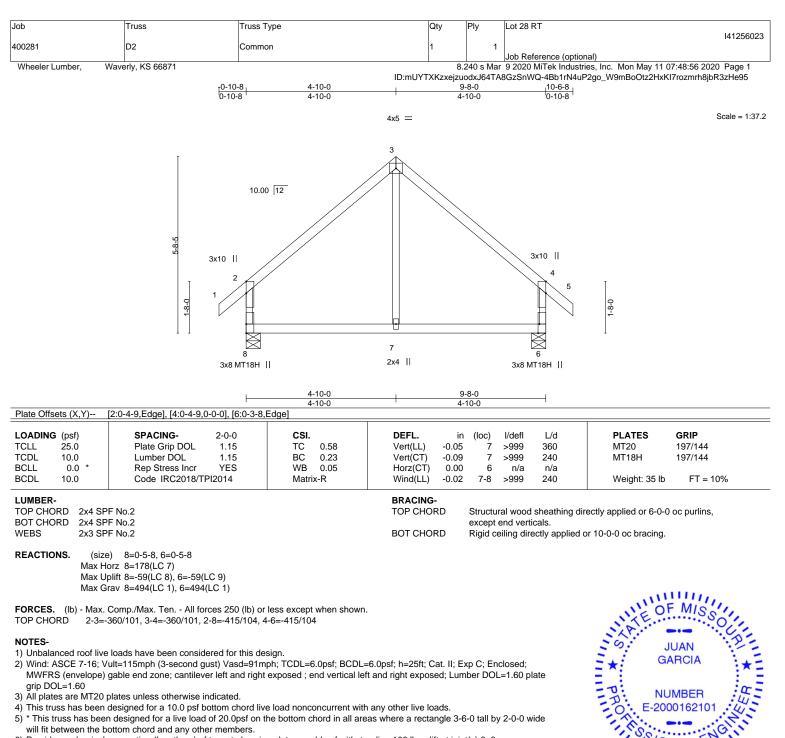
Max Uplift All uplift 100 lb or less at joint(s) 14, 12 except 16=-195(LC 4), 10=-188(LC 5), 15=-173(LC 5), 11=-168(LC 4) Max Grav All reactions 250 lb or less at joint(s) 16, 10, 13, 14, 12, 11 except 15=254(LC 6)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

#### NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60


- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 12 except (it=lb) 16=195, 10=188, 15=173, 11=168.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



16023 Swingley Ridge Ru Chesterfield, MO 63017

ALL DI

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



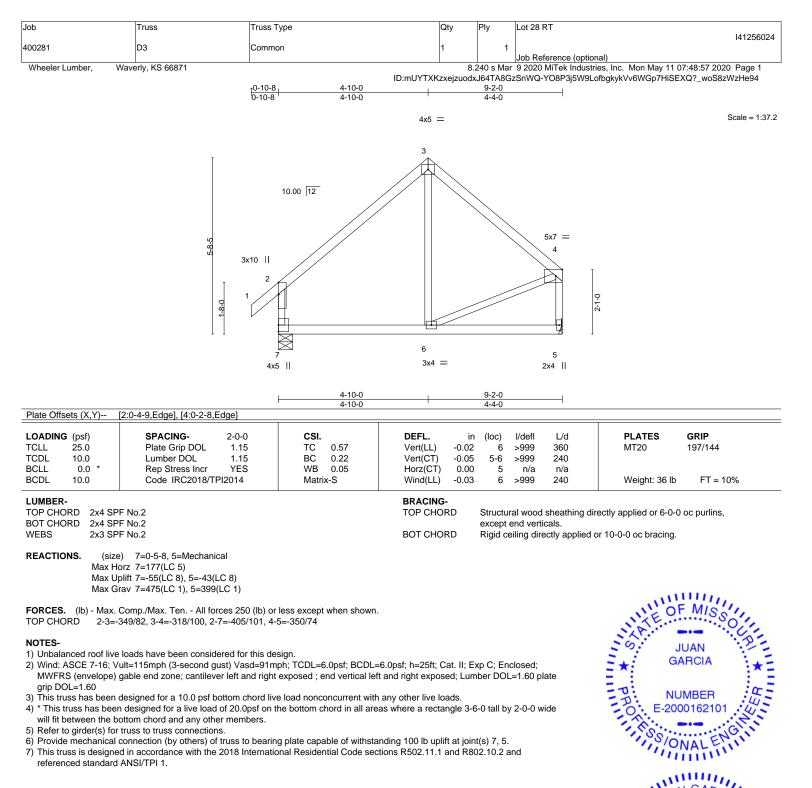
3) All plates are MT20 plates unless otherwise indicated.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

\* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5) will fit between the bottom chord and any other members.

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

# PROTIONAL MULLIN III JGIT May 11 2020 R CONSTRUCTION **RELEASE FO** D ON PLANS REVIE

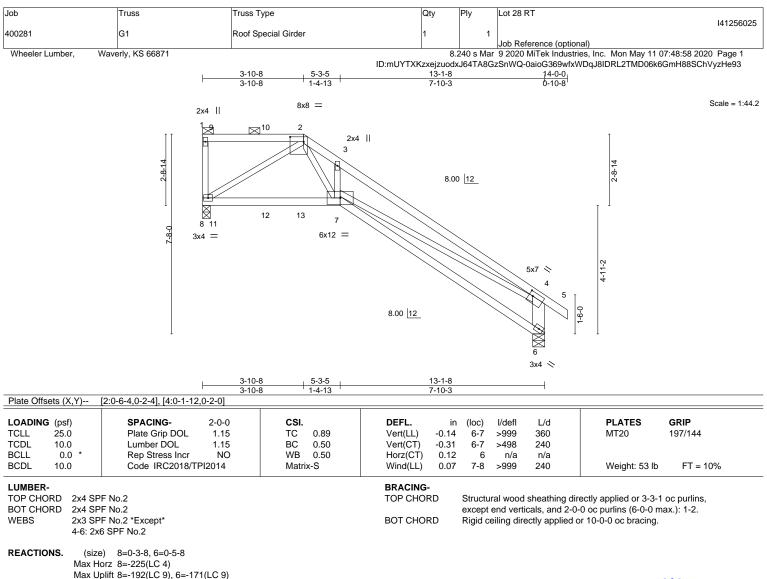

MIT, MISSOURI

-2000162101

F

MiTek 16023 Swingley Ridge Ru Chesterfield, MO 63017

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.






Mitek\* 16023 Swingley Kage R Chesterfield, MO 63017

MIT, MISSOURI

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



Max Grav 8=578(LC 1), 6=657(LC 32)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-3=-1730/553, 3-4=-1751/325, 4-6=-778/305
- BOT CHORD 7-8=-80/652 6-7=-183/402
- WEBS 2-8=-723/183, 2-7=-451/1450, 3-7=-533/409, 4-7=-25/1117

#### NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Provide adequate drainage to prevent water ponding.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=192, 6=171.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
   9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 67 lb down and 59 lb up at
- 0-5-8, and 74 lb down and 57 lb up at 2-5-8, and 66 lb down and 59 lb up at 3-10-8 on top chord, and 20 lb down and 20 lb up at 0-5-8, and 17 lb down and 20 lb up at 2-5-8, and 17 lb down and 20 lb up at 3-9-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

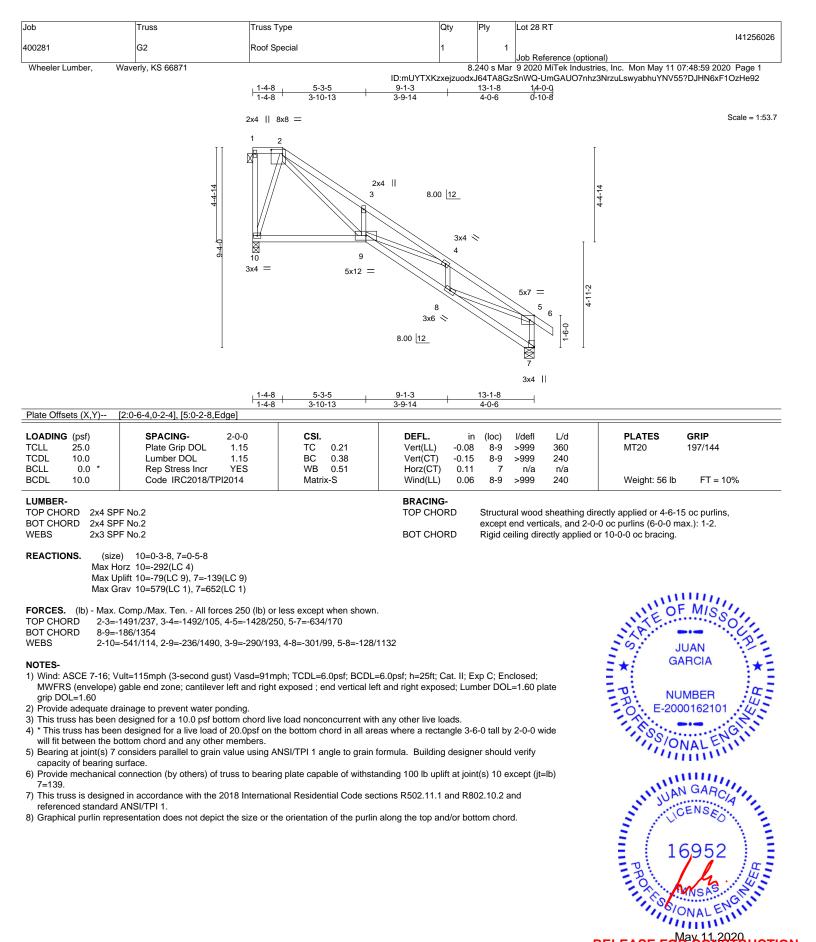
### Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



| Job                  | Truss          | Truss Type          | Qty | Ply       | Lot 28 RT                                                     |
|----------------------|----------------|---------------------|-----|-----------|---------------------------------------------------------------|
|                      |                |                     |     |           | 141256025                                                     |
| 400281               | G1             | Roof Special Girder | 1   | 1         |                                                               |
|                      |                |                     |     |           | Job Reference (optional)                                      |
| Wheeler Lumber, Wave | erly, KS 66871 |                     | 8.  | 240 s Mar | 9 2020 MiTek Industries, Inc. Mon May 11 07:48:58 2020 Page 2 |

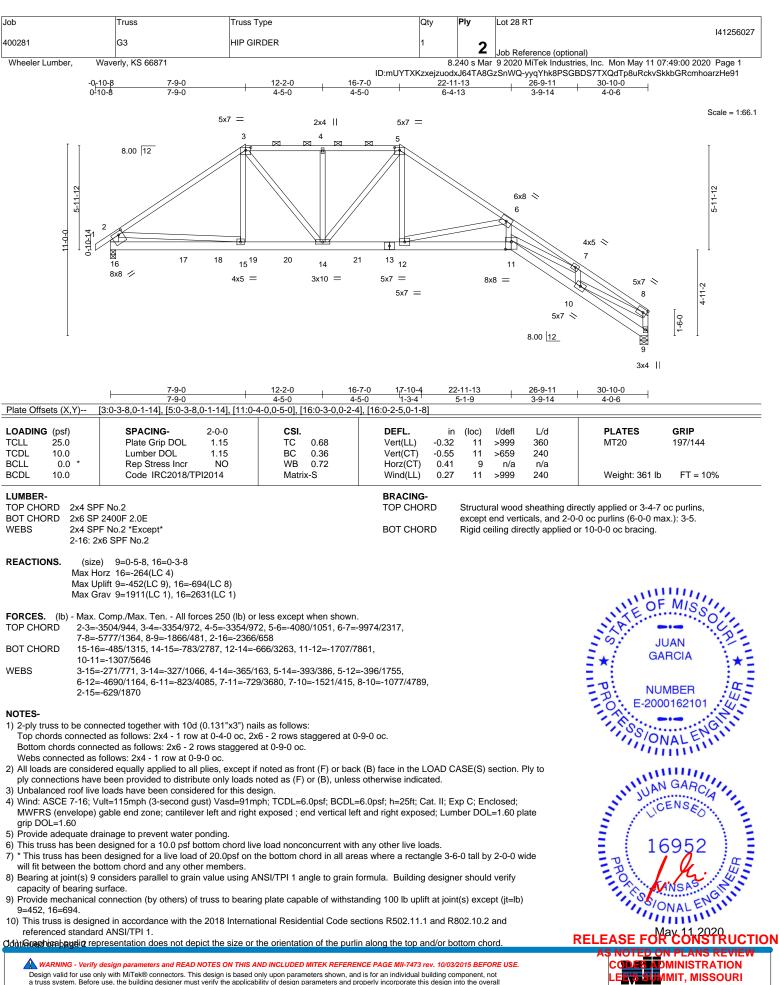
ID:mUYTXKzxejzuodxJ64TA8GzSnWQ-0aioG369wfxWDqJ8IDRL2TMD06k6GmH88SChVyzHe93


LOAD CASE(S) Standard

Uniform Loads (plf) Vert: 1-2=-70, 2-4=-70, 4-5=-70, 7-8=-20, 6-7=-20 Concentrated Loads (lb) Vert: 9=-2(F) 11=-4(F) 12=0(F) 13=0(F)

### **RELEASE FOR CONSTRUCTION**

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.






🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid for dise only with with every connectors. This design is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

## RELEASE FOR CONSTRUCTION

D ON PLANS REVIE MIT, MISSOURI MiTek 16023 Swingley Ridge Ru Chesterfield, MO 63017



Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Mitek 16023 Swingley Kigge Ro Chesterfield, MO 63017

| Job                  | Truss          | Truss Type | Qty                   | Ply       | Lot 28 RT                                                     |
|----------------------|----------------|------------|-----------------------|-----------|---------------------------------------------------------------|
|                      |                |            |                       |           | 141256027                                                     |
| 400281               | G3             | HIP GIRDER | 1                     | 2         |                                                               |
|                      |                |            |                       | -         | Job Reference (optional)                                      |
| Wheeler Lumber, Wave | erly, KS 66871 |            | 8.                    | 240 s Mar | 9 2020 MiTek Industries, Inc. Mon May 11 07:49:00 2020 Page 2 |
|                      |                | ID:mUYTXk  | <zxejzuod></zxejzuod> | J64TA8G   | zSnWQ-yyqYhk8PSGBDS7TXQdTp8uRckvSkkbGRcmhoarzHe91             |

### NOTES-

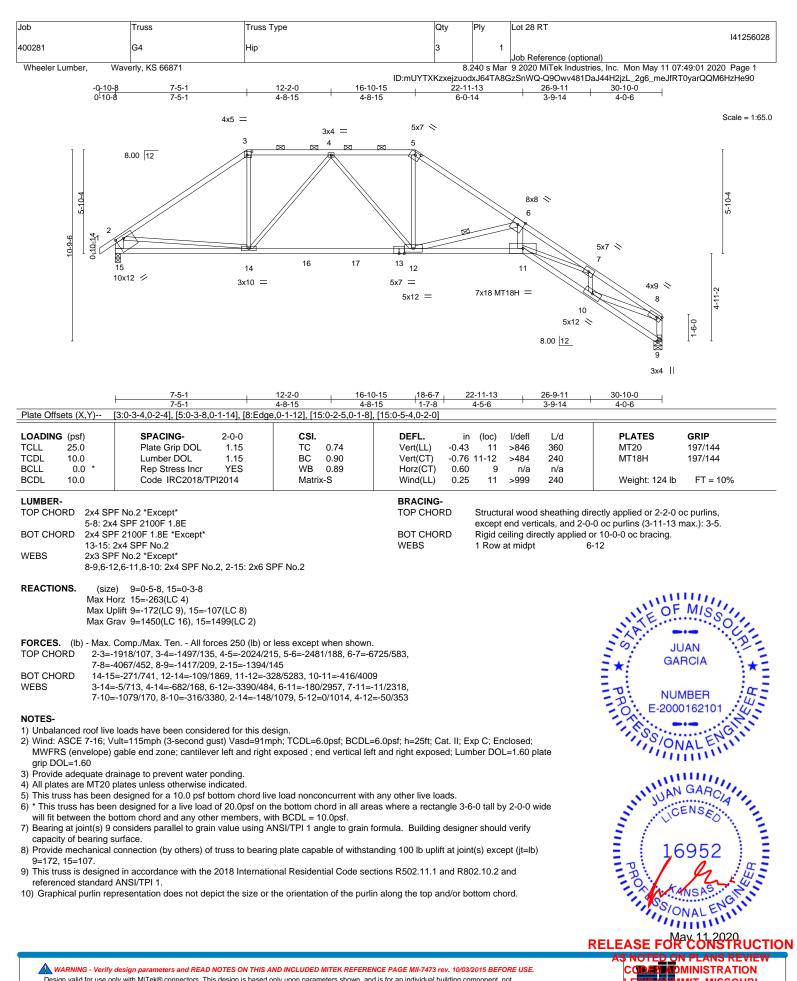
12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 327 lb down and 158 lb up at 4-2-0, 235 lb down and 113 lb up at 6-2-0, 307 lb down and 129 lb up at 8-2-0, 307 lb down and 129 lb up at 10-2-0, 307 lb down and 129 lb up at 12-2-0, and 307 lb down and 129 lb up at 14-2-0, and 307 lb down and 129 lb up at 16-2-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

### LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

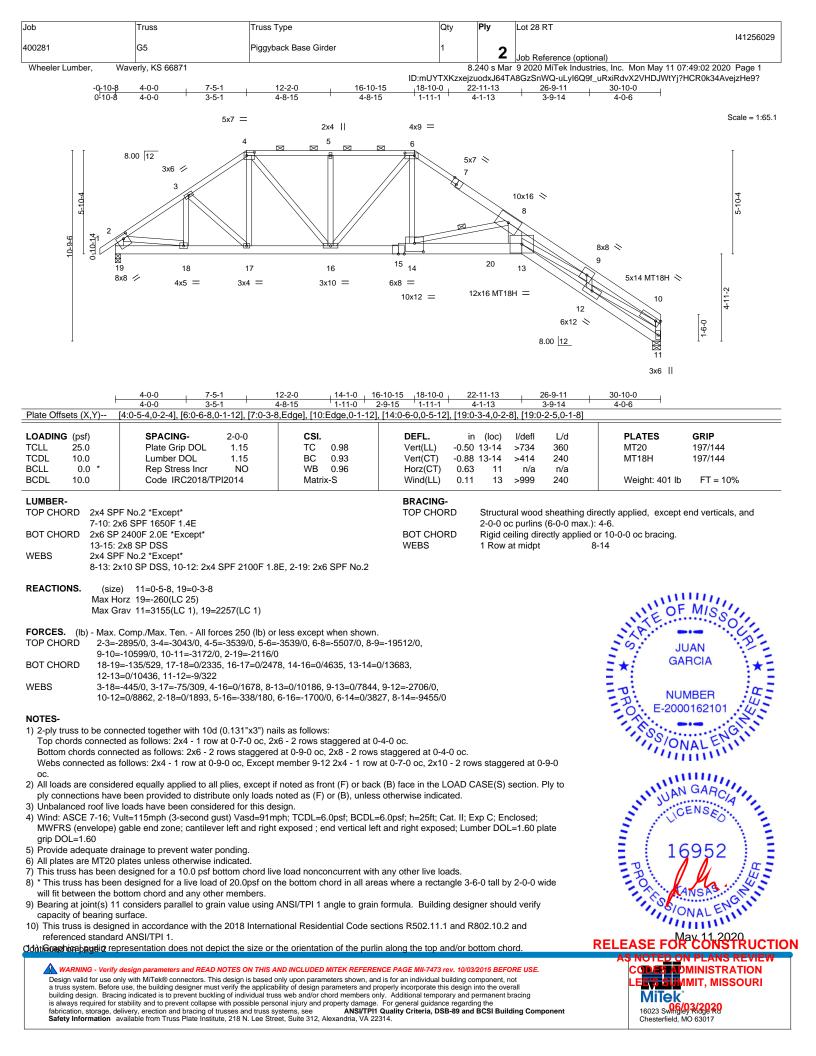
Vert: 1-2=-70, 2-3=-70, 3-5=-70, 5-8=-70, 11-16=-20, 9-11=-20


Concentrated Loads (lb)

Vert: 13=-232(F) 14=-232(F) 17=-327(F) 18=-235(F) 19=-232(F) 20=-232(F) 21=-232(F)

### **RELEASE FOR CONSTRUCTION**

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.






🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid for dise only with with every connectors. This design is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

### MiTek 16023 Swingley Ridge Ro Chesterfield, MO 63017

MIT, MISSOURI



| Job                               | Truss | Truss Type            | Qty                                                                        | Ply       | Lot 28 RT                                                     |  |
|-----------------------------------|-------|-----------------------|----------------------------------------------------------------------------|-----------|---------------------------------------------------------------|--|
|                                   | _     |                       |                                                                            |           | 141256029                                                     |  |
| 400281                            | G5    | Piggyback Base Girder | 1                                                                          | 2         |                                                               |  |
|                                   |       |                       |                                                                            | L         | Job Reference (optional)                                      |  |
| Wheeler Lumber, Waverly, KS 66871 |       |                       |                                                                            | 240 s Mar | 9 2020 MiTek Industries, Inc. Mon May 11 07:49:02 2020 Page 2 |  |
|                                   |       |                       | ID:mUYTXKzxeizuodxJ64TA8GzSnWQ-uLvI6Q9f_uRxiRdvX2VHDJWtYi?HCR0k34AveizHe9? |           |                                                               |  |

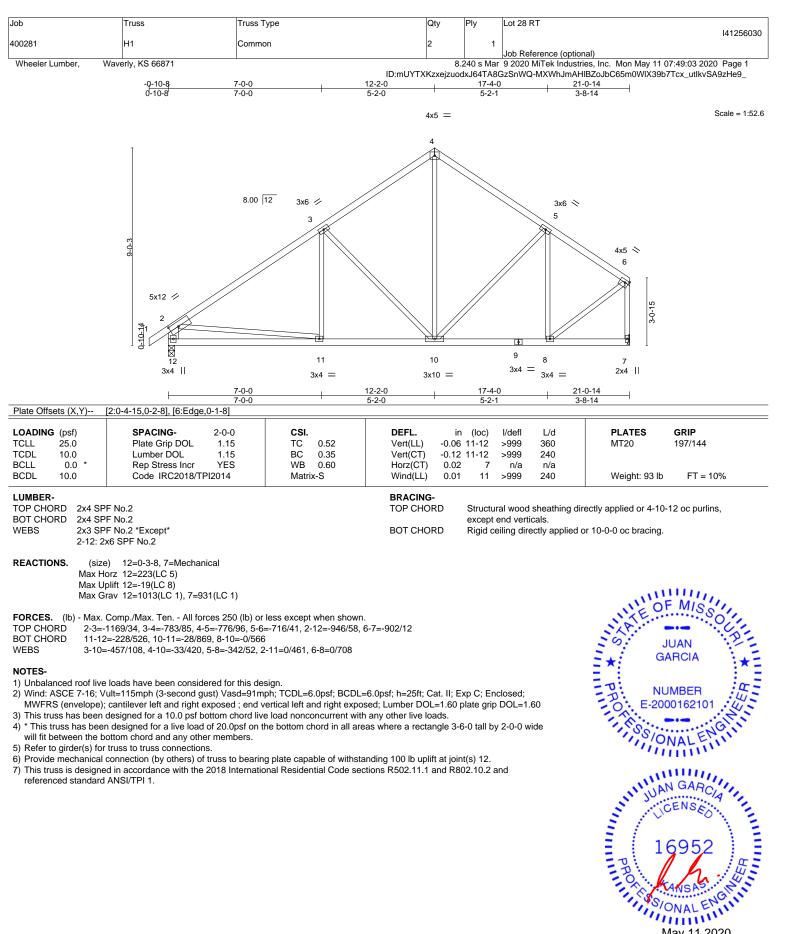
NOTES-

12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 2593 lb down at 21-2-7 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

### LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

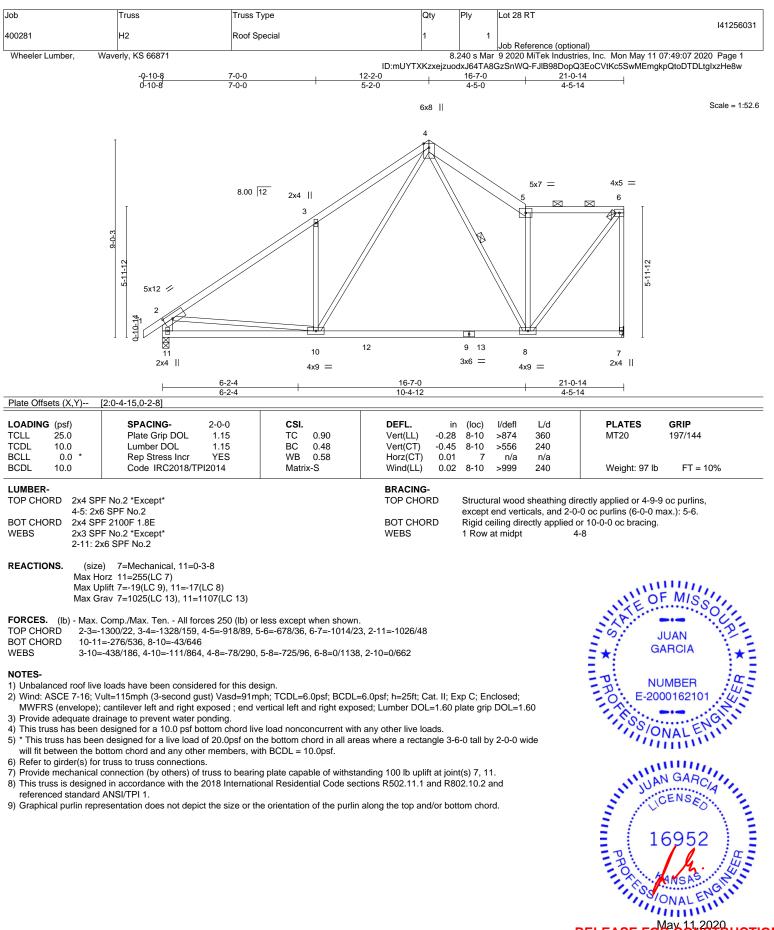
Uniform Loads (plf) Vert: 1-2=-70, 2-4=-70, 4-6=-70, 6-10=-70, 13-19=-20, 11-13=-20


Concentrated Loads (lb)

Vert: 20=-2593(B)

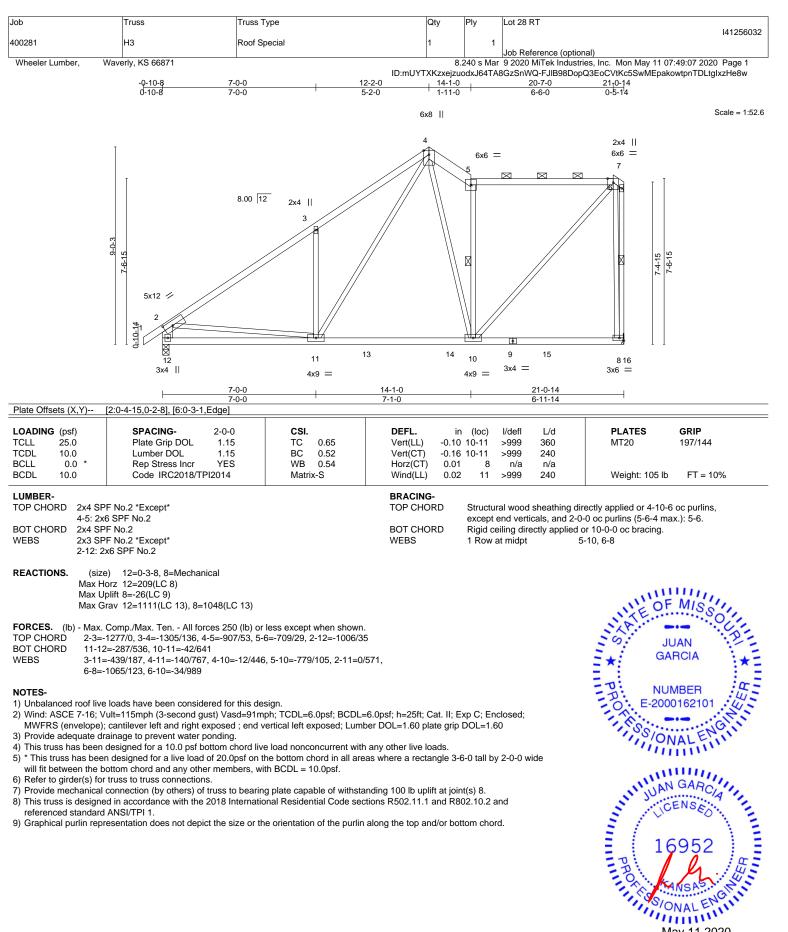
### **RELEASE FOR CONSTRUCTION**

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.





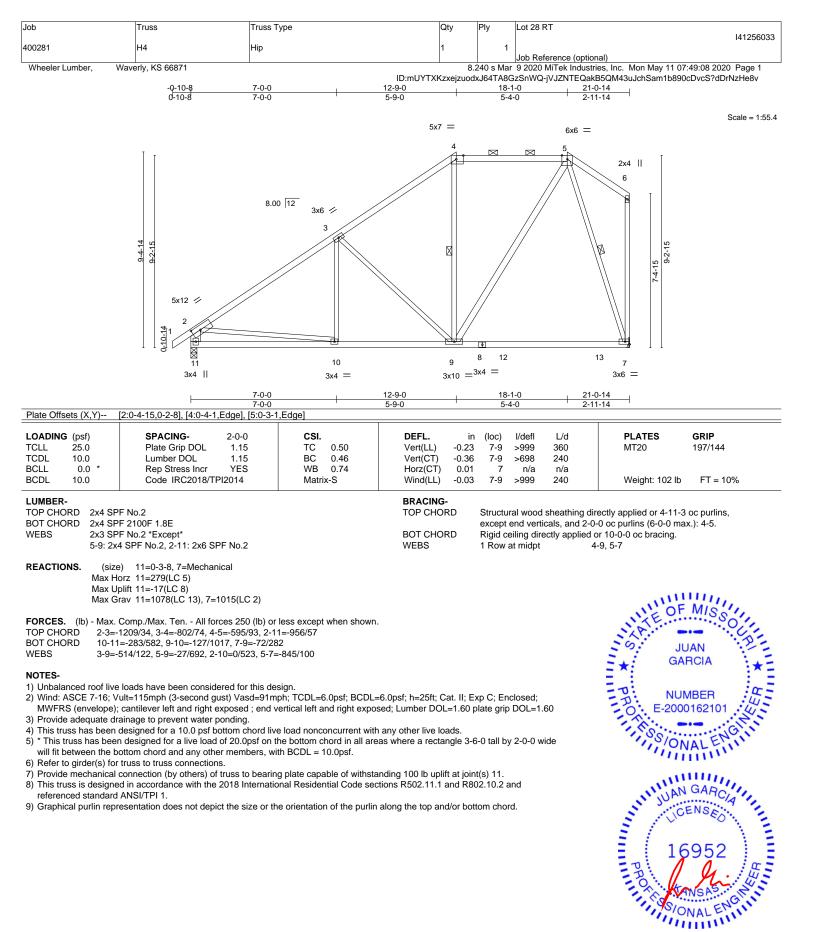

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek@ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


## RELEASE FOR CONSTRUCTION

CODEC ON PLANS REVIEW CODEC DMINISTRATION LEVEL MINISTRATION MITCK 16023 SWIGO 3/2020 Chesterfield, MO 63017



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. RELEASE FOR CONSTRUCTION


S NOTED ON PLANS REVIEW CODED ADMINISTRATION LEEVES MMIT, MISSOURI MITEK\* 16023 SWG69 320220 Chesterfield, MO 63017



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek@ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oucling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

## RELEASE FOR CONSTRUCTION





🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

## RELEASE FOR CONSTRUCTION

GI





16023 Swingley Ridge Rd Chesterfield, MO 63017

| Job                               | Truss | Truss Type | Qty                                                                       | Ply      | Lot 28 RT                                           |
|-----------------------------------|-------|------------|---------------------------------------------------------------------------|----------|-----------------------------------------------------|
| 400281                            | 115   | HIP GIRDER | 1                                                                         | _        | 141256034                                           |
| +00201                            | H5    |            | 1                                                                         | 2        | Job Reference (optional)                            |
| Wheeler Lumber, Waverly, KS 66871 |       |            | 8.240 s Mar 9 2020 MiTek Industries, Inc. Mon May 11 07:49:09 2020 Page 2 |          |                                                     |
| ID:mUY                            |       |            | XKzxejzuc                                                                 | dxJ64TA8 | 3GzSnWQ-BhtyapF2L1Jy1WfGR07w?nJ9yXRkLdGlgfMnNpzHe8u |

NOTES-

12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 2954 lb down and 26 lb up at 21-2-7, 479 lb down and 66 lb up at 23-3-4, 476 lb down and 67 lb up at 25-3-4, and 476 lb down and 67 lb up at 29-3-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

### LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

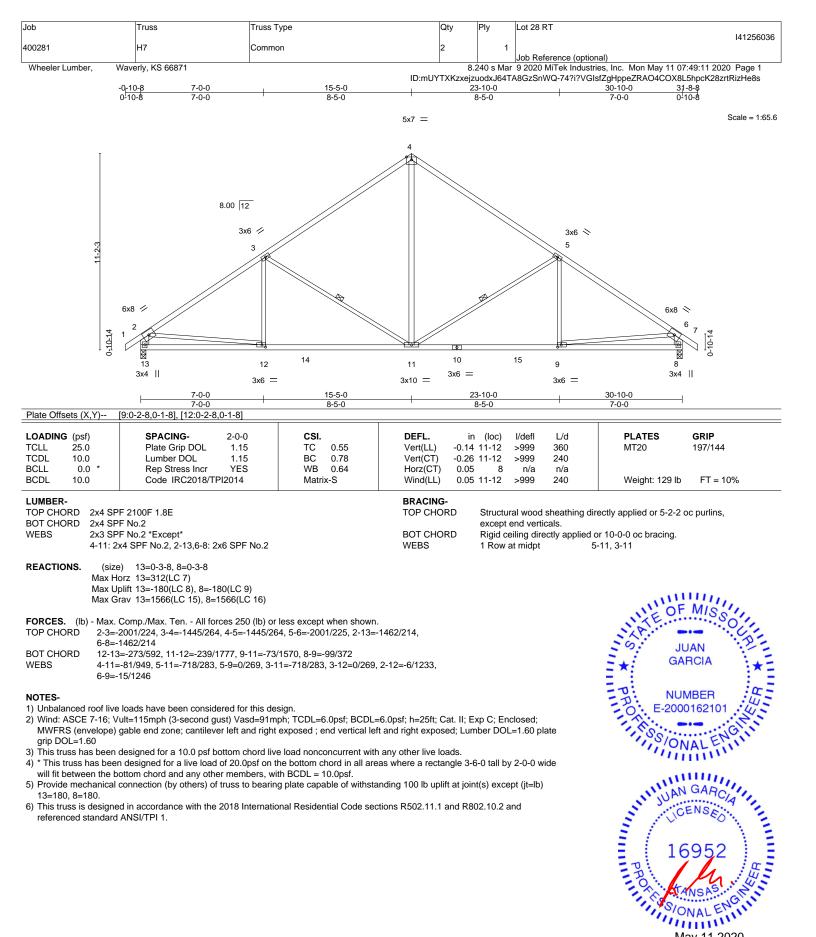
Uniform Loads (plf) Vert: 1-2=-70, 2-4=-70, 4-5=-70, 5-7=-70, 7-13=-20

Concentrated Loads (lb)

Vert: 14=-2906(F) 15=-479(F) 16=-476(F) 17=-476(F) 18=-476(F)

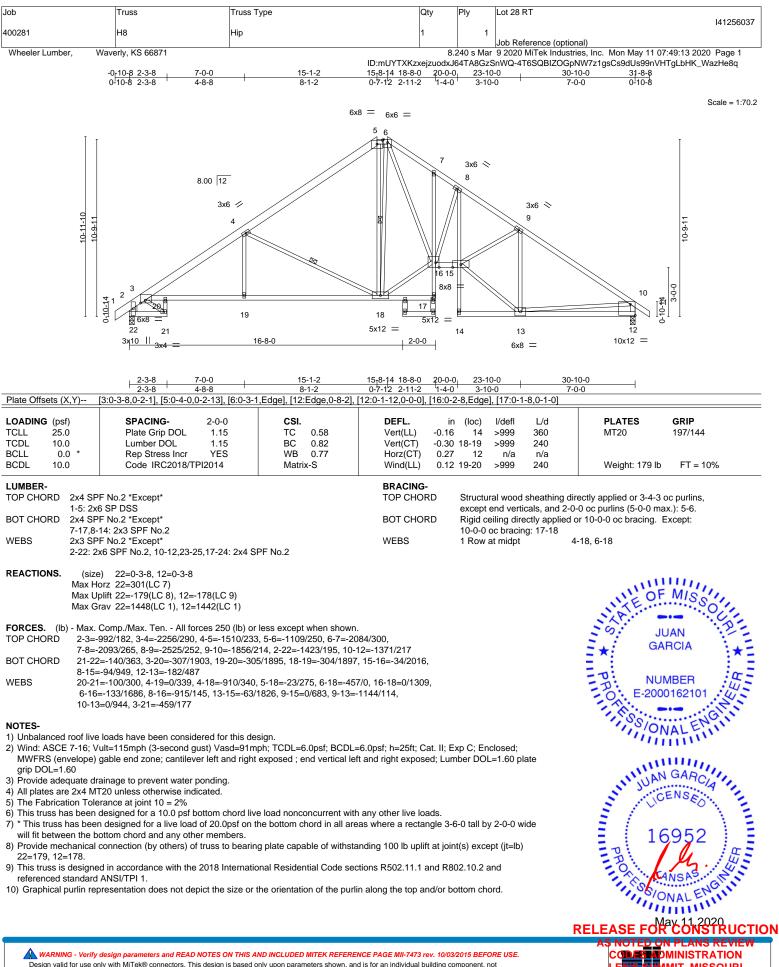
### **RELEASE FOR CONSTRUCTION**

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.





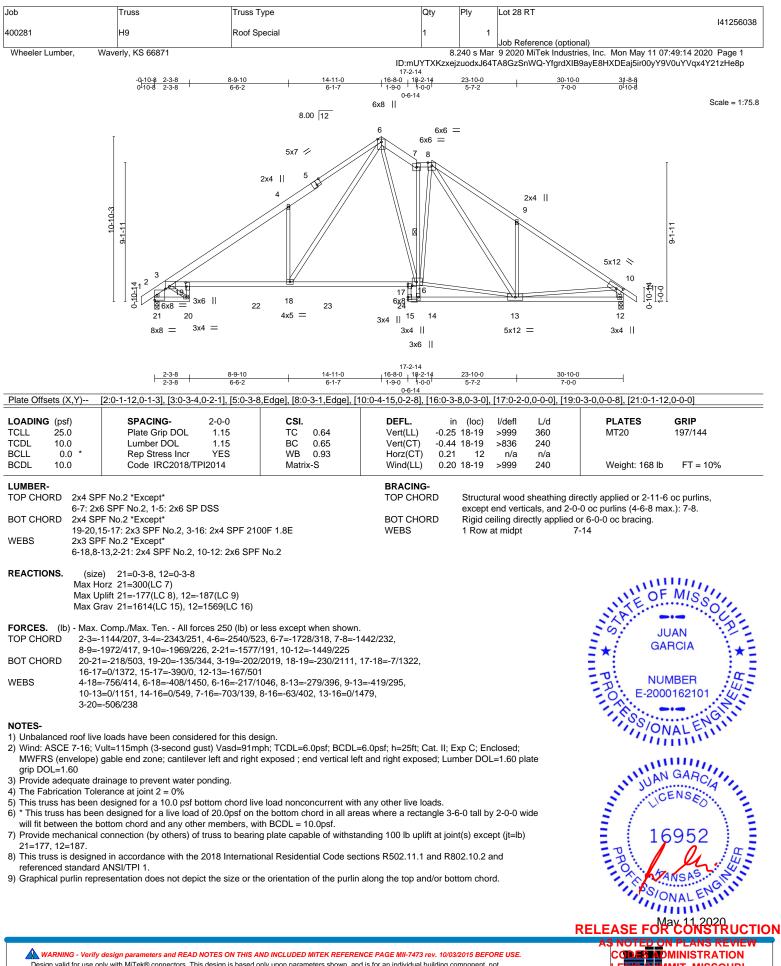

MIT, MISSOURI


Mitek 16023 Swingley Koge R Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oullapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Storage to an advise from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

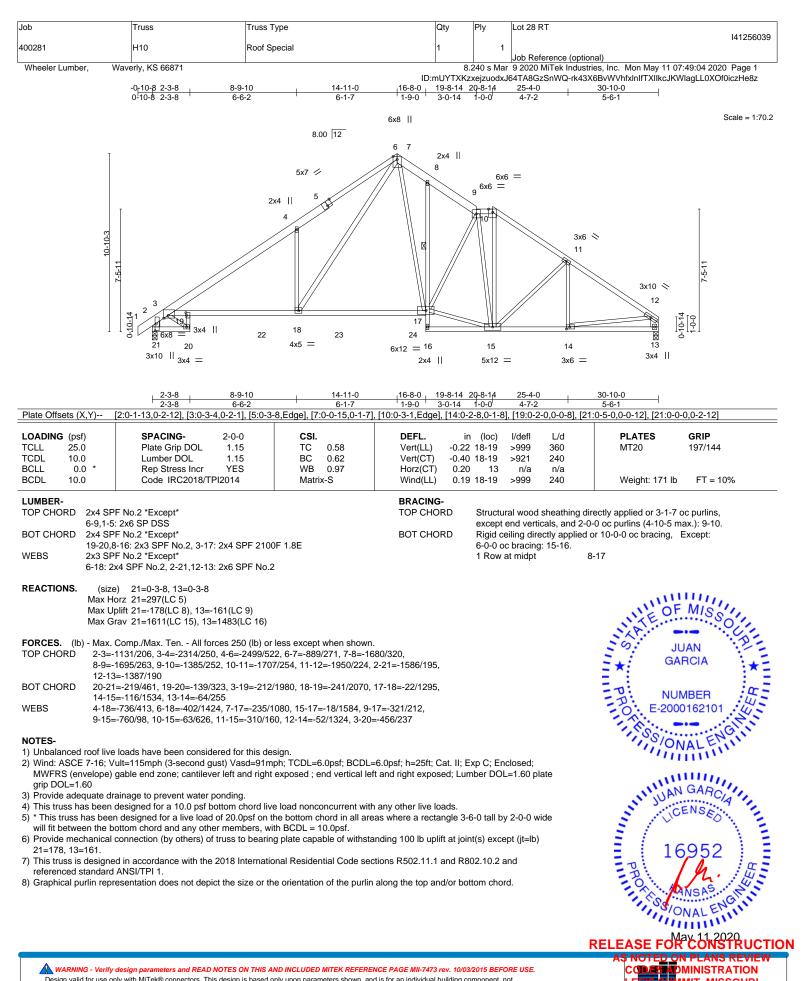


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. RELEASE FOR CONSTRUCTION





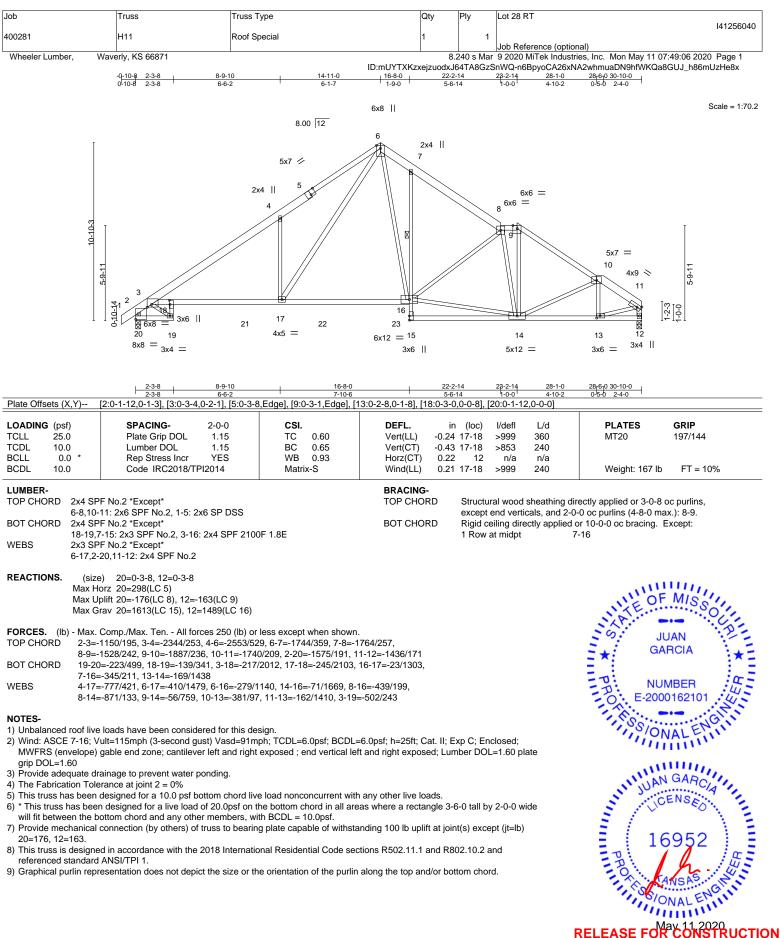

IMIT, MISSOURI


MiTek 16023 Swingley Ridge Ru Chesterfield, MO 63017

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid for dise only with with every connectors. This design is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.



MIT, MISSOURI


Mitek\* 16023 Swingley Kage R Chesterfield, MO 63017




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Milek 16023 Swingley Klage Ro Chesterfield, MO 63017

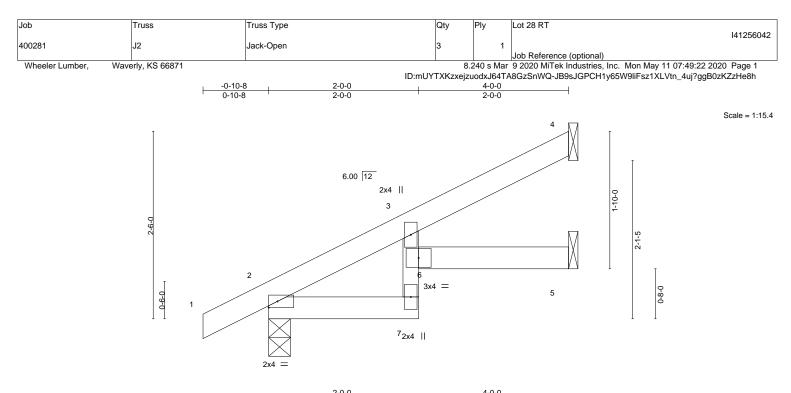
MIT, MISSOURI



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. NOTED ON PLANS REVIEW CODESTADMINISTRATION LEVEL MMINISTRATION MITCH 16023 SWIMP 3/2020 Chesterfield, MO 63017



8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).


## LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15. Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-4=-70, 2-7=-20, 5-6=-20

# May 11,2020 **RELEASE FO**

D ON PLANS REVIE IMIT, MISSOURI MiTek 16023 Swingley Ridge Ru Chesterfield, MO 63017



|               | H                    | 2-0-0    |                            | 2-0-0   |        |     |                        |
|---------------|----------------------|----------|----------------------------|---------|--------|-----|------------------------|
| LOADING (psf) | SPACING- 2-0-0       | CSI.     | DEFL. i                    | n (loc) | l/defl | L/d | PLATES GRIP            |
| TCLL 25.0     | Plate Grip DOL 1.15  | TC 0.13  | Vert(LL) -0.0 <sup>2</sup> | 16      | >999   | 360 | MT20 197/144           |
| TCDL 10.0     | Lumber DOL 1.15      | BC 0.22  | Vert(CT) -0.02             | 2 6     | >999   | 240 |                        |
| BCLL 0.0 *    | Rep Stress Incr YES  | WB 0.00  | Horz(CT) 0.0               | 15      | n/a    | n/a |                        |
| BCDL 10.0     | Code IRC2018/TPI2014 | Matrix-R | Wind(LL) 0.01              | 16      | >999   | 240 | Weight: 12 lb FT = 10% |

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

2x4 SPF No.2 TOP CHORD 2x4 SPF No.2 \*Except\* BOT CHORD 3-7: 2x3 SPF No.2

REACTIONS. 4=Mechanical, 2=0-3-8, 5=Mechanical (size) Max Horz 2=97(LC 8) Max Uplift 4=-46(LC 8), 2=-34(LC 8), 5=-7(LC 8) Max Grav 4=97(LC 1), 2=252(LC 1), 5=67(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

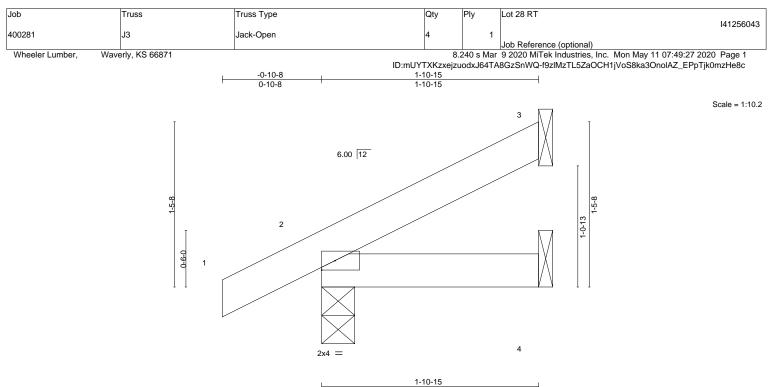
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2, 5.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
  - referenced standard ANSI/TPI 1.

# TIS \* PROM NUMBER F -2000162101 160 PBORTO JGIT May 11,2020 **RELEASE FO** MINISTRATION

MiTek 16023 Swingley Ridge Ro Chesterfield, MO 63017

MIT, MISSOURI

MIS


JUAN

GARCIA

0

Structural wood sheathing directly applied or 4-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.



|        |         |                       |          | 1-10-15        |       | 1        |         |           |          |
|--------|---------|-----------------------|----------|----------------|-------|----------|---------|-----------|----------|
| LOADIN | G (psf) | <b>SPACING-</b> 2-0-0 | CSI.     | DEFL. in       | (loc) | l/defl L | L/d PLA | TES GRI   | IP       |
| TCLL   | 25.0    | Plate Grip DOL 1.15   | TC 0.05  | Vert(LL) -0.00 | 2     | >999 3   | 60 MT2  | .0 197    | 7/144    |
| TCDL   | 10.0    | Lumber DOL 1.15       | BC 0.03  | Vert(CT) -0.00 | 2-4   | >999 2   | 40      |           |          |
| BCLL   | 0.0 *   | Rep Stress Incr YES   | WB 0.00  | Horz(CT) -0.00 | 3     | n/a r    | n/a     |           |          |
| BCDL   | 10.0    | Code IRC2018/TPI2014  | Matrix-P | Wind(LL) 0.00  | 2     | **** 2   | 40 Weię | ght: 6 lb | FT = 10% |

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2

**REACTIONS.** (size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=55(LC 8)

Max Uplift 3=-36(LC 8), 2=-28(LC 8)

Max Grav 3=50(LC 1), 2=163(LC 1), 4=37(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

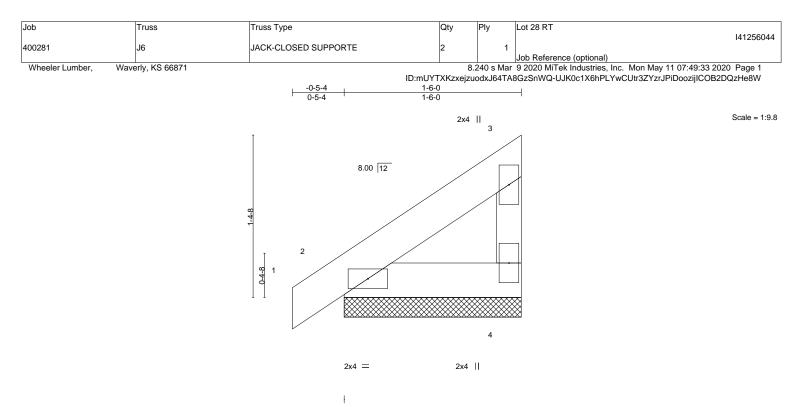
NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

# 


16023 Swingley Ridge Ro Chesterfield, MO 63017

MIS

0

Structural wood sheathing directly applied or 1-10-15 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.



| LOADING (psf) | SPACING- 2-0-0       | CSI.     | DEFL.         | in (loc) | l/defl | L/d | PLATES       | GRIP     |
|---------------|----------------------|----------|---------------|----------|--------|-----|--------------|----------|
| TCLL 25.0     | Plate Grip DOL 1.15  | TC 0.03  | Vert(LL) -0.0 | 0 1      | n/r    | 120 | MT20         | 197/144  |
| TCDL 10.0     | Lumber DOL 1.15      | BC 0.02  | Vert(CT) 0.0  | 0 1      | n/r    | 120 |              |          |
| BCLL 0.0 *    | Rep Stress Incr YES  | WB 0.00  | Horz(CT) -0.0 | 0 4      | n/a    | n/a |              |          |
| BCDL 10.0     | Code IRC2018/TPI2014 | Matrix-P |               |          |        |     | Weight: 5 lb | FT = 10% |
| LUMBER-       |                      |          | BRACING-      |          |        |     | 5            |          |

TOP CHORD

BOT CHORD

# LUMBER-

TOP CHORD 2x4 SPF No 2 BOT CHORD 2x4 SPF No.2

WEBS 2x3 SPF No.2

REACTIONS. 4=1-6-0, 2=1-6-0 (size) Max Horz 2=43(LC 5) Max Uplift 4=-17(LC 8), 2=-17(LC 8) Max Grav 4=64(LC 15), 2=98(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.


## NOTES-

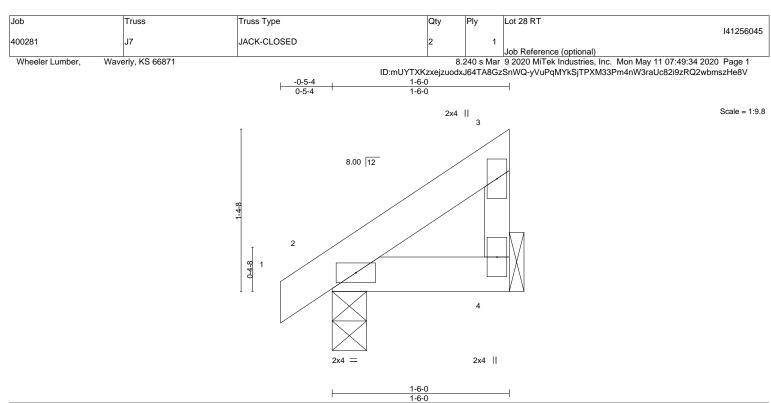
- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 2-0-0 oc.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 6) will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and

referenced standard ANSI/TPI 1.




11111 MIS

0

Structural wood sheathing directly applied or 1-6-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.



|        |         |                       |          | 1-8-0                                          |
|--------|---------|-----------------------|----------|------------------------------------------------|
| LOADIN | G (psf) | <b>SPACING-</b> 2-0-0 | CSI.     | DEFL. in (loc) I/defl L/d PLATES GRIP          |
| TCLL   | 25.0    | Plate Grip DOL 1.15   | TC 0.02  | Vert(LL) -0.00 2 >999 360 MT20 197/144         |
| TCDL   | 10.0    | Lumber DOL 1.15       | BC 0.02  | Vert(CT) -0.00 2 >999 240                      |
| BCLL   | 0.0 *   | Rep Stress Incr YES   | WB 0.00  | Horz(CT) -0.00 4 n/a n/a                       |
| BCDL   | 10.0    | Code IRC2018/TPI2014  | Matrix-P | Wind(LL) 0.00 2 **** 240 Weight: 5 lb FT = 10% |

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2

WEBS 2x3 SPF No.2

REACTIONS. 4=Mechanical, 2=0-3-8 (size) Max Horz 2=43(LC 5) Max Uplift 4=-16(LC 8), 2=-17(LC 8) Max Grav 4=62(LC 15), 2=100(LC 1)

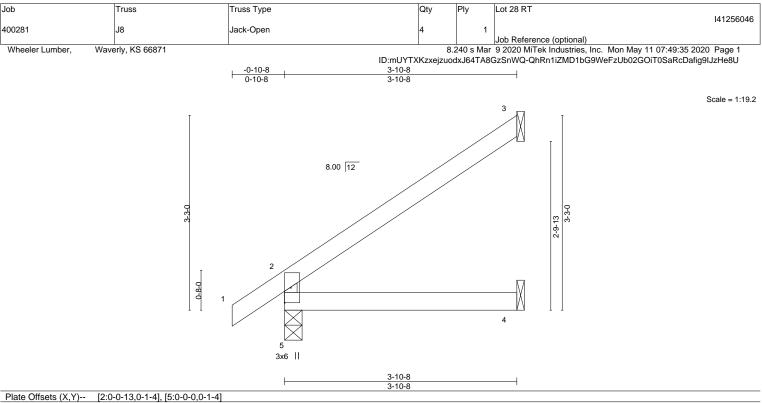
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

## NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

# 110 \* PROTI JUAN GARCIA NUMBER F -2000162101 /ONAL MAN GARCY ICENSE 160 VIIIIIIIIIIII JOIN May 11 2020 R CONSTRUCTION **RELEASE FO** MINISTRATION MIT, MISSOURI

MiTek 16023 Swingley Ridge Ro Chesterfield, MO 63017


11111 MIS

0

Structural wood sheathing directly applied or 1-6-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.



| OADING (psf) | SPACING- 2-0-0       | CSI.     | DEFL. in       | (loc) l/defl | L/d | PLATES GRIP            |
|--------------|----------------------|----------|----------------|--------------|-----|------------------------|
| CLL 25.0     | Plate Grip DOL 1.15  | TC 0.20  | Vert(LL) -0.01 | 4-5 >999     | 360 | MT20 197/144           |
| CDL 10.0     | Lumber DOL 1.15      | BC 0.12  | Vert(CT) -0.02 | 4-5 >999     | 240 |                        |
| 3CLL 0.0 *   | Rep Stress Incr YES  | WB 0.00  | Horz(CT) -0.01 | 3 n/a        | n/a |                        |
| BCDL 10.0    | Code IRC2018/TPI2014 | Matrix-R | Wind(LL) 0.01  | 4-5 >999     | 240 | Weight: 11 lb FT = 10% |

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS

2x3 SPF No.2

BRACING-TOP CHORD

Structural wood sheathing directly applied or 3-10-8 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing

#### REACTIONS. (size) 5=0-3-8, 3=Mechanical, 4=Mechanical

Max Horz 5=118(LC 8) Max Uplift 5=-11(LC 8), 3=-80(LC 8)

Max Grav 5=244(LC 1), 3=123(LC 15), 4=71(LC 3)

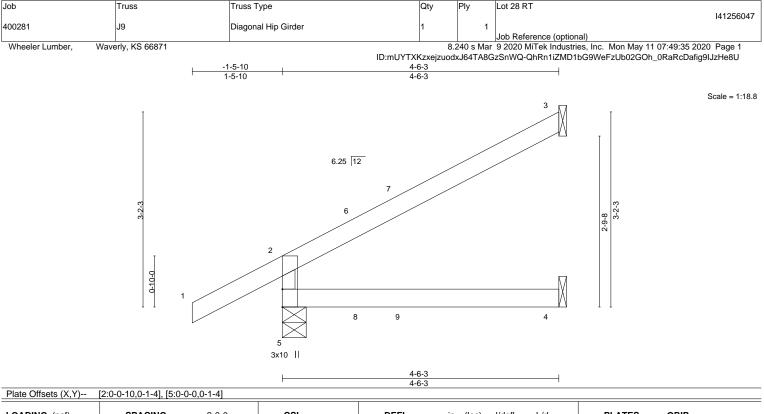
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

# NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) The Fabrication Tolerance at joint 5 = 2%, joint 5 = 2%

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


# Wint PRUM GARCIA NUMBER F -2000162101 0 160 PROTOS JGIT RELEASE FOR CONSTRUCTION DMINISTRATION IMIT, MISSOURI

MiTek 16023 Swingley Kidge Ru Chesterfield, MO 63017

1111 MIS

JUAN

0



| LOADING (psf) | SPACING- 2-0-0       | CSI.     | DEFL. in       | (loc) | l/defl L/d | PLATES        | GRIP     |
|---------------|----------------------|----------|----------------|-------|------------|---------------|----------|
| TCLL 25.0     | Plate Grip DOL 1.15  | TC 0.30  | Vert(LL) -0.02 | 4-5   | >999 360   | MT20          | 197/144  |
| TCDL 10.0     | Lumber DOL 1.15      | BC 0.19  | Vert(CT) -0.04 | 4-5   | >999 240   | )             |          |
| BCLL 0.0 *    | Rep Stress Incr NO   | WB 0.00  | Horz(CT) -0.02 | 3     | n/a n/a    | L             |          |
| BCDL 10.0     | Code IRC2018/TPI2014 | Matrix-R | Wind(LL) 0.02  | 4-5   | >999 240   | Weight: 13 lb | FT = 10% |

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS

2x3 SPF No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-6-3 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

#### REACTIONS. (size) 5=0-4-11, 3=Mechanical, 4=Mechanical

Max Horz 5=113(LC 8) Max Uplift 5=-55(LC 8), 3=-80(LC 8)

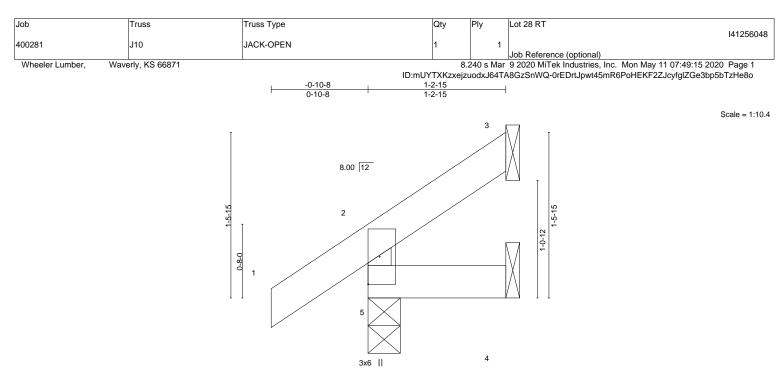
Max Grav 5=323(LC 1), 3=129(LC 1), 4=82(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-5=-285/82

### NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.

7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 82 lb down and 29 lb up at 1-4-2, and 74 lb down and 36 lb up at 2-0-6 on top chord, and 4 lb down and 6 lb up at 1-4-2, and 8 lb down and 14 lb up at 2-0-6 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.


8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

# LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-70, 2-3=-70, 4-5=-20

Concentrated Loads (lb) Vert: 8=3(B) 9=2(F)







| <b>-</b> 2-0-0 | CSI.                   | DEFL.                                                                                                                                               | in (loc)                                                                                                                                                                                                                                | l/defl                                                                                                                                                                                                                                                                         | L/d                                                                                                                                                                                                                                                                                                                  | PLATES                                                                                                                                                                                                                                                                                                                                                   | GRIP                                                                                                                                                                                                                                                                                                                                                                  |
|----------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |                        |                                                                                                                                                     | ( )                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                       |
| DOL 1.15       | TC 0.07                | Vert(LL) -0                                                                                                                                         | ).00 5                                                                                                                                                                                                                                  | >999                                                                                                                                                                                                                                                                           | 360                                                                                                                                                                                                                                                                                                                  | MT20                                                                                                                                                                                                                                                                                                                                                     | 197/144                                                                                                                                                                                                                                                                                                                                                               |
| OL 1.15        | BC 0.01                | Vert(CT) -0                                                                                                                                         | 0.00 5                                                                                                                                                                                                                                  | >999                                                                                                                                                                                                                                                                           | 240                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                       |
| s Incr YES     | WB 0.00                | Horz(CT) -0                                                                                                                                         | 0.00 3                                                                                                                                                                                                                                  | n/a                                                                                                                                                                                                                                                                            | n/a                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                       |
| 2018/TPI2014   | Matrix-R               | Wind(LL) 0                                                                                                                                          | 0.00 5                                                                                                                                                                                                                                  | >999                                                                                                                                                                                                                                                                           | 240                                                                                                                                                                                                                                                                                                                  | Weight: 5 lb                                                                                                                                                                                                                                                                                                                                             | FT = 10%                                                                                                                                                                                                                                                                                                                                                              |
| p<br>Di<br>S   | p DOL 1.15<br>DOL 1.15 | p DOL         1.15         TC         0.07           DOL         1.15         BC         0.01           ss Incr         YES         WB         0.00 | p DOL         1.15         TC         0.07         Vert(LL)         -0           DOL         1.15         BC         0.01         Vert(CT)         -0           ss Incr         YES         WB         0.00         Horz(CT)         -0 | p DOL         1.15         TC         0.07         Vert(LL)         -0.00         5           DOL         1.15         BC         0.01         Vert(CT)         -0.00         5           ss Incr         YES         WB         0.00         Horz(CT)         -0.00         3 | p DOL         1.15         TC         0.07         Vert(LL)         -0.00         5         >999           DOL         1.15         BC         0.01         Vert(CT)         -0.00         5         >999           ss Incr         YES         WB         0.00         Horz(CT)         -0.00         3         n/a | p DOL         1.15         TC         0.07         Vert(LL)         -0.00         5         >999         360           DOL         1.15         BC         0.01         Vert(CT)         -0.00         5         >999         240           ss Incr         YES         WB         0.00         Horz(CT)         -0.00         3         n/a         n/a | p DOL         1.15         TC         0.07         Vert(LL)         -0.00         5         >999         360         MT20           DOL         1.15         BC         0.01         Vert(CT)         -0.00         5         >999         240           ss Incr         YES         WB         0.00         Horz(CT)         -0.00         3         n/a         n/a |

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2

BRACING-TOP CHORD

Structural wood sheathing directly applied or 1-2-15 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing

#### REACTIONS. (size) 5=0-3-8, 3=Mechanical, 4=Mechanical

Max Horz 5=48(LC 8) Max Uplift 5=-19(LC 8), 3=-21(LC 8), 4=-1(LC 8)

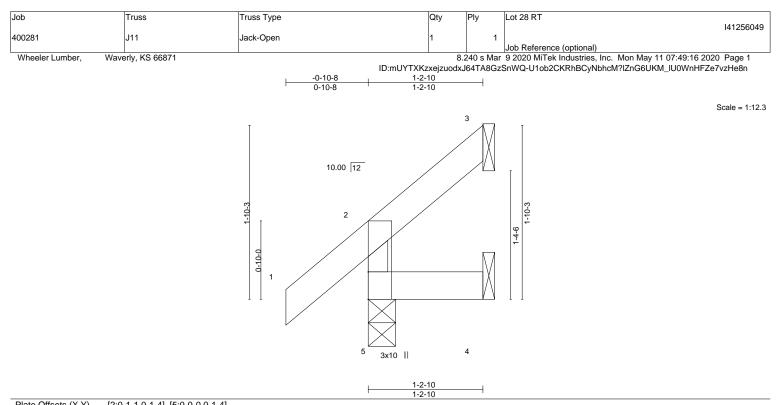
Max Grav 5=149(LC 1), 3=21(LC 15), 4=20(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

# NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.


- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3, 4.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

# TIS \* PROM JUAN GARCIA NUMBER F -2000162101 ONALE JUAN GARC 1111111 May 11 2020 R CONSTRUCTION **RELEASE FO** ON PLANS REVIE MIT, MISSOURI MiTek

16023 Swingley Ridge Ro Chesterfield, MO 63017

11111 MIS

0



| CDL 10.0 Code IRC2018/TPI2014 Matrix-R Weight: 5 lb FT = 10% | CLL         25.0         Pla           CDL         10.0         Lur           SCLL         0.0 *         Rej | ate Grip DOL<br>mber DOL | 2-0-0 <b>CSI.</b><br>1.15 TC<br>1.15 BC<br>YES WB<br>014 Matri | 0.07 Vo<br>0.02 Vo<br>0.00 Ho | DEFL.         ir           'ert(LL)         0.00           'ert(CT)         -0.00           lorz(CT)         -0.00 | 5<br>5 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 5 lb | <b>GRIP</b><br>197/144<br>FT = 10% |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------|--------|-------------------------------|--------------------------|--------------------------------|------------------------------------|
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------|--------|-------------------------------|--------------------------|--------------------------------|------------------------------------|

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2

REACTIONS.

(size) 5=0-3-8, 3=Mechanical, 4=Mechanical Max Horz 5=58(LC 8)

Max Uplift 5=-4(LC 8), 3=-29(LC 8), 4=-8(LC 8) Max Grav 5=149(LC 1), 3=22(LC 15), 4=20(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

# NOTES-

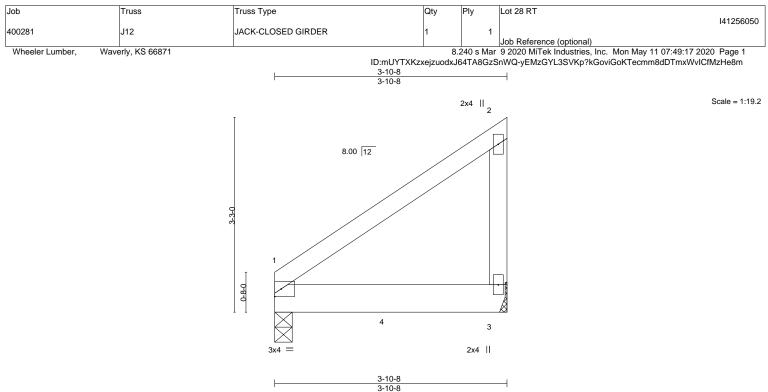
1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3, 4.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


# TIS \* PROM GARCIA NUMBER F -2000162101 IGONALL IN GARON DENSE VIIIIIIIIIII GI May 11 2020 RCONSTRUCTION **RELEASE FO** ON PLANS REVIE MIT, MISSOURI

MiTek 16023 Swingley Ridge Ro Chesterfield, MO 63017

11111 MIS

JUAN

0



|                 |                                                   | 1                                      |                                                                                                                                               | 3-10-8                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------|---------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SPACING-        | 2-0-0                                             | CSI.                                   |                                                                                                                                               | DEFL.                                                                                                                                                                                | in                                                                                                                                                                                                                                                                                                  | (loc)                                                                                                                                                                                                                                                                                                                                                    | l/defl                                                                                                                                                                                                                                                                                                                                                                                                   | L/d                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PLATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GRIP                                                                                                                                                                                                                                                                                                                                                                                                        |
| Plate Grip DOL  | 1.15                                              | TC                                     | 0.28                                                                                                                                          | Vert(LL)                                                                                                                                                                             | -0.03                                                                                                                                                                                                                                                                                               | 1-3                                                                                                                                                                                                                                                                                                                                                      | >999                                                                                                                                                                                                                                                                                                                                                                                                     | 360                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MT20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 197/144                                                                                                                                                                                                                                                                                                                                                                                                     |
| Lumber DOL      | 1.15                                              | BC                                     | 0.81                                                                                                                                          | Vert(CT)                                                                                                                                                                             | -0.05                                                                                                                                                                                                                                                                                               | 1-3                                                                                                                                                                                                                                                                                                                                                      | >844                                                                                                                                                                                                                                                                                                                                                                                                     | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                             |
| Rep Stress Incr | NO                                                | WB                                     | 0.00                                                                                                                                          | Horz(CT)                                                                                                                                                                             | -0.00                                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                        | n/a                                                                                                                                                                                                                                                                                                                                                                                                      | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                             |
| Code IRC2018/TI | PI2014                                            | Matri                                  | x-P                                                                                                                                           | Wind(LL)                                                                                                                                                                             | 0.02                                                                                                                                                                                                                                                                                                | 1-3                                                                                                                                                                                                                                                                                                                                                      | >999                                                                                                                                                                                                                                                                                                                                                                                                     | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Weight: 15 lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FT = 10%                                                                                                                                                                                                                                                                                                                                                                                                    |
| *               | Plate Grip DOL<br>Lumber DOL<br>* Rep Stress Incr | Plate Grip DOL 1.15<br>Lumber DOL 1.15 | Plate Grip DOL         1.15         TC           Lumber DOL         1.15         BC           *         Rep Stress Incr         NO         WB | Plate Grip DOL         1.15         TC         0.28           Lumber DOL         1.15         BC         0.81           *         Rep Stress Incr         NO         WB         0.00 | SPACING-         2-0-0         CSI.         DEFL.           Plate Grip DOL         1.15         TC         0.28         Vert(LL)           Lumber DOL         1.15         BC         0.81         Vert(CT)           *         Rep Stress Incr         NO         WB         0.00         Horz(CT) | SPACING-         2-0-0         CSI.         DEFL.         in           Plate Grip DOL         1.15         TC         0.28         Vert(LL)         -0.03           Lumber DOL         1.15         BC         0.81         Vert(CT)         -0.05           *         Rep Stress Incr         NO         WB         0.00         Horz(CT)         -0.00 | SPACING-         2-0-0         CSI.         DEFL.         in         (loc)           Plate Grip DOL         1.15         TC         0.28         Vert(LL)         -0.03         1-3           Lumber DOL         1.15         BC         0.81         Vert(CT)         -0.05         1-3           *         Rep Stress Incr         NO         WB         0.00         Horz(CT)         -0.00         3 | SPACING-         2-0-0         CSI.         DEFL.         in         (loc)         l/defl           Plate Grip DOL         1.15         TC         0.28         Vert(LL)         -0.03         1-3         >999           Lumber DOL         1.15         BC         0.81         Vert(CT)         -0.05         1-3         >844           *         Rep Stress Incr         NO         WB         0.00         Horz(CT)         -0.00         3         n/a | SPACING-         2-0-0         CSI.         DEFL.         in         (loc)         l/defl         L/d           Plate Grip DOL         1.15         TC         0.28         Vert(LL)         -0.03         1-3         >999         360           Lumber DOL         1.15         BC         0.81         Vert(CT)         -0.05         1-3         >844         240           *         Rep Stress Incr         NO         WB         0.00         Horz(CT)         -0.00         3         n/a         n/a | SPACING-         2-0-0         CSI.         DEFL.         in         (loc)         l/defl         L/d         PLATES           Plate Grip DOL         1.15         TC         0.28         Vert(LL)         -0.03         1-3         >999         360         MT20           *         Rep Stress Incr         NO         WB         0.00         Horz(CT)         -0.00         3         n/a         n/a |

BRACING-

TOP CHORD

BOT CHORD

# LUMBER-

TOP CHORD 2x4 SPF No 2 BOT CHORD 2x6 SPF No.2

WEBS 2x4 SPF No.2

REACTIONS. 1=0-3-8, 3=Mechanical (size) Max Horz 1=109(LC 5)

Max Uplift 1=-57(LC 8), 3=-101(LC 8) Max Grav 1=587(LC 1), 3=586(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

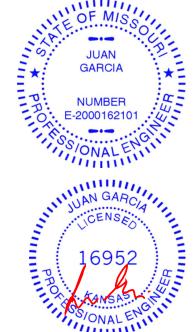
## NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 3=101.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 850 lb down and 106 lb up at 1-11-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.


8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

# LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-70, 1-3=-20

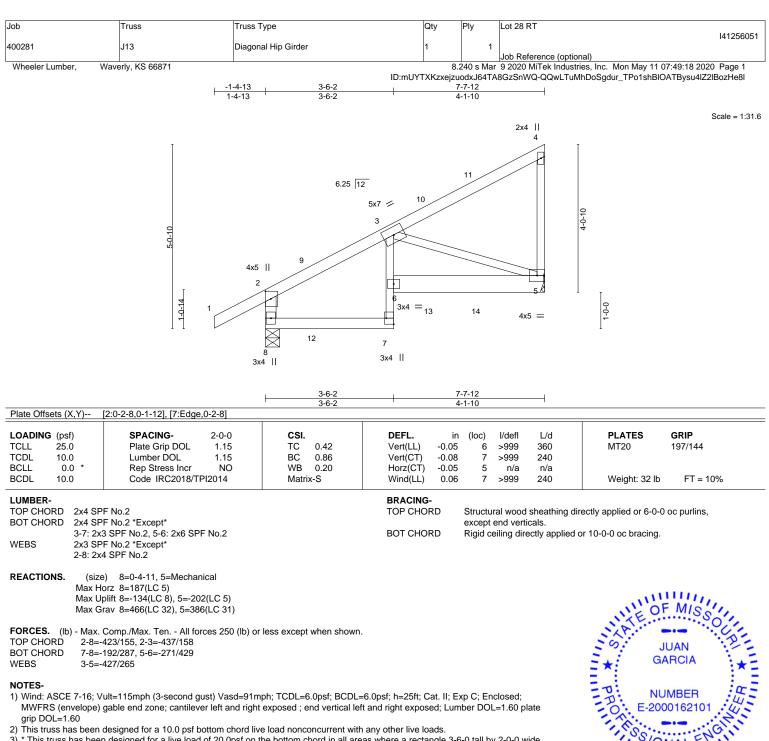
Concentrated Loads (Ib) Vert: 4=-850(B)



May 11 2020 DR CONSTRUCTION

MINISTRATION

MIT, MISSOURI


**RELEASE FO** 

MiTek 16023 Swingley Ridge Ro Chesterfield, MO 63017

Structural wood sheathing directly applied or 3-10-8 oc purlins,

Rigid ceiling directly applied or 8-9-15 oc bracing.

except end verticals



- grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 3) will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=134, 5=202
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 83 lb down and 32 lb up at 1-4-2, 81 lb down and 69 lb up at 3-3-7, and 108 lb down and 80 lb up at 4-6-9, and 100 lb down and 83 lb up at 5-10-3 on top chord, and 8 lb down and 11 lb up at 1-4-2, 12 lb down and 21 lb up at 3-4-14, and 33 lb down and 45 lb up at 4-6-9, and 40 lb down and 46 lb up at 5-10-3 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

## LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-70, 2-4=-70, 7-8=-20, 5-6=-20

## Continued on page 2

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

# 16952 RELEASE FOR CONSTRUCTION

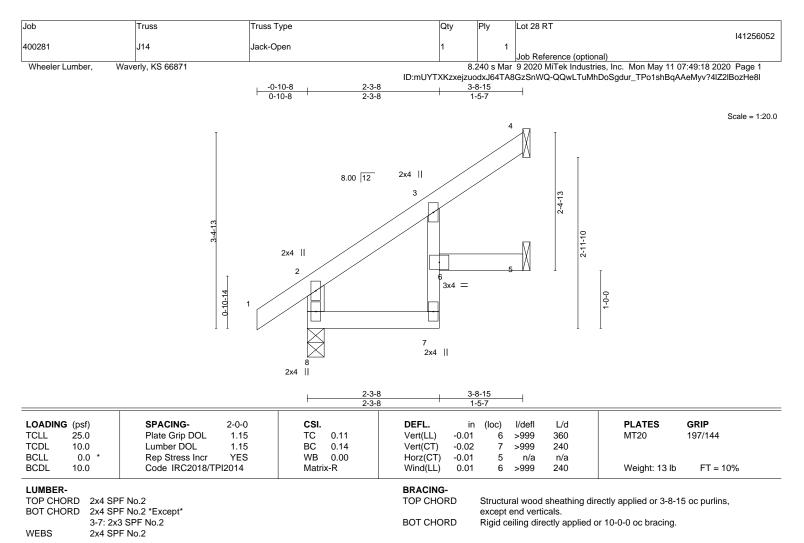
ONALES

S

S



| Job                  | Truss          | Truss Type          | Qty | Ply       | Lot 28 RT                                                     |
|----------------------|----------------|---------------------|-----|-----------|---------------------------------------------------------------|
|                      |                |                     |     |           | 141256051                                                     |
| 400281               | J13            | Diagonal Hip Girder | 1   | 1         |                                                               |
|                      |                |                     |     |           | Job Reference (optional)                                      |
| Wheeler Lumber, Wave | erly, KS 66871 |                     | 8.  | 240 s Mar | 9 2020 MiTek Industries, Inc. Mon May 11 07:49:18 2020 Page 2 |


ID:mUYTXKzxejzuodxJ64TA8GzSnWQ-QQwLTuMhDoSgdur\_TPo1shBlOATBysu4IZ2IBozHe8I

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 7=1(B) 10=-2(F) 11=-5(B) 12=4(F) 13=-25(F) 14=-6(B)

# **RELEASE FOR CONSTRUCTION**





REACTIONS. (size) 8=0-3-8, 4=Mechanical, 5=Mechanical

Max Horz 8=110(LC 8)

Max Uplift 8=-4(LC 8), 4=-53(LC 8), 5=-25(LC 8)

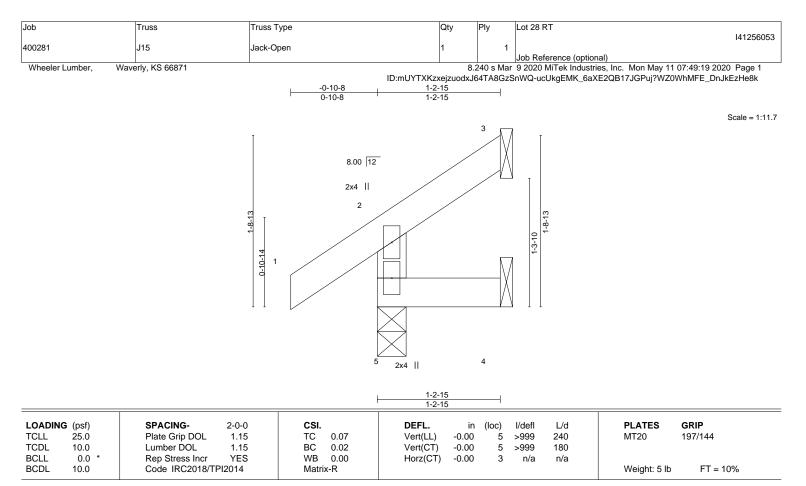
Max Grav 8=241(LC 1), 4=98(LC 15), 5=65(LC 15)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

## NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.


- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 4, 5.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

#### AS NOTED ON PLANS REVIEW COMPARENCE COMPAREN

16023 Swingley Ridge Ro Chesterfield, MO 63017

F MIS

0



2x4 SPF No.2 TOP CHORD BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 1-2-15 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing

5=0-3-8, 3=Mechanical, 4=Mechanical REACTIONS. (size) Max Horz 5=44(LC 8) Max Uplift 5=-11(LC 8), 3=-25(LC 8), 4=-6(LC 8) Max Grav 5=154(LC 1), 3=21(LC 15), 4=18(LC 3)

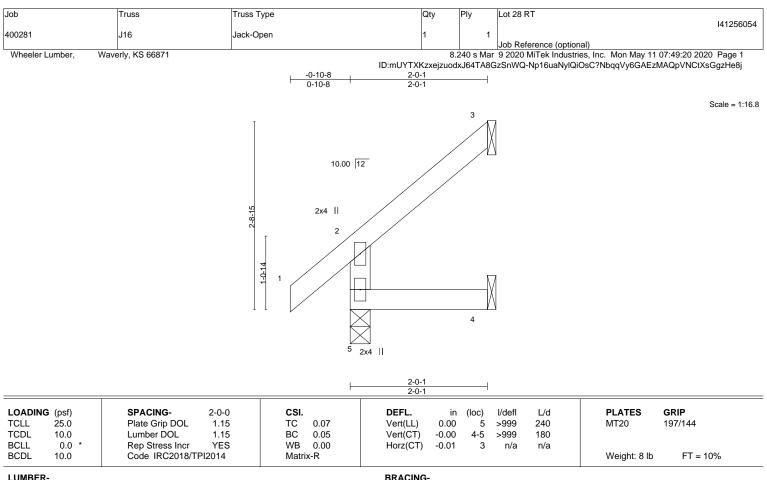
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

## NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3, 4.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
  - referenced standard ANSI/TPI 1.

# The the PROM NUMBER F -2000162101 160 PROTOS VIIIIIIIIIIII JGIT May 11,2020 **RELEASE FO** MINISTRATION

MIT, MISSOURI


MiTek 16023 Swingley Ridge Ro Chesterfield, MO 63017

11111 MIS

JUAN

GARCIA

0



TOP CHORD

BOT CHORD

# LUMBER-

2x4 SPF No.2 TOP CHORD BOT CHORD 2x4 SPF No.2 WEBS

2x4 SPF No.2

REACTIONS. 5=0-3-8, 3=Mechanical, 4=Mechanical (size) Max Horz 5=79(LC 8) Max Uplift 3=-56(LC 8), 4=-11(LC 8)

Max Grav 5=173(LC 1), 3=57(LC 15), 4=33(LC 3)

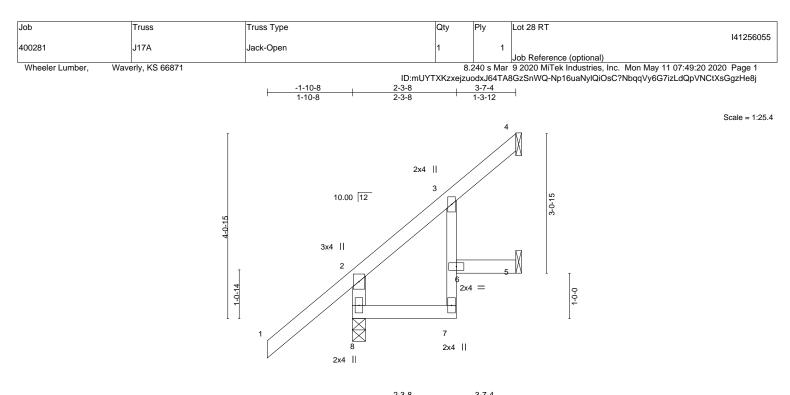
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

## NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

# TIS \* PROM JUAN GARCIA NUMBER F 2000162101 160 VIIIIIIIIIIII GI May 11,2020 **RELEASE FO** MINISTRATION MIT, MISSOURI

MiTek 16023 Swingley Ridge Ro Chesterfield, MO 63017


11 1111 MIS

0

Structural wood sheathing directly applied or 2-0-1 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing

except end verticals.



| OADING | (nef)         | SPACING-        | 2-0-0  | CSI.   |      | DEFL.    | in    | (loc) | l/defl | L/d | PLATES        | GRIP     |
|--------|---------------|-----------------|--------|--------|------|----------|-------|-------|--------|-----|---------------|----------|
|        | (psi)<br>25.0 | Plate Grip DOL  | 1.15   | TC     | 0.30 | Vert(LL) | 0.01  | (100) | >999   | 240 | MT20          | 197/144  |
|        |               |                 |        | -      |      |          |       |       |        |     | 101120        | 197/144  |
|        | 10.0          | Lumber DOL      | 1.15   | BC     | 0.09 | Vert(CT) | -0.01 | 1     | >999   | 240 |               |          |
| BCLL   | 0.0 *         | Rep Stress Incr | YES    | WB     | 0.00 | Horz(CT) | -0.01 | 4     | n/a    | n/a |               |          |
| BCDL   | 10.0          | Code IRC2018/TI | PI2014 | Matrix | x-R  |          |       |       |        |     | Weight: 15 lb | FT = 10% |

TOP CHORD

BOT CHORD

# LUMBER-

TOP CHORD 2x4 SPF No.2 2x4 SPF No.2 \*Except\* BOT CHORD 3-7: 2x3 SPF No.2 WEBS 2x4 SPF No.2

#### REACTIONS. (size) 8=0-3-8, 4=Mechanical, 5=Mechanical

Max Horz 8=162(LC 8) Max Uplift 8=-13(LC 8), 4=-60(LC 8), 5=-31(LC 8)

Max Grav 8=336(LC 1), 4=89(LC 15), 5=48(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-8=-300/49

- NOTES-
- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 4, 5.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

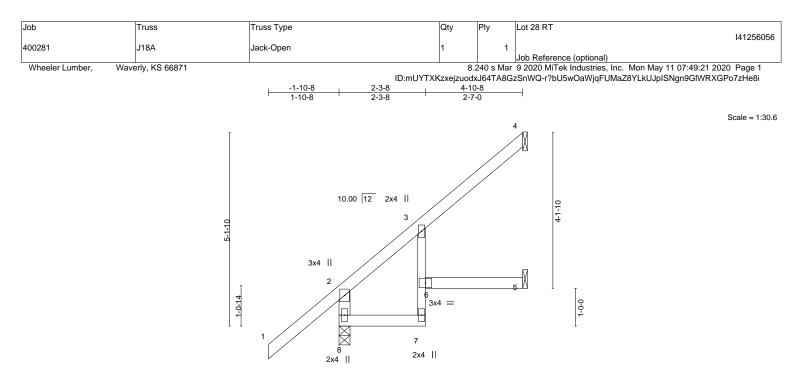
# With PRUM JUAN GARCIA NUMBER F -2000162101 0 IGO JGIT May 11 2020 RCONSTRUCTION RELEASE FO

11 1111 MIS

0

Structural wood sheathing directly applied or 3-7-4 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.


except end verticals.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

MiTek 16023 Swingley Ridge Ro Chesterfield, MO 63017

MINISTRATION

MIT, MISSOURI



|                                                                            |                                                                |                                | 3-8<br>3-8                       | 4-10-8<br>2-7-0        |             | _                   |                   |                |                        |
|----------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------|----------------------------------|------------------------|-------------|---------------------|-------------------|----------------|------------------------|
| LOADING (psf)<br>TCLL 25.0                                                 | SPACING- 2-0-0<br>Plate Grip DOL 1.15                          | <b>CSI.</b><br>TC 0.30         | DEFL.<br>Vert(LL)                | -0.03                  | (loc)<br>6  | l/defl<br>>999      | L/d<br>360        | PLATES<br>MT20 | <b>GRIP</b><br>197/144 |
| TCDL         10.0           BCLL         0.0 *           BCDL         10.0 | Lumber DOL 1.15<br>Rep Stress Incr YES<br>Code IRC2018/TPI2014 | BC 0.16<br>WB 0.00<br>Matrix-R | Vert(CT)<br>Horz(CT)<br>Wind(LL) | -0.05<br>-0.03<br>0.04 | 6<br>4<br>6 | >999<br>n/a<br>>999 | 240<br>n/a<br>240 | Weight: 18 lb  | FT = 10%               |

BRACING-

TOP CHORD

BOT CHORD

# LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 \*Except\* 3-7: 2x3 SPF No.2 WEBS 2x4 SPF No.2

REACTIONS. (size) 8=0-3-8, 4=Mechanical, 5=Mechanical

Max Horz 8=142(LC 8) Max Uplift 4=-62(LC 8), 5=-9(LC 8)

Max Grav 8=382(LC 1), 4=135(LC 13), 5=74(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-8=-342/5

### NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

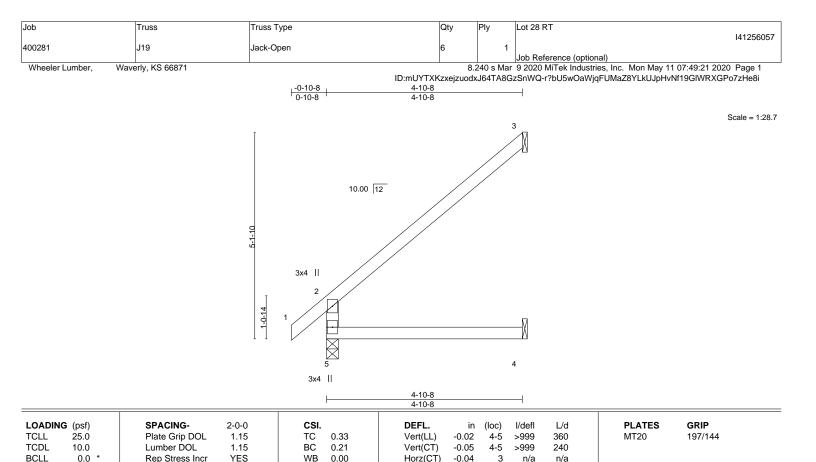
3) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

#### JUAN GARCIA NUMBER E-2000162101 SS/ONAL ENGINE IG952 TAKSAS ONAL ENGINE 16952 TAKSAS ONAL ENGINE S/ONAL ENGINE S/O

16023 Swingley Ridge Ro Chesterfield, MO 63017


MIS

0

Structural wood sheathing directly applied or 4-10-8 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.



| BCDL | 10.0 |  |
|------|------|--|
|      |      |  |

TOP CHORD 2x4 SPF No.2 2x4 SPF No.2 BOT CHORD WEBS

2x4 SPF No.2

BRACING-TOP CHORD

BOT CHORD

Wind(LL)

4-5

>999

240

0.04

Structural wood sheathing directly applied or 4-10-8 oc purlins, except end verticals Rigid ceiling directly applied or 10-0-0 oc bracing

Weight: 15 lb

FT = 10%

REACTIONS. 5=0-3-8, 3=Mechanical, 4=Mechanical (size) Max Horz 5=123(LC 8) Max Uplift 3=-81(LC 8) Max Grav 5=289(LC 1), 3=156(LC 13), 4=89(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-5=-254/6

Code IRC2018/TPI2014

# NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;

Matrix-R

MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

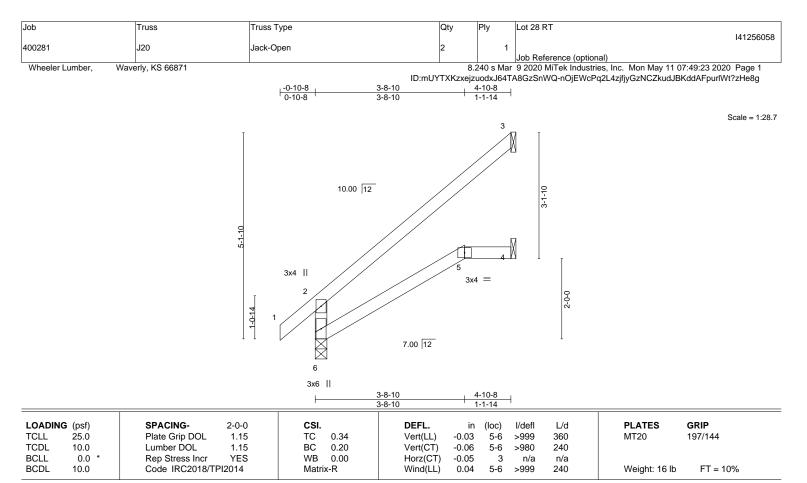
2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


# Wint PRUM JUAN GARCIA NUMBER F -2000162101 0 NONAL JUAN GARC LICENSE 16C 3 111111 GI May 11,2020 **RELEASE FO** DMINISTRATION MIT, MISSOURI

MiTek 16023 Swingley Ridge Ru Chesterfield, MO 63017

111

0

MIS



2x4 SPF No.2 TOP CHORD BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 4-10-8 oc purlins, except end verticals Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. 6=0-3-8, 3=Mechanical, 4=Mechanical (size) Max Horz 6=123(LC 8) Max Uplift 3=-83(LC 8) Max Grav 6=289(LC 1), 3=158(LC 13), 4=89(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-6=-252/4

# NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

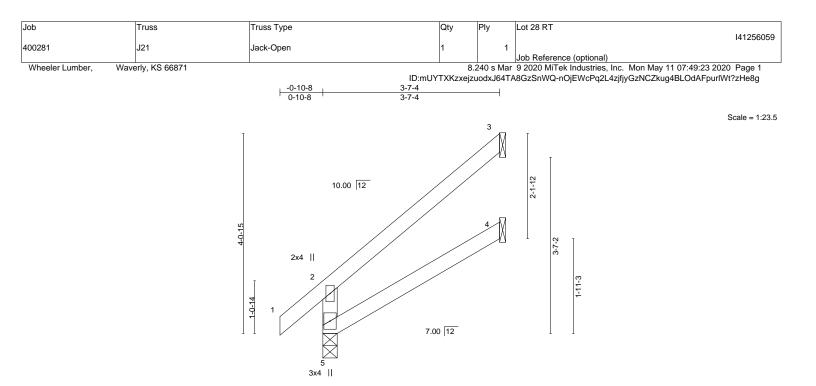
6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

# WILL PROM NUMBER F -2000162101 IGO VIIIIIIIIIIII JOIT RELEASE FOR CONSTRUCTION DMINISTRATION

IMIT, MISSOURI

MiTek 16023 Swingley Ridge Ru Chesterfield, MO 63017


11111

JUAN

GARCIA

0

MIS



| LOADING | G (psf) | SPACING-        | 2-0-0  | CSI.  |      | DEFL.    | in    | (loc) | l/defl | L/d | PLATES        | GRIP     |
|---------|---------|-----------------|--------|-------|------|----------|-------|-------|--------|-----|---------------|----------|
| TCLL    | 25.0    | Plate Grip DOL  | 1.15   | тс    | 0.16 | Vert(LL) | 0.02  | 4-5   | >999   | 240 | MT20          | 197/144  |
| TCDL    | 10.0    | Lumber DOL      | 1.15   | BC    | 0.15 | Vert(CT) | -0.02 | 4-5   | >999   | 240 |               |          |
| BCLL    | 0.0 *   | Rep Stress Incr | YES    | WB    | 0.00 | Horz(CT) | -0.03 | 3     | n/a    | n/a |               |          |
| BCDL    | 10.0    | Code IRC2018/T  | PI2014 | Matri | x-R  |          |       |       |        |     | Weight: 13 lb | FT = 10% |

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-7-4 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. 5=0-3-8, 3=Mechanical, 4=Mechanical (size) Max Horz 5=132(LC 8) Max Uplift 3=-99(LC 8), 4=-8(LC 8)

Max Grav 5=235(LC 1), 3=119(LC 15), 4=64(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

ł

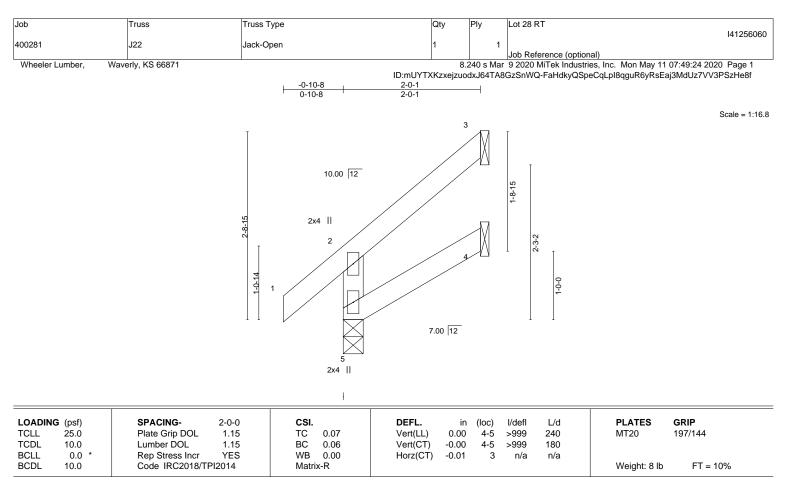
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

# TIS \* PROM F -2000162101 169 **NULLE** GI RELEASE FOR CONSTRUCTION MINISTRATION

MiTek 16023 Swingley Ridge Ro Chesterfield, MO 63017

MIT, MISSOURI

1111


JUAN

GARCIA

NUMBER

11 MIS

0



TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 2-0-1 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

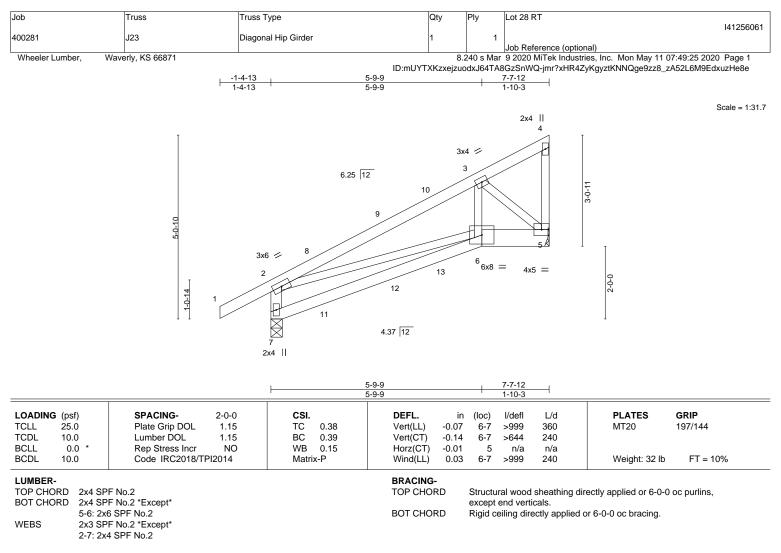
REACTIONS. 5=0-3-8, 3=Mechanical, 4=Mechanical (size) Max Horz 5=78(LC 8) Max Uplift 3=-58(LC 8), 4=-12(LC 8) Max Grav 5=173(LC 1), 3=58(LC 15), 4=33(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

# NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

# Will & PROIN GARCIA NUMBER F 2000162101 /ONAL JUAN GARCY ICENSE 160 VIIIIIIIIIIII JOIN May 11 2020 RCONSTRUCTION **RELEASE FO** MINISTRATION MIT, MISSOURI


MiTek 16023 Swingley Ridge Ro Chesterfield, MO 63017

11111

JUAN

0

MIS



REACTIONS. (size) 7=0-3-12, 5=Mechanical Max Horz 7=172(LC 5) Max Uplift 7=-130(LC 8), 5=-201(LC 5) Max Grav 7=464(LC 32), 5=382(LC 31)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-7=-404/191, 2-3=-576/247
- BOT CHORD 5-6=-282/442

WEBS 2-6=-188/478, 3-5=-578/369

## NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 5) Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=130, 5=201
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 84 lb down and 34 lb up at 1-4-2, 82 lb down and 71 lb up at 3-3-7, and 118 lb down and 107 lb up at 4-6-9, and 114 lb down and 123 lb up at 5-10-3 on top chord, and 9 lb down and 12 lb up at 1-4-2, 13 lb down and 22 lb up at 3-3-7, and 24 lb down at 4-6-9, and 30 lb down and 28 lb up at 5-9-14 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

# LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-70, 2-4=-70, 6-7=-20, 5-6=-20

## Continued on page 2

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

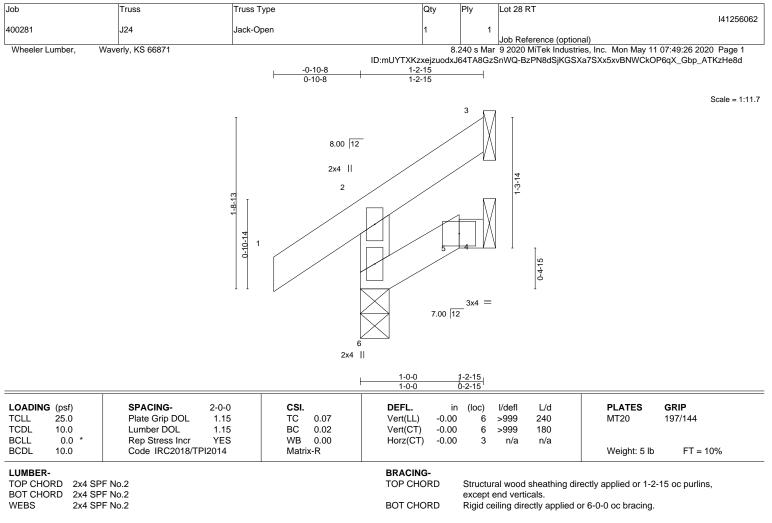
# 1XS \* PROTI JUAN GARCIA NUMBER F -2000162101 T GIT 16952 S 2 ONALES RELEASE FOR CONSTRUCTION

ALLIN FMIS 0

F



| Job                  | Truss         | Truss Type          | Qty | Ply       | Lot 28 RT                                                     |
|----------------------|---------------|---------------------|-----|-----------|---------------------------------------------------------------|
|                      |               |                     |     |           | 141256061                                                     |
| 400281               | J23           | Diagonal Hip Girder | 1   | 1         |                                                               |
|                      |               |                     |     |           | Job Reference (optional)                                      |
| Wheeler Lumber, Wave | rly, KS 66871 |                     | 8.  | 240 s Mar | 9 2020 MiTek Industries, Inc. Mon May 11 07:49:25 2020 Page 2 |


ID:mUYTXKzxejzuodxJ64TA8GzSnWQ-jmr?xHR4ZyKgyztKNNQge9zz8\_zA52L6M9EdxuzHe8e

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 6=-13(F) 3=-14(F) 10=-1(B) 11=4(B) 12=1(F) 13=-8(B)

# **RELEASE FOR CONSTRUCTION**





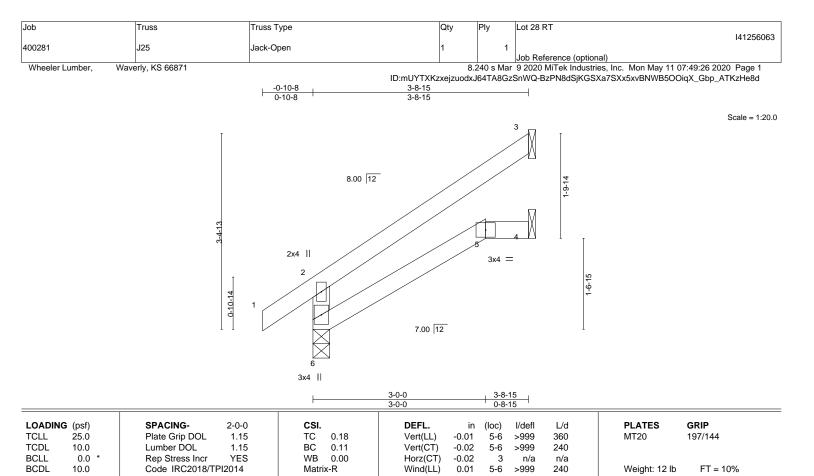
<sup>6=0-3-8, 3=</sup>Mechanical, 4=Mechanical REACTIONS. (size) Max Horz 6=45(LC 5) Max Uplift 6=-8(LC 8), 3=-26(LC 8), 4=-7(LC 8) Max Grav 6=154(LC 1), 3=21(LC 15), 4=18(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

# NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 3, 4.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

# 11X8 \* PROVIN GARCIA NUMBER F -2000162101 IG9 GN ALTERNA ST JOIN RELEASE FOR CONSTRUCTION DMINISTRATION


11111 MIS

JUAN

0

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

IMIT, MISSOURI MiTek 16023 Swingley Ridge Ro Chesterfield, MO 63017



TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2

WEBS 2x4 SPF No.2

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 3-8-15 oc purlins, except end verticals Rigid ceiling directly applied or 6-0-0 oc bracing.

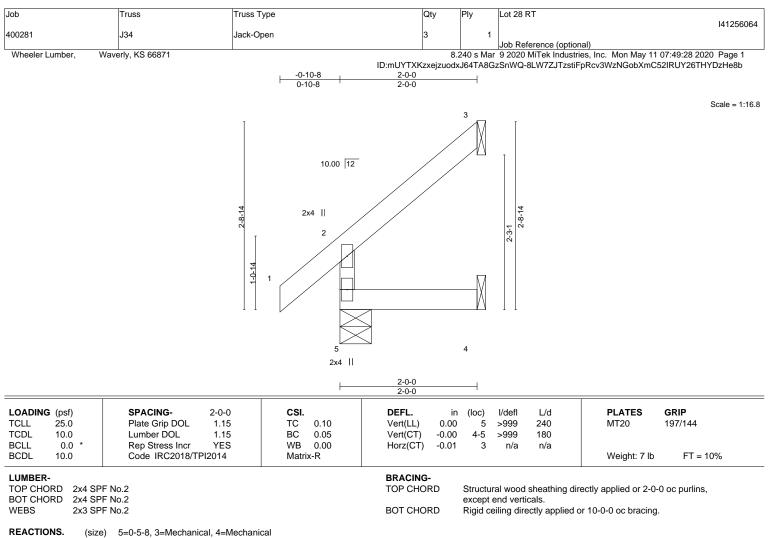
REACTIONS. 6=0-3-8, 3=Mechanical, 4=Mechanical (size) Max Horz 6=109(LC 8) Max Uplift 6=-3(LC 8), 3=-81(LC 8)

Max Grav 6=241(LC 1), 3=118(LC 15), 4=66(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections. 5) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify
- capacity of bearing surface. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 3.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



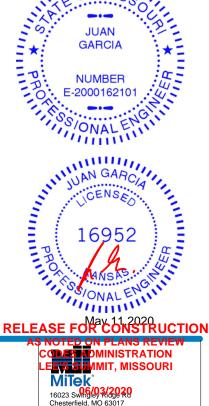

16023 Swingley Ridge Ro Chesterfield, MO 63017

11111

0

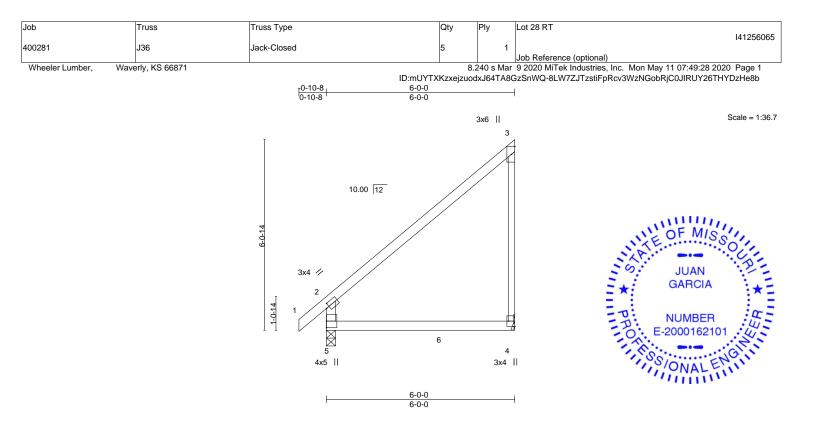
MIS




Max Horz 5=81(LC 8)

Max Uplift 3=-59(LC 8), 4=-9(LC 8) Max Grav 5=171(LC 1), 3=61(LC 15), 4=36(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



FMIS

0

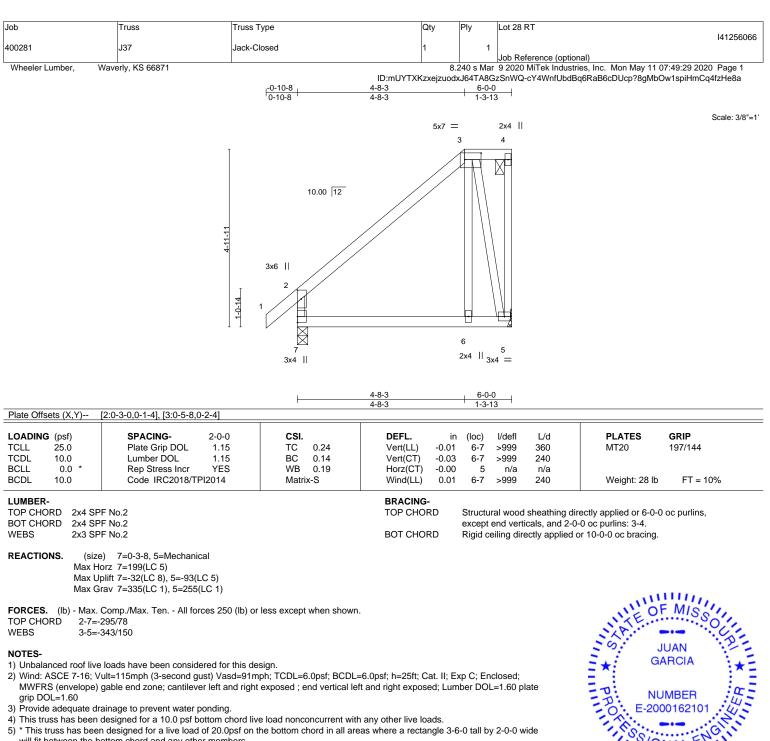


| Plate Offsets (X,Y)                                                                                                                  | [2:0-1-4,0-1-8], [4:Edge,0-2-8]                                                     | 1                                                        |                                                              |                                       |          |                                       |                                 | Т                                                |                                    |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------|---------------------------------------|----------|---------------------------------------|---------------------------------|--------------------------------------------------|------------------------------------|
| LOADING         (psf)           TCLL         25.0           TCDL         10.0           BCLL         0.0           BCDL         10.0 | SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014 | <b>CSI.</b><br>TC 0.49<br>BC 0.36<br>WB 0.00<br>Matrix-R | <b>DEFL.</b><br>Vert(LL)<br>Vert(CT)<br>Horz(CT)<br>Wind(LL) | in<br>-0.06<br>-0.12<br>-0.00<br>0.06 | 4-5<br>4 | l/defl<br>>999<br>>572<br>n/a<br>>999 | L/d<br>360<br>240<br>n/a<br>240 | PLATES<br>MT20<br>Weight: 22 lb                  | <b>GRIP</b><br>197/144<br>FT = 10% |
| LUMBER-<br>TOP CHORD 2x4 SPF No.2<br>BOT CHORD 2x4 SPF No.2<br>WEBS 2x4 SPF No.2 *Except*<br>3-4: 2x3 SPF No.2                       |                                                                                     |                                                          | BRACING-<br>TOP CHOF<br>BOT CHOF                             | D                                     | except   | end vert                              | cals.                           | rectly applied or 6-0-0<br>or 10-0-0 oc bracing. | oc purlins,                        |
|                                                                                                                                      | e) 5=0-3-8, 4=Mechanical<br>lorz 5=238(LC 5)<br>lplift 5=-17(LC 8), 4=-109(LC 5)    |                                                          |                                                              |                                       |          |                                       |                                 |                                                  |                                    |

Max Grav 5=381(LC 16), 4=370(LC 15)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-5=-294/72

# NOTES-


- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 4=109.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



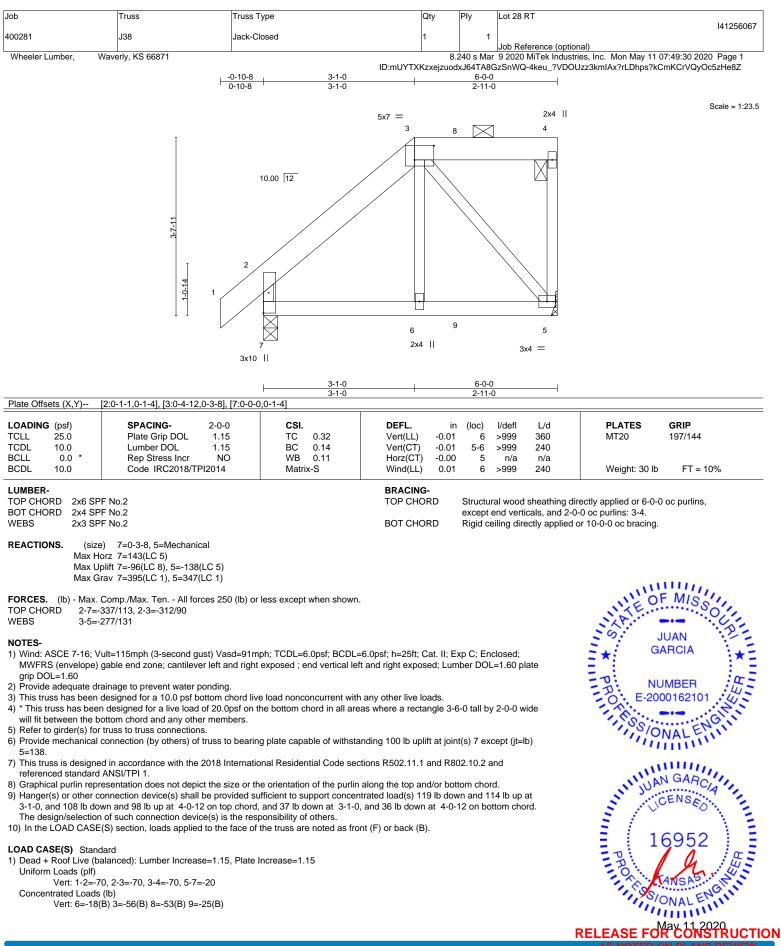


5) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

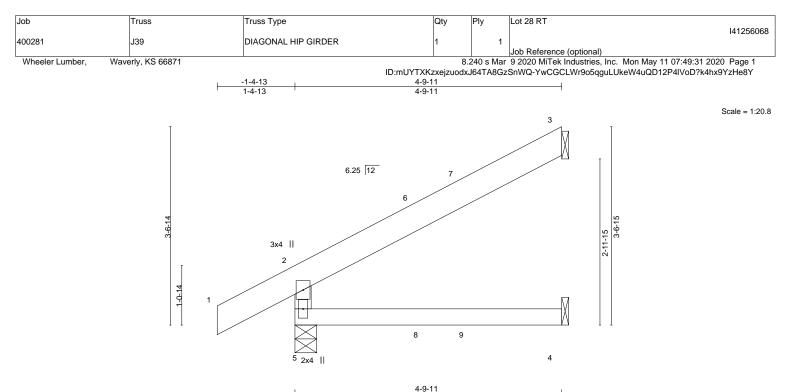
Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 5.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

# ONALE ONALE UCENSES 169F MULLIN III


# RELEASE FOR CONSTRUCTION O ON PLANS REVIE

MiTek 16023 Swingley Ridge Ro Chesterfield, MO 63017

MIT, MISSOURI



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. NOTED ON PLANS REVIEW CD PLANS REVIEW CD PLANS MINISTRATION EVALUATION MITCK 16023 SWING (9) 3(2020) Chesterfield, MO 63017



|                         | 4-9-11                                     |                     |                                  |     |              |            |               |          |  |  |
|-------------------------|--------------------------------------------|---------------------|----------------------------------|-----|--------------|------------|---------------|----------|--|--|
| LOADING (psf)           | SPACING- 2-0-0                             | CSI.                | DEFL. i                          | ( / | l/defl       | L/d        | PLATES        | GRIP     |  |  |
| TCLL 25.0<br>TCDL 10.0  | Plate Grip DOL 1.15<br>Lumber DOL 1.15     | TC 0.16<br>BC 0.18  | Vert(LL) -0.02<br>Vert(CT) -0.04 |     | >999<br>>999 | 360<br>240 | MT20          | 197/144  |  |  |
| BCLL 0.0 *<br>BCDL 10.0 | Rep Stress Incr NO<br>Code IRC2018/TPI2014 | WB 0.00<br>Matrix-R | Horz(CT) -0.0<br>Wind(LL) 0.02   |     | n/a<br>>999  | n/a<br>240 | Weight: 19 lb | FT = 10% |  |  |

TOP CHORD 2x6 SPF No 2 BOT CHORD 2x4 SPF No.2 WEBS

2x4 SPF No.2

REACTIONS. 5=0-4-11, 3=Mechanical, 4=Mechanical (size) Max Horz 5=115(LC 8) Max Uplift 5=-51(LC 8), 3=-98(LC 8)

Max Grav 5=333(LC 1), 3=150(LC 31), 4=80(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-5=-285/78

# NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 78 lb down and 50 lb up at 2-3-15, and 98 lb down and 78 lb up at 3-1-12 on top chord, and 12 lb down and 20 lb up at 2-3-15, and 12 lb down at 3-1-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B)

## LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-70, 2-3=-70, 4-5=-20

- Concentrated Loads (lb)
  - Vert: 8=1(F) 9=-2(B)

# BRACING-TOP CHORD

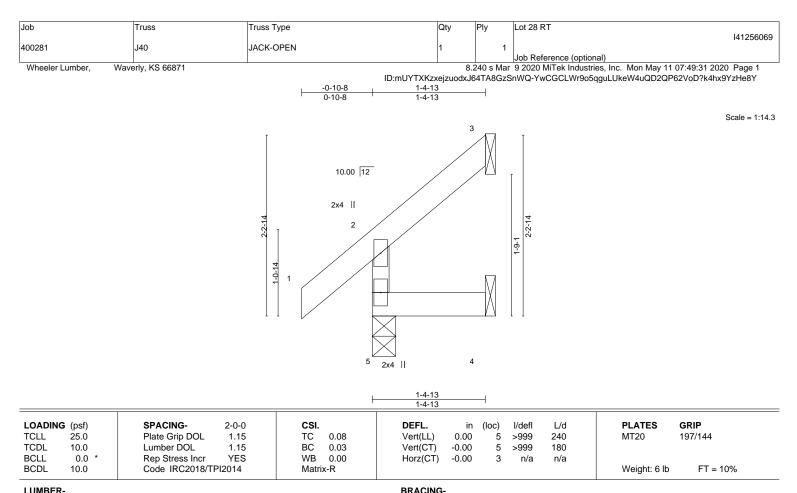
BOT CHORD

Structural wood sheathing directly applied or 4-9-11 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing



MIT, MISSOURI


**MiTek** 16023 Swingley Ridge Ru Chesterfield, MO 63017

111

JUAN

0

MIS



2x4 SPF No.2 TOP CHORD BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2

TOP CHORD

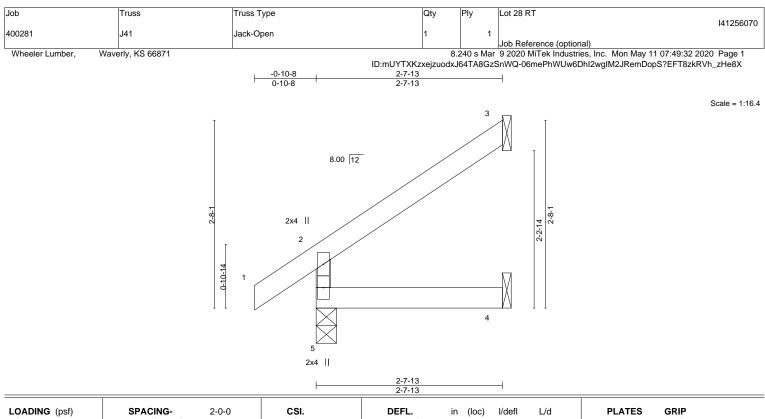
BOT CHORD

Structural wood sheathing directly applied or 1-4-13 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing

REACTIONS. 5=0-3-8, 3=Mechanical, 4=Mechanical (size) Max Horz 5=61(LC 8) Max Uplift 3=-41(LC 8), 4=-13(LC 8) Max Grav 5=152(LC 1), 3=34(LC 15), 4=24(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

## NOTES-


- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

# Will & PROIN JUAN GARCIA NUMBER F 2000162101 160 PROFILE VIIIIIIIIIIII 1GIR May 11,2020 **RELEASE FO** MINISTRATION MIT, MISSOURI

MiTek 16023 Swingley Ridge Ro Chesterfield, MO 63017

11 1111 MIS

0



| LOADING         (psf)           TCLL         25.0           TCDL         10.0           BCLL         0.0         *           BCDL         10.0 | SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014 | <b>CSI.</b><br>TC 0.10<br>BC 0.05<br>WB 0.00<br>Matrix-R | DEFL.         in           Vert(LL)         -0.00           Vert(CT)         -0.00           Horz(CT)         -0.01           Wind(LL)         0.00 | (loc)<br>4-5<br>4-5<br>3<br>4-5 | l/defl<br>>999<br>>999<br>n/a<br>>999 | L/d<br>360<br>240<br>n/a<br>240 | PLATES<br>MT20<br>Weight: 8 lb | <b>GRIP</b><br>197/144<br>FT = 10% |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------|---------------------------------|--------------------------------|------------------------------------|
| LUMBER-                                                                                                                                        |                                                                                     |                                                          | BRACING-                                                                                                                                            |                                 |                                       |                                 |                                |                                    |

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2

WEBS 2x3 SPF No.2

REACTIONS. 5=0-3-8, 3=Mechanical, 4=Mechanical (size) Max Horz 5=81(LC 8) Max Uplift 5=-6(LC 8), 3=-59(LC 8)

Max Grav 5=194(LC 1), 3=81(LC 15), 4=47(LC 3)

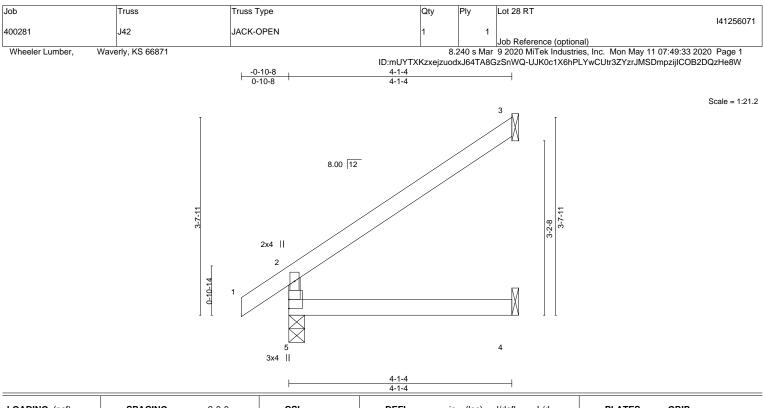
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

# Will & PROIN JUAN GARCIA NUMBER F -2000162101 160 111111 GI May 11 2020 R CONSTRUCTION **RELEASE FO** MINISTRATION MIT, MISSOURI

MiTek 16023 Swingley Ridge Ro Chesterfield, MO 63017


11 1111 MIS

0

Structural wood sheathing directly applied or 2-7-13 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.



| LOADING (psf) | SPACING- 2-0-0       | <b>CSI.</b> | DEFL.         in         (loc)         l/defl         L/d         PLATES         GRIP           Vert(LL)         -0.01         4-5         >999         360         MT20         197/144           Vert(CT)         -0.03         4-5         >999         240         40         40 |
|---------------|----------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TCLL 25.0     | Plate Grip DOL 1.15  | TC 0.23     |                                                                                                                                                                                                                                                                                      |
| TCDL 10.0     | Lumber DOL 1.15      | BC 0.14     |                                                                                                                                                                                                                                                                                      |
| BCLL 0.0 *    | Rep Stress Incr YES  | WB 0.00     | Horz(CT) -0.02 3 n/a n/a                                                                                                                                                                                                                                                             |
| BCDL 10.0     | Code IRC2018/TPI2014 | Matrix-R    | Wind(LL) 0.02 4-5 >999 240 Weight: 12 lb FT = 10%                                                                                                                                                                                                                                    |

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2

2x3 SPF No.2

WEBS

REACTIONS. 5=0-3-8, 3=Mechanical, 4=Mechanical (size) Max Horz 5=121(LC 8)

Max Uplift 5=-4(LC 8), 3=-90(LC 8) Max Grav 5=254(LC 1), 3=133(LC 15), 4=76(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

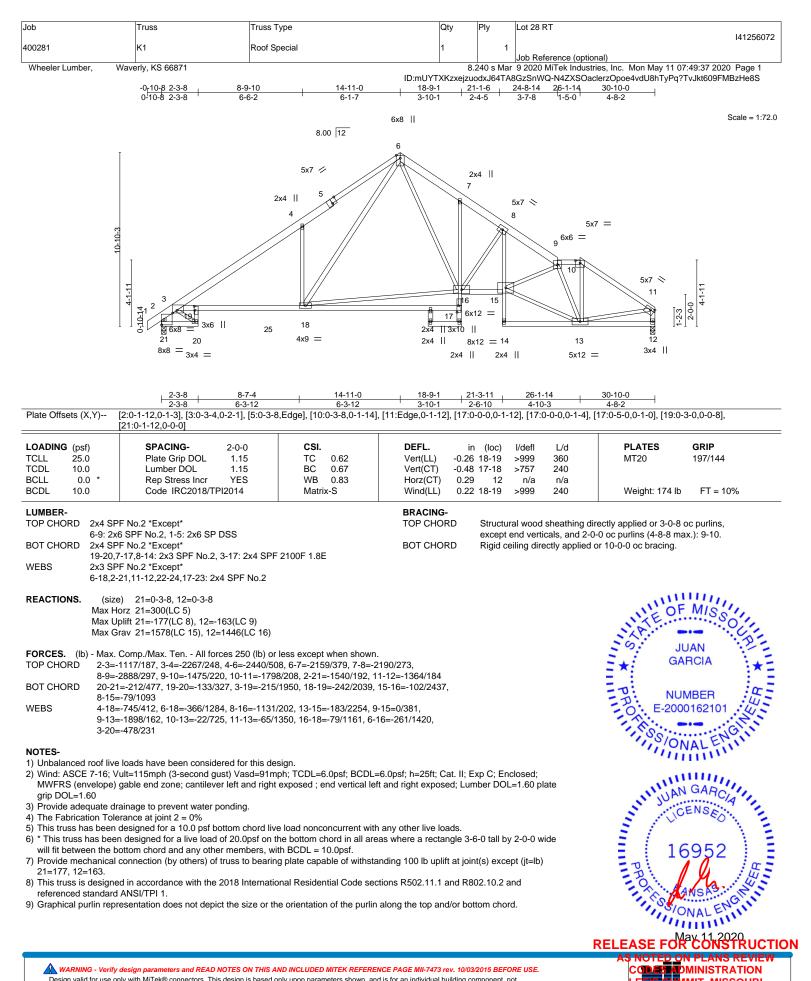
NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

# TIS \* PROM JUAN GARCIA NUMBER F -2000162101 /ONALN JUAN GARCY ICENSE 160 111111 JGIT RELEASE FOR CONSTRUCTION ON PLANS REVIE MIT, MISSOURI MiTek

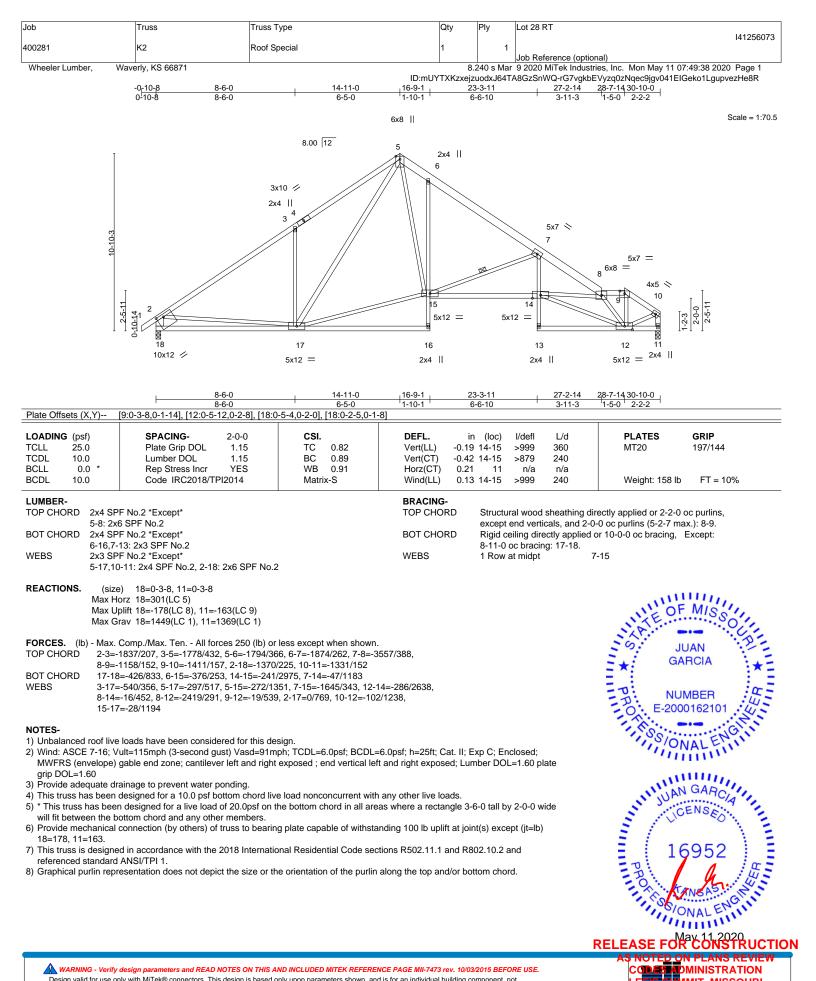
16023 Swingley Ridge Ro Chesterfield, MO 63017

11111


0

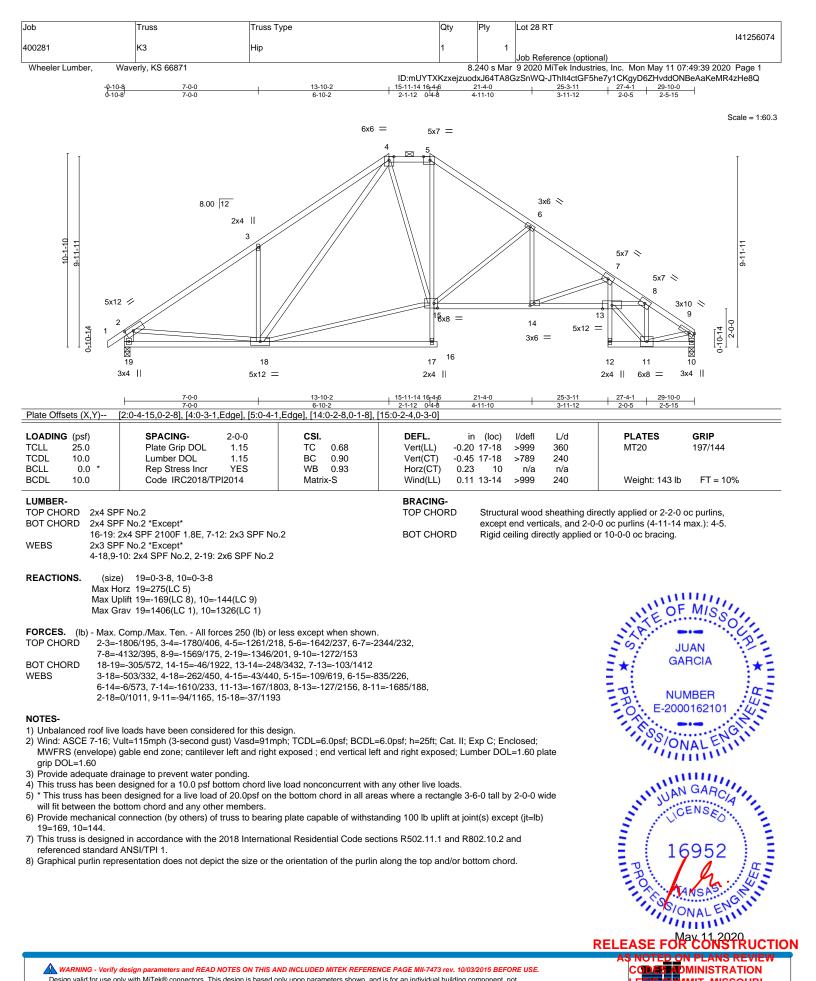
MIS

Structural wood sheathing directly applied or 4-1-4 oc purlins,


Rigid ceiling directly applied or 10-0-0 oc bracing.

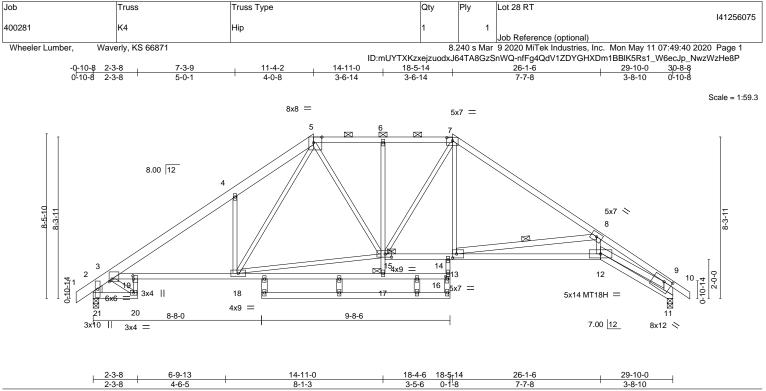
except end verticals.



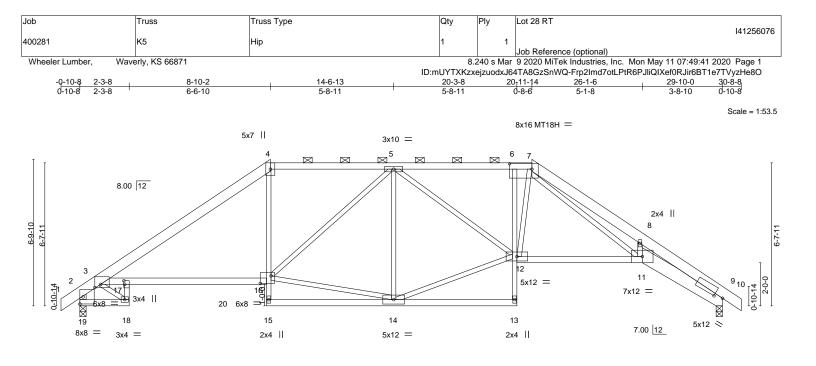

MIT, MISSOURI

Mitek\* 16023 Swingley Kage R Chesterfield, MO 63017



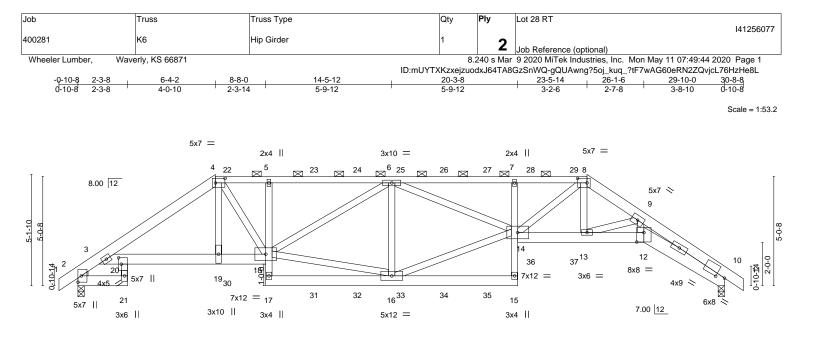

IMIT, MISSOURI

Mitek 16023 Swingley Koge R Chesterfield, MO 63017




MIT, MISSOURI

Mitek\* 16023 Swingley Kage R Chesterfield, MO 63017




| Plate Offsets (X,Y)                                                                                                                                                                                                                                                                                                                                                                                         | [3:0-1-12,0-1-10], [5:0-5-2,Edge], [7:0-3                                                                                                                                                                                                                                                                                                                                                            | 8,0-1-14], [11:0-3-3,0-0-3                                                                                                                                                                              | 3], [11:0-5-0,0-2-4], [13:                                                                                                                                     |                                                                                                            |                                                                    | -1-8,0-1-0], [19:0-2-                                               | 0,0-0-8]                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------|
| LOADING         (psf)           TCLL         25.0           TCDL         10.0           BCLL         0.0         *           BCDL         10.0                                                                                                                                                                                                                                                              | SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014                                                                                                                                                                                                                                                                                                                  | <b>CSI.</b><br>TC 0.73<br>BC 0.84<br>WB 0.95<br>Matrix-S                                                                                                                                                | Vert(LL) -0.2<br>Vert(CT) -0.4<br>Horz(CT) 0.4                                                                                                                 | in (loc) l/defl<br>3 12-13 >999<br>7 12-13 >747<br>1 11 n/a<br>4 12-13 >999                                | L/d<br>360<br>240<br>n/a<br>240                                    | <b>PLATES</b><br>MT20<br>MT18H<br>Weight: 169 lb                    | <b>GRIP</b><br>197/144<br>197/144<br>FT = 10%                         |
| 5-7: 2><br>BOT CHORD 2x4 SF<br>19-20,<br>WEBS 2x3 SF<br>8-13,9                                                                                                                                                                                                                                                                                                                                              | P DSS *Except*<br>44 SPF No.2, 7-10: 2x4 SPF 2100F 1.8E<br>PF No.2 *Except*<br>14-16: 2x3 SPF No.2, 12-15: 2x4 SPF 2<br>PF No.2 *Except*<br>-12,22-24,16-23,25-26,27-28: 2x4 SPF N<br>-11: 2x6 SPF No.2                                                                                                                                                                                              |                                                                                                                                                                                                         | BRACING-<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>JOINTS                                                                                                           | except end vertie                                                                                          | cals, and 2-0-0 o<br>ctly applied or 10<br>g: 17-18, 16-17<br>8-13 | ly applied or 3-1-0 c<br>c purlins (4-3-12 m<br>0-0-0 oc bracing. E | ax.): 5-7.                                                            |
| Max H<br>Max U                                                                                                                                                                                                                                                                                                                                                                                              | e) 21=0-3-8, 11=0-3-8<br>torz 21=241(LC 7)<br>Jplift 21=-153(LC 8), 11=-153(LC 9)<br>Grav 21=1399(LC 1), 11=1399(LC 1)                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                         |                                                                                                                                                                |                                                                                                            |                                                                    | NIXATE OF                                                           | MISSOL                                                                |
| TOP CHORD         2-3=<br>7-8=           BOT CHORD         20-2           12-11         12-11           WEBS         4-18           8-13         8-13                                                                                                                                                                                                                                                       | Comp./Max. Ten All forces 250 (lb) or<br>-972/150, 3-4=-2107/204, 4-5=-2166/392<br>-1997/134, 8-9=-4704/430, 2-21=-1383/1<br>1=-145/327, 3-19=-147/1662, 18-19=-16<br>3=-309/3724<br>=-579/307, 5-18=-273/737, 5-15=-78/508<br>=-2201/446, 8-12=-30/1497, 9-12=-366/3<br>=-319/156                                                                                                                   | 2, 5-6=-1606/170, 6-7=-16<br>69, 9-11=-1449/144<br>7/1727, 14-15=0/1456, 13<br>5, 6-15=-287/135, 7-15=-1                                                                                                | 306/170,<br>3-14=0/1540,<br>49/294,                                                                                                                            |                                                                                                            |                                                                    | ★ GAI                                                               | AN<br>RCIA<br>MBER<br>1162101                                         |
| <ol> <li>Wind: ASCE 7-16; MWFRS (envelope)<br/>grip DOL=1.60</li> <li>Provide adequate d</li> <li>All plates are MT20</li> <li>All plates are 2x4 M</li> <li>This truss has been</li> <li>* This truss has been will fit between the I</li> <li>Bearing at joint(s) 1<br/>capacity of bearing</li> <li>Provide mechanical<br/>21=153, 11=153.</li> <li>This truss is desig<br/>referenced standa</li> </ol> | connection (by others) of truss to bearin<br>ned in accordance with the 2018 Internat                                                                                                                                                                                                                                                                                                                | ph; TCDL=6.0psf; BCDL=<br>exposed ; end vertical lef<br>e load nonconcurrent with<br>he bottom chord in all are<br>ANSI/TPI 1 angle to grain<br>g plate capable of withsta<br>ional Residential Code se | ft and right exposed; Lu<br>a any other live loads.<br>as where a rectangle 3<br>formula. Building desi<br>anding 100 lb uplift at jo<br>ections R502.11.1 and | imber DOL=1.60 pl<br>-6-0 tall by 2-0-0 w<br>igner should verify<br>int(s) except (jt=lb)<br>R802.10.2 and | de                                                                 | LEASE FOR                                                           | GARCIA<br>952<br>NSA<br>NALENGIN                                      |
| Design valid for use of<br>a truss system. Befor<br>building design. Brac<br>is always required for                                                                                                                                                                                                                                                                                                         | A design parameters and READ NOTES ON THIS A<br>only with MITek® connectors. This design is based of<br>e use, the building designer must verify the applicat-<br>ing indicated is to prevent buckling of individual trus<br>stability and to prevent collapse with possible perso<br>lelivery, rection and bracing of trusses and truss sy<br>available from Truss Plate Institute, 218 N. Lee Stre | nly upon parameters shown, an<br>ility of design parameters and p<br>s web and/or chord members or<br>anal injury and property damage                                                                   | d is for an individual building<br>roperly incorporate this desig<br>nly. Additional temporary and<br>For general guidance regan                               | component, not<br>n into the overall<br>I permanent bracing<br>ding the                                    | onent                                                              | CODES AD                                                            | I PLANS REVIEW<br>MINISTRATION<br>MIT, MISSOURI<br>13/2020<br>D 63017 |



|                                         | 2-3-8                                       | 8-8-0                                                                                                                   | <u>14-6-13</u><br>5-10-13     | 20-3-8                                   | <u>20<sub>1</sub>11-14</u><br>0-8-6 | <u>26-1-6</u><br>5-1-8            | 29-10<br>3-8-                                                             |                    |
|-----------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------|-------------------------------------|-----------------------------------|---------------------------------------------------------------------------|--------------------|
| Plate Offse                             |                                             | <u>6-4-8</u><br>[2:0-1-12,0-1-3], [3:0-3-4,0-1-13], [6:0-1                                                              |                               |                                          |                                     |                                   |                                                                           | 10                 |
|                                         |                                             |                                                                                                                         |                               | · • •                                    |                                     |                                   | · •                                                                       |                    |
|                                         |                                             | SPACING- 2-0-0                                                                                                          | CSI.                          | DEFL. in (lo                             | <i>'</i>                            | L/d                               | PLATES                                                                    | GRIP               |
| TCLL<br>TCDL                            | 25.0<br>10.0                                | Plate Grip DOL 1.15<br>Lumber DOL 1.15                                                                                  | TC 0.52<br>BC 0.85            | Vert(LL) -0.32 11-<br>Vert(CT) -0.57 11- |                                     | 360<br>240                        | MT20<br>MT18H                                                             | 197/144<br>197/144 |
| BCLL                                    | 0.0 *                                       | Rep Stress Incr YES                                                                                                     | WB 0.87                       | Horz(CT) 0.51                            | 9 n/a                               | 240<br>n/a                        |                                                                           | 137/144            |
| BCDL                                    | 10.0                                        | Code IRC2018/TPI2014                                                                                                    | Matrix-S                      | Wind(LL) 0.20 16-                        |                                     | 240                               | Weight: 162 lb                                                            | FT = 10%           |
| LUMBER-<br>TOP CHOP<br>BOT CHOP<br>WEBS | 4-7: 2x4<br>RD 2x4 SP<br>17-18,4<br>9-11: 2 | DSS *Except*<br>4 SPF No.2<br>F No.2 *Except*<br>I-15,6-13: 2x3 SPF No.2, 3-16: 2x4 SPF<br>x8 SP DSS<br>F No.2 *Except* | 2100F 1.8E                    | exc<br>BOT CHORD Rig                     | ept end vertic                      | als, and 2-0-0<br>otly applied of | ectly applied or 3-2-11<br>0 oc purlins (3-5-10 m<br>r 10-0-0 oc bracing, | ax.): 4-7.         |
|                                         |                                             | x4 SPF No.2                                                                                                             |                               |                                          |                                     |                                   |                                                                           |                    |
| REACTION                                | Max H<br>Max U                              | e) 19=0-3-8, 9=0-3-8<br>brz 19=-183(LC 6)<br>plift 19=-130(LC 8), 9=-130(LC 9)<br>rav 19=1468(LC 2), 9=1434(LC 2)       |                               |                                          |                                     |                                   | ALL OF                                                                    | MISSOL             |
|                                         |                                             | Comp./Max. Ten All forces 250 (lb) or                                                                                   |                               |                                          |                                     |                                   |                                                                           | RCIA               |
| TOP CHOP                                |                                             | 1040/178, 3-4=-2102/168, 4-5=-1684/19<br>4685/363, 8-9=-5362/202, 2-19=-1424/1                                          |                               | 175/148,                                 |                                     |                                   | - *:                                                                      | *-                 |
| BOT CHOP                                | RD 18-19                                    | )=-219/386, 17-18=-130/266, 3-17=-176,<br>2=-80/1999, 9-11=-100/4628                                                    |                               | -16=-22/672,                             |                                     |                                   | D NUI                                                                     |                    |
| WEBS                                    | 14-16                                       | =-166/1720, 5-14=-755/172, 12-14=-16                                                                                    |                               | =-192/551,                               |                                     |                                   |                                                                           | 0162101            |
|                                         | 7-11=                                       | -276/2521, 8-11=-39/839, 3-18=-399/23                                                                                   | 8                             |                                          |                                     |                                   | 1.0                                                                       | -                  |
| NOTES-                                  |                                             |                                                                                                                         |                               |                                          |                                     |                                   | IS/ON                                                                     | IN ENIN            |
|                                         |                                             | loads have been considered for this de                                                                                  |                               |                                          |                                     |                                   | 111                                                                       |                    |
|                                         |                                             | ult=115mph (3-second gust) Vasd=91m                                                                                     |                               |                                          |                                     |                                   |                                                                           |                    |
| grip DOI                                |                                             | gable end zone; cantilever left and right                                                                               | exposed; end vertical left    | and right exposed; Lumber                | DOL=1.60 pia                        | te                                |                                                                           |                    |
|                                         |                                             | ainage to prevent water ponding.                                                                                        |                               |                                          |                                     |                                   | MAN                                                                       | GARC               |
|                                         |                                             | plates unless otherwise indicated.                                                                                      |                               |                                          |                                     |                                   | N                                                                         | ENSA               |
|                                         |                                             | erance at joint $2 = 2\%$                                                                                               | - 1                           |                                          |                                     |                                   | 2 LIO                                                                     | 0                  |
|                                         |                                             | designed for a 10.0 psf bottom chord liv<br>n designed for a live load of 20.0psf on t                                  |                               |                                          | all by 2-0-0 wir                    |                                   | 2 /                                                                       | 1 2                |
|                                         |                                             | ottom chord and any other members, wi                                                                                   |                               |                                          |                                     |                                   | = 16                                                                      | 5952 E             |
|                                         |                                             | considers parallel to grain value using A                                                                               | NSI/TPI 1 angle to grain for  | rmula. Building designer sh              | ould verify                         |                                   | -0                                                                        |                    |
|                                         | of bearing s                                |                                                                                                                         | a plata appable of withoto    | dias 100 lb unlift at isist(s)           | weent (it lln)                      |                                   | = R !                                                                     | 1. 145             |
| 9) Provide<br>19=130,                   |                                             | connection (by others) of truss to bearin                                                                               | y plate capable of withstal   | iung 100 ib upint at joint(s) e          | evcehr (Ir=ip)                      |                                   |                                                                           | WSAS               |
| 10) This tru                            | uss is design                               | ed in accordance with the 2018 Internat<br>d ANSI/TPI 1.                                                                | ional Residential Code se     | ctions R502.11.1 and R802.7              | 10.2 and                            |                                   | 1,5810                                                                    | NALENGII           |
|                                         |                                             | presentation does not depict the size or                                                                                | the orientation of the purlir | along the top and/or bottom              | n chord.                            |                                   |                                                                           | 11111              |
|                                         |                                             |                                                                                                                         |                               |                                          |                                     | R                                 | RELEASE FOR                                                               | CONSTRUCTION       |
|                                         |                                             |                                                                                                                         |                               |                                          |                                     |                                   | AŞ NOTE <u>D O</u> I                                                      | N PLANS REVIEW     |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. NOTED ON PLANS REVIEW ODE TOMINISTRATION EVALUATION MITOK 16023 SWIGO XI2020 Chesterfield, MO 63017



| <u>2-3-8</u><br>2-3-8                                                                                                                           | <u> </u>                                                                                                                                                                                    | 8-8-0 14-5-12<br>2-3-14 5-9-12                                                                                                                                                                                                                                                                                                      | 20-3-8                                                                                                                                                                                                                                       | 23-5-14                                                                               | <u>26-1-6</u> <u>29-10</u><br>2-7-8 <u>3-8-</u> 2 |                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------|
|                                                                                                                                                 |                                                                                                                                                                                             | 0-0-15], [4:0-5-4,0-2-8], [8:0-5-4,0-2-                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                              |                                                                                       | 210 00                                            |                                    |
| LOADING         (psf)           TCLL         25.0           TCDL         10.0           BCLL         0.0           BCDL         10.0            | SPACING-<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code IRC2018/TPI                                                                                                             | 2-0-0         CSI.           1.15         TC         0.72           1.15         BC         0.46           NO         WB         0.45           2014         Matrix-S                                                                                                                                                               | DEFL.         in         (loc)           Vert(LL)         -0.20         15           Vert(CT)         -0.36         15           Horz(CT)         0.29         10           Wind(LL)         0.19         15                                 | >974 240<br>n/a n/a                                                                   | PLATES<br>MT20<br>Weight: 381 lb                  | <b>GRIP</b><br>197/144<br>FT = 10% |
| 4-8: 2x<br>BOT CHORD 2x6 SF<br>20-21,                                                                                                           | PF No.2 *Except*<br>44 SPF No.2<br>2 2400F 2.0E *Except*<br>5-17,7-15: 2x4 SPF No.2, 1<br>PF No.2                                                                                           | 0-12: 2x8 SP DSS                                                                                                                                                                                                                                                                                                                    | excep<br>2-0-0                                                                                                                                                                                                                               | ural wood sheathing dir<br>t<br>oc purlins (4-11-12 max<br>ceiling directly applied o | x.): 4-8.                                         | oc purlins,                        |
| Max H<br>Max U                                                                                                                                  | e) 2=0-3-8, 10=0-3-8<br>lorz 2=-126(LC 6)<br>lplift 2=-579(LC 8), 10=-569<br>Grav 2=2202(LC 1), 10=221                                                                                      |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                              |                                                                                       | NIXATE OF                                         | MISSOU                             |
| TOP CHORD 2-3=-<br>7-8=-<br>BOT CHORD 2-21=<br>5-18=                                                                                            | -2298/613, 3-4=-3983/1141<br>-5520/1484, 8-9=-5225/141<br>=-212/647, 20-21=-98/351,                                                                                                         | es 250 (lb) or less except when sho<br>, 4-5=-3781/1103, 5-6=-3787/1109<br>3, 9-10=-8565/2119<br>3-20=-787/2618, 19-20=-993/3265<br>0, 7-14=-440/247, 13-14=-1183/452                                                                                                                                                               | 6-7=-5531/1494,<br>18-19=-1008/3309,                                                                                                                                                                                                         |                                                                                       | T GAI                                             | AN<br>RCIA                         |
|                                                                                                                                                 |                                                                                                                                                                                             | 5, 16-18=-859/3102, 6-16=-1589/64<br>55, 8-13=-449/1587, 9-13=-1722/47(                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                              |                                                                                       | TSS ICA                                           | ENGINI                             |
| Top chords connect<br>Bottom chords conn<br>Webs connected as                                                                                   | ected as follows: 2x6 - 2 ro<br>follows: 2x4 - 1 row at 0-9-                                                                                                                                | staggered at 0-9-0 oc, 2x4 - 1 row<br>ws staggered at 0-9-0 oc, 2x4 - 1 ro<br>0 oc.                                                                                                                                                                                                                                                 | ow at 0-9-0 oc, 2x8 - 2 rows stagger                                                                                                                                                                                                         | red at 0-9-0 oc.                                                                      | IN UAN                                            | GARCIA                             |
| <ul> <li>ply connections have</li> <li>3) Unbalanced roof live</li> <li>4) Wind: ASCE 7-16; WMWFRS (envelope)</li> <li>grip DOL=1.60</li> </ul> | e been provided to distribut<br>e loads have been consider<br>/ult=115mph (3-second gus<br>gable end zone; cantilever                                                                       | st) Vasd=91mph; TCDL=6.0psf; BC<br>• left and right exposed ; end vertica                                                                                                                                                                                                                                                           | less otherwise indicated.<br>DL=6.0psf; h=25ft; Cat. II; Exp C; E                                                                                                                                                                            | ) section. Ply to<br>inclosed;<br>DL=1.60 plate                                       | PRO 16                                            | 952 T                              |
| <ul> <li>6) This truss has been</li> <li>7) * This truss has bee<br/>will fit between the b</li> </ul>                                          | n designed for a live load o<br>pottom chord and any other<br>0 considers parallel to grain                                                                                                 | ttom chord live load nonconcurrent<br>of 20.0psf on the bottom chord in all                                                                                                                                                                                                                                                         | areas where a rectangle 3-6-0 tall t                                                                                                                                                                                                         | by 2-0-0 wide                                                                         |                                                   | NSA3 (NUI)                         |
|                                                                                                                                                 |                                                                                                                                                                                             | russ to bearing plate capable of with                                                                                                                                                                                                                                                                                               | nstanding 100 lb uplift at joint(s) exc                                                                                                                                                                                                      | cept (jt=lb)                                                                          |                                                   | CONSTRUCTION                       |
| Design valid for use o<br>a truss system. Before<br>building design. Brac<br>is always required for<br>fabrication, storage, d                  | Inly with MiTek® connectors. This of<br>e use, the building designer must wing indicated is to prevent buckling<br>stability and to prevent collapse wielivery, erection and bracing of tru | OTES ON THIS AND INCLUDED MITEK REF.<br>design is based only upon parameters showr<br>verify the applicability of design parameters a<br>of individual truss web and/or chord membe<br>thit possible personal injury and property darr<br>sses and truss systems, see <b>ANSI</b><br>e, 218 N. Lee Street, Suite 312, Alexandria, V | and is for an individual building component,<br>and properly incorporate this design into the or<br>rs only. Additional temporary and permanen<br>age. For general guidance regarding the<br><b>P11 Quality Criteria, DSB-89 and BCSI Bu</b> | , not<br>verall<br>t bracing                                                          | CODES AD                                          | MINISTRATION<br>MIT, MISSOURI      |

| Job    |                 | Truss          | Truss Type | Qty | Ply       | Lot 28 RT                                                     |
|--------|-----------------|----------------|------------|-----|-----------|---------------------------------------------------------------|
|        |                 |                |            |     |           | 141256077                                                     |
| 400281 |                 | К6             | Hip Girder | 1   | 2         |                                                               |
|        |                 |                |            |     | -         | Job Reference (optional)                                      |
| Wheele | er Lumber, Wave | erly, KS 66871 |            | 8.  | 240 s Mar | 9 2020 MiTek Industries, Inc. Mon May 11 07:49:44 2020 Page 2 |

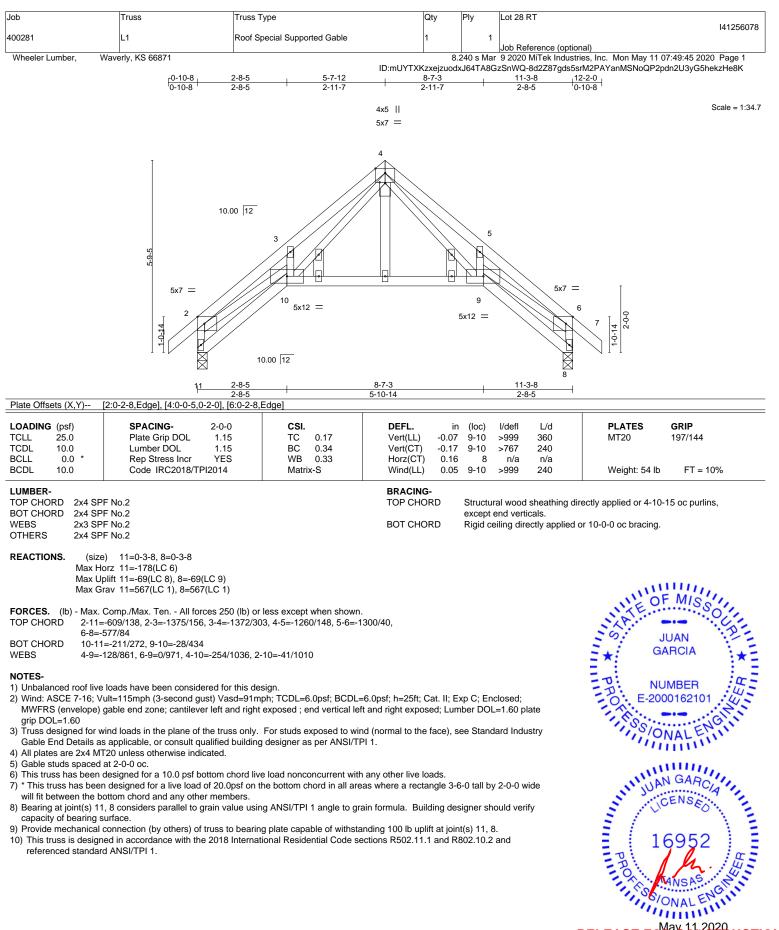
8.240 s Mar 9 2020 MiTek Industries, Inc. Mon May 11 07:49:44 2020 Page 2 ID:mUYTXKzxejzuodxJ64TA8GzSnWQ-gQUAwng?5oj\_kuq\_?tF7wAG60eRN2ZQvjcL76HzHe8L

### NOTES-

- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 114 lb down and 71 lb up at 6-11-0, 123 lb down and 90 lb up at 8-11-0, 123 lb down and 90 lb up at 10-11-0, 123 lb down and 90 lb up at 10-11-0, 123 lb down and 90 lb up at 10-11-0, 123 lb down and 90 lb up at 12-11-0, 123 lb down and 90 lb up at 18-11-0, and 125 lb down and 91 lb up at 20-11-0, and 121 lb down and 91 lb up at 22-11-0 on top chord, and 320 lb down and 234 lb up at 6-4-2, 51 lb down and 29 lb up at 6-11-0, 49 lb down at 8-9-12, 49 lb down at 10-11-0, 49 lb down at 12-11-0, 49 lb down at 10-11-0, 49 lb down at 16-11-0, 49 lb down at 16-11-0, 49 lb down at 6-11-0, 49 lb down at 22-11-0, and 318 lb down and 233 lb up at 23-5-14 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

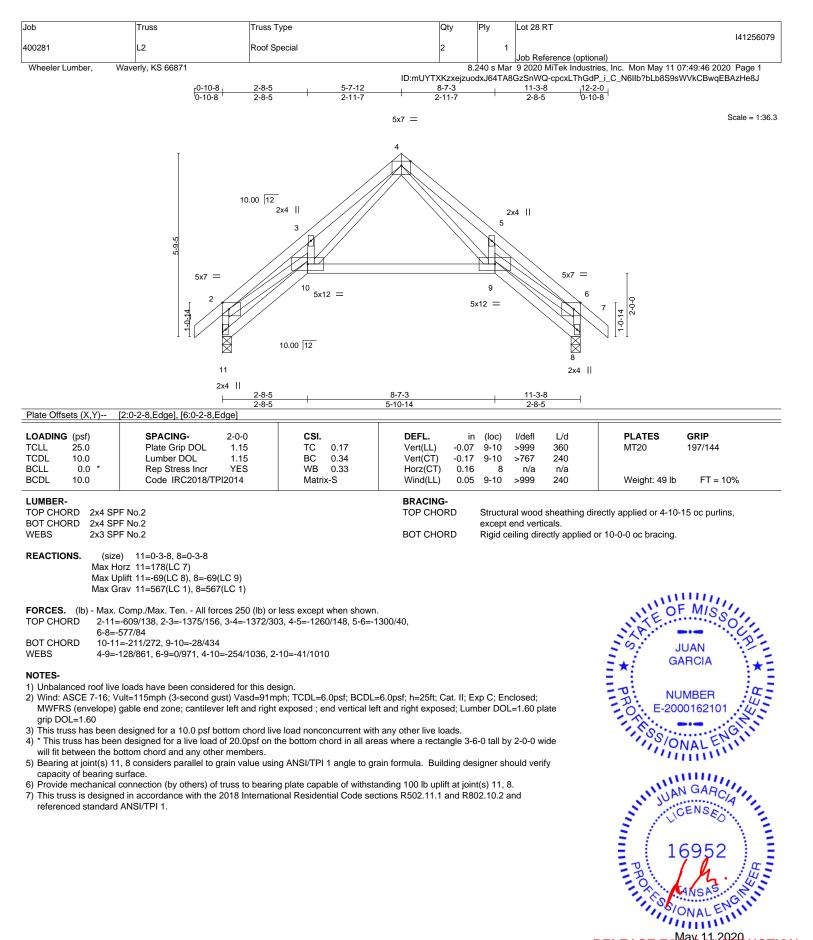
### LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf)

Vert: 1-4=-70, 4-8=-70, 8-11=-70, 2-21=-20, 18-20=-20, 15-17=-20, 12-14=-20, 10-12=-20 Concentrated Loads (lb)

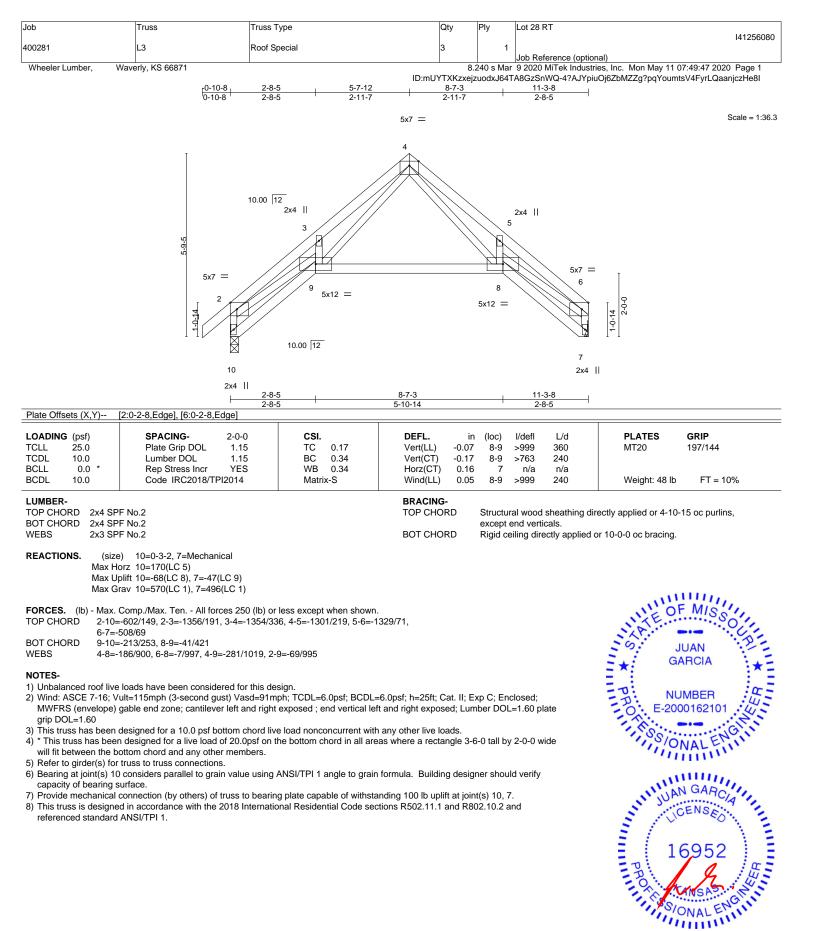
Vert: 18=-38(B) 5=-75(B) 19=-314(B) 13=-315(B) 22=-53(B) 23=-75(B) 24=-75(B) 25=-75(B) 26=-75(B) 27=-75(B) 28=-76(B) 29=-76(B) 30=-36(B) 31=-38(B) 32=-38(B) 33=-38(B) 33=-38(B) 35=-38(B) 35=-38(B)


### **RELEASE FOR CONSTRUCTION**



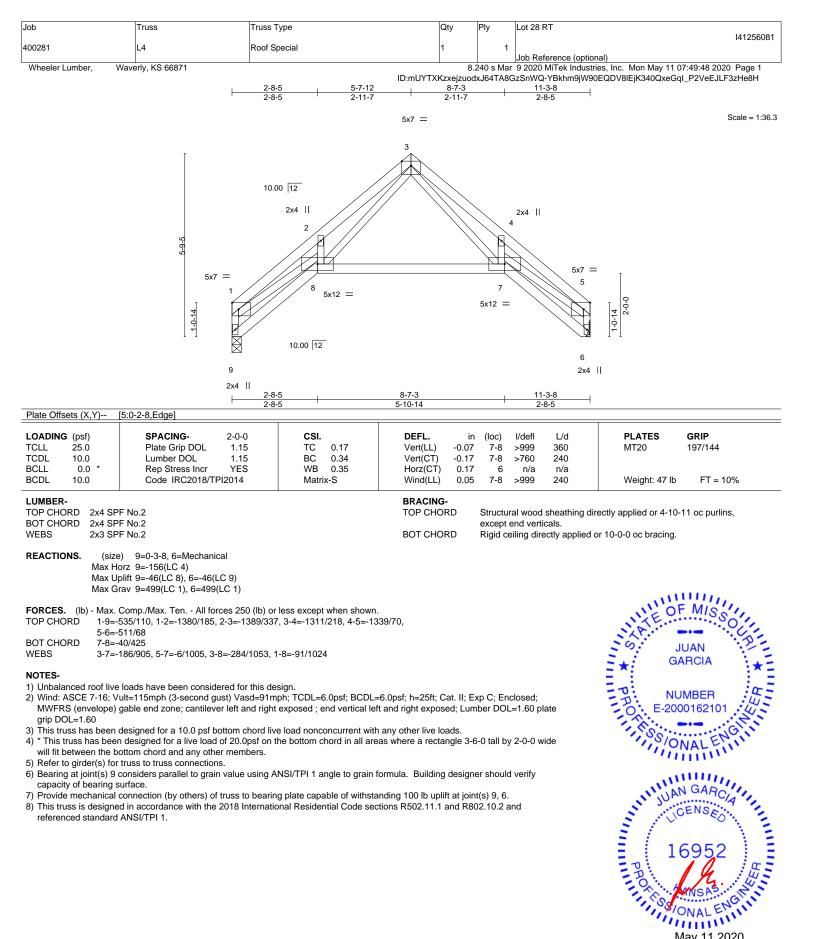


## RELEASE FOR CONSTRUCTION


AS NOTED ON PLANS REVIEW CODER ADMINISTRATION LECT SUMMIT, MISSOURI MITCK 16023 SWRG19 XG929 Chesterfield, MO 63017



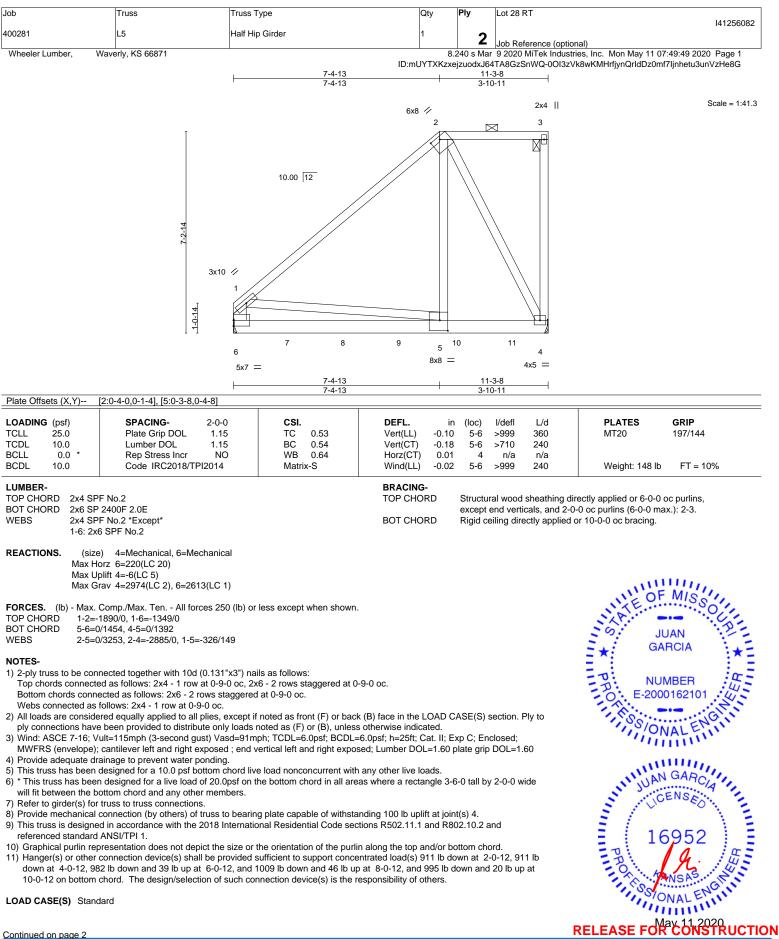
# RELEASE FOR CONSTRUCTION


Mitek 16023 Swingley Koge R Chesterfield, MO 63017

IMIT, MISSOURI



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oucling of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. RELEASE FOR CONSTRUCTION






WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

# RELEASE FOR CONSTRUCTION

S NOTED ON PLANS REVIEW CODESIMOMINISTRATION LEEVISIMIMIT, MISSOURI MITEK\* 16023 SWIGGE VICER Chesterfield, MO 63017



🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid for dise only with with every connectors. This design is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

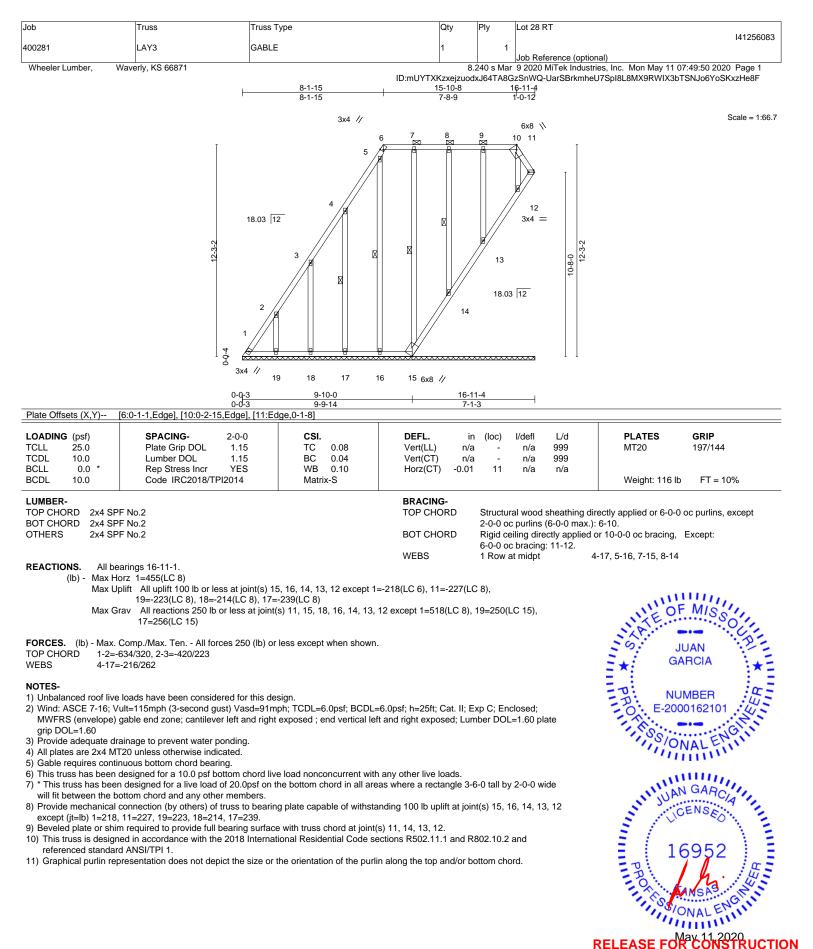
D ON PLANS REVIE MIT, MISSOURI MiTek 16023 Swingley Ridge Ru Chesterfield, MO 63017

| Job                  | Truss          | Truss Type      | Qty | Ply       | Lot 28 RT                                                     |
|----------------------|----------------|-----------------|-----|-----------|---------------------------------------------------------------|
|                      |                |                 |     |           | 141256082                                                     |
| 400281               | L5             | Half Hip Girder | 1   | 2         |                                                               |
|                      |                |                 |     | -         | Job Reference (optional)                                      |
| Wheeler Lumber, Wave | erly, KS 66871 |                 | 8.  | 240 s Mar | 9 2020 MiTek Industries, Inc. Mon May 11 07:49:49 2020 Page 2 |

ID:mUYTXKzxejzuodxJ64TA8GzSnWQ-0OI3zVk8wKMHrfjynQrldDz0mf7ljnhetu3unVzHe8G

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf) Vert: 1-2=-70, 2-3=-70, 4-6=-20

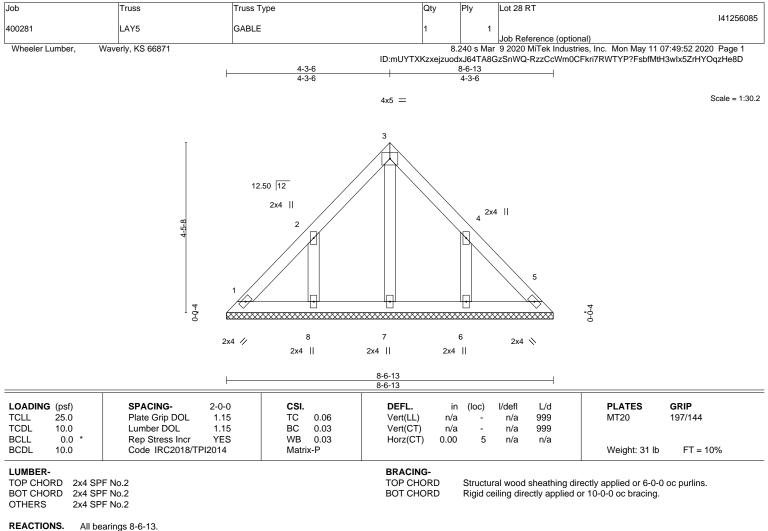
Concentrated Loads (lb)

Vert: 7=-911(B) 8=-911(B) 9=-911(B) 10=-911(B) 11=-911(B)


### **RELEASE FOR CONSTRUCTION**






WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent onlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. AS NOTED ON PLANS REVIEW CODES ADMINISTRATION LET SUMMIT, MISSOURI MITCH

16023 Swingley Ridge Ru Chesterfield, MO 63017



AS NOTED ON PLANS REVIEW 10/03/2015 BEFORE USE. CODES ADMINISTRATION ding component, not LETTES IN/MIT, MISSOURI

> Mitek\* 16023 Swingley Kage R Chesterfield, MO 63017



(lb) - Max Horz 1=108(LC 5)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-151(LC 8), 6=-151(LC 9) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7, 8, 6

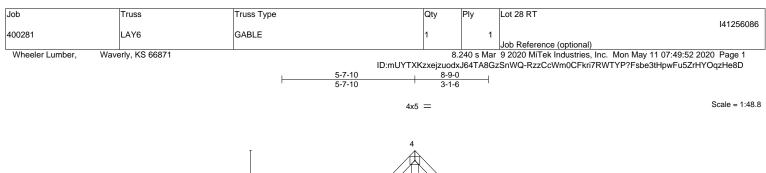
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

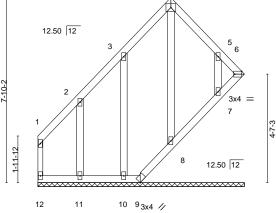
### NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=151, 6=151.


7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

### AINSAS VILLE V

16023 Swingley Ridge Ro Chesterfield, MO 63017

11111







| LOADING (psf)<br>TCLL 25.0<br>TCDL 10.0<br>BCLL 0.0 * | SPACING- 2-0-0<br>Plate Grip DOL 1.15<br>Lumber DOL 1.15<br>Rep Stress Incr YES | CSI.<br>TC 0.08<br>BC 0.04<br>WB 0.23 | <b>DEFL.</b><br>Vert(LL) n/<br>Vert(CT) n/<br>Horz(CT) -0.0 | ′a - n/a                          | L/d<br>999<br>999<br>n/a | PLATES<br>MT20          | <b>GRIP</b><br>197/144 |
|-------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------|-----------------------------------|--------------------------|-------------------------|------------------------|
| SCDL 10.0                                             | Code IRC2018/TPI2014                                                            | Matrix-P                              |                                                             |                                   |                          | Weight: 46 lb           | FT = 10%               |
| UMBER-<br>OP CHORD 2x4 SP<br>SOT CHORD 2x4 SP         |                                                                                 |                                       | BRACING-<br>TOP CHORD                                       | Structural woo<br>except end ve   | 0                        | rectly applied or 6-0-0 | oc purlins,            |
| WEBS 2x3 SP<br>OTHERS 2x4 SP                          | F No.2<br>F No.2                                                                |                                       | BOT CHORD                                                   | Rigid ceiling d<br>10-0-0 oc brad |                          | or 6-0-0 oc bracing,    | Except:                |

(lb) - Max Horz 12=180(LC 5)

Plate Offsets (X Y)-- [6:Edge 0-1-8]

Max Uplift All uplift 100 b or less at joint(s) 12 except 6=-338(LC 5), 9=-149(LC 6), 8=-145(LC 6), 10=-133(LC 8), 11=-118(LC 8), 7=-120(LC 9) Max Grav All reactions 250 b or less at joint(s) 12, 9, 10, 11, 7 except 6=309(LC 6), 8=384(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

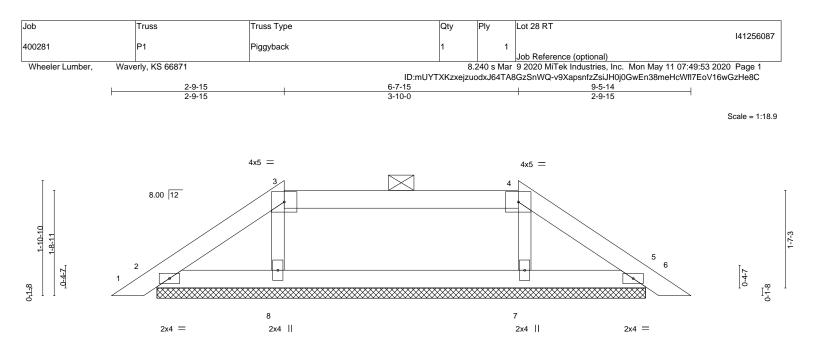
TOP CHORD 3-4=-158/275, 4-5=-191/296 WEBS 4-8=-369/190

### NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are 2x4 MT20 unless otherwise indicated.

4) Gable requires continuous bottom chord bearing.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12 except (jt=lb) 6=338, 9=149, 8=145, 10=133, 11=118, 7=120.
- 8) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 6, 8, 7.


9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



16023 Swingley Ridge Ru Chesterfield, MO 63017

FMIS

0



| ——————————————————————————————————————                             |                                                                                     |                                                   | 9-5-14<br>9-5-14      |                            |                 |                             |                                |                                 |                                    |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------|----------------------------|-----------------|-----------------------------|--------------------------------|---------------------------------|------------------------------------|
| LOADING (psf)<br>TCLL 25.0<br>TCDL 10.0<br>BCLL 0.0 *<br>BCDL 10.0 | SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014 | CSI.<br>TC 0.28<br>BC 0.08<br>WB 0.04<br>Matrix-P | Vert(CT)              | in<br>0.00<br>0.00<br>0.00 | (loc)<br>6<br>5 | l/defl<br>n/r<br>n/r<br>n/a | L/d<br>120<br>120<br>n/a       | PLATES<br>MT20<br>Weight: 23 lb | <b>GRIP</b><br>197/144<br>FT = 10% |
| LUMBER-<br>TOP CHORD 2x4 SPI<br>BOT CHORD 2x4 SPI                  |                                                                                     |                                                   | BRACING-<br>TOP CHORD |                            |                 |                             | sheathing dir<br>(6-0-0 max.): | rectly applied or 6-0-0         | oc purlins, except                 |

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD 2x4 SPF No.2 OTHERS 2x3 SPF No.2

REACTIONS. All bearings 8-0-0. Max Horz 2=43(LC 7) (lb) -

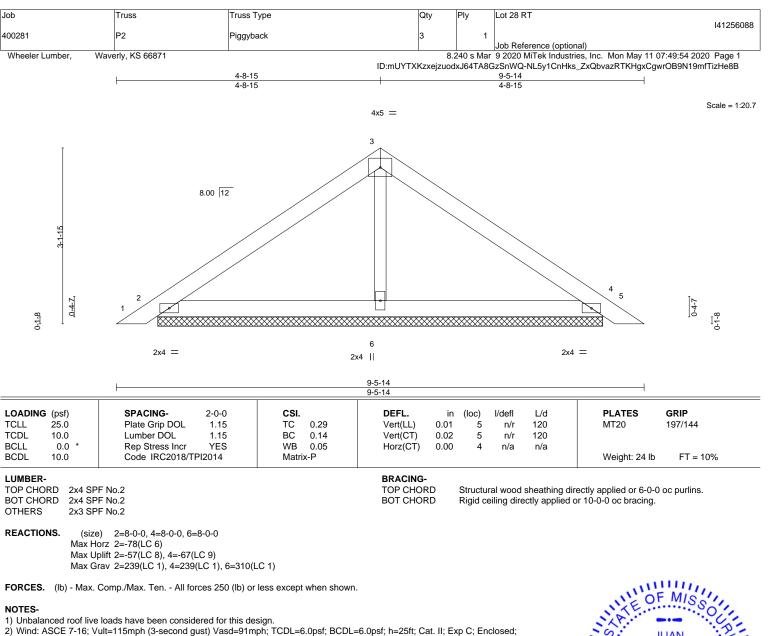
Max Uplift All uplift 100 lb or less at joint(s) 2, 5, 7, 8

Max Grav All reactions 250 lb or less at joint(s) 2, 5 except 7=265(LC 22), 8=265(LC 21)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

### NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 5, 7, 8.

- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



11111

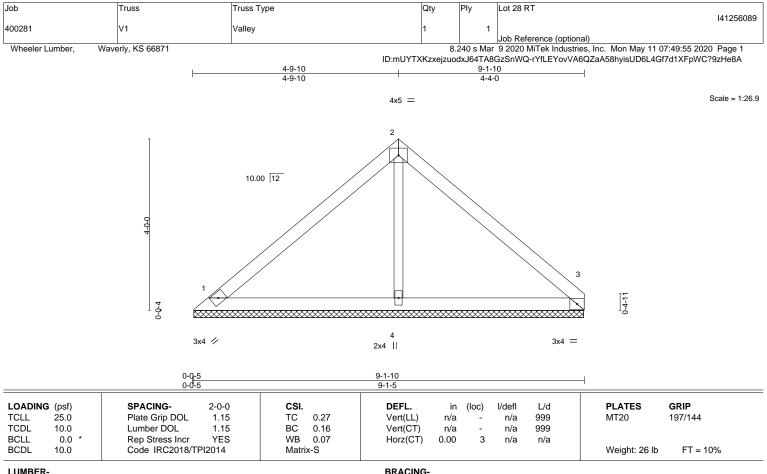


 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0pst; BCDL=6.0pst; h=25tt; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and

referenced standard ANSI/TPI 1. 8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building

o) See Standard industry Piggyback muss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

### JUAN GARCIA NUMBER E-2000162101 SS/ONAL ENGINE I 6952 I 6952 SV/ONAL ENGINE I 6952 SV/ONAL ENGINE SV/ONAL ENGIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. AS NOTED ON PLANS REVIEW CODER ADMINISTRATION LEVELSIMMIT, MISSOURI MITCK 16023 SWR949 X12020 Chesterfield, MO 63017



BOT CHORD

TOP CHORD 2x4 SPF No.2 2x4 SPF No.2 BOT CHORD OTHERS 2x3 SPF No.2

REACTIONS. 1=9-1-2, 3=9-1-2, 4=9-1-2 (size) Max Horz 1=96(LC 5)

Max Uplift 1=-37(LC 8), 3=-48(LC 9), 4=-8(LC 8) Max Grav 1=221(LC 1), 3=218(LC 1), 4=347(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

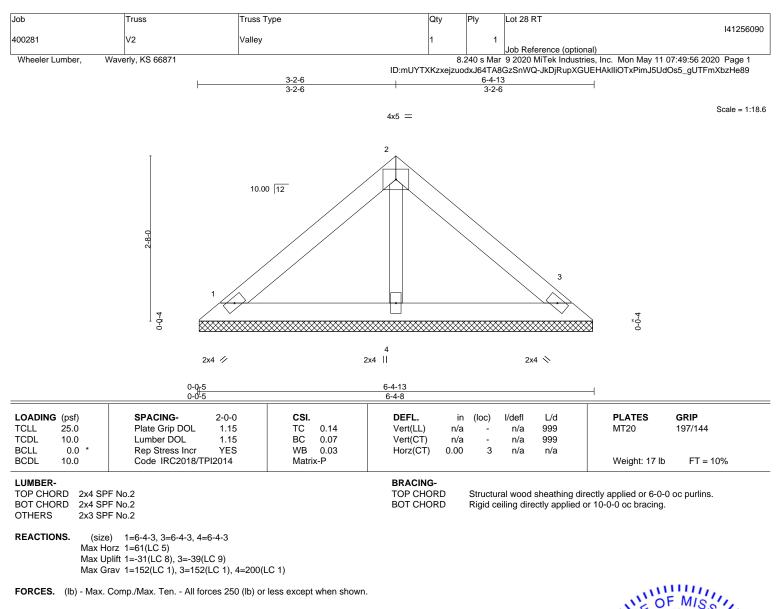
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

6) Non Standard bearing condition. Review required.


7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



Structural wood sheathing directly applied or 6-0-0 oc purlins.

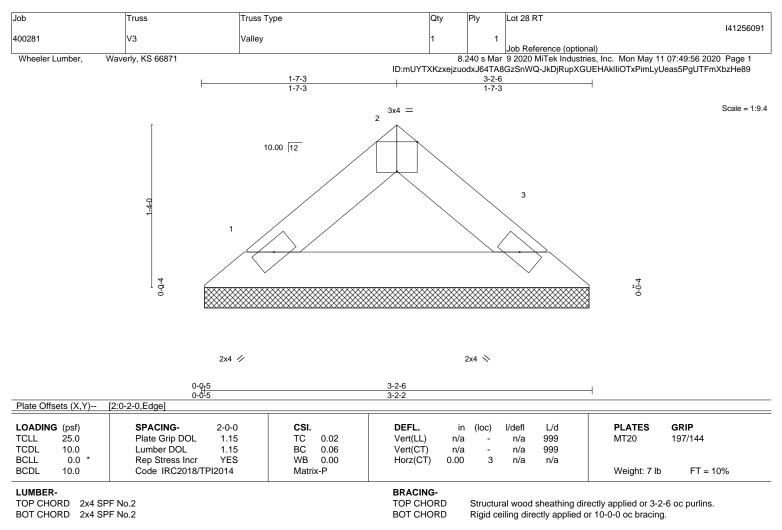
Rigid ceiling directly applied or 10-0-0 oc bracing

LUMBER-



### NOTES-

1) Unbalanced roof live loads have been considered for this design.


2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

### JUAN GARCIA NUMBER E-2000162101 SS/ONAL ENGINE I 6952 I 6952 NANSE ONAL ENGINE I 6952 NONAL ENGINE I 6955 NONAL ENGINE I 6955

16023 Swingley Ridge Ro Chesterfield, MO 63017



REACTIONS. (size) 1=3-1-13, 3=3-1-13 Max Horz 1=-26(LC 4) Max Uplift 1=-11(LC 8), 3=-11(LC 9) Max Grav 1=108(LC 1), 3=108(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

### NOTES-

1) Unbalanced roof live loads have been considered for this design.

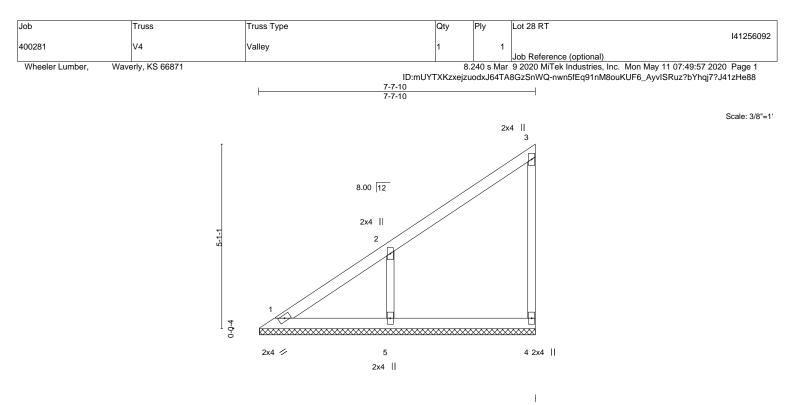
2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.


7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

# JUAN GARCIA NUMBER E-2000162101 SS/ONAL E-2000162101 JUAN GARCA CENSES 16952 HONAL ENSES ICONSTRUCTION AS NOTED ON PLANS REVIEW COMPANDMINISTRATION LEVEL STUMINI, MISSOURI

Mitek 16023 Swingley Koge R Chesterfield, MO 63017

FMIS

0



| LOADING (psf) | <b>SPACING-</b> 2-0-0 | CSI.     | DEFL. ii       | (loc) | l/defl | L/d | PLATES GRIP            |
|---------------|-----------------------|----------|----------------|-------|--------|-----|------------------------|
| TCLL 25.0     | Plate Grip DOL 1.15   | TC 0.30  | Vert(LL) n/a   | ı -   | n/a    | 999 | MT20 197/144           |
| TCDL 10.0     | Lumber DOL 1.15       | BC 0.11  | Vert(CT) n/a   | ı -   | n/a    | 999 |                        |
| BCLL 0.0 *    | Rep Stress Incr YES   | WB 0.06  | Horz(CT) -0.00 | 4     | n/a    | n/a |                        |
| BCDL 10.0     | Code IRC2018/TPI2014  | Matrix-P |                |       |        |     | Weight: 24 lb FT = 10% |

BOT CHORD

### LUMBER-

TOP CHORD 2x4 SPF No.2 2x4 SPF No.2 BOT CHORD 2x3 SPF No.2 WEBS OTHERS 2x3 SPF No.2

REACTIONS. (size) 1=7-7-4, 4=7-7-4, 5=7-7-4

Max Horz 1=187(LC 5) Max Uplift 1=-13(LC 4), 4=-41(LC 5), 5=-155(LC 8) Max Grav 1=130(LC 16), 4=155(LC 15), 5=415(LC 15)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-5=-326/208WEBS

### NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

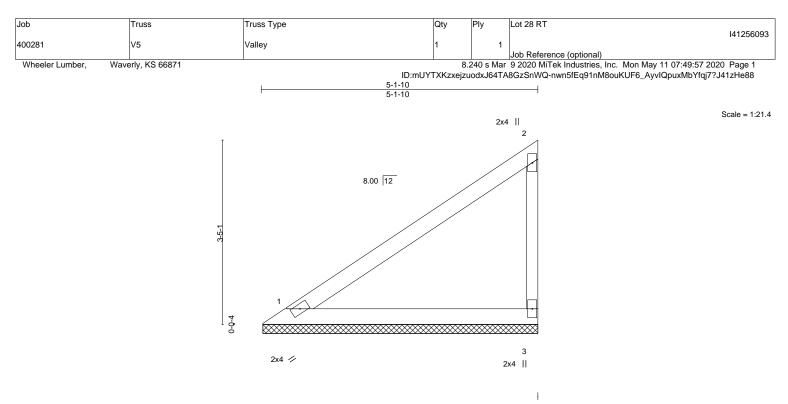
2) Gable requires continuous bottom chord bearing.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 4 except (jt=lb) 5 = 155

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.




1111

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.



| OADING (psf) | <b>SPACING-</b> 2-0-0 | CSI.     | DEFL. in       | (loc) l/defl | L/d | PLATES GRIP            |
|--------------|-----------------------|----------|----------------|--------------|-----|------------------------|
| CLL 25.0     | Plate Grip DOL 1.15   | TC 0.40  | Vert(LL) n/a   | - n/a        | 999 | MT20 197/144           |
| CDL 10.0     | Lumber DOL 1.15       | BC 0.21  | Vert(CT) n/a   | - n/a        | 999 |                        |
| BCLL 0.0 *   | Rep Stress Incr YES   | WB 0.00  | Horz(CT) -0.00 | 3 n/a        | n/a |                        |
| BCDL 10.0    | Code IRC2018/TPI2014  | Matrix-P |                |              |     | Weight: 14 lb FT = 10% |

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No 2 BOT CHORD 2x4 SPF No.2

WEBS 2x3 SPF No.2

REACTIONS. 1=5-1-4, 3=5-1-4 (size) Max Horz 1=121(LC 5) Max Uplift 1=-17(LC 8), 3=-59(LC 8) Max Grav 1=205(LC 1), 3=220(LC 15)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

### NOTES-

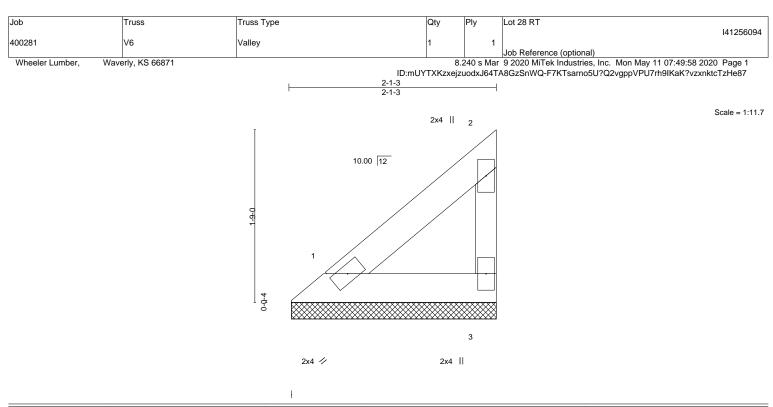
1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

# WILL PROM JUAN GARCIA NUMBER E-2000162101 160 PAOR DE CENSE **MARTER** JGIT May 11 2020 R CONSTRUCTION **RELEASE FO** DMINISTRATION MIT, MISSOURI MiTek

16023 Swingley Ridge Ro Chesterfield, MO 63017


11 1111 MIS

0

Structural wood sheathing directly applied or 5-1-10 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.



| LOADING         (psf)           TCLL         25.0           TCDL         10.0           BCLL         0.0         *           BCDL         10.0 | SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014 | CSI.<br>TC 0.04<br>BC 0.02<br>WB 0.00<br>Matrix-P | DEFL.<br>Vert(LL)<br>Vert(CT)<br>Horz(CT) - | in (l∉<br>n/a<br>n/a<br>0.00 | loc)<br>-<br>-<br>3 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 6 lb | <b>GRIP</b><br>197/144<br>FT = 10% |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------|------------------------------|---------------------|-----------------------------|--------------------------|--------------------------------|------------------------------------|
| LUMBER-                                                                                                                                        |                                                                                     |                                                   | BRACING-                                    |                              |                     |                             |                          |                                |                                    |

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No 2 2x4 SPF No.2 BOT CHORD

WEBS 2x3 SPF No.2 REACTIONS.

1=2-0-14, 3=2-0-14 (size) Max Horz 1=53(LC 5) Max Uplift 1=-2(LC 8), 3=-25(LC 8) Max Grav 1=72(LC 1), 3=81(LC 15)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

### NOTES-

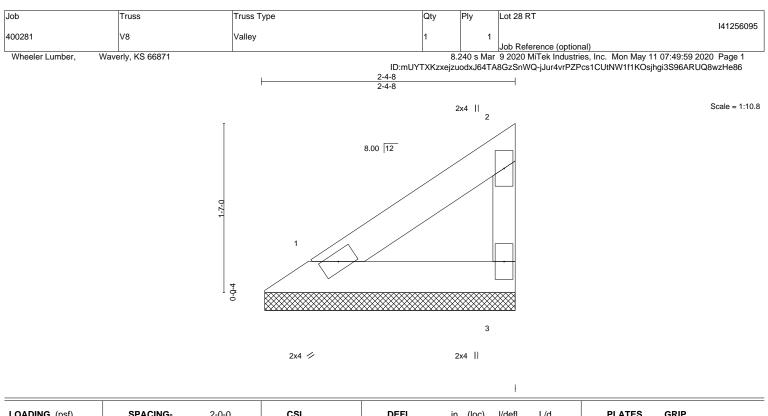
1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

# With PROM JUAN GARCIA NUMBER F -2000162101 ONALL UNINGARCY UCENSE 16C GI May 11,2020 **RELEASE FO** MINISTRATION MIT, MISSOURI MiTek

16023 Swingley Ridge Ro Chesterfield, MO 63017


11 1111 MIS

0

Structural wood sheathing directly applied or 2-1-3 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.



| LOADING (psf)<br>TCLL 25.0<br>TCDL 10.0<br>BCLL 0.0 *<br>BCDL 10.0 | SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014 | CSI.<br>TC 0.05<br>BC 0.03<br>WB 0.00<br>Matrix-P | <b>DEFL.</b> in (lo<br>Vert(LL) n/a<br>Vert(CT) n/a<br>Horz(CT) -0.00 | bc) l/defl L/d<br>- n/a 999<br>- n/a 999<br>3 n/a n/a | PLATES         GRIP           MT20         197/144           Weight: 6 lb         FT = 10% |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------|
| LUMBER-                                                            |                                                                                    |                                                   | BRACING-                                                              |                                                       |                                                                                            |

BOT CHORD

TOP CHORD 2x4 SPF No.2

BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2

REACTIONS. (size) 1=2-4-2, 3=2-4-2 Max Horz 1=48(LC 5)

Max Holz 1=48(LC 5)Max Uplift 1=-7(LC 8), 3=-23(LC 8)Max Grav 1=81(LC 1), 3=86(LC 15)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

### NOTES-

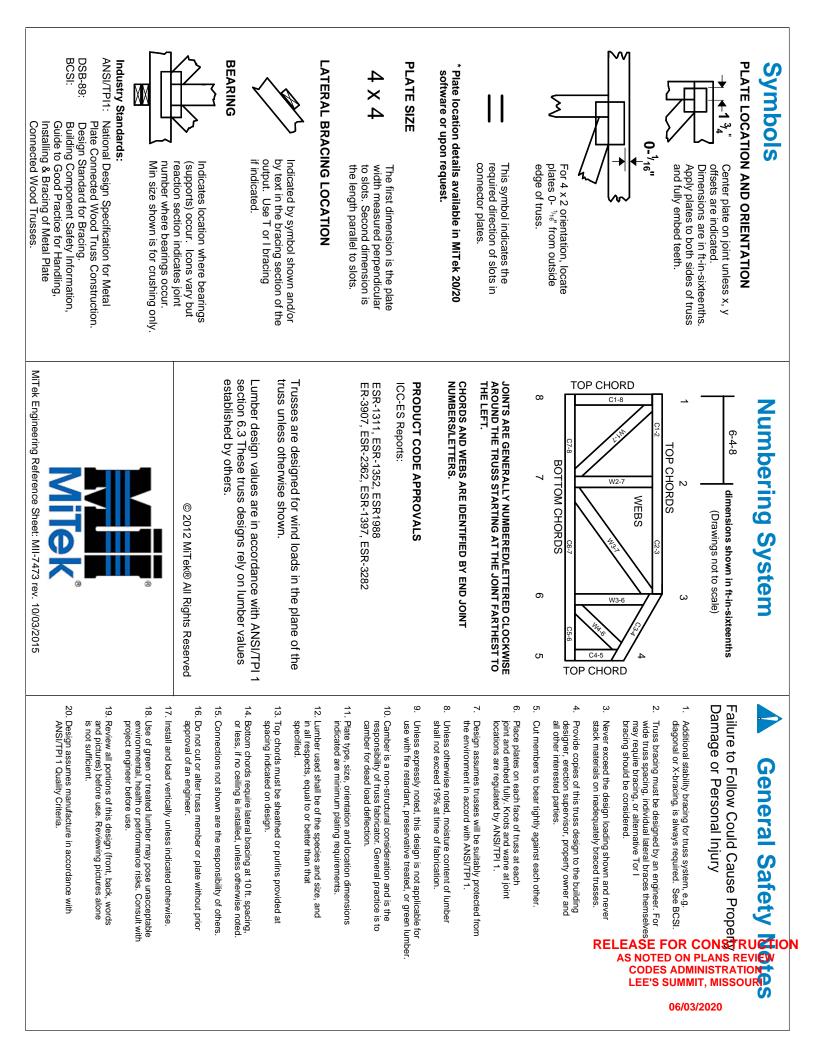
 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

### JUAN GARCIA NUMBER E-2000162101 SS/ONAL ENGL 16952 16952 SONAL ENGL 16952 SONAL ENGL SON

16023 Swingley Ridge Ro Chesterfield, MO 63017


FMIS

0

Structural wood sheathing directly applied or 2-4-8 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

