

RE: 400152 Lot 82 MN MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: N/A Roof Load: 45.0 psf

Design Program: MiTek 20/20 8.2 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 22 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	138749940	a1	10/2/2019
2	138749941	a2	10/2/2019
3	138749942	b1	10/2/2019
4	138749943	c1	10/2/2019
5	138749944	c2	10/2/2019
6	138749945	c3	10/2/2019
7	138749946	c4	10/2/2019
8	138749947	c5	10/2/2019
9	138749948	d1	10/2/2019
10	138749949	d2	10/2/2019
11	138749950	d3	10/2/2019
12	138749951	d4	10/2/2019
13	138749952	e1	10/2/2019
14	138749953	e2	10/2/2019
15	138749954	j1	10/2/2019
16	138749955	j2	10/2/2019
17	138749956	j3	10/2/2019
18	138749957	j4	10/2/2019
19	138749958	j5	10/2/2019
20	138749959	v1	10/2/2019
21	138749960	v2	10/2/2019
22	138749961	v3	10/2/2019

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Garcia, Juan

My license renewal date for the state of Kansas is April 30, 2020. Kansas COA: E-943

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

RE: 400152 Lot 82 MN MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: N/A Roof Load: 45.0 psf Design Program: MiTek 20/20 8.2 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 22 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	138749940	a1	10/2/2019
2	138749941	a2	10/2/2019
3	138749942	b1	10/2/2019
4	138749943	c1	10/2/2019
5	138749944	c2	10/2/2019
6	138749945	c3	10/2/2019
7	138749946	c4	10/2/2019
8	138749947	c5	10/2/2019
9	138749948	d1	10/2/2019
10	138749949	d2	10/2/2019
11	138749950	d3	10/2/2019
12	138749951	d4	10/2/2019
13	138749952	e1	10/2/2019
14	138749953	e2	10/2/2019
15	138749954	j1	10/2/2019
16	138749955	j2	10/2/2019
17	138749956	j3	10/2/2019
18	138749957	j4	10/2/2019
19	138749958	j5	10/2/2019
20	138749959	v1	10/2/2019
21	138749960	v2	10/2/2019
22	138749961	v3	10/2/2019

The truss drawing(s) referenced above have been prepared by

MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Garcia, Juan

My license renewal date for the state of Missouri is December 31, 2020. Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

		4-0-0				8-0-0					12-0-0	
Plate Offs	ets (X,Y)	[2:0-1-6,0-2-12], [3:0-6-8,	0-2-4], [4:0-2-8	3,0-2-4], [5:0	1-6,0-2-12]	, [7:Edge,0-5-8], [7:	0-0-0,0-	2-12],	[10:0-0-0	0-2-12]	4-0-0	
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	25.0	Plate Grip DOL	1.15	TC	0.71	Vert(LL)	-0.07	8-9	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.67	Vert(CT)	-0.13	8-9	>999	240		
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.10	Horz(CT)	0.02	7	n/a	n/a		
BCDL	10.0	Code IRC2018/TF	912014	Matrix	(-S	Wind(LL)	0.06	8-9	>999	240	Weight: 39 lb	FT = 10%
LUMBER						BRACING-						

 TOP CHORD
 2x4 SPF No.2
 TOP CHORD
 Structural wood sheathing directly applied or 4-3-4 oc purlins, except end verticals, and 2-0-0 oc purlins (5-0-4 max.): 3-4.

 WEBS
 2x3 SPF No.2 *Except*
 BOT CHORD
 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

- REACTIONS. (lb/size) 10=899/0-3-8, 7=899/0-3-8 Max Horz 10=50(LC 7) Max Uplift 10=-201(LC 8), 7=-201(LC 9)
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD 2-3=-1231/277, 3-4=-1024/269, 4-5=-1232/276, 2-10=-806/214, 5-7=-806/213
- BOT CHORD 9-10=-219/1012, 8-9=-219/1023, 7-8=-196/1013
- WEBS 3-9=0/271. 4-8=-5/279

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=201, 7=201.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 79 lb down and 74 lb up at 4-0-0, and 86 lb down and 74 lb up at 6-0-0, and 79 lb down and 74 lb up at 8-0-0 on top chord, and 220 lb down and 76 lb up at 4-0-0, and 31 lb down at 6-0-0, and 220 lb down and 76 lb up at 7-11-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (olf)
 - Vert: 1-2=-70, 2-3=-70, 3-4=-70, 4-5=-70, 5-6=-70, 7-10=-20

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Lot 82 MN
					138749940
400152	A1	Hip Girder	1	1	
					Job Reference (optional)
Wheeler Lumber,	Waverly, KS 66871		8	3.240 s Jul	14 2019 MiTek Industries, Inc. Wed Oct 2 08:53:11 2019 Page 2

8.240 s Jul 14 2019 MiTek Industries, Inc. Wed Oct 2 08:53:11 2019 Page 2 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RDE?xaKlbKrP8rXROIIP?xiznYKkkiHaz7X_JMyXVWs

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 3=-46(F) 4=-46(F) 9=-220(F) 8=-220(F) 11=-46(F) 12=-25(F)

:0-1-6,0-2-12], [4:0-1-6,0-2-	6-0-0 -12], [6:0-3-8,Edge], [6:0-0-0,0-2-12], [8:0-0	-0.0-2-12]. [8:0-3-	0 Edaal	6-0	-0		
:0-1-6,0-2-12], [4:0-1-6,0-2-	-12], [6:0-3-8,Edge], [6:0-0-0,0-2-12], [8:0-0	-0.0-2-12]. [8:0-3-					
		-,,	8,Eugej				
SPACING- 2-	-0-0 CSI .	DEFL. in	(loc)	l/defl	L/d	PLATES	GRIP
Plate Grip DOL 1	1.15 TC 0.42	Vert(LL) -0.02	6-7	>999	360	MT20	197/144
Lumber DOL 1	1.15 BC 0.27	Vert(CT) -0.05	6-7	>999	240		
Rep Stress Incr Y	YES WB 0.08	Horz(CT) 0.01	6	n/a	n/a		
Code IRC2018/TPI20	014 Matrix-R	Wind(LL) 0.01	7-8	>999	240	Weight: 35 lb	FT = 10%
LUMBER- TOP CHORD 2x4 SPF No.2					sheathing directly	applied or 6-0-0	oc purlins,
	SPACING- 2 Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TPI20	SPACING- 2-0-0 CSI. Plate Grip DOL 1.15 TC 0.42 Lumber DOL 1.15 BC 0.27 Y Rep Stress Incr YES WB 0.08 Y Code IRC2018/TPI2014 Matrix-R Y	SPACING- 2-0-0 CSI. DEFL. in Plate Grip DOL 1.15 TC 0.42 Vert(LL) -0.02 Lumber DOL 1.15 BC 0.27 Vert(CT) -0.05 Rep Stress Incr YES WB 0.08 Horz(CT) 0.01 Code IRC2018/TPI2014 Matrix-R Wind(LL) 0.01	SPACING- 2-0-0 CSI. DEFL. in (loc) Plate Grip DOL 1.15 TC 0.42 Vert(LL) -0.02 6-7 Lumber DOL 1.15 BC 0.27 Vert(CT) -0.05 6-7 Rep Stress Incr YES WB 0.08 Horz(CT) 0.01 6 Code IRC2018/TPI2014 Matrix-R Wind(LL) 0.01 7-8 Io.2 Io.2 Vertice Vertor CHORD Structure	SPACING- 2-0-0 CSI. DEFL. in (loc) //defl Plate Grip DOL 1.15 TC 0.42 Vert(LL) -0.02 6-7 >999 Lumber DOL 1.15 BC 0.27 Vert(CT) -0.05 6-7 >999 Kep Stress Incr YES WB 0.08 Horz(CT) 0.01 6 n/a Code IRC2018/TPI2014 Matrix-R Wind(LL) 0.01 7-8 >999	SPACING- 2-0-0 CSI. DEFL. in (loc) l/defl L/d Plate Grip DOL 1.15 TC 0.42 Vert(LL) -0.02 6-7 >999 360 Lumber DOL 1.15 BC 0.27 Vert(CT) -0.05 6-7 >999 240 Kep Stress Incr YES WB 0.08 Horz(CT) 0.01 6 n/a n/a Code IRC2018/TPI2014 Matrix-R Wind(LL) 0.01 7-8 >999 240	SPACING- 2-0-0 CSI. DEFL. in (loc) l/defl L/d PLATES Plate Grip DOL 1.15 TC 0.42 Vert(LL) -0.02 6-7 >999 360 MT20 Lumber DOL 1.15 BC 0.27 WB 0.08 Horz(CT) -0.05 6-7 >999 240 MT20 Code IRC2018/TPI2014 Matrix-R Wind(LL) 0.01 7-8 >999 240 Weight: 35 lb BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0

 TOP CHORD
 2x4 SPF No.2
 TOP CHORD
 Structural wood sheathing directly applied or 6-0-0 oc purling except end verticals.

 BOT CHORD
 2x4 SPF No.2
 BOT CHORD
 except end verticals.

 WEBS
 2x6 SPF No.2 *Except*
 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

 3-7: 2x3 SPF No.2
 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 8=597/0-3-8, 6=597/0-3-8 Max Horz 8=-62(LC 6) Max Uplift 8=-90(LC 8), 6=-90(LC 9)

- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD 2-3=-638/89, 3-4=-638/89, 2-8=-544/131, 4-6=-544/131

BOT CHORD 7-8=-14/480, 6-7=-14/480

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

MIS

 \cap

Plate Off	sets (X,Y)	[2:0-0-6,0-0-2], [2:0-4-11	,0-0-5]	1								
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	25.0	Plate Grip DOL	1.15	TC	0.61	Vert(LL)	-0.07	2-4	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.35	Vert(CT)	-0.13	2-4	>526	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.00	4	n/a	n/a		
BCDL	10.0	Code IRC2018/T	PI2014	Matri	x-P	Wind(LL)	0.00	2	****	240	Weight: 18 lb	FT = 10%
	D _	1		1		BRACING						

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2 WEDGE Left: 2x3 SPF No.2

REACTIONS. (lb/size) 4=252/Mechanical, 2=337/0-3-8 Max Horz 2=121(LC 5) Max Uplift 4=-60(LC 8), 2=-60(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

MIS

 \cap

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Mitek[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Left: 2x3 SPF No.2, Right: 2x3 SPF No.2

REACTIONS. (lb/size) 2=1003/0-3-8, 6=1003/0-3-8 Max Horz 2=84(LC 12) Max Uplift 2=-143(LC 8), 6=-143(LC 9)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-1729/267, 3-4=-1411/167, 4-5=-1411/168, 5-6=-1729/267

2-10=-271/1519, 9-10=-62/1059, 6-9=-188/1519 BOT CHORD

WEBS 4-9=-39/372, 5-9=-384/222, 4-10=-39/372, 3-10=-384/222

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 4) will fit between the bottom chord and any other members.

5) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=143, 6=143.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11111 OF MIS

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

MiTek[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Lot 82 MN	
					13874	19947
400152	C5	COMMON GIRDER	1	2		
				2	Job Reference (optional)	
Wheeler Lumber, Wave	erly, KS 66871		8	3.240 s Jul	14 2019 MiTek Industries, Inc. Wed Oct 2 08:53:19 2019 Page	2
		ID:bWuN	IDBN0tjF5	cDvSpwhp	H1zCzbQ-Cmj1dJQJjnrH638zszuHKd2LKn 4cAolpNTPcvyXVW	k

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-70, 3-5=-70, 1-5=-20

Concentrated Loads (lb)

Vert: 8a-1121(B) 9=-1122(B) 10=-1121(B) 11=-1121(B) 12=-1121(B) 13=-1121(B) 14=-1121(B) 15=-1121(B) 16=-1121(B) 17=-1121(B) 16=-1121(B) 17=-1121(B) 16=-1121(B) 17=-1121(B) 16=-1121(B) 16

Max Horz 33=-231(LC 6) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 18, 27, 28, 29, 30, 31, 25, 23, 22, 21, 20 except 33=-132(LC 4), 32=-145(LC 8), 19=-122(LC 9) Max Grav All reactions 250 lb or less at joint(s) 33, 18, 26, 27, 28, 29, 30, 31, 32, 25, 23, 22, 21, 20, 19

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 10) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 18, 27, 28, 29, 30, 31, 25, 23, 22, 21, 20 except (jt=lb) 33=132, 32=145, 19=122.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1

11111

OF MIS

October 2.2019

October 2.2019

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

23, 24, 19, 18, 16, 15.
12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

16023 Swingley Ridge Rd Chesterfield, MO 63017

	5-6-6	
LOADING (psf) SPACING- 2-0-0 TCLL 25.0 Plate Grip DOL 1.15 TCDL 10.0 Lumber DOL 1.15 BCLL 0.0 * Rep Stress Incr NO BCDL 10.0 Code IRC2018/TPI2014	CSI. DEFL. in TC 0.41 Vert(LL) -0.03 BC 0.25 Vert(CT) -0.07 WB 0.00 Horz(CT) -0.00 Matrix-R Wind(LL) 0.01	(loc) l/defl L/d PLATES GRIP 4-5 >999 360 MT20 197/144 4-5 >967 240 4 n/a n/a 4-5 >999 240 Weight: 16 lb FT = 10%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

 TOP CHORD
 2x4 SPF No.2

 BOT CHORD
 2x4 SPF No.2

 WEBS
 2x4 SPF No.2 *Except*

 3-4: 2x3 SPF No.2

- REACTIONS. (lb/size) 5=346/0-4-9, 4=224/Mechanical Max Horz 5=111(LC 5) Max Uplift 5=-101(LC 4), 4=-50(LC 8)
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown. TOP CHORD 2-5=-306/140

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi.
- 5) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 5=101.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 69 lb down and 36 lb up at 2-9-8, and 69 lb down and 36 lb up at 2-9-8 on top chord, and 3 lb down and 1 lb up at 2-9-8, and 3 lb down and 1 lb up at 2-9-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B)

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-70, 2-3=-70, 4-5=-20 Concentrated Loads (lb) Vert: 7=2(F=1, B=1)

MIS

 \cap

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Structural wood sheathing directly applied or 5-6-6 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

			4-0-0							
LOADING (psf) SPACIN TCLL 25.0 Plate G TCDL 10.0 Lumber BCLL 0.0 * Rep Str BCDL 10.0 Code If	G- 2-0-0 p DOL 1.15 DOL 1.15 ss Incr YES C2018/TPI2014	CSI. TC 0.20 BC 0.13 WB 0.00 Matrix-R	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.01 -0.02 0.01 0.01	(loc) 4-5 4-5 3 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 11 lb	GRIP 197/144 FT = 10%	

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2

WEBS 2x4 SPF No.2

REACTIONS. 5=252/0-3-8, 3=116/Mechanical, 4=45/Mechanical (lb/size) Max Horz 5=89(LC 8) Max Uplift 5=-30(LC 8), 3=-66(LC 8) Max Grav 5=252(LC 1), 3=116(LC 1), 4=71(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.

MIS

 \cap

Structural wood sheathing directly applied or 4-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No 2 BOT CHORD 2x4 SPF No.2

WEBS 2x4 SPF No.2

REACTIONS. 5=171/0-3-8, 3=44/Mechanical, 4=14/Mechanical (lb/size) Max Horz 5=48(LC 8) Max Uplift 5=-26(LC 8), 3=-30(LC 8) Max Grav 5=171(LC 1), 3=44(LC 1), 4=31(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

111111 MIS OF

JUAN

Structural wood sheathing directly applied or 1-10-15 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.03 BC 0.02 WB 0.00 Matrix-P	DEFL. in (loc Vert(LL) -0.00 -0.00 -0.00 Vert(CT) 0.00 -0.00 Horz(CT) -0.00	loc) l/defl L/d 1 n/r 120 1 n/r 120 4 n/a n/a	PLATES GRIP MT20 197/144 Weight: 5 lb FT = 10%
LUMBER-			BRACING-		

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No 2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2

REACTIONS. 4=59/1-6-0, 2=93/1-6-0 (lb/size) Max Horz 2=35(LC 5) Max Uplift 4=-15(LC 8), 2=-17(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11 MIS

0

Structural wood sheathing directly applied or 1-6-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

				100	
LOADING	(psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d PLATES GRIP	
TCLL	25.0	Plate Grip DOL 1.15	TC 0.02	Vert(LL) -0.00 2 >999 360 MT20 197/144	
TCDL	10.0	Lumber DOL 1.15	BC 0.02	Vert(CT) -0.00 2 >999 240	
BCLL	0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.00 4 n/a n/a	
BCDL	10.0	Code IRC2018/TPI2014	Matrix-P	Wind(LL) 0.00 2 **** 240 Weight: 5 lb FT = 10%	

LUMBER-

2x4 SPF No.2 TOP CHORD BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2

REACTIONS. 4=57/Mechanical, 2=94/0-3-8 (lb/size) Max Horz 2=35(LC 5)

Max Uplift 4=-15(LC 8), 2=-17(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi.

5) Refer to girder(s) for truss to truss connections.

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 1-6-0 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing

October 2,2019

16023 Swingley Ridge Rd Chesterfield, MO 63017

2x4 /

2x4 🗢

Rigid ceiling directly applied or 10-0-0 oc bracing.

0-0 <u>-10</u> 0-0-10			5-10-3 5-9-10	
Plate Offsets (X,Y)	[2:0-2-0,Edge]			1
LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. TC 0.08 BC 0.20 WB 0.00 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 3 n/a n/a	PLATES GRIP MT20 197/144 Weight: 12 lb FT = 10%
LUMBER- TOP CHORD 2x4 SPF No.2			BRACING- TOP CHORD Structural wood sheathing dir	rectly applied or 5-10-3 oc purlins.

BOT CHORD

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2

REACTIONS. 1=195/5-9-0, 3=195/5-9-0 (lb/size) Max Horz 1=16(LC 8) Max Uplift 1=-25(LC 8), 3=-25(LC 9)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

MIS

 \cap

