SGA Design Group

April 16th, 2020

Development Services City of Lee's Summit, MO 220 SE Green Street Lee's Summit, MO 64063

Firestone Complete Auto Care Facility 3561 SW Market St Lee's Summit, MO Permit # PRCOM20200811

Subject: Plan Review Comments

Dear Mr. Frogge and Mr. Weissenbach,

I would like to take this opportunity to thank you, on behalf of Mitchel Garrett, Architect of Record for your assistance and cooperation in reviewing our plans for the above referenced project.

Attached you will find our responses to each of the items listed in your review comments. Any supplemental information (calculations, cut sheets, technical data, ICBO reports, etc.) are attached to this response as well.

Listed below are the responses to the comments received on 04/06/2020.

BUILDING PLAN REVIEW COMMENTS:

Comment 1: The building permit for this project cannot be issued until the Development Services Department has received, approved, and processed the Final Development Plan.

Action required: Comment is for informational purposes.

Response: Acknowledged.

Comment 2: A License Tax application completed by the contractor must be submitted to the City of Lee's Summit, Codes Administration Department, and any applicable License Tax paid prior to issuing a building permit.

Action required: Comment is for informational purposes.

<u>Response:</u> Acknowledged. Once bidding process in complete, GC to provide the license tax application to city.

Page 1 of 4

Comment 3: 2018 IBC 502.1 Address identification. New and existing buildings shall be provided with approved address identification. The address identification shall be legible and placed in a position that is visible from the street or road fronting the property. Address identification characters shall contrast with their background. Address numbers shall be Arabic numbers or alphabetical letters. Numbers shall not be spelled out. Each character shall be a minimum of 4 inches high with a minimum stroke width of ½ inch. Where required by the fire code official, address identification shall be provided in additional approved locations to facilitate emergency response. Where access is by means of a private road and the building address cannot be viewed from the public way, a monument, pole or other approved sign or means shall be used to identify the structure. Address identification shall be maintained.

Action required: This site has been assigned the address 3561 SW Market St. Please update your records and inform your client.

<u>Response:</u> Acknowledged. Drawings have been revised to reflect correct address and client has been informed.

Comment 4: 2018 IBC 1803.1 General. Geotechnical investigations shall be conducted in accordance with Section 1803.2 and reported in accordance with Section 1803.6. Where required by the building official or where geotechnical investigations involve in-situ testing, laboratory testing or engineering calculations, such investigations shall be conducted by a registered design professional.

Action required: Provide soils report to justify design assumption of soil bearing capacity greater than 2,000psf.

<u>Response:</u> Acknowledged. Geotech report has been attached.

Comment 5: 2018 IBC 1809.5 Frost protection. Except where otherwise protected from frost, foundations and other permanent supports of buildings and structures shall be protected from frost by one or more of the following methods:

- 1. Extending below the frost line of the locality;
- 2. Constructing in accordance with ASCE 32; or
- 3. Erecting on solid rock.

(see code section for exceptions)

Shallow foundations shall not bear on frozen soil unless such frozen condition is of a permanent character.

Action required: Modify exterior footing details to show that bottom of footing is minimum 3'-0" deep measured at grade, not floor slab.

Response: Acknowledged. Increased footing depth to pass below the frost line.

Comment 6: Wood is not an approvable material at trash enclosure. Coordinate with Planning Department.

Action required: Comment is for informational purposes.

<u>Response:</u> Acknowledged. Wood fence has been updated to a metal fence. Please reference sheet A6.1 for updated enclosure gate.

Comment 7: 2017 NEC Article 201.8 (B) other than dwelling units all 125-volt, single-phase, 15 and 20 ampere receptacles installed in the locations specified in 210.8(B)(1) through (10) shall have ground-fault circuit interrupter protection for personnel.

- (1) Bathrooms
- (2) Kitchens
- (3) Rooftops
- (4) Outdoors
- (5) Sinks where receptacles are installed within 6 feet of the outside edge of the sink.
- (6) Indoor wet locations
- (7) Locker rooms with associated showering facilities
- (8) Garages, service bays, and similar areas other than vehicle exhibition halls and showrooms.
- (9) Crawl spaces at or below grade level.
- (10) Unfinished portions or areas of the basement not intended as habitable rooms. (refer to code for exceptions)

Action required: Modify drawings to show that all receptacles in garage service bays will by GFCI protected.

<u>Response:</u> Acknowledged. All circuits feeding receptacles in garage have been given GFCI protection either at the receptacle or the breaker.

FIRE PLAN REVIEW COMMENTS:

Comment 1: 2018 IFC 407.2- Safety Data Sheets. Safety Data Sheets (SDS) for all hazardous materials shall be readily available on the premises. (Verified At Inspection)

<u>Response:</u> Acknowledged. GC to provide safety data sheets on site.

Comment 2: 2018 IFC 907.1.1- Construction documents. Construction documents for fire alarm systems shall be submitted for review and approval prior to system installation. Construction documents shall include, but not be limited to, all of the following:

- 1.A floor plan which indicates the use of all rooms.
- 2. Locations of alarm-initiating and notification appliances.
- 3. Alarm control and trouble signaling equipment.
- 4. Annunciation.
- 5. Power connection.
- 6. Battery calculations.
- 7. Conductor type and sizes.
- 8. Voltage drop calculations.
- 9. Manufacturers, model numbers and listing information for equipment, devices and materials.
- 10. Details of ceiling height and construction.
- 11. The interface of fire safety control functions.

Action Required: Provide three sets of PE stamped shop drawings for the fire alarm system.

<u>Response:</u> Acknowledged. CCI has prepared Engineered Fire Alarm plans to be used as the design basis for the installation contractor to prepare installation shop drawings. The fire alarm plans,

calculations and equipment literature will be submitted for review by the awarded fire alarm contractor.

Comment 3: 2018 IFC 901.2- Construction documents. The fire code official shall have the authority to require construction documents and calculations for all fire protection systems and to require permits be issued for the installation, rehabilitation or modification of any fire protection system. Construction documents for fire protection systems shall be submitted for review and approval prior to system installation.

Action Required: Provide three sets of PE stamped shop drawings for the fire sprinkler system.

<u>Response:</u> Acknowledged. CCI has prepared Engineered Fire Sprinkler plans to be used as the design basis for the installation contractor to prepare installation shop drawings. The fire sprinkler plans, calculations and equipment literature will be submitted for review by the awarded fire sprinkler contractor.

Comment 4: 2018 IFC 901.5- Installation acceptance testing. Fire detection and alarm systems, fire-extinguishing systems, fire hydrant systems, fire standpipe systems, fire pump systems, private fire service mains and all other fire protection systems and appurtenances thereto shall be subject to acceptance tests as contained in the installation standards and as approved by the fire code official. The fire code official shall be notified before any required acceptance testing. The fire code official shall be notified 48 hours before any required acceptance test.

Informational Purposes: Call (816)969-1300 to schedule testing.

<u>Response:</u> Acknowledged. The acceptance testing will be scheduled by the awarded fire alarm and fire sprinkler contractor.

Comment 5: 2018 IFC 5704.2.3 Labeling and Signs. Labeling and signs for storage tanks and storage areas shall comply with sections 5704.2.3.1 and 5704.2.3.2. (Verified At Inspection)

Label the used oil tank and tank oil system, including the storage areas with NFPA 704 Placards.

<u>Response:</u> Acknowledged. A note has been added for the GC to provide this placard per NFPA 704 for both new and used oil storage locations.

Thank you for your time and consideration. If you have any further comments, please do not hesitate to contact me at (918) 587-8602, ext. 341 or via e-mail at oliviag@sgadesigngroup.com.

Sincerely,

Olivia Good, Assoc. AIA Project Manager

Olivine S. Good

SGA Design Group

July 24, 2019

Mr. Jason Horowitz GBT Realty 9100 Overbrook Boulevard Brentwood, Tennessee 37027

Re: Geotechnical Engineering Services Report

Proposed Firestone Southwest Market Street Lee's Summit, Missouri

PSI Project Number: 03381947

Dear Mr. Horowitz:

Thank you for choosing Professional Service Industries, Inc. (PSI), an Intertek company, as your consultant for the Proposed Firestone project in Lee's Summit, Missouri. Per your authorization, PSI has completed a geotechnical engineering study for the referenced project. The results of the study are discussed in the accompanying report, two copies of which are enclosed.

Should there be questions pertaining to this report, please contact our office at (913) 310-1600. PSI would be pleased to continue providing geotechnical services throughout the implementation of the project, and we look forward to working with you and your organization on this and future projects.

Respectfully submitted, Professional Service Industries, Inc.

Courtney Dieckmann Project Manager Geotechnical Services

Distribution: (2 hard copies, 1 copy via email)

Kelly E. Rotert, PE, DBIA Vice President

Geotechnical Services Report
Proposed Firestone
Southwest Market Street
Lee's Summit, Missouri
PSI Report No. 03381947
July 24, 2019

Geotechnical Engineering Services Report

for the
Proposed Firestone
Southwest Market Street
Lee's Summit, Missouri

Prepared for

GBT Realty 9100 Overbrook Boulevard Brentwood, Tennessee 37027

Prepared by

Professional Service Industries, Inc. 1211 West Cambridge Circle Drive Kansas City, Kansas 66103

July 24, 2019

PSI Project 03381947

intertek. 051

Darrin Wilson, G.I.T. Project Geologist Geotechnical Services

Courtney Dieckmann, E.I.
Staff Engineer
Geotechnical Services

Reviewed by:
KELLY E.
ROTERT
NUMBER
E-26717
Reviewed by:
Kelly Rotert, P.F., DBIA

Kelly Rotert, P.E., DBIA Vice President Missouri License # EN-026717

Expires: 12/31/2020

The above Professional Engineering Seal and signature is an electronic reproduction of the original seal and signature. An original hard copy was sent to the client listed on this document. This electronic reproduction shall not be construed as an original or certified document.

TABLE OF CONTENTS

PROJECT INFORMATION	1
Project Authorization Project Description Purpose and Scope of Services	1
SITE AND SUBSURFACE CONDITIONS	4
Site Location and Description	
GEOTECHNICAL EVALUATION	8
Geotechnical Discussion Shear Strength and Compressibility of Soil High Plasticity Clay Soil Compaction and Equipment Mobility	38
GEOTECHNICAL RECOMMENDATIONS	9
Site Preparation	
CONSTRUCTION CONSIDERATIONS	
Moisture Sensitive Soils/Weather Related Concerns Drainage and Groundwater Considerations Excavations	
GEOTECHNICAL RISK	
REPORT LIMITATIONS	19

LIST OF APPENDICES

Appendix A - Topographic Map

Appendix B - Site Vicinity Map

Appendix C - Boring Location Plan

Appendix D - Boring Logs

Appendix E - General Notes/Soil Classification Chart

Appendix F - Drilled, Field and Lab Testing Procedures

Appendix G - Laboratory Data

PROJECT INFORMATION

Project Authorization

The following table summarizes, in chronological order, the Project Authorization History for the services performed and represented in this report by Professional Service Industries, Inc. (PSI).

PROJECT TITLE: PROPOSED FIRESTONE				
Document and Reference Number	Date	Requested/Provided By		
Request for Proposal	7/02/19	Jason Horowitz of GBT Realty		
PSI Proposal Number: 03381947	7/05/19	Darrin Wilson and Kelly Rotert of PSI		
Notice to Proceed	7/09/19	Jason Horowitz of GBT Realty		

Project Description

PSI understands that the project includes construction of a new approximately 6,100 square foot in plan area Firestone location. The building will be a single-story, rectangular-shaped wood frame structure without a basement. The building will be located within the central portion of the site and will have paved parking on the north and west sides

The following table lists the material and information provided for this project:

DESCRIPTION OF MATERIAL	PROVIDER/SOURCE	DATED
Lee's Summit, MO - 04-28-19 - Draft	GBT Realty Corp	04/28/19
Lee's Summit, MO - 04-28-19 - Draft2	GBT Realty Corp	04/28/19

The following table lists the structural loads and site features that are required for or are the design basis for the conclusions of this report:

STRUCTURAL LOAD/PROPERTY	REQUIREMENT/REPORT BASIS			
	BUILDING	R*	В*	
Maximum Column Loads	50 kips		Χ	
Maximum Wall Loads	3.0 kips		Х	
Finish Floor Elevation and type	Grade-supported Slab		Х	
Maximum Floor Loads	150 psf		Х	
Settlement Tolerances	1-inch total, ¾ inch differential		Х	
PAVEMENTS				
Pavement 18-kip ESAL (cycle & duration)	Light – 30,000 ESAL Heavy – 60,000 ESAL; with a life expectancy of 20 years		Х	
GRADING				
Planned grade variations at site	Up to 3 feet		Х	

^{*&}quot;R" = Requirement indicates specific design information was supplied.

^{*&}quot;B" = Report Basis indicates specific design information was not supplied; therefore, this report is based on this parameter.

The following image of the site plan was provided to PSI for the preparation of this project:

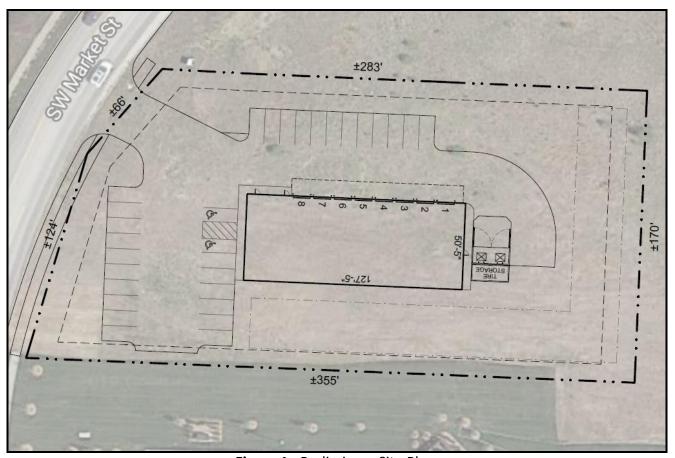
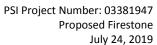


Figure 1. Preliminary Site Plan


The geotechnical recommendations presented in this report are based on the available project information and the subsurface materials described in this report. If the noted information is incorrect, please inform PSI in writing so that we may amend the recommendations presented in this report if appropriate and if desired by the client. PSI will not be responsible for the implementation of its recommendations when it is not notified of changes in the project.

Purpose and Scope of Services

The purpose of this study was to explore the subsurface conditions within the site to evaluate and provide recommendations for site preparation and grading and for design of foundation and pavement section systems for the proposed construction. PSI's contracted scope of services included drilling eight (8) soil test borings at the site to depths of about 10 feet to 20 feet below the ground surface, select laboratory testing, and preparation of this geotechnical report. This report briefly outlines the testing procedures, presents available project information, describes the site and subsurface conditions, and presents recommendations regarding the following:

- A summary of the project information
- A summary description of the site and subsurface conditions
- An evaluation of the data as it relates to the proposed site development

Page 3

- Recommendations for site preparation, including placement and compaction of fill soils
- Geotechnical recommendations to support foundations and floor slabs
- Recommendations for light and heavy-duty pavement section thicknesses
- Recommendations for site coefficient for use in seismic design (IBC 2012)
- Comments and recommendations relating to other observed geotechnical conditions which could impact construction and site development
- Recommended frost depth for foundations
- Groundwater levels encountered
- Recommendations and treatments of expansive soils if encountered

The scope of services did not include an environmental assessment for determining the presence or absence of wetlands, or hazardous or toxic materials in the soil, bedrock, surface water, groundwater, or air on, below, or around this site. Any statements in this report or on the boring logs regarding odors, colors, and unusual or suspicious items or conditions are strictly for informational purposes. PSI's scope also did not provide any service to investigate or detect the presence of moisture, mold or other biological contaminants in or around any structure, or any service that was designed or intended to prevent or lower the risk of the occurrence or the amplification of the same. Client should be aware that mold is ubiquitous to the environment with mold amplification occurring when building materials are impacted by moisture.

SITE AND SUBSURFACE CONDITIONS

Site Location and Description

The site for the Proposed Firestone project is located on Southwest Market Street in Lee's Summit, Missouri. The site is located approximately 500 feet north-northwest of the intersection of Highway 150 and Southwest Market Street. The property is bordered by Southwest Market Street to the north and west, Quick Trip to the south, and Highway 291 exit ramp to the east. At the time of drilling, the site was covered with grass. The site had no visual difference in elevation. The site latitude and longitude are approximately 38.8540° and -94.3785°, respectively. The following is an aerial image from 2018 and generally illustrates the site conditions at the time of drilling:

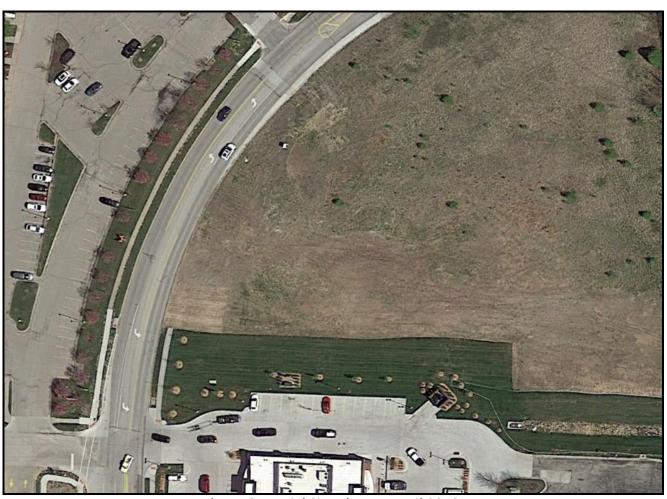


Figure 2. Aerial Site Photo - April 2018

Site History (Timeline)

Based on historical images obtained from Google Earth^{TM,} the site was used primarily for agricultural purposes going back to at least March 1990. Southwest Market Street was constructed on the west edge of the site and the Quick Trip was built to the south between February 1996 and April 2002.

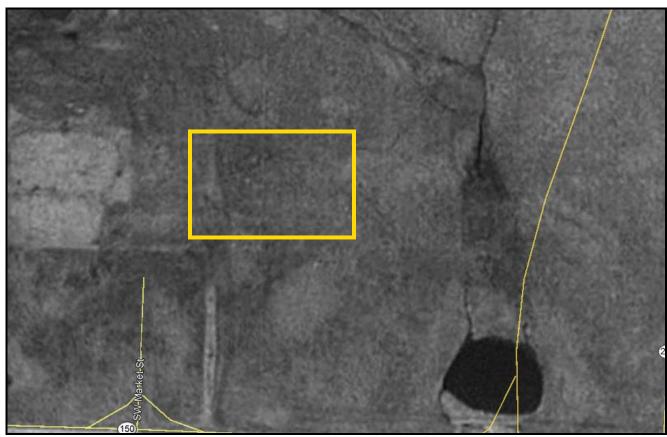


Figure 3. Historical Aerial Site Photo – March 1990

Geology

According to the Missouri Department of Natural Resources - 2003 Geologic Map of Missouri, the bedrock of the subject area belongs to the Kansas City Group, which consists of cyclic deposits of shale, sandstone, siltstone, clay and limestone with several significant coal beds.

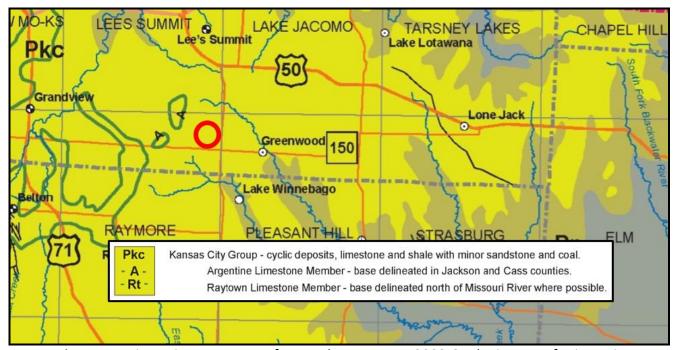


Figure 4. Missouri Department of Natural Resources - 2003 Geologic Map of Missouri

Exploration Procedures and Subsurface Conditions

The soil borings were performed with a truck-mounted rotary head drill rig and were advanced using 3½-inch inside diameter hollow-stem augers. Representative samples were obtained employing split-spoon and thin-wall tube sampling procedures in general accordance with ASTM procedures. The laboratory testing program was conducted in general accordance with applicable ASTM specifications. The results of these tests are to be found on the accompanying boring logs located in the Appendix.

Subsurface Conditions

The site subsurface conditions were explored with eight (8) soil test borings. Five (5) of these borings were drilled within the proposed building area and three (3) borings were drilled within parking and drive areas. Building boring depths ranged from 13½ feet to 20 feet and pavement borings were drilled to depths of 10 feet.

The boring locations and depths were suggested by PSI and reviewed with the client prior to drilling. PSI personnel staked the borings in the field by measuring distances from available surface features. PSI also recorded the boring locations with a hand-held GPS unit and these coordinates can be found on the individual boring logs attached in the appendix of this report.

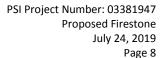
An organic layer was encountered at the surface of the borings. In general, the thickness of the organic layer was approximately 6 inches. The soils encountered at the eight (8) borings beneath the organic layer primarily included fine-grained soils that extended to the terminal depths of the borings.

The following table briefly summarizes the range of results from the field and laboratory testing programs. Please refer to the attached boring logs and laboratory data sheets for more specific information:

PROPOSED FIRESTONE	Ţ		RA	NGE OF PRO	PERTY VALU	JES	
LEE'S SUMMIT, MISSOURI SOIL STRATA TYPE	Approximate Depths Encountered (ft.)	Standard Penetration, N ₆₀	Moisture Content, %	Dry Unit Weight, pcf	Unconfined Compressive Strength, Qu	Liquid Limit, %	Plastic Limit, %
High Plasticity Clay	0-3	9-11	23-30	103	3.0	79-85	23-24
Low Plasticity Clay	3-14½	7-18	17-31	99 - 106	1.7 - 3.0	42	17
Weathered Shale	13½-20	18-SSR	25				

SSR = Split spoon refusal

Auger refusal materials were encountered within 4 of the 8 borings at depths ranging from about 13½ feet at boring B-05 to 16 feet at borings B-03 and B-04. Refusal is a designation applied to materials that cannot be further penetrated by the power auger with ordinary effort and is normally indicative of a very hard or very dense material, such as boulders or gravel lenses or the upper surface of bedrock. In addition to the refusal materials, weathered rock layers were encountered above the refusal materials at borings B-02 and B-03. Rock coring was beyond the scope of this exploration; therefore, the character and continuity of the refusal materials could not be determined.


Split spoon refusal materials were encountered with the borings. Split spoon refusal materials are defined as materials that cannot be penetrated with a standard split spoon using ordinary effort (greater than 50 blows per 6 inches). These materials were encountered in borings B-01 and B-03 at depths ranging from 13 to 14½ feet.

The above subsurface description is of a generalized nature to highlight the major subsurface stratification features and material characteristics. The boring logs included in the Appendix should be reviewed for specific information at individual boring locations. These records include soil/rock descriptions, stratifications, penetration resistances, and locations of the samples and laboratory test data. The stratifications shown on the boring logs represent the conditions only at the actual boring locations. Variations may occur and should be expected between boring locations. The stratifications represent the approximate boundary between subsurface materials and the actual transition may be gradual. Water level information obtained during field operations is also shown on these boring logs. The samples that were not altered by laboratory testing will be retained for sixty (60) days from the date of this report and then will be discarded.

Water Level Measurements

Free groundwater was not observed in the borings upon completion, indicating that groundwater at the site at the time of the exploration was either below the terminated depths of the borings, or that the soils encountered are relatively impermeable. Although free water was not encountered at this time, water can be present within the depths explored during other times of the year depending upon climatic and rainfall conditions. Additionally, discontinuous zones of perched water may exist within the overburden materials and/or at the contact with bedrock. The water level measurements presented in this report are the levels that were measured at the time of PSI's field activities.

GEOTECHNICAL EVALUATION

Geotechnical Discussion

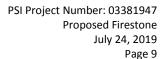
There are 3 primary geotechnical characteristics at this site, which will affect the selection and performance of the foundations for this structure and the development of the site. The following summarizes those concerns:

- 1. The shear strength and compressibility of the upper soils will control the behavior of the proposed structure.
- 2. High plasticity "fat" clays were encountered in the exploration that could require remediation.
- 3. Drying of some of the on-site soils may be required to achieve proper compaction during grading.

Shear Strength and Compressibility of Soil

The primary geotechnical property controlling the bearing capacity and compressibility of the soils bearing the applied loads is the shear strength of the clay soil. Based on 2 feet of cut or fill and a shallow foundation bearing at a depth of 3 feet below exterior or adjacent grades, the applied foundation load on a shallow foundation up to 4 feet wide will be distributed through the 8 to 12 feet of soil generally beneath the footing. PSI believes the shear strength of the soils in this zone ranges from 1,500 psf to 1,800 psf, with shear strength exceeding 2,500 psf in the shale and auger refusal materials. PSI anticipates that an engineered fill placed as recommend in this report would have a minimum shear strength of 1,800 psf. This shear strength is considered "undrained" or a "total stress" parameter and will be used in conjunction with other physical and geometric parameters to calculate an allowable bearing capacity.

High Plasticity Clay


High plasticity "fat" clays are present in the project area that may expand and shrink thereby impacting the proposed construction. Where these soils are within about two feet of lightly loaded structural features or slabs and 1 foot of pavements, remediation is recommended, or class "C" fly ash or lime-treatment of the high plastic clays can be performed. Class "C" fly ash or lime-treatment of the high plastic clay would reduce the plasticity index, improve workability, promote drying, and reduce shrink/swell potential. Lightly loaded structures are defined as having normal operating loads of less than 2 kips per linear foot for walls and 50 kips for columns. Fat clays have the potential for volume change with changes in the soil moisture content. In severe cases, movement and distress to footings and foundation walls can occur, although a severe case is not obviously apparent at this site. Remedial measures are recommended in select areas of the site to reduce the shrink/swell potential. Grading the subgrade to drain and not trap water below the slabs and pavements is recommended to further reduce the potential of distress from these soils.

Soil Compaction and Equipment Mobility

Since the surface soils at the site predominantly consist of high moisture content clay soils and high plasticity clays, it may become difficult to achieve the desired compaction of the soils due to high current moisture contents. After stripping activities, the surface soils may also not pass a proof roll in their high moisture content state. The soils may need to be scarified and dried to a moisture content that will facilitate compaction in accordance with the structural fill requirements of this report. If scarifying, drying and recompacting of the soils does not stabilize the soils, removing and replacement with new structural fill or treating the soils with class "C" fly ash or lime-treatment of the clay soils may need to be performed.

If the upper materials are removed and the underlaying soils are exposed, these soils may be wet, and potentially moisture sensitive. PSI has been involved with projects in this region where these soils can undergo a loss of stability during wetter portions of the year. PSI anticipates that these soils at their current moisture

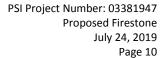
levels will become easily disturbed if subjected to conventional rubber tire or narrow track-type equipment resulting in a loss of strength and characteristic "pumping". Soils that become disturbed would need to be excavated and replaced; however, this remedial excavation may expose progressively wetter soils with depth, thus compounding the condition. Thus, a normal approach to subgrade preparation may not be possible.

Depending on weather and soil conditions at the time of construction, methods for accomplishing grading may include the use of wide-track, low-contact-pressure type equipment to perform the recommended site grading. The determination of the proper equipment for use in excavation would be dependent on the condition of the soils at the time of construction and the prevailing weather conditions. Narrow track equipment and rubber-tired vehicles may experience difficulty moving about the site and may deteriorate otherwise suitable soils.

GEOTECHNICAL RECOMMENDATIONS

The following geotechnical related recommendations have been developed on the basis of the subsurface conditions encountered and PSI's understanding of the proposed development. Should changes in the project criteria occur, a review must be made by PSI to determine if modifications to our recommendations will be required.

Site Preparation


PSI recommends that topsoil, vegetation, roots, soft, organic, frozen, or unsuitable soils in the construction areas be stripped from the site and either wasted or stockpiled for later use in non-structural areas. A representative of the geotechnical engineer should evaluate and document the required depth of removal at the time of construction.

In this region, these otherwise competent silts and lean clays can undergo a significant loss of stability when construction activities are performed during wetter portions of the year. PSI anticipates that the soils in the project area can become easily disturbed if subjected to conventional rubber tire or narrow track-type equipment. Soils that become disturbed would need to be excavated and replaced; however, this remedial excavation may expose progressively wetter soils with depth, thus compounding the problem condition. Thus, a normal approach to subgrade preparation may not be possible. Appropriate wide-track equipment selection should aid in minimizing potential disturbance.

It is likely that stripping and excavating to the proposed subgrade level will require the use of wide-track or other equipment that has a low contact pressure on the subgrade. Otherwise, the soils at the excavation bottom may become disturbed and additional excavation would be recommended.

After stripping to the proposed subgrade level, as required, the building area and parking area should be proof rolled with a loaded tandem axle dump truck or similar heavy rubber-tired vehicle (typically with an axial load greater than nine (9) tons). Soils that are observed to rut or deflect excessively (typically greater than one (1) inch) under the moving load should be undercut and replaced with properly compacted low plasticity fill material. The proof-rolling and undercutting activities should be witnessed by a representative of the geotechnical engineer and should be performed during a period of dry weather. Care should be taken during construction activities not to allow excessive drying or wetting of exposed soils. The subgrade soils should be scarified and compacted to at least 95% of the materials' standard Proctor maximum dry density, in general accordance with ASTM procedures, to a depth of at least twelve (12) inches below the surface. New fill for building structures, asphalt, and concrete should not be placed on frozen ground.

High plasticity fat clays should be removed where they are present within a depth of two (2) feet beneath proposed slabs or lightly loaded structural features. This material should be replaced with a low plasticity compacted soil, a dense positively drained graded crushed stone or class "C" fly ash or lime-treatment of the high plastic clays can be performed. Class "C" fly ash or lime-treatment of the high plastic clay would reduce the plasticity index, improve workability, promote drying, and reduce shrink/swell potential. A representative of PSI's geotechnical engineer should observe the subgrade soils, perform plasticity index tests, and estimate the approximate extent of the exposed fat clays. If it is desirable to modify the fat clays with a commercially available class "C" fly ash or lime product, PSI recommends that actual application amounts be set by conducting a laboratory class "C" fly ash or lime series test. However, for preliminary purposes, the amount of class "C" fly ash will likely range from 10 to 15 percent by weight. There are many variables including water and soils chemistry and the variable nature of class "C" fly ash. Therefore, a laboratory test is recommended. The geotechnical engineer's representative should observe the remediation procedures for compliance with the project plans and specifications.

Moisture content changes, typically either higher than 3% above the plastic limit or lower than the plastic limit, in the highly plastic soils should not be permitted during or after construction. Increases in moisture content can cause swelling of the high plasticity soils during construction and increase shrinkage potentials due to drying after construction. If the exposed fat clays become inundated or desiccated, PSI recommends they be removed prior to new fill placement. Ideally, excavation should be performed during a period of dry weather.

After subgrade preparation and observation have been completed, fill placement required to establish grade may begin. Low-plasticity structural fill materials placed beneath the lightly loaded structural features or slabs should be free of organic or other deleterious materials and have a maximum particle size of less than three (3) inches. Low-plasticity soils are defined as having a liquid limit less than forty-five (45) and plasticity index less than twenty-five (25). Some of the on-site low plasticity clay soils are suitable for use as structural fill, but some moisture conditioning, such as scarifying and drying, may be needed to achieve compaction. Some of the on-site high plasticity fat clay soils may be utilized as fill material to within 2 feet below the final subgrade for lightly loaded structures and building slabs. If high plasticity fat clays are utilized as fill, they should have a liquid limit no greater than seventy-five (75) and a plasticity index no greater than forty-five (45). A representative of PSI should be on-site to observe, test, and document the placement of the fill. If the fill is too dry, water should be uniformly applied and thoroughly mixed into the soil by disking or scarifying. Close moisture content control will be required to achieve the recommended degree of compaction. It should be noted that high plasticity clays are typically more difficult to compact and achieve the optimum moisture content during the placement of fill.

Highly permeable fill such as sand or clean stone used on this site should be given careful consideration. These highly permeable materials should not be placed within three (3) feet of fat clays. Even though the excavation may be dry, and no groundwater is anticipated, these highly permeable pockets will eventually collect water through condensation and therefore promote soil swelling and heaving. If permeable fill is used, it is strongly recommended that the surface where the permeable fill is placed be graded in a manner to drain without pocketing water and be drained through the use of drain tile or other appropriate means.

Fill should be placed in maximum loose lifts of eight (8) inches and compacted to at least 95% of the materials' standard Proctor maximum dry density, and within a range of the optimum moisture content as designated in the table below, as determined in general accordance with ASTM procedures. Each lift of compacted-engineered fill should be tested and documented by a representative of the geotechnical engineer prior to placement of subsequent lifts. The edges of compacted fill should extend a minimum of five (5) feet beyond the building footprint, or a distance equal to the depth of fill beneath the footings, whichever is greater. The measurement should be taken from the outside edge of the footing to the toe of the excavation prior to sloping.

The fill placed should be tested and documented by a geotechnical technician and directed by a geotechnical engineer to evaluate the placement of fill material. It should be noted that the geotechnical engineer of record can only certify the testing that is performed, and the work observed by that engineer or staff in direct report to that engineer. The fill should be evaluated in accordance with the following table:

MATERIAL TESTED	PROCTOR TYPE	MIN % DRY DENSITY	PLACEMENT MOISTURE CONTENT RANGE	FREQUENCY OF TESTING *1
Structural Lean Clay Fill* (Cohesive)	Standard	95%	-1 to +3 %	1 per 2,500 ft ² of fill placed / lift
Structural Fat Clay Fill* (Cohesive)	Standard	95%	0 to +3%	1 per 2,500 ft ² of fill placed / lift
Structural Fill (Granular)*	Standard	95%	-2 to +2 %	1 per 2,500 ft ² of fill placed / lift
Random Fill (non-load bearing)	Standard	90%	-3 to +3 %	1 per 6,000 ft ² of fill placed / lift
Utility Trench Backfill	Standard	95%	-1 to +2 %	1 per 150 lineal foot / lift

^{*}Structural Fill is defined as fill beneath or supporting any improvements on site such as foundation, slabs, pavements, etc.

The test frequency for the laboratory reference should be one laboratory Proctor or Relative Density test for each material used on the site. If the borrow or source of fill material changes, a new reference moisture/density test should be performed.

Tested fill materials that do not achieve either the required dry density or moisture content range shall be recorded, the location noted, and reported to the Contractor and Owner. A re-test of that area should be performed after the Contractor performs remedial measures.

High Plasticity Clay Considerations

Due to the presence of high plasticity clays, consideration should be given to measures that can reduce the long term shrink/swell potential of the clay soils. High plasticity clays expand or shrink by absorbing or losing moisture; therefore, reducing the moisture content variation of a soil will reduce its volume change. Although it is not possible to prevent soil moisture changes, a number of steps may be taken to aid in the reduction of subsoil moisture content variations. These steps are intended to help reduce the shrink/swell potential, not eliminate it. Some of these measures are:

- 1. During construction, a positive drainage scheme should be implemented and maintained to prevent ponding of water on subgrades.
- 2. The building subgrade should not be allowed to dry out; backfill should proceed as soon as possible to minimize changes in the natural moisture regime.

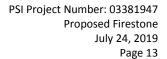
^{*1} Minimum 3 per lift.

- 3. Permanent positive drainage should be maintained around the building through a roof/gutter system connected to drainage piping or discharging upon paved surfaces, thereby transmitting water away from the foundation perimeter. In addition, site grading should provide rapid drainage of surface water away from foundation areas.
- 4. Utility trenches should be backfilled with low plasticity clays or lean concrete to reduce the potential of the trenches to act as aqueducts transmitting water beneath the structures due to excess surface water infiltration.
- 5. Shrubbery, flower beds and sprinkler systems surrounding the structures should be eliminated or at least limited and should be designed so that the bedding soils drain away from the building areas. The planters should have impermeable bases with weep holes discharging into drainage pipes or onto paved surfaces.
- 6. Trees and/or large bushes should not be planted adjacent to the structures.
- 7. Since plumbing and other water leaks can cause excessive heaving of high plasticity soils, every effort should be made to maintain the plumbing in good working order and prevent or minimize water leaks and discharges. It is recommended that all water supply lines, and wastewater lines be tested for leaks prior to backfilling the utility trenches.

Foundation Recommendations

The planned construction can be supported on conventional spread-type footing foundations bearing on either competent naturally deposited soils or compacted-engineered fill. Spread footings for building columns and continuous footings for bearing walls can be designed for allowable soil bearing pressures of 3,000 psf and 2,500 psf, respectively, based on dead load plus design live load. PSI recommends a minimum dimension of 24 inches for square footings and 18 inches for continuous footings to reduce the possibility of a local bearing capacity failure.

Exterior footings and footings in unheated areas should be located at a depth of thirty-six (36) inches or deeper below the final exterior grade to provide adequate frost protection. If the building is to be constructed during the winter months or if footings will likely be subjected to freezing temperatures after foundation construction, then the footings should be protected from freezing. PSI recommends that interior footings be a minimum depth of eighteen (18) inches below the finished floor elevation.


Based on the known subsurface conditions and site geology, laboratory testing and past experience, PSI anticipates that properly designed and constructed footings supported on the recommended materials should experience total and differential settlement between adjacent columns of less than one (1) inch and ¾ inch, respectively.

Be advised that as a part of the foundation selection process, there is a cost/benefit evaluation. Although PSI is recommending a specific foundation type, we have not accomplished the cost/benefit evaluation.

Footing Excavations and Backfilling

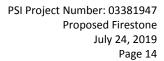
It is recommended that PSI personnel evaluate the soils conditions at and below footing grade at the time the excavations are performed. If unsuitable materials (such as, soft to medium stiff cohesive soils, loose granular soils that cannot be densified, or debris/organic laden fill materials) are encountered below the design bottom of footing elevation, the footing excavations should be extended deeper to reach adequate bearing soils or an overexcavation and backfill procedure could be performed with lean clay, lean concrete or

compacted granular fill to the design bearing elevation. If lean concrete (minimum f'_c = 1500 psi) is used, the excavation should be widened at least 6 inches from all edges of the design footing width. For the overexcavation and either lean clay or granular backfill options, we recommend the excavation extend laterally at least 8 inches beyond all edges of the footing for each 12 inches of additional excavation required below foundation design elevation. The overexcavation should then be backfilled up to design elevation. The backfill materials should be compacted to at least 95 percent of the material's maximum dry density per ASTM D698.

The foundation excavations should be observed and documented by a representative of PSI prior to steel or concrete placement to assess that the foundation materials are consistent with the materials discussed in this report, and therefore are capable of supporting the design loads. Soft or loose soil zones encountered at the bottom of the footing excavations should be removed to the level of competent naturally deposited soils or properly compacted structural fill as directed by the geotechnical engineer. Cavities formed as a result of excavation of soft or loose soil zones should be backfilled with lean concrete or dense graded compacted crushed stone.

After opening, footing excavations should be observed and concrete placed as quickly as possible to avoid exposure of the footing bottoms to wetting and drying. Surface run-off water should be drained away from the excavations and not be allowed to pond. If possible, the foundation concrete should be placed during the same day the excavation is made. If it is required that footing excavations be left open for more than one day, they should be protected to reduce evaporation or entry of moisture.

Earthquake and Seismic Design Consideration


The 2012 International Building Code (IBC) requires that a site class be determined for the calculation of earthquake design forces in structures. The site class designation is a function of soil type (i.e., depth of soil and strata types). Based on PSI's borings and experience in this area, Site Class "C" is recommended. The USGS-NEHRP probabilistic ground motion values interpolated between the nearest four grid points from latitude 38.8540°, and longitude -94.3785° are as follows:

Period (seconds)	2% Probability of Event in 50 years (%g)	Site Coefficients	Max. Spectral Acceleration parameters	•	al Acceleration neters
0.2 (S _s)	11.4	F _a = 1.2	$S_{ms} = 0.137$	S _{Ds} = 0.091	$T_0 = 0.17$
1.0 (S ₁)	6.7	F _v = 1.7	$S_{m1} = 0.114$	S _{D1} = 0.076	$T_s = 0.84$
			$S_{ms} = F_a S_s$ $S_{m1} = F_v S_1$	$S_{Ds} = \frac{2}{3} * S_{ms}$ $S_{D1} = \frac{2}{3} * S_{m1}$	$T_0 = 0.2*S_{D1}/S_{Ds}$ $T_s = S_{D1}/S_{Ds}$

The Site Coefficients, F_a and F_v were interpolated for IBC 2012 Tables 1613.3.3(1) and 1613.3.3(2) as a function of the site classifications and the mapped spectral response acceleration at the short (S_s) and 1-second (S_1) periods.

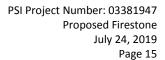
Based on the Spectral Acceleration values for this site, structures with a Risk Category of I, II, and III (Table 1604.5) should be designed as a Seismic Design Category B as defined in Tables 1613.3.5(1) and 1613.3.5(2). Structures with a Risk Category IV should be designed as a Seismic Design Category C. The Risk Category is based on the nature of the occupancy of the structure and is typically determined by the design team (Architect/Structural Engineer) or building official. The determination of the Risk Category is beyond PSI's scope of service.

According to IBC 2012, Section 1803.5.11 requires that sites with a Seismic Design Categories C through F be evaluated for slope instabilities, liquefaction, surface rupture due to faulting or lateral spreading and estimates on the differential settlement. A detailed study of these effects was beyond PSI's scope of services. However, the following table presents a qualitative assessment of these issues considering the site class, the subsurface soil properties, the groundwater elevation, and probabilistic ground motions:

HAZARD	RELATIVE RISK	COMMENTS	
Slope Stability	Low	The site is relatively flat and does not/will not incorporate significant	
		cut or fill slopes	
Liquefaction	Low	The soil within the upper 20 feet of the subsurface profile is a	
		relatively dense and/or cohesive soil	
Settlements	Low	Based on the cohesive nature of the soils, the excess pore pressures	
		generated by a seismic event should not induce a significant	
Surface Rupture	Low	The site is not underlain by a mapped Holocene-aged fault	

Floor Slab Recommendations

The floor slab can be grade supported on naturally occurring low plasticity soil, or a minimum of twenty-four (24) inches of properly compacted low plasticity structural fill. Alternatively, class "C" fly ash or lime-treatment of the high plastic clay can be accomplished to reduce the plasticity index, improve workability, promote drying, and reduce shrink/swell potential. Proof-rolling, as discussed earlier in this report, should be accomplished to identify soft or unstable soils that should be removed from the floor slab area prior to fill placement and/or floor slab construction. These soils should be replaced with properly compacted structural fill as described earlier in this report. Fat clays below floor slabs should be remediated, as discussed earlier.


PSI recommends that a minimum four (4) inch thick free-draining granular mat be placed beneath the floor slab to enhance drainage. This 4-inch mat can be included in the 24 inches of remediation recommended in the areas of fat clay. The soil surface shall be graded to drain away from the building without low spots that can trap water prior to placing the granular drainage layer. Polyethylene sheeting should be placed to act as a vapor retarder where the floor will be in contact with moisture sensitive equipment or products such as tile, wood, carpet, etc., as directed by the design professional. The decision to locate the vapor retarder in direct contact with the slab or beneath the layer of granular fill should be made by the design professional after considering the moisture sensitivity of subsequent floor finishes, anticipated project conditions, and the potential effects of slab curling and cracking. The floor slabs should have an adequate number of joints to reduce cracking resulting from differential movement and shrinkage.

For subgrade prepared as recommended and properly compacted fill, a modulus of subgrade reaction, *k* value, of 140 pounds per cubic inch (pci) may be used in the grade slab design based on correlation to values typically resulting from a 1 ft. x 1 ft. plate load test. However, depending on how the slab load is applied, the value will have to be geometrically modified. Where slab loading is distributed over more than a 1 foot by 1-foot area, the value k should be adjusted for larger areas using the following expression for cohesive and cohesionless soil:

Modulus of Subgrade Reaction,
$$k_s = (\frac{k}{B})$$
 for cohesive soil and $k_s = k(\frac{B+1}{2B})^2$ for cohesionless soil

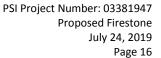
Where: k_s = coefficient of vertical subgrade reaction for loaded area,

k = coefficient of vertical subgrade reaction for 1 square foot area, and

B = effective width of area loaded, in feet

The precautions listed below should be followed for construction of slab-on-grade pads. These details will not reduce the amount of movement but are intended to reduce potential damage should some settlement of the supporting subgrade take place. Some increase in moisture content is inevitable as a result of development and associated landscaping. However, extreme moisture content increases can be largely controlled by proper and responsible site drainage, building maintenance and irrigation practices.

- Cracking of slab-on-grade concrete is normal and should be expected. Cracking can occur not only as a result of heaving or compression of the supporting soil and/or bedrock material, but also as a result of concrete curing stresses. The occurrence of concrete shrinkage crack, and problems associated with concrete curing may be reduced and/or controlled by limiting the slump of the concrete, proper concrete placement, finishing, and curing, and by the placement of crack control joints at frequent intervals, particularly where re-entrant slab corners occur. The American Concrete Institute (ACI) recommends a maximum panel size (in feet) equal to approximately three times the thickness of the slab (in inches) in both directions. For example, joints are recommended at a maximum spacing of twelve (12) feet based on having a four-inch slab. PSI also recommends that the slab be independent of the foundation walls. Using fiber reinforcement in the concrete can also control shrinkage cracking.
- Areas supporting slabs should be properly moisture conditioned and compacted. Backfill in all interior and
 exterior water and sewer line trenches should be carefully compacted to reduce the shear stress in the
 concrete extending over these areas.


Exterior slabs should be isolated from the building. These slabs should be reinforced to function as independent units. Movement of these slabs should not be transmitted to the building foundation or superstructure.

Utilities Trenching

Excavation for utility trenches shall be performed in accordance with OSHA regulations as stated in 29 CFR Part 1926. It should be noted that utility trench excavations have the potential to degrade the properties of the adjacent fill materials. Utility trench walls that are allowed to move laterally can lead to reduced bearing capacity and increased settlement of adjacent structural elements and overlying slabs.

Backfill for utility trenches is as important as the original subgrade preparation or structural fill placed to support either a foundation or slab. Therefore, it is imperative that the backfill for utility trenches be placed to meet the project specifications for the structural fill of this project. PSI recommends that flowable fill or lean mix concrete be utilized for utility trench backfill. If on-site soils are placed as trench backfill, the backfill for the utility trenches should be placed in four (4) to six (6) inch loose lifts and compacted to a minimum of 95% of the maximum dry density achieved by the standard Proctor test. The backfill soil should be moisture conditioned to be within 2% of the optimum moisture content as determined by the standard Proctor test. Up to four (4) inches of bedding material placed directly under the pipes or conduits placed in the utility trench can be compacted to the 90% compaction criteria with respect to the standard Proctor. Compaction testing should be performed for every 200 cubic yards of backfill place or each lift within 200 linear feet of trench, whichever is less. Backfill of utility trenches should not be performed with water standing in the trench. If granular material is used for the backfill of the utility trench, the granular material should have a gradation that will filter protect the backfill material from the adjacent soils. If this gradation is not available, a geosynthetic non-woven filter fabric should be used to reduce the potential for the migration of fines into the backfill material. Granular backfill material shall be compacted to meet the above compaction criteria. The clean granular backfill material

should be compacted to achieve a relative density greater than 75% or as specified by the geotechnical engineer for the specific material used.

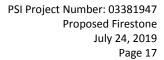
Pavement Recommendations

PSI's scope of services did not include extensive sampling and CBR testing of existing subgrade or potential sources of imported fill for the specific purpose of detailed pavement analysis. Instead, this report is based on pavement-related design parameters that are considered to be typical for the area soils types.

Pavement sections can be grade supported on a minimum of twelve (12) inches of properly structural fill. Proof-rolling, as discussed earlier in this report, should be accomplished to identify soft or unstable soils that should be removed from the pavement area prior to fill placement and/or pavement construction. These soils should be replaced with properly compacted structural fill as described earlier in this report.

Pavement sections were evaluated using Pavement Assessment Software (PAS), which is based on the 1993 AASHTO Design equations, a reliability of 80%, an annual growth rate of 2%, and a 20 year equivalent 18-kip single axle load (ESAL) of 30,000 for light duty pavements and 60,000 for heavy duty pavements. Flexible Pavements were evaluated based on an initial serviceability of 4.2 and a terminal service of 2.0. Rigid Pavements were evaluated based on an initial serviceability of 4.5, a terminal service of 2.0, an unreinforced concrete mix with a 28-day modulus of rupture of 650 pounds per square inch (psi) (approximately 4,000 psi compressive strength), are to be edge supported, and dowel and mesh reinforced.

In large areas of pavement, or where pavements are subject to significant traffic, a more detailed analysis of the subgrade and traffic conditions should be made. The results of such a study will provide information necessary to design an economical and serviceable pavement.


The recommended thicknesses presented below are considered typical and minimum for the calculated parameters. The client, the owner, and the project principals should be aware that thinner pavement sections might result in increased maintenance costs and lower than anticipated pavement life. The pavement subgrade should be prepared as discussed below.

The PSI recommendation is based on the subgrade soils being prepared to achieve a minimum CBR of three (3). On this basis, it is possible to use a locally typical "standard" pavement section consisting of the following:

RECOMMENDED THICKNESSES (INCHES)					
PAVEMENT MATERIALS * CAR PARKING DRIVEWAYS					
Asphaltic Surface Course	1½	1½			
Asphaltic Binder Course	2	3½			
Crushed stone (3/4-inch minus)	6	6			
Or					
Portland Cement Concrete	5	6			
Crushed stone (3/4-inch minus)	4	4			

^{*}Pavement materials should conform to local and state guidelines, if applicable.

Asphalt Pavement

The granular base course should be built at least two (2) feet wider than the pavement on each side to support the tracks of the slipform paver. This extra width is structurally beneficial for wheel loads applied at the pavement edge. The asphalt base course should be compacted to a minimum of 95% Marshall density according to ASTM D1559.

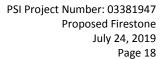
Asphaltic surface mixture should have a minimum stability of 1,800 pounds and the surface course should be compacted to a minimum of 97% Marshall density according to ASTM D1559. Asphalt mixes should comply with APWA or MODOT specifications.

Asphaltic concrete mix designs and Marshall characteristics should be reviewed to determine if they are consistent with the recommendations given in this report.

Portland Cement Concrete Pavement

Because the pavement at this site will be subjected to freeze-thaw cycles, PSI recommends that an air entrainment admixture be added to the concrete mix to achieve air content in the range of 5% to 7% to provide freeze-thaw durability in the concrete. PSI recommends that a Portland cement concrete with a 28-day specified compressive strength of 4,000 psi should be used. A mixture with a maximum slump of four (4) inches is acceptable. If a water reducing admixture is specified, the slump can be higher. It is recommended that admixtures be submitted to the owner in advance of use in the concrete.

Pavement for any dumpster areas or areas subject to consistent heavy loads should be constructed of Portland cement concrete with load transfer devices installed where construction joints are required. A thickened edge is recommended on the outside of slabs subjected to wheel loads. This thickened edge usually takes the form of an integral curb. Fill material should be compacted behind the curb or the edge of the outside slabs should be thickened. The following are recommended to enhance the quality of the pavement.


- Moisten subgrade just prior to placement of concrete.
- Cure fresh concrete with a liquid membrane-forming curing compound.
- Keep automobile traffic off the slab for three (3) days and truck traffic off the slab for seven (7) days, unless tests are made to determine that the concrete has gained adequate strength (i.e., usually 70% of design strength).

Pavement Subgrade Preparation

Prior to paving, the prepared subgrade should be proof rolled using a loaded tandem axle dump truck or similar type of pneumatic tired equipment with a minimum gross weight of nine (9) tons per single axle. Localized soft areas identified should be repaired prior to paving. Moisture content of the subgrade should be maintained between –2% and +3% of the optimum at the time of paving. It may require rework when the subgrade is either desiccated or wet. PSI highly recommends that parking and drive subgrade be sloped in a manner to drain water from under the pavement without pocketing or trapping water beneath the pavement. This grading should be accomplished prior to placing the base aggregate.

Construction traffic should be minimized to prevent unnecessary disturbance of the pavement subgrade. Disturbed areas, as verified by PSI, should be removed and replaced with properly compacted material.

The edges of compacted fill should extend a minimum two (2) feet beyond the edges of the pavement, or a distance equal to the depth of fill beneath the pavement, whichever is greater. The measurement should be taken from the outside edge of the pavement to the toe of the excavation prior to sloping.

Pavement Drainage & Maintenance

PSI recommends pavements be sloped to provide rapid surface drainage. Water allowed to pond on or adjacent to the pavement could saturate the subgrade, cause premature deterioration of the pavements, and may require removal and replacement. PSI recommends the subgrade be sloped to drain prior to placing the crushed stone base. Consideration should be given to the use of interceptor drains to collect and remove water collecting in the crushed stone base. The interceptor drains could be incorporated with the storm drains of other utilities located in the pavement areas.

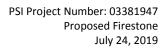
Periodic maintenance of the pavement should be anticipated. This should include sealing of cracks and joints and by maintaining proper surface drainage to avoid ponding of water on or near the pavement areas. Underdrains, sub-drains and underslab drains presented in this report will not prevent moisture vapor that can cause mold growth.

CONSTRUCTION CONSIDERATIONS

PSI should be retained to provide observation and testing of construction activities involved in the foundation, earthwork, and related activities of this project. PSI cannot accept responsibility for conditions that deviate from those described in this report, nor for the performance of the foundation system if not engaged to also provide construction observation and testing for this project.

Moisture Sensitive Soils/Weather Related Concerns

The upper fine-grained soils encountered at this site are expected to be sensitive to disturbances caused by construction traffic and to changes in moisture content. During wet weather periods, increases in the moisture content of the soil can cause significant reduction in the soil strength and support capabilities. In addition, soils that become wet may be slow to dry and thus significantly retard the progress of grading and compaction activities. It will, therefore, be advantageous to perform earthwork and foundation construction activities during dry weather.


Drainage and Groundwater Considerations

PSI recommends that the Contractor determine the actual groundwater levels at the site at the time of the construction activities to assess the impact groundwater may have on construction. Water should not be allowed to collect in the foundation excavation, on floor slab areas, or on prepared subgrades of the construction area either during or after construction. Undercut or excavated areas should be sloped toward one corner to facilitate removal of collected rainwater, groundwater, or surface runoff. Positive site drainage should be provided to reduce infiltration of surface water around the perimeter of the building and beneath the floor slabs. The grades should be sloped away from the building and surface drainage should be collected and discharged such that water is not permitted to infiltrate the backfill and floor slab areas of the building.

Excavations

In Federal Register, Volume 54, Number 209 (October 1989), the United States Department of Labor, Occupational Safety and Health Administration (OSHA) amended its "Construction Standards for Excavations, 29 CFR, part 1926, Subpart P". This document was issued to better enhance the safety of workers entering

Page 19

trenches or excavations. It is mandated by this federal regulation that excavations, whether they be utility trenches, basement excavation or footing excavations, be constructed in accordance with the new OSHA guidelines. It is PSI's understanding that these regulations are being strictly enforced and if they are not closely followed, the owner and the contractor could be liable for substantial penalties.

The contractor is solely responsible for designing and constructing stable, temporary excavations and should shore, slope, or bench the sides of the excavations as required to maintain stability of both the excavation sides and bottom. The contractor's "responsible person", as defined in 29 CFR Part 1926, should evaluate the soil exposed in the excavations as part of the contractor's safety procedures. In no case should slope height, slope inclination, or excavation depth, including utility trench excavation depth, exceed those specified in local, state, and federal safety regulations.

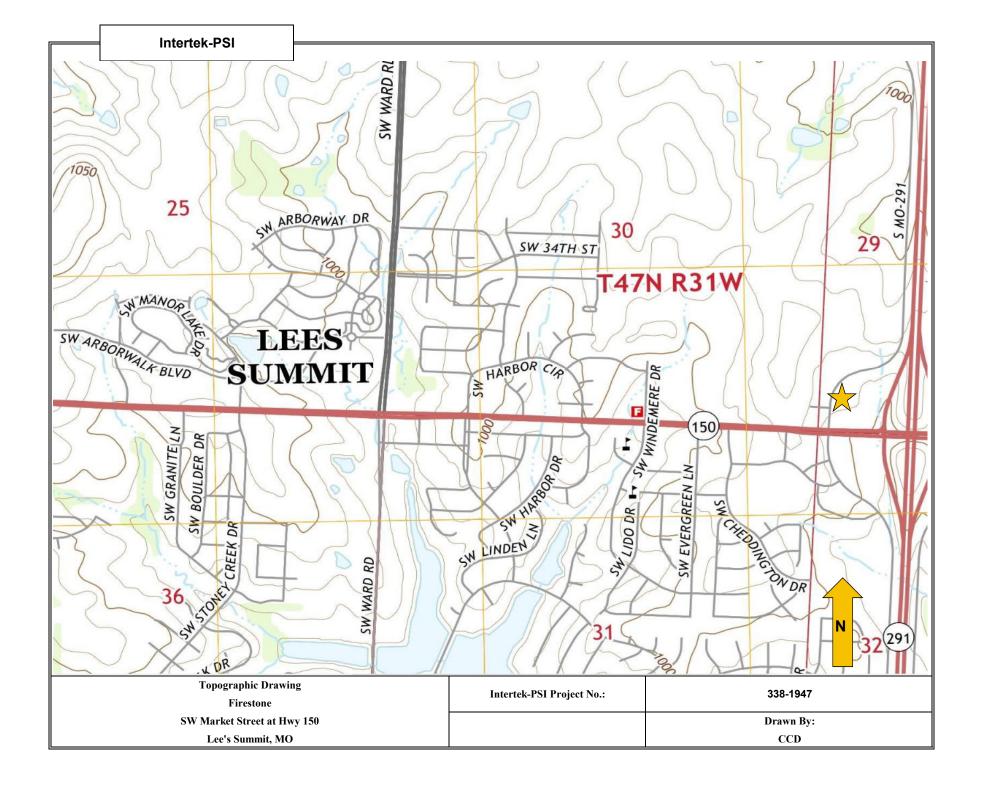
PSI is providing this information solely as a service to our client. PSI does not assume responsibility for construction site safety or the contractor's or other parties' compliance with local, state, and federal safety or other regulations.

GEOTECHNICAL RISK

The concept of risk is an important aspect of the geotechnical evaluation. The primary reason for this is that the analytical methods used to develop geotechnical recommendations do not comprise an exact science. The analytical tools which geotechnical engineers use are generally empirical and must be used in conjunction with engineering judgment and experience. Therefore, the solutions and recommendations presented in the geotechnical evaluation should not be considered risk-free and, more importantly, are not a guarantee that the interaction between the soils and the proposed construction will perform as planned. The engineering recommendations presented in the preceding section constitutes PSI's professional estimate of those measures that are necessary for the proposed improvements to perform according to the proposed design based on the information generated and referenced during this evaluation, and PSI's experience in working with these conditions.

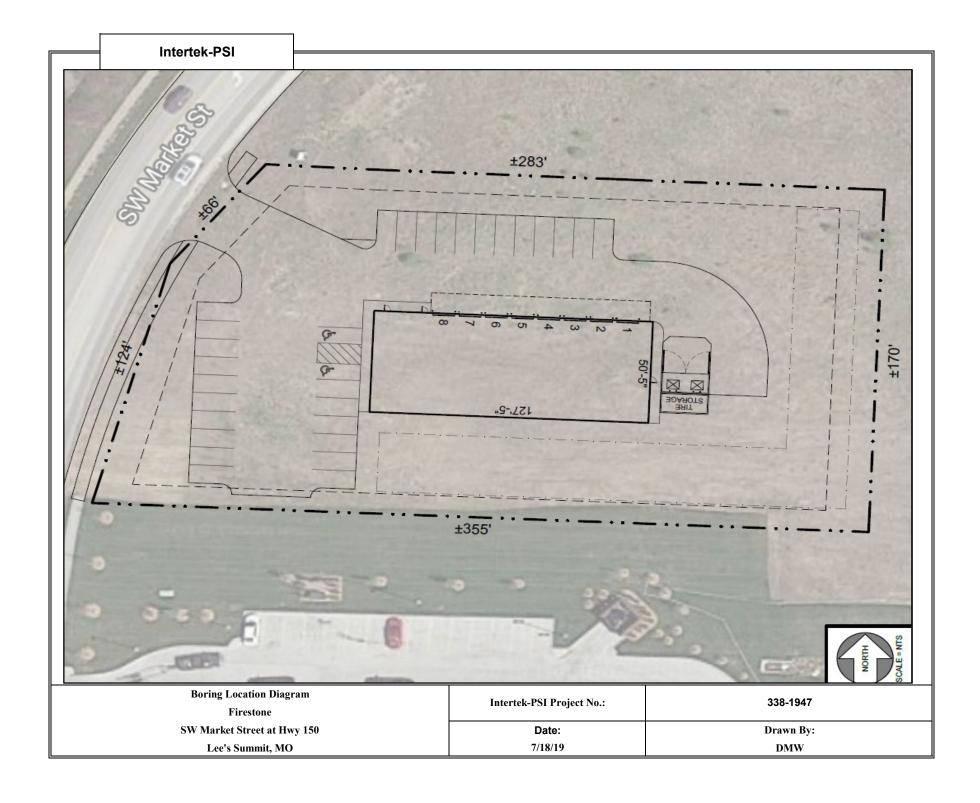
REPORT LIMITATIONS

The recommendations submitted are based on the available subsurface information obtained by PSI and design details furnished by GBT Realty. If there are revisions to the plans for this project or if deviations from the subsurface conditions noted in this report are encountered during construction, PSI should be notified immediately to determine if changes in the recommendations are required. If PSI is not retained to perform these functions, PSI will not be responsible for the impact of those conditions on the project.


The geotechnical engineer warrants that the findings, recommendations, specifications, or professional advice contained herein have been made in accordance with generally accepted professional geotechnical engineering practices in the local area. No other warranties are implied or expressed.

After the plans and specifications are more complete, the geotechnical engineer should be retained and provided the opportunity to review the final design plans and specifications to check that our engineering recommendations have been properly incorporated into the design documents. At that time, it may be necessary to submit supplementary recommendations. This report has been prepared for the exclusive use of GBT Realty and their consultants for the specific application to the Proposed Firestone located on Southwest Market Street in Lee's Summit, Missouri.

APPENDIX A - TOPOGRAPHIC MAP


APPENDIX B - SITE VICINITY MAP

Intertek-PSI

Site Vicinity Plan
Firestone
SW Market Street at Hwy 150
Lee's Summit, MO


Intertek-PSI Project No.:	338-1947	
Aerial Year:	2018	Drawn By:
Drawing Date:	7/18/19	DMW

APPENDIX C – BORING LOCATION PLAN

Intertek-PSI

Boring Location Diagram	Intertek-PSI Project No.:	338-1947		
Firestone	interest Stringeet No.	333 1047		
SW Market Street at Hwy 150	Date:	Drawn By:		
Lee's Summit, MO	7/18/19	DMW		

APPENDIX D – BORING LOGS

DATE STARTED:		DRILL COMPANY:			_	BC	RING	R_01
DATE COMPLETED: _		DRILLER: J. Faillace L		Y:H. Svoboda	1			
COMPLETION DEPTH		DRILL RIG:	CME-55		Water	<u></u> While	Drilling	not observed
BENCHMARK:	N/A	DRILLING METHOD:		em Auger	_ ₹	<u>▼</u> Upon	Completion	not observed
ELEVATION:	N/A	SAMPLING METHOD:	2-in SS	3/3-in ST		<u>▼</u> Delay	/	N/A
LATITUDE:	38.8541°	HAMMER TYPE:		atic	BO	RING LOCA	TION:	
LONGITUDE:	-94.3787°	EFFICIENCY	73%					
STATION: N/A	OFFSET:N/A	REVIEWED BY:	C. Dieckn	nann				
REMARKS: N ₆₀ denotes the	e normalization to 60% efficiency	as described in ASTM D4633.						
Elevation (feet) Depth, (feet) Graphic Log Sample Type Sample No.	Ä Ä	RIAL DESCRIPTION	USCS Classification		Moisture, %	TANDARD PE TEST I N in blow Moisture 25 STRENG A Qu 2.0	rs/ft ⊚	Additional Remarks
<u>, 17, , 1</u>	ORGANIC LAYE	R ~ 6 INCHES						DD = 103 pcf
1		TY CLAY- gray TY CLAY- medium gray	СН		23	×	→	DD = 103 pcf Sat.=97% Q _u = 3.0 tsf
2	brown	<u> </u>		4-6-9 N ₆₀ =18	17	*		
3	14			N ₆₀ =13	20			
4	16		CL	2-3-4 N ₆₀ =9	30		×	
5	Auger refusal at	14½ feet		2-4-50/3	22			
iotoctole	Professiona	l Service Industries, li	nc.	PRO	JECT	NO.:	338-19	47
intertek		mbridge Circle Drive	110.		JECT:		Firestone	
nci	Kansas City	, KS 66103			ATION		Market St nea	
	Telephone:	(913) 310-1600					Lee's Summi	

DATE	STA	RTED	: _		7	7/11/19		DRILL COMPANY:		SI, I					ROF	51V	1G	B-02
	COM					7/11/19		DRILLER: J. Faillace			:H. Svobo	<u>da</u>		∇				
				_		20.0	ft	DRILL RIG:	CME-					Ā	While D		-	not observed
BENG						N/A		DRILLING METHOD:			em Auger	_	S	Ā	Upon C	omp	Dietion	
ELEV						I/A		SAMPLING METHOD			n SS		-	<u> </u>	Delay			N/A
LATI						541°		HAMMER TYPE:			itic	_	BOR	ING	LOCATI	ON:		
	SITUD	_	1/4			3783°		EFFICIENCY	739			_						
STAT			N/A	o thou	OFF		N/A	REVIEWED BY: as described in ASTM D463	C. Die	ckm	iann	_						
KEWI	INNO	1N ₆₀ de	Tiole	strie	lomanz	alion to c	0% emclency	as described in ASTM D463	is.		<u> </u>		T					
Elevation (feet)	Depth, (feet)	Graphic Log	Sample Type	Sample No.	Recovery (inches)		MATEF	RIAL DESCRIPTIO	N Sign	USCS Classification	SPT Blows per 6-inch (SS)	Moisture, %	× 0	N Mo	ARD PENITEST DATE IN BIOMS/FINE IN BIOMS/FIN	TA ft ⊚ ■ •		Additional Remarks
											S		0	L QI	2.0		Q ρ 4.0	
	- 0 -	$\overline{z_{I/I^{N}}}$ $\overline{z_{I}}$				ORG	ANIC LAYE	R ~ 6 INCHES										
	 		M	1	18			TY CLAY- gray	С	Н	3-3-5 N ₆₀ =10	26		©	×			
						LOW brown		TY CLAY- medium gray	'					Ш				
	 - 5 -			2	18	DIOWI	I				2-3-4 N ₆₀ =9	22			×			
	 			3	17						2-3-3 N ₆₀ =7	31	©		>	<		
	 - 10 -		M	4	18				С	L	2-3-4 N ₆₀ =9	28	(×			
	 - 15 -		X	5	14	<u>WEA</u>	THERED S	HALE - brown			3-7-8 N ₆₀ =18	25			*			
	 - 20 -		M	6	18	End o	f boring at 2	20 feet			4-7-11 N ₆₀ =22	25			*			
	Professional Service Industries, Industries, Industries Circle Drive Kansas City, KS 66103										PF	ROJE	ECT N			Fi	338-19 restone	1
						Ka	nsas City	, KS 66103			LC	CA.	TION:	_				r Hwy 150
			_			Tel	ephone:	(913) 310-1600							Le	e's	Summit	t, MO

DATE					7	7/11/19		DRILL COMPA		PSI, I					R)RI	NG	B-03
DATE						7/11/1		DRILLER: J. F	Faillace L		:H. Svobo	da		$\overline{\Box}$				
COM	PLETI	ON D	EP1	ГН _		16.0	ft	DRILL RIG: _		CME-55			Water	$\overline{\underline{\nabla}}$		le Drilli	-	not observed
BENG	CHMA	RK:				N/A		DRILLING ME			em Auger		at	Ţ			pletion	not observed
ELEV	'ATIO	N: _			١	N/A		SAMPLING M	ETHOD: _	2-in SS	/3-in ST			Ā	Dela	ay		N/A
LATI	TUDE:	:			38.8	354°		HAMMER TYP	PE:	Automa	atic		BOR	ING	LOC	ATION	l:	
LONG	SITUD	E: _			-94.	.3785°		EFFICIENCY		73%								
STAT	ION:	1	N/A		OFFS	SET:	N/A	REVIEWED BY	Y:	C. Dieckm	nann							
REMA	ARKS	:N ₆₀ de	note	s the i	normaliz	zation to 6	60% efficiency	as described in AS	TM D4633.									
Elevation (feet)	Depth, (feet)	Graphic Log	Sample Type	Sample No.	Recovery (inches)		MATER	RIAL DESCR	IPTION	USCS Classification	SPT Blows per 6-inch (SS) Push Pressure (ST)	Moisture, %	× 0	N Moi	TEST in bloos sture	DATA ws/ft @ # STH, tsf	PL LL 5	Additional Remarks
											SP		1	Qu		*		
	- 0 -	71/2				ORG	ANIC LAYE	R ~ 6 INCHES					0		2.	.0	4.0)
						HIGH	PLASTICI	TY CLAY- gray										
				1	10				СН	3-3-4 N ₆₀ =9	30	(×			
	 - 5 -			2	18	brow		<u>ΓΥ CLAΥ</u> - mediu			19			×		•	DD = 106 pcf Sat.=87% Q _u = 3.0 tsf	
	 			3	18					CL	2-3-4 N ₆₀ =9	29	0	3		×		
	- 10 - 			4	18						2-3-3 N ₆₀ =7							
	- 15 - 		X	5	12		THERED S	HALE- brown 16 feet			3-50/6	27				×	>>(*
	io	tact	ام:	•		Pro	ofessiona	Service Indu	ustries, Îr	nc.	PI	ROJE	ECT N	10.:			338-19	947
	UI	tert	.C1	•				mbridge Circl		2.5			ECT:			F	ireston	
	K		5			Ka	nsas City	, KS 66103 (913) 310-16					TION:	:	SW	Marke		ar Hwy 150

DATE S					7	7/11/19		DRILL COMPANY: _	PSI,					BORII	NG	 R_04
DATE C						7/11/1		DRILLER: J. Faillace			da					
COMPL	ETI	ON D	EP1	ГН _		16.0	ft	DRILL RIG:	CME-55			je	_	While Drilli	-	not observed
BENCH	IMAI	RK:				N/A		DRILLING METHOD:		tem Auger				Jpon Com	pletion	not observed
ELEVA'	TIOI	۱: <u>_</u>			١	I/A		SAMPLING METHOD:	:2-i	n SS		 > .	<u>Ā</u> [Delay		N/A
LATITU	JDE:				38.8	354°		HAMMER TYPE:	Autom	atic		BORII	NG L	OCATION	:	
LONGI	TUD	E: _			-94.	3787°		EFFICIENCY	73%							
STATIC	ON:	N	I/A		OFFS	SET:	N/A	REVIEWED BY:	C. Dieckr	nann						
REMAR	RKS:	N ₆₀ de	notes	s the r	- normaliz	ation to 6	0% efficiency	as described in ASTM D4633	i.							
et)		_	a		les)				ıtion	ch (SS)		STA	TE	RD PENETR EST DATA		
Elevation (feet)	Depth, (feet)	Graphic Log	Sample Type	Sample No.	Recovery (inches)		MATER	RIAL DESCRIPTION	/ USCS Classification	Blows per 6-inch (SS)	Moisture, %	×	Moist	_	PL LL 50	Additional Remarks
		Ō	Sa	ίŎ	Reco				nso	SPT Blo	2	0	STRI Qu	ENGTH, tsf #	1	
	0 -	74 18. 71				ORG	ANIC LAYE	R ~ 6 INCHES								
-	-		\bigvee	1	10	<u>HIGH</u>	<u>PLASTICI</u>	TY CLAY- gray	СН	3-3-5 N ₆₀ =10	24	(×		
-	_					<u>LOW</u>		TY CLAY- medium gray		-	24			×		
	5 -		<u>A</u>	2	17					3-4-7 N ₆₀ =13						I
-	_		M	3	18					4-5-7 N ₆₀ =15	19) >	×		
-	- 10 -			4	18				CL	2-3-3 N ₆₀ =7	31		/	×		ſ
-	-															
-	- 15 -			5	18					3-4-7 N ₆₀ =13	28		•	×		
		<u>///</u>				Auge	r refusal at	16 feet								
	احا	اء ۾	ام	,		Pro	fessiona	I Service Industries,	Inc	рі	וו אצ	ECT N	o ·		338-19	 47
	U	ert	.er	0				mbridge Circle Drive				ECT:	J	F	irestone	
						Ka	nsas Citv	, KS 66103	•			TION:				r Hwy 150
			-			Tel	ephone:	(913) 310-1600		L					Summit	

DATE						7/11/19			OMPANY:							BC	RIN	JG	B-05
						7/11/19			R: J. Faillace			:H. Svobo	<u>da</u>		$\overline{\Box}$				
						13.5 f	t		G:					Water	$\bar{\underline{\nabla}}$		Drillir		not observed
BENC	HMA	RK:				N/A			G METHOD: _		v Ste	em Auger		Vai	Ī			oletion	
ELEV						I/A			NG METHOD:			/3-in ST				Delay			N/A
LATI					38.8				R TYPE:			atic		BOR	ING	LOCA	TION:		
LONG		_				3783°		EFFICIE	NCY	739									
STAT			N/A		OFFS		N/A		ED BY:		ckm	nann							
REMA	ARKS	:N ₆₀ de	note	s the r	normaliz	ation to 6	0% efficiency	as described	in ASTM D4633.		_		1	_					
Elevation (feet)	o Depth, (feet)	Graphic Log	Sample Type	Sample No.	Recovery (inches)				SCRIPTION		USCS Classification	SPT Blows per 6-inch (SS) Push Pressure (ST)	Moisture, %	× 0	Mo	ARD PE TEST D in blow isture 25 RENG1	OATA rs/ft ③	PL LL 50	. Itemano
		<u> </u>				HIGH	NIC LAYE	TY CL AV.	nrav										
	 			1	14					С	Н	2-3-5 N ₆₀ =10	30		9		× -	>> •	LL = 85 PL = 24
	 - 5 -			2	8	brown		Y CLAY-1	nedium gray			2-3-4 N ₆₀ =9	22		9	×			
	 			3	14					C	;L		24			A ×			DD = 99 pcf Sat.=95% Q _u = 1.7 tsf
	 - 10 - 			4	18							2-3-5 N ₆₀ =10	26			×			
						Auger	refusal at	13½ feet											
	iol	tert	ای:			Pro	fessional	Service	Industries,	Inc.		PI	ROJE	CT I	NO.:			338-19	947
	U 1	(C-1 (.C1			121	1 W. Ca	mbridge	Circle Drive				ROJE				Fi	restone	е
			5	4		Kar	nsas City ephone:	, KS 661	103			LO	OCA.	ΓΙΟΝ	: _				ar Hwy 150
						1 61	epriorie:	(213)31	0-1000								Lee S	Summi	i, iviU

DATE STARTED:		DRILL COMPANY:				E	30RII	NG E	3-06
DATE COMPLETED: COMPLETION DEPTH	7/11/19	DRILLER: J. Faillace L DRILL RIG:	CME-55	H. Svoboda			Vhile Drillir		not observed
BENCHMARK:		DRILLING METHOD:		em Auger	Water	_	Ipon Com	-	
ELEVATION:	N/A	SAMPLING METHOD:		SS	` ≥	$\overline{\underline{\mathbf{v}}}$ D			N/A
LATITUDE:	38.8541°	HAMMER TYPE:			BOF		CATION:	:	
LONGITUDE:		EFFICIENCY							
STATION: N/A	OFFSET: N/A	REVIEWED BY:		ann					
REMARKS: N ₆₀ denotes the	normalization to 60% efficiency	as described in ASTM D4633.							
Elevation (feet) Depth, (feet) Graphic Log Sample Type Sample No.	R R	RIAL DESCRIPTION	USCS Classification	SPT Blows per 6-inch (SS)	(MOISture, 76	TE N in Moistu	25 ENGTH, tsf		Additional Remarks
	ORGANIC LAYE	R ~ 6 INCHES							
1	HIGH PLASTICI		СН	2-4-4 N ₆₀ =10	8	©	×		
2	LOW PLASTICIT brown	<u>rY CLAY-</u> medium gray		2-4-5 N ₆₀ =11	2	<u> </u>	×		
3	16		CL	2-2-4 N ₆₀ =7	7		×		
- 10	18 End of boring at	10 feet		2-3-5 N ₆₀ =10	0		×		
intertek 🏻		Service Industries, I	nc.	PRO	JECT	NO.:		338-194	7
		mbridge Circle Drive			JECT:			restone	
USI	Kansas City Telephone:	, KS 66103 (913) 310-1600	LOC	ATION	ı:S	SW Market Lee's	St near		

	STA		_		-	7/11/19					IPANY:							B	ORI	NG	B-07
	E CON					7/11/ ⁻ 10.0				LEK:_ L RIG:			CME-55	Y:H. Svob	<u>oda</u>	_	∇		le Drilli		not observed
BEN						N/A	<i>)</i>				METHOI			em Auger		Water	Ţ			pletion	
ELEV						1/A					METHO			n SS		∣≊∣		Dela			N/A
	TUDE					542°					YPE:					BOR			ATION	:	
	SITUD					.3785°					Υ										
STAT		_	N/A		OFF	SET:	N/A				BY:		C. Dieckn	nann							
REM	ARKS	:N ₆₀ de	note	s the	normaliz	zation to	60% efficie	ency a	as desc	ribed in	ASTM D4	633.									
Elevation (feet)	O Depth, (feet)	Graphic Log	Sample Type	Sample No.	Recovery (inches)		MATERIAL DESCRIPTION DRGANIC LAYER ~ 6 INCHES HIGH PLASTICITY CLAY- gray						USCS Classification	SPT Blows per 6-inch (SS)	Moisture, %	× 0	Mo	TEST I in blo bisture Z TRENC	DATA ows/ft © a b construction DATA ows/ft © construction DATA Ows/ft o	PL LL 5	rtemanto
		71 18. 7	(ORG	ORGANIC LAYER ~ 6 INCHES														
				1	9								СН	2-4-5 N ₆₀ =11	30		0		×		
	 - 5 -			2	16	brow	V PLAST /n	<u>ICIT</u>	Y CLA	<u>4 Y</u> - me	dium gra	ay		2-3-5 N ₆₀ =10	22		 	∠ ×		•	LL = 42 PL = 17
				3	13								CL	2-3-3 N ₆₀ =7	32	(×		
	 - 10 -			4	18	End	of boring	g at 1	0 feet	:				1-3-3 N ₆₀ =7	30				×		-
		L	ا ا	_		Dr	ofessio	nal	Sen	/ice Ir	ndustria	es Inc			RO II	ECT	иO ·			338-19	947
	S	tert	.el	< <u> </u>			016551C 211 W.									ECT:	4 0.:		F	ireston	
							ansas (TION	:	SW			ar Hwy 150
			-			Te	elephor	ne:	(913)	310-	-1600									Summ	

	STA					7/11/19					PANY: _		PSI, I					BO	DRII	NG	B-08
	E CON PI FTI					7/11/ ⁻ 10.0				LER:_J L RIG:			ME-55	Y:H. Svob	<u>Jua</u>	Ţ	∇		e Drilli		not observed
	СНМА			_		N/A					ETHOD:			em Auger		Water	lacksquare			pletion	not observed
ELEV					١	N/A					METHO):	2-ir	n SS				Dela			N/A
	TUDE:					354°					YPE:		Automa	atic		BOF	RING	LOC	ATION	:	
	SITUD	_				.3789°					/ 		73%								
STAT			N/A note		OFFS		N/A 60% efficie				BY: \STM D463		Dieckm	iann							
Elevation (feet)	Depth, (feet)	Graphic Log	Sample Type		Recovery (inches)		MATERIAL DESCRIPTION RGANIC LAYER ~ 6 INCHES IGH PLASTICITY CLAY- gray						USCS Classification	SPT Blows per 6-inch (SS)	Moisture, %	× 0	N Mo	TEST in blor isture	DATA ws/ft	PL LL 50	Additional Remarks
	- 0 -	$\overline{z_{I,I^{N}}}$. $\overline{z_{I}}$				ORG	DRGANIC LAYER ~ 6 INCHES									†					
	 			1	10								СН	3-4-5 N ₆₀ =11	30		0		- ×-	> -	LL = 79 PL = 23
	 - 5 -			2	14	brow	/ PLASTI /n	<u>ICIT`</u>	Y CLA	<u>.Y</u> - med	lium gray	,		4-5-9 N ₆₀ =17	18		\ 				
	 			3	13								CL	3-4-6 N ₆₀ =12	21			×			
	 - 10 -			4	18	End	of boring	at 10	0 feet					2-3-4 N ₆₀ =9	29				×		
	iol	-	<u></u>	,	·	Pr	ofessio	nal	Serv	ice In	dustries	s, Inc.	1	P	RO.I	ECT	NO.:			338-19	47
	U)	tert	.C1			12	211 W. (Can	nbrid	ge Cir	cle Driv					ECT:			F	irestone	
			5			Ka	ansas C elephon	ity,	KS (66103	3			L	OCA	TION	:	SW	Marke		r Hwy 150
						10	cpi ioii	۷. ((0.0)	010-	. 555									Junini	., 1410

APPENDIX E – GENERAL NOTES/SOIL CLASSIFICATION CHART

intertek.

GENERAL NOTES

SAMPLE IDENTIFICATION

The Unified Soil Classification System (USCS), AASHTO 1988 and ASTM designations D2487 and D-2488 are used to identify the encountered materials unless otherwise noted. Coarse-grained soils are defined as having more than 50% of their dry weight retained on a #200 sieve (0.075mm); they are described as: boulders, cobbles, gravel or sand. Fine-grained soils have less than 50% of their dry weight retained on a #200 sieve; they are defined as silts or clay depending on their Atterberg Limit attributes. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size.

DRILLING AND SAMPLING SYMBOLS

SFA: Solid Flight Auger - typically 4" diameter

flights, except where noted.

HSA: Hollow Stem Auger - typically 31/4" or 41/4 I.D.

openings, except where noted.

M.R.: Mud Rotary - Uses a rotary head with

Bentonite or Polymer Slurry

R.C.: Diamond Bit Core Sampler

H.A.: Hand Auger

P.A.: Power Auger - Handheld motorized auger

SS: Split-Spoon - 1 3/8" I.D., 2" O.D., except where noted.

ST: Shelby Tube - 3" O.D., except where noted.

RC: Rock Core

TC: Texas Cone BS: Bulk Sample

PM: Pressuremeter

CPT-U: Cone Penetrometer Testing with Pore-Pressure Readings

SOIL PROPERTY SYMBOLS

N: Standard "N" penetration: Blows per foot of a 140 pound hammer falling 30 inches on a 2-inch O.D. Split-Spoon.

N₆₀: A "N" penetration value corrected to an equivalent 60% hammer energy transfer efficiency (ETR)

Qu: Unconfined compressive strength, TSF

Q_n: Pocket penetrometer value, unconfined compressive strength, TSF

w%: Moisture/water content, %

LL: Liquid Limit, %

PL: Plastic Limit, %

PI: Plasticity Index = (LL-PL),%

DD: Dry unit weight, pcf

▼,∑,▼ Apparent groundwater level at time noted

RELATIVE DENSITY OF COARSE-GRAINED SOILS ANGULARITY OF COARSE-GRAINED PARTICLES

Relative Density	N - Blows/foot	<u>Description</u>	<u>Criteria</u>
Very Loose Loose	0 - 4 4 - 10	· ·	Particles have sharp edges and relatively plane sides with unpolished surfaces
Medium Dense	10 - 30	Subangular:	Particles are similar to angular description, but have rounded edges
Dense Very Dense	30 - 50 50 - 80	Subrounded:	Particles have nearly plane sides, but have well-rounded corners and edges
Extremely Dense	80+	Rounded:	Particles have smoothly curved sides and no edges

GRAIN-SIZE TERMINOLOGY

PARTICLE SHAPE

Dagarintian

Component	<u>Size Range</u>	Description	<u>Criteria</u>
Boulders:	Over 300 mm (>12 in.)	Flat:	Particles with width/thickness ratio > 3
Cobbles:	75 mm to 300 mm (3 in. to 12 in.)	Elongated:	Particles with length/width ratio > 3
Coarse-Grained Gravel:	19 mm to 75 mm (¾ in. to 3 in.)	Flat & Elongated:	Particles meet criteria for both flat and
Fine-Grained Gravel:	4.75 mm to 19 mm (No.4 to 3/4 in.)		elongated
Coarse-Grained Sand:	2 mm to 4.75 mm (No.10 to No.4)		
Medium-Grained Sand:	0.42 mm to 2 mm (No.40 to No.10)	<u>RELATIVE P</u>	PROPORTIONS OF FINES

Fine-Grained Sand: 0.075 mm to 0.42 mm (No. 200 to No.40)

Silt: 0.005 mm to 0.075 mm

Clay: <0.005 mm

Descriptive Term % Dry Weight
Trace: < 5%
With: 5% to 12%
Modifier: >12%

Page 1 of 2

GENERAL NOTES

(Continued)

CONSISTENCY OF FINE-GRAINED SOILS

MOISTURE CONDITION DESCRIPTION

Q _U - TSF 0 - 0.25 0.25 - 0.50 0.50 - 1.00 1.00 - 2.00 2.00 - 4.00 4.00 - 8.00 8.00+	N - Blows/foot 0 - 2 2 - 4 4 - 8 8 - 15 15 - 30 30 - 50 50+	Consistency Very Soft Soft Firm (Medium Stiff) Stiff Very Stiff Hard Very Hard	Description Dry: Absence of moisture, dusty, dry to the touch Moist: Damp but no visible water Wet: Visible free water, usually soil is below water table RELATIVE PROPORTIONS OF SAND AND GRAVEL Descriptive Term Trace: < 15% With: 15% to 30% Modifier: > 20%
			Modifier: >30%

STRUCTURE DESCRIPTION

Description	<u>Criteria</u>	<u>Description</u>	<u>Criteria</u>
Stratified:	Alternating layers of varying material or color with	n Blocky:	Cohesive soil that can be broken down into small
	layers at least 1/4-inch (6 mm) thick		angular lumps which resist further breakdown
Laminated:	Alternating layers of varying material or color with	n Lensed:	Inclusion of small pockets of different soils
	layers less than 1/4-inch (6 mm) thick	Layer:	Inclusion greater than 3 inches thick (75 mm)
Fissured:	Breaks along definite planes of fracture with little	Seam:	Inclusion 1/8-inch to 3 inches (3 to 75 mm) thick
	resistance to fracturing		extending through the sample
Slickensided:	Fracture planes appear polished or glossy,	Parting:	Inclusion less than 1/8-inch (3 mm) thick
	sometimes striated		

SCALE OF RELATIVE ROCK HARDNESS

ROCK BEDDING THICKNESSES

GRAIN-SIZED TERMINOLOGY

DEGREE OF WEATHERING

hammer, may be shaved with a knife.

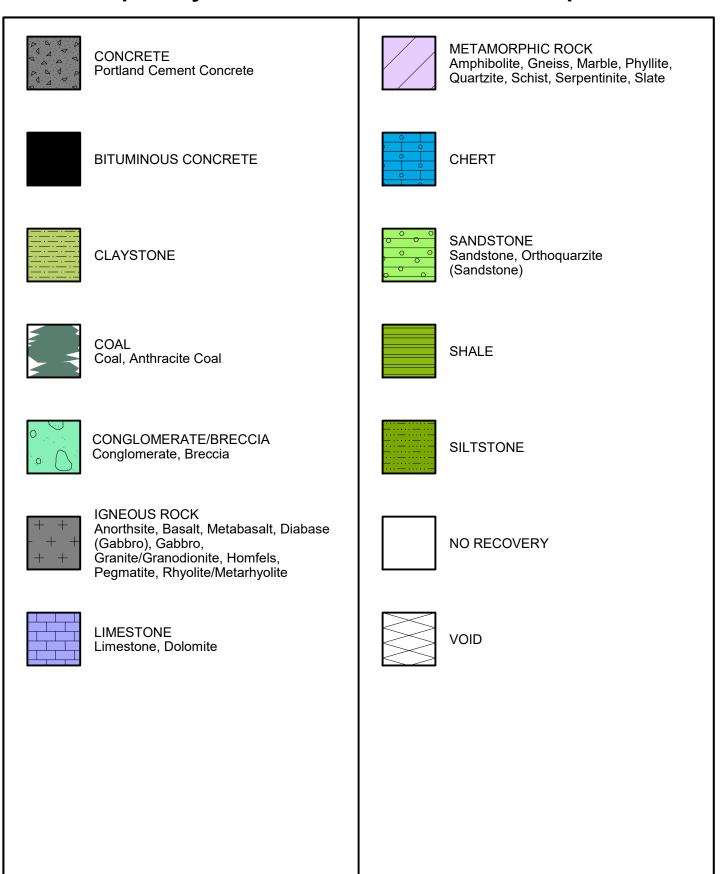
Page 2 of 2

Q _U - TSF	Consistency	<u>Description</u>	<u>Criteria</u>
- 10	F 1 1 0 "	Very Thick Bedded	Greater than 3-foot (>1.0 m)
2.5 - 10	Extremely Soft	Thick Bedded	1-foot to 3-foot (0.3 m to 1.0 m)
10 - 50	Very Soft	Medium Bedded	4-inch to 1-foot (0.1 m to 0.3 m)
50 - 250	Soft	Thin Bedded	11/4-inch to 4-inch (30 mm to 100 mm)
250 - 525	Medium Hard	Very Thin Bedded	1/2-inch to 11/4-inch (10 mm to 30 mm)
525 - 1,050	Moderately Hard	Thickly Laminated	1/8-inch to ½-inch (3 mm to 10 mm)
1,050 - 2,600	Hard		1/8-inch or less "paper thin" (<3 mm)
>2,600	Very Hard	,	1 1

ROCK VOIDS

Voids	Void Diameter	(Typically Sedimentary Rock)			
	<6 mm (<0.25 in)	<u>Component</u>	Size Range		
	6 mm to 50 mm (0.25 in to	Very Coarse Grained	>4.76 mm		
•	50 mm to 600 mm (2 in to 2	Coarea Grained	2.0 mm - 4.76 mm		
,	>600 mm (>24 in)	Medium Grained	0.42 mm - 2.0 mm		
Cave	-000 mm (-24 m)	Fine Grained	0.075 mm - 0.42 mm		
		Very Fine Grained	<0.075 mm		

ROCK QUALITY DESCRIPTION


Rock Mass Description RQD Value Slightly Weathered: Rock generally fresh, joints stained and discoloration Excellent 90 -100 extends into rock up to 25 mm (1 in), open joints may Good 75 - 90 contain clay, core rings under hammer impact. Fair 50 - 75 25 -50 Weathered: Rock mass is decomposed 50% or less, significant Poor Very Poor portions of the rock show discoloration and Less than 25 weathering effects, cores cannot be broken by hand or scraped by knife. Highly Weathered: Rock mass is more than 50% decomposed, complete discoloration of rock fabric, core may be extremely broken and gives clunk sound when struck by

SOIL CLASSIFICATION CHART

NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS							
MAJOR DIVISIONS			SYMBOLS		TYPICAL DESCRIPTIONS		
			GRAPH	LETTER	DESCRIPTIONS		
	GRAVEL AND	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES		
COARSE GRAINED SOILS	GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES		
	MORE THAN 50% OF COARSE FRACTION RETAINED ON NO. 4 SIEVE	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES		
		(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES		
MORE THAN 50% OF MATERIAL IS LARGER THAN NO. 200 SIEVE SIZE	SAND AND SANDY SOILS	CLEAN SANDS		SW	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES		
		(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES		
	MORE THAN 50% OF COARSE FRACTION PASSING ON NO. 4 SIEVE	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES		
		(APPRECIABLE AMOUNT OF FINES)		sc	CLAYEY SANDS, SAND - CLAY MIXTURES		
FINE GRAINED SOILS	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY		
				CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS		
				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY		
MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE SIZE		LIQUID LIMIT GREATER THAN 50		МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS		
	SILTS AND CLAYS			СН	INORGANIC CLAYS OF HIGH PLASTICITY		
				ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS		
HIGHLY ORGANIC SOILS			71/ 71/ 71/ 71/ 71/ 1/ 71/ 71/ 71/ 71/ 71/ 71/ 71/ 71/ 71/	PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS		

Graphic Symbols for Materials and Rock Deposits

APPENDIX F – DRILL, FIELD AND LAB TESTING PROCEDURES

Drilling and Sampling Procedures

The soil borings were performed with a truck-mounted rotary head drill rig. Borings were advanced using 3¼-inch inside diameter hollow-stem augers. Representative samples were obtained employing split-spoon and thin-wall tube sampling procedures in general accordance with ASTM procedures.

Field Tests and Measurements

Penetration Tests and Split-Barrel Sampling of Soils

During the sampling procedure, Standard Penetration Tests (SPT) were performed at regular intervals (2½-foot intervals to 10 feet and 5-foot intervals thereafter) to obtain the standard penetration value (N) of the soil. The results of the standard penetration test indicate the relative density and comparative consistency of the soils, and thereby provide a basis for estimating the relative strength and compressibility of the soil profile components. The split-barrel sampler provides a soil sample for identification purposes and for laboratory tests appropriate for soil obtained from a sampler that may produce large shear strain while obtaining the sample.

Thin Walled (Shelby) Tube Geotechnical Sampling of Soils

Thin-walled tube samples are utilized to obtain a relatively undisturbed specimen suitable for laboratory tests of structural properties or other tests that might be influenced by soil properties. A relatively undisturbed sample is obtained by pressing a thin-walled metal tube (typically an outside diameter 3 inches) into the in-situ soil, removing the soil-filled tube, and sealing the ends to reduce the soil disturbance or moisture loss. These samples may be utilized in the laboratory to obtain the following information or perform the following tests: Unconfined Compressive Strength (q_u), Laboratory Determination of Water Content, Wet and Dry Density, Percent Saturation, and Atterberg Limits

Water Level Measurements

Water level observations were attempted during and upon completion of the drilling operation using a 100-foot tape measure. The depths of observed water levels in the boreholes are noted on the boring logs presented in the appendix of this report. In the borings where water was unable to be observed during the field activities, in relatively impervious soils, the accurate determination of the groundwater elevation may not be possible even after several days of observation. Seasonal variations, temperature and recent rainfall conditions may influence the levels of the groundwater table and volumes of water will depend on the permeability of the soils.

Laboratory Testing Program

In addition to the field investigation, a supplemental laboratory-testing program was conducted to determine additional engineering characteristics of the foundation materials necessary in analyzing the behavior of the soils as it relates to the construction of the proposed structures. The laboratory testing program is as follows:

Laboratory Determination of Water (Moisture) Content of Soil by Mass

The water content is a significant index property used in establishing a correlation between soil behavior and its index properties. The water content is used in expressing the phase relationship of air, water, and solids in a given volume of material. In fine grained cohesive soils, the behavior of a given soil type often depends on its water content. The water content of a soil along with its liquid and plastic limits as determined by Atterberg Limit testing, is used to express its relative consistency or liquidity index.

Atterberg Limits

The Atterberg Limits are defined by the liquid limit (LL) and plastic limit (PL) states of a given soil. These limits are used to determine the moisture content limits where the soil characteristics changes from behaving more like a fluid on the liquid limit end to where the soil behaves more like individual soil particles on the plastic limit end. The liquid limit is often used to indicate if a soil is a low or high plasticity soil. The plasticity index (PI) is difference between the liquid limit and the plastic limit. The plasticity index is used in conjunction with the liquid limit to assess if the material will behave like a silt or clay. The material can also be classified as an organic material by comparing the liquid limit of the natural material to the liquid limit of the sample after being oven dried.

Unconfined Compressive Strength of Cohesive Soil (q_u)

The primary purpose of the unconfined compressive strength test is to obtain the undrained compressive strength of soils that possess sufficient cohesion to permit testing in the unconfined state. Unconfined compressive strength (q_u) is the compressive stress at which an unconfined cylindrical specimen of soil will fail in a simple compression test. In this test method, unconfined compressive strength is taken as the maximum load obtained per unit area or the load per unit area at 15% axial strain, whichever is obtained first during the performance of a test. For the unconfined compressive strength test, the shear strength (s_u) is calculated to be half of the compressive stress at failure.