

RE: 400280 Lot 86 RR MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: N/A Roof Load: 45.0 psf Design Program: MiTek 20/20 8.2 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 45 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	I41238139	B1	5/7/2020	27	l41238165	J6	5/7/2020
2	I41238140	B2	5/7/2020	28	l41238166	J7	5/7/2020
3	l41238141	B3A	5/7/2020	29	l41238167	J8	5/7/2020
4	l41238142	B4A	5/7/2020	30	l41238168	J9	5/7/2020
5	l41238143	B6A	5/7/2020	31	l41238169	J10	5/7/2020
6	l41238144	C1A	5/7/2020	32	l41238170	V1	5/7/2020
7	l41238145	C2A	5/7/2020	33	l41238171	V2	5/7/2020
8	141238146	C3A	5/7/2020	34	l41238172	V3	5/7/2020
9	l41238147	C4A	5/7/2020	35	l41238173	V4	5/7/2020
10	l41238148	C5A	5/7/2020	36	l41238174	V5	5/7/2020
11	l41238149	C6	5/7/2020	37	l41238175	V6	5/7/2020
12	I41238150	C7	5/7/2020	38	l41238176	V7	5/7/2020
13	l41238151	C8	5/7/2020	39	141238177	V8	5/7/2020
14	l41238152	C9	5/7/2020	40	l41238178	V9	5/7/2020
15	I41238153	C10	5/7/2020	41	l41238179	V10	5/7/2020
16	l41238154	C11	5/7/2020	42	l41238180	V11	5/7/2020
17	I41238155	D1	5/7/2020	43	l41238181	V12	5/7/2020
18	141238156	D2	5/7/2020	44	l41238182	V13	5/7/2020
19	I41238157	D3	5/7/2020	45	l41238183	V14	5/7/2020
20	I41238158	E1	5/7/2020				
21	141238159	E2	5/7/2020				

5/7/2020

5/7/2020

5/7/2020

5/7/2020

5/7/2020

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Garcia, Juan

22

23

24

25

26

141238160

141238161

141238162

141238163

141238164

My license renewal date for the state of Kansas is April 30, 2022. Kansas COA: E-943

E3

G1

G2

G3

J5

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

RE: 400280 Lot 86 RR MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: N/A Roof Load: 45.0 psf Design Program: MiTek 20/20 8.2 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 45 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	141238139	B1	5/7/2020	27	l41238165	J6	5/7/2020
2	141238140	B2	5/7/2020	28	I41238166	J7	5/7/2020
3	141238141	B3A	5/7/2020	29	l41238167	J8	5/7/2020
4	141238142	B4A	5/7/2020	30	l41238168	J9	5/7/2020
5	141238143	B6A	5/7/2020	31	l41238169	J10	5/7/2020
6	141238144	C1A	5/7/2020	32	l41238170	V1	5/7/2020
7	141238145	C2A	5/7/2020	33	l41238171	V2	5/7/2020
8	141238146	C3A	5/7/2020	34	l41238172	V3	5/7/2020
9	141238147	C4A	5/7/2020	35	l41238173	V4	5/7/2020
10	141238148	C5A	5/7/2020	36	l41238174	V5	5/7/2020
11	141238149	C6	5/7/2020	37	l41238175	V6	5/7/2020
12	141238150	C7	5/7/2020	38	l41238176	V7	5/7/2020
13	l41238151	C8	5/7/2020	39	l41238177	V8	5/7/2020
14	141238152	C9	5/7/2020	40	l41238178	V9	5/7/2020
15	141238153	C10	5/7/2020	41	l41238179	V10	5/7/2020
16	141238154	C11	5/7/2020	42	l41238180	V11	5/7/2020
17	141238155	D1	5/7/2020	43	l41238181	V12	5/7/2020
18	141238156	D2	5/7/2020	44	l41238182	V13	5/7/2020
19	141238157	D3	5/7/2020	45	l41238183	V14	5/7/2020
20	141238158	E1	5/7/2020				
21	141238159	E2	5/7/2020				

5/7/2020

5/7/2020

5/7/2020

5/7/2020

5/7/2020

The truss drawing(s) referenced above have been prepared by

E3

G1

G2

G3

J5

MiTek USA, Inc under my direct supervision based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Garcia, Juan

141238160

141238161

141238162

141238163

141238164

22 23

24

25

26

My license renewal date for the state of Missouri is December 31, 2020. Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

MiTek°

16023 Swingley Ridge Rd Chesterfield, MO 63017

📣 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

referenced standard ANSI/TPI 1.

May 7,2020

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid for dise only with with every connectors. This design is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	Lot 86 RR
					141238144
400280	C1A	Roof Special Girder	1	1	
					Job Reference (optional)
Wheeler Lumber, Wave	erly, KS 66871		6	8.240 s Ma	r 9 2020 MiTek Industries, Inc. Thu May 7 15:23:30 2020 Page 2
		ID:bl	DIjNJA6?5	tiTk6EI3Kl	JKZyAkTB-YV5qCqiAdNyY5dr2FeQFRXAGo9mFUup2ku4AjkzIrsx

NOTES-

12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

- LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (plf)

Vert: 1-2=-70, 2-3=-70, 3-4=-70, 4-9=-70, 9-11=-70, 19-22=-20, 12-18=-20

Concentrated Loads (lb) Vert: 21=-0(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid for dise only with with every connectors. This design is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

May 7,2020

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid for dise only with with every connectors. This design is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

ő

MITEK[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

📣 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid for dise only with with every connectors. This design is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH / Quality Criteria, DSB-89 and BCSI Building Component**16023 Swingley Ridge Rd
Chesterfield, MO 63017

ſ	ob	Truss	Truss Type	Qty	Ply	Lot 86 RR	
						14	1238153
4	00280	C10	Roof Special Girder	1	1		
						Job Reference (optional)	
	Wheeler Lumber, Wave	erly, KS 66871		8	.240 s Mai	9 2020 MiTek Industries, Inc. Thu May 7 15:23:27 2020 Pa	age 2

ID:bDljNJA6?5tiTk6El3KUKZyAkTB-8wPXaegHKSazEA6TaWsYpuYhjxlMHW3b2wrW8PzIrt_

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-70, 2-3=-70, 3-4=-70, 4-8=-70, 8-10=-70, 11-19=-20 Concentrated Loads (Ib)

Vert: 3=21(B) 18=3(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	Lot 86 RR	144000454
400280	O These Dury Type Owner Type					
Wheeler Lumber, Wav	erly, KS 66871			8.240 s Ma	ar 9 2020 MiTek Industri	es, Inc. Thu May 7 15:23:28 2020 Page 1
⊢		21-2-4	ID:bDljNJ	A6?5ti I k6	EI3KUKZYAKTB-c6zwn_ 35-3-12	gw5liqrKhg8DNnL6537LGz09BlHab4trzIrsz
		21-2-4			14-1-8	
		6.00 12	5x7	7 =		Scale = 1:68.9
I			12	3	14	
		3v6 - 11		B	15	
		10			6 16	
		8 19 1				17
20		7 B				
11-5-	-	6		⊠		
	4					
	3					
2						
9-01-0					6	
	*****	*****	*****		*****	*
40 3x10	39 38 37 36 	35 34 33 32 31	30 29 2 3x6 =	8 27	26 25	24 23 22 21
		35-3-12				
Plate Offsets (X,Y) [1:0	-0-10,0-1-4], [40:0-0-0,0-1-4]	35-3-12				
LOADING (psf)	SPACING- 2-0-0	CSI. DEFL	. ir	n (loc)	l/defl L/d	PLATES GRIP
TCLL 25.0 TCDI 10.0	Plate Grip DOL 1.15	TC 0.18 Vert(L BC 0.10 Vert(C	L) n/a	i -	n/a 999 n/a 999	MT20 197/144
BCLL 0.0 *	Rep Stress Incr YES	WB 0.13 Horz(CT) -0.00	21	n/a n/a	Weight: 215 lb $ET = 10\%$
TOP CHORD 2x4 SPF N	0.2	TOP (CHORD	Structur	al wood sheathing dire	ctly applied or 6-0-0 oc purlins,
WEBS 2x3 SPF N	o.2 o.2 *Except*	BOT	HORD	Rigid ce	end verticals. eiling directly applied or	10-0-0 oc bracing.
20-21: 2x4 OTHERS 2x4 SPF N	SPF No.2 o.2	WEBS	6	1 Row a	at midpt 13 16	-28, 12-30, 11-31, 10-32, 14-27, 15-26, -25
REACTIONS. All bearin	gs 35-3-12.					
(lb) - Max Horz Max Uplift	40=261(LC 5) All uplift 100 lb or less at ioi	nt(s) 21, 28, 30, 31, 32, 33, 34, 35, 36, 37, 36	3. 27. 26. 25	5. 24. 23.		AMULLE.
Max Grav	22 except 40=-117(LC 6), 39 All reactions 250 lb or less	=-207(LC 8) at joint(s) 21 28 30 31 32 33 34 35 36 3	7 38 39 2	7 26 25		OF MISS
	24, 23, 22 except 40=250(LC	(8)	7, 30, 33, 2	7, 20, 23,		1.8
FORCES. (Ib) - Max. Cor	np./Max. Ten All forces 250	(lb) or less except when shown.				JUAN GABCIA
TOP CHORD 1-2=-278	/141, 11-12=-92/252, 12-13≕	79/273, 13-14=-74/265				E* * * E
NOTES- 1) Unbalanced roof live loa	ds have been considered for	this design.				NUMBER
 Wind: ASCE 7-16; Vult= MWERS (envelope) gab 	115mph (3-second gust) Vas	d=91mph; TCDL=6.0psf; BCDL=6.0psf; h=2	5ft; Cat. II; E	xp C; End	closed; =1 60 plate	E-2000162101
grip DOL=1.60	loads in the plane of the true	s only. For stude exposed to wind (normal to	the face)	see Stand	ard Industry	SSICENCI
Gable End Details as ap	plicable, or consult qualified I	building designer as per ANSI/TPI 1.	(ine idee), e			I I I I I I I I I I I I I I I I I I I
4) All plates are 2x4 M1205) Gable requires continuo	us bottom chord bearing.					AND DR.
6) Truss to be fully sheather7) Gable studs spaced at 2	ed from one face or securely b -0-0 oc.	braced against lateral movement (i.e. diagona	al web).			UAN GARCIN
8) This truss has been des9) * This truss has been des	igned for a 10.0 psf bottom cl signed for a live load of 20.0	nord live load nonconcurrent with any other li osf on the bottom chord in all areas where a i	ve loads. ectangle 3-	6-0 tall by	2-0-0 wide	CENSED
pt/L Title Title Type Ory Py pt/S FR HI 2015 2028 11 Dormen Suppress Gale 1						
At max						
dit Total T						
						ANSA ST
						ONAL ENTIT
						20000 M

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

REACTIONS. (size) 7=0-2-0, 5=0-3-8 Max Horz 7=269(LC 5) Max Uplift 7=-62(LC 8), 5=-122(LC 8) Max Grav 7=604(LC 15), 5=683(LC 15)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 1-2=-693/71, 2-3=-698/241, 1-7=-496/102
- BOT CHORD 6-7=-117/597

WEBS 2-6=-434/281, 3-6=-255/820, 3-5=-595/141

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 7.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7 except (jt=lb) 5=122.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

F MIS

0

May 7,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

16023 Swingley Ridge Rd Chesterfield, MO 63017

MiTek

Job	Truss	Truss Type	Qty	Ply	Lot 86 RR	
						141238157
400280	D3	COMMON GIRDER	1	2		
				J	Job Reference (optional)	
Wheeler Lumber, Wav	erly, KS 66871			3.240 s Ma	r 9 2020 MiTek Industries, Inc. Thu May 7 15:23:43 2020	Page 2

8.240 s Mar 9 2020 MiTek Industries, Inc. Thu May 7 15:23:43 2020 Page 2 ID:bDljNJA6?5tiTk6El3KUKZyAkTB-g?Nbx6sKZMbi9dKYWt9ISGDWnOIc1ovyjQjMhTzIrsk

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-70, 3-4=-70, 1-5=-20

Concentrated Loads (lb)

Vert: 7=-1796(B) 8=-1796(B) 9=-1796(B) 10=-1796(B) 11=-1796(B) 12=-1796(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Offsets (X,Y)-- [2:0-0-12,0-1-4], [12:0-0-12,0-1-4], [14:0-0-0,0-1-4], [14:0-3-8,Edge], [25:0-0-0,0-1-4], [25:0-3-8,Edge]

LOADING TCLL TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TF	2-0-0 1.15 1.15 YES Pl2014	CSI. TC BC WB Matrix	0.08 0.05 0.11 <-R	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.00 -0.00 0.00	(loc) 13 13 14	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 91 lb	GRIP 197/144 FT = 10%
LUMBER- TOP CHOR BOT CHOR	RD 2x4 SP RD 2x4 SP	F No.2 F No.2				BRACING- TOP CHOF	RD	Structu except	ral wood end verti	sheathing d cals.	irectly applied or 6-0-0	oc purlins,

except end verticals. 2x3 SPF No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 2x4 SPF No.2

REACTIONS. All bearings 20-6-0.

Max Horz 25=-190(LC 6) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 25, 14, 21, 22, 23, 19, 17, 16, 15 except 24=-101(LC 8) Max Grav All reactions 250 lb or less at joint(s) 25, 14, 20, 21, 22, 23, 24, 19, 17, 16, 15

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

WEBS

OTHERS

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 25, 14, 21, 22, 23, 19, 17, 16, 15 except (jt=lb) 24=101.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

May 7,2020

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	6-10-11		13-7-5		20-6-0	4
Plate Offsets (X,Y)	[1:0-4-3,0-0-0], [1:Edge,0-4-7], [5:0-4-3,	0-0-0], [7:0-3-11,0-8-1], [7	7:0-3-2,0-1-13], [8:0-2-11	,0-1-8], [11:0-3-2,0-1-1	3]	
LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.85 BC 0.76 WB 0.15 Matrix-S	DEFL. in Vert(LL) -0.22 Vert(CT) -0.35 Horz(CT) 0.03 Wind(LL) 0.09	i (loc) l/defl L/d 9-10 >999 360 9-10 >679 240 7 n/a n/a 9-10 >999 240	PLATES MT20 Weight: 72 lb	GRIP 197/144 FT = 10%
LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2 *Except* 1-11,5-7: 2x8 SP DSS			BRACING- TOP CHORD BOT CHORD	Structural wood sheat except end verticals. Rigid ceiling directly a	hing directly applied or 2-4-4	ł oc purlins,
REACTIONS. (siz Max H Max U Max G	e) 11=Mechanical, 7=0-3-8 lorz 11=-188(LC 4) lplift 11=-105(LC 8), 7=-133(LC 9) lrav 11=979(LC 15), 7=1058(LC 16)					F MIS

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. 1-2=-1294/162, 2-3=-1170/207, 3-4=-1157/207, 4-5=-1297/162, 1-11=-831/138, TOP CHORD 5-7=-929/168 BOT CHORD 10-11=-151/1141, 9-10=-12/805, 7-9=-57/1007 WEBS 3-9=-106/498, 3-10=-106/490, 2-10=-264/203

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 11=105, 7=133.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

JUAN

May 7,2020

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BRACING-

TOP CHORD

BOT CHORD

1-2=-1301/38, 2-3=-1176/78, 3-4=-1176/78, 4-5=-1301/38, 1-10=-833/44, 5-6=-833/44 TOP CHORD BOT CHORD 9-10=-35/1114, 8-9=0/786, 6-8=0/1013

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

(size) 10=Mechanical, 6=0-3-8 Max Horz 10=141(LC 5) Max Uplift 10=-7(LC 8), 6=-7(LC 9) Max Grav 10=980(LC 13), 6=980(LC 14)

WEBS 3-8=-38/486, 4-8=-264/130, 3-9=-38/486, 2-9=-264/130

NOTES-

LUMBER-

WEBS

BOT CHORD

REACTIONS.

TOP CHORD 2x4 SPF No.2

2x4 SPF No.2

2x3 SPF No.2 *Except*

1-10,5-6: 2x8 SP DSS

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 6.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11111 MIS

0

Structural wood sheathing directly applied or 4-1-14 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing

except end verticals.

May 7,2020

BRACING-

TOP CHORD

BOT CHORD

n/a

except end verticals.

n/a

Rigid ceiling directly applied or 10-0-0 oc bracing

Structural wood sheathing directly applied or 6-0-0 oc purlins,

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Code IRC2018/TPI2014

NOTES-

BCDL

WEBS

OTHERS

LUMBER-

BOT CHORD

REACTIONS.

10.0

TOP CHORD 2x4 SPF No.2

(lb) -

2x4 SPF No.2

2x3 SPF No.2

2x4 SPF No.2

Max Grav

All bearings 20-8-0. Max Horz 25=-89(LC 6)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

All reactions 250 lb or less at joint(s) 25, 14, 20, 21, 22, 23, 24, 19, 17, 16, 15

Matrix-R

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

Max Uplift All uplift 100 lb or less at joint(s) 25, 14, 21, 22, 23, 24, 19, 17, 16, 15

- Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 9) will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 25, 14, 21, 22, 23, 24, 19, 17, 16, 15,
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

FT = 10%

Weight: 85 lb

May 7,2020

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

L	7-5-4	1	13-2-12	1	20-8-0	
	7-5-4	I	5-9-7		7-5-4	1
Plate Offsets (X,Y)	[2:0-4-1,0-0-0], [6:0-4-1,0-0-0], [8:0-3-4,	0-1-10], [8:0-3-2,0-6-8], [1	2:0-3-4,0-1-10], [12:0-1-10,	0-3-4]		
LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.88 BC 0.58 WB 0.12 Matrix-S	DEFL. in (Vert(LL) -0.14 10 Vert(CT) -0.22 10 Horz(CT) 0.03 Wind(LL) 0.09 10	loc) l/defl L -11 >999 36 -11 >999 24 8 n/a n -11 >999 24	/d PLATES 50 MT20 10 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	GRIP 197/144 FT = 10%
LUMBER-		1	BRACING-		I	

TOP CHORD 2x4 SPF No.2 TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, BOT CHORD 2x4 SPF No.2 except end verticals. WEBS 2x3 SPF No.2 *Except* BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing 2-12,6-8: 2x8 SP DSS

REACTIONS. (size) 12=0-3-8, 8=0-3-8 Max Horz 12=-93(LC 6) Max Uplift 12=-139(LC 8), 8=-139(LC 9) Max Grav 12=985(LC 1), 8=985(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-3=-1375/219, 3-4=-1152/156, 4-5=-1152/156, 5-6=-1375/220, 2-12=-892/174, TOP CHORD 6-8=-892/174 BOT CHORD 11-12=-217/1132, 10-11=-33/827, 8-10=-137/1132

WEBS 4-10=-36/300, 5-10=-273/205, 4-11=-36/300, 3-11=-273/205

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 12=139, 8=139.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11111

0

MIS

May 7,2020

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314. May 7,2020

Job	Truss	Truss Type	Qty	Ply	Lot 86 RR
					I41238163
400280	G3	Common Girder	1	2	lab Deference (entional)
				_	Job Reference (optional)
Wheeler Lumber, Way	verly, KS 66871			3.240 s Ma	r 9 2020 MiTek Industries, Inc. Thu May 7 15:23:49 2020 Page 2

ID:bDljNJA6?5tiTk6El3KUKZyAkTB-U9ksBAx58CLrtYoit8FiiXTZFpG9RZDr6LAhu7zIrse

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-70, 4-7=-70, 2-6=-20

Concentrated Loads (lb)

Vert: 11=-881(F) 12=-875(F) 13=-875(F) 14=-875(F) 15=-875(F) 16=-873(F) 17=-873(F) 18=-873(F) 19=-873(F) 20=-873(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.03 BC 0.02 WB 0.00 Matrix-P	DEFL. in (Vert(LL) -0.00 Vert(CT) 0.00 Horz(CT) -0.00	(loc) l/defl 1 n/r 1 n/r 4 n/a	L/d 120 120 n/a	PLATES MT20 Weight: 5 lb	GRIP 197/144 FT = 10%
LUMBER-			BRACING-				

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No 2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2

REACTIONS. 4=1-6-0, 2=1-6-0 (size)

Max Horz 2=36(LC 5) Max Uplift 4=-16(LC 8), 2=-16(LC 8)

Max Grav 4=59(LC 1), 2=93(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 2-0-0 oc.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 6) will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and

referenced standard ANSI/TPI 1.

11111 MIS

0

Structural wood sheathing directly applied or 1-6-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

May 7,2020

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty Pl	ly	Lot 86 RR
400280	J6	Jack-Closed	2	1	141238165
					Job Reference (optional)
Wheeler Lumber, Wav	erly, KS 66871		8.2	40 s Ma	r 9 2020 MiTek Industries, Inc. Thu May 7 15:23:51 2020 Page 1
	•		ID:bDIjNJA	6?5tiTk	6EI3KUKZyAkTB-RXsccryLgqcZ6sx4_YIAnyY1jd7dvar7Zffoz0zIrsc
		-0-4-8 1-6-0)		\rightarrow
		0-4-8 1-6-0)		1
					Scale = 1:8.9
				3	4
		C 00 10	2x4	"	
		6.00 12	/		
			/		
	2-8				
	÷	2			
		2-8			· - 1 X I
		å			
	1				
				4	
		214 -		0v4	
		2		284	
		1-6-0)		
		1-6-0	J		

LOADING	G (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d PLATES GRIP
TCLL	25.0	Plate Grip DOL 1.15	TC 0.02	Vert(LL) -0.00 2 >999 360 MT20 197/144
TCDL	10.0	Lumber DOL 1.15	BC 0.02	Vert(CT) -0.00 2 >999 240
BCLL	0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.00 4 n/a n/a
BCDL	10.0	Code IRC2018/TPI2014	Matrix-P	Wind(LL) 0.00 2 **** 240 Weight: 5 lb FT = 10%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2

REACTIONS. 4=Mechanical, 2=0-3-8 (size) Max Horz 2=36(LC 5)

Max Uplift 4=-16(LC 8), 2=-17(LC 8) Max Grav 4=57(LC 1), 2=94(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11111

OF MIS

Structural wood sheathing directly applied or 1-6-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

May 7,2020

Plate Off	sets (X,Y)	[2:0-0-8,0-1-4], [5:0-0-0,0-1-4]			
LOADIN	G (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d PLATES GRIP	
TCLL	25.0	Plate Grip DOL 1.15	TC 0.12	Vert(LL) -0.00 5 >999 360 MT20 197/144	
TCDL	10.0	Lumber DOL 1.15	BC 0.01	Vert(CT) -0.00 5 >999 240	
BCLL	0.0 *	Rep Stress Incr NO	WB 0.00	Horz(CT) 0.00 3 n/a n/a	
BCDL	10.0	Code IRC2018/TPI2014	Matrix-R	Wind(LL) 0.00 5 >999 240 Weight: 5 lb FT = 10%	

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2 BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 1-3-9 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-4-8, 3=Mechanical, 4=Mechanical

Max Horz 5=46(LC 7) Max Uplift 5=-147(LC 12), 3=-20(LC 5), 4=-1(LC 5) Max Grav 5=68(LC 9), 3=32(LC 15), 4=18(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4 except (jt=lb) 5=147.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1 lb down and 3 lb up at -1-4-2, and 1 lb down and 3 lb up at -1-4-2 on top chord. The design/selection of such connection device(s) is the responsibility of others.

8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Concentrated Loads (lb)

Vert: 1=5(F=2, B=2)

Trapezoidal Loads (plf)

Vert: 1=-0(F=35, B=35)-to-2=-27(F=21, B=21), 2=-27(F=21, B=21)-to-3=-50(F=10, B=10), 5=-8(F=6, B=6)-to-4=-14(F=3, B=2)) + 2(F=2), B=2(F=2), B=2(F= B=3)

11111 MIS

0

May 7,2020

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS ON TIPS REPREVED PAGE MIT-14/3 reference of the second secon fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TCLL 25.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	TC 0.07 BC 0.01 WB 0.00 Matrix-R	Vert(LL) -0.0 Vert(CT) -0.0 Horz(CT) -0.0	00 5 00 5 00 3	>999 >999 n/a	240 180 n/a	MT20 Weight: 4 lb	197/144 FT = 10%
LUMBER- TOP CHORD 2x4 SF	PF No.2		BRACING- TOP CHORD	Struct	ural wood	sheathing di	rectly applied or 0-11	-4 oc purlins.

BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2

iy app except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-3-8, 3=Mechanical, 4=Mechanical

Max Horz 5=33(LC 5) Max Uplift 5=-21(LC 8), 3=-11(LC 8), 4=-4(LC 8) Max Grav 5=146(LC 1), 3=7(LC 4), 4=14(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3, 4.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

111 MIS

0

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Wind(LL)

BRACING-

TOP CHORD

BOT CHORD

0.00

>999

except end verticals

5

240

Rigid ceiling directly applied or 10-0-0 oc bracing

NOTES-

BCDL

WEBS

LUMBER-

BOT CHORD

REACTIONS.

10.0

TOP CHORD 2x4 SPF No.2

2x4 SPF No.2

2x4 SPF No.2

Max Horz 5=59(LC 7)

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-R

- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3 except (jt=lb) 5=120.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 10 lb down and 4 lb up at -1-4-2 , and 10 lb down and 4 lb up at -1-4-2 on top chord. The design/selection of such connection device(s) is the responsibility of others
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Code IRC2018/TPI2014

(size) 5=0-4-8, 3=Mechanical, 4=Mechanical

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

Max Uplift 5=-120(LC 12), 3=-20(LC 12) Max Grav 5=72(LC 1), 3=24(LC 1), 4=26(LC 3)

- Concentrated Loads (lb)
- Vert: 1=-15(F=-7, B=-7)
- Trapezoidal Loads (plf)
 - Vert: 1=-0(F=35, B=35)-to-6=-10(F=30, B=30), 6=0(F=35, B=35)-to-2=-16(F=27, B=27), 2=-16(F=27, B=27)-to-3=-49(F=10, B=27)-to-3=-40(F=10, B=27)-to-3=-40(F=10 B=10), 5=-5(F=8, B=8)-to-4=-14(F=3, B=3)

11111 MIS

0

FT = 10%

Weight: 7 lb

Structural wood sheathing directly applied or 2-0-12 oc purlins,

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS ON TIPS REPREVED PAGE MIT-14/3 reference of the second secon fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	Lot 86 RR
			ļ ,	L I	141238169
400280	J10	Jack-Open	1	1	
					Job Reference (optional)
Wheeler Lumber, Way	verly, KS 66871			3.240 s Ma	r 9 2020 MiTek Industries, Inc. Thu May 7 15:23:50 2020 Page 1
			ID:kGsIV9	yk8pWyyZ	tS5vwlyyllse-yLIEPVxjvWTiUiNuQrnxEl?sxDnPA7b_K?wERZzIrsd

			1-5-4						
		1	1-5-4	1					
Plate Offsets (X,Y)	[1:0-0-12,0-1-4], [4:0-3-8,Edge], [4:0-0-0),0-1-4]							
LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.03 BC 0.01 WB 0.00 Matrix-R	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.00 -0.00 -0.00 0.00	(loc) 4 4 2 4	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 4 lb	GRIP 197/144 FT = 10%

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x3 SPF No.2

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 1-5-4 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 4=0-3-8, 2=Mechanical, 3=Mechanical

Max Horz 4=29(LC 5)

Max Uplift 2=-32(LC 8) Max Grav 4=59(LC 1), 2=48(LC 15), 3=26(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

FMIS

0

Scale = 1:11.1

 5 BEFORE USE.

 opent, not

 the overall

 anent bracing

 re

 SI Building Component

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5) will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	0-Q ₁ 7		3-	8-14						
	0-0 ¹ 7		3.	-8-7					I	
Plate Offsets (X,Y)	[2:0-2-0,Edge]									
LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 BCDI 10.0	SPACING- 2- Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr Y Code, IBC2018/TPI20	0-0 CSI. .15 TC .15 BC YES WB 14 Matrix-	0.03 0.07 0.00 -P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 8 lb	GRIP 197/144 FT = 10%
DODE 10.0			•						Wolght. 0 lb	11 - 10%
LUMBER- TOP CHORD 2x4 S	PF No.2		1	BRACING- TOP CHORD	S	Structur	al wood s	heathing directly	applied or 3-8-	14 oc purlins.

BOT CHORD

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2

REACTIONS. 1=3-8-1, 3=3-8-1 (size) Max Horz 1=20(LC 7) Max Uplift 1=-14(LC 8), 3=-14(LC 9) Max Grav 1=120(LC 1), 3=120(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5) will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

TAS * PROXIM JUAN GARCIA NUMBER E-2000162101 T GI S 2 ONALE 16952 BONNAL ENGINE MANUTE. PROKANSAS ON NONAL ENGINE

11111 MIS

0

Rigid ceiling directly applied or 10-0-0 oc bracing.

May 7,2020

LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 *	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Pep Stress IncrVES	CSI. TC 0.41 BC 0.22	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) -0.00	(loc) - - 3	l/defl n/a n/a	L/d 999 999 p/a	PLATES MT20	GRIP 197/144
3CDL 10.0	Code IRC2018/TPI2014	Matrix-P	1012(01) -0.00	5	n/a	174	Weight: 14 lb	FT = 10%

BOT CHORD

LUMBER-

2x4 SPF No.2 TOP CHORD BOT CHORD 2x4 SPF No.2 WEBS

2x3 SPF No.2 REACTIONS. 1=5-4-2, 3=5-4-2 (size)

Max Horz 1=97(LC 5) Max Uplift 1=-27(LC 8), 3=-51(LC 8)

Max Grav 1=209(LC 1), 3=209(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11 1111 MIS

0

Structural wood sheathing directly applied or 5-4-10 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

May 7,2020

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.09 BC 0.05 WB 0.00 Matrix-P	DEFL. in (loc) I/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) -0.00 3 n/a n/a	PLATES GRIP MT20 197/144 Weight: 7 lb FT = 10%
LUMBER-			BRACING-	

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No 2 2x4 SPF No.2 BOT CHORD

WEBS 2x3 SPF No.2

REACTIONS. 1=3-0-2, 3=3-0-2 (size) Max Horz 1=48(LC 5) Max Uplift 1=-13(LC 8), 3=-26(LC 8) Max Grav 1=104(LC 1), 3=104(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

1111 MIS

0

Structural wood sheathing directly applied or 3-0-10 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

May 7,2020

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5) will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

MIS

0

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.17 BC 0.08 WB 0.03 Matrix-R	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) - 0.00 4 n/a n/a	PLATES GRIP MT20 197/144 Weight: 14 lb FT = 10%
LUMBER-			BRACING-	

BOT CHORD

```
LUMBER-
```

TOP CHORD	2x4 SPF No.2
BOT CHORD	2x4 SPF No.2
WEBS	2x3 SPF No.2
OTHERS	2x3 SPF No.2

REACTIONS. (size) 6=3-6-8, 4=3-6-8, 5=3-6-8

Max Horz 6=127(LC 5) Max Uplift 6=-29(LC 4), 4=-22(LC 5), 5=-96(LC 5) Max Grav 6=120(LC 7), 4=71(LC 1), 5=183(LC 15)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

ł

- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 7) will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 4, 5.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

1111 11 MIS

0

Structural wood sheathing directly applied or 3-6-8 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

May 7,2020

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.16 BC 0.09 WB 0.00 Matrix-R	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) -0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 11 lb	GRIP 197/144 FT = 10%
LUMBER-			BRACING-					

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No 2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2

REACTIONS. 4=3-6-8, 3=3-6-8 (size) Max Horz 4=106(LC 5)

Max Uplift 4=-14(LC 8), 3=-44(LC 5)

Max Grav 4=150(LC 1), 3=150(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

1111

11 MIS

0

Structural wood sheathing directly applied or 3-6-8 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.15 BC 0.08 WB 0.00	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) -0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 197/144
LUMBER-		Mallix-F	BRACING-				weight. 9 b	FT = 10%

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No 2 BOT CHORD 2x4 SPF No.2

WEBS 2x3 SPF No.2 REACTIONS.

1=3-7-2, 3=3-7-2 (size) Max Horz 1=61(LC 5) Max Uplift 1=-17(LC 8), 3=-32(LC 8) Max Grav 1=131(LC 1), 3=131(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

1111

11 MIS

0

Structural wood sheathing directly applied or 3-7-10 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 5 except (it=lb) 8=119.6=121.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

May 7,2020

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5) will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

