

Lee's Summit Medical Center, Hybrid OR Lee's Summit, Missouri

Structural Calculations

Prepared for: ACI Boland Architects Kansas City, Missouri

PEC Project No.: 190711-000

Prepared by: Daniel L. Wethington, PE, SE Structural Division

> **Date:** March 25, 2020

Project:

Lee's Summit Medical Center Hybrid OR Addition Lee's Summit Missouri

Prepared for:

ACI-Boland Architects Kansas City, Missouri

Structural Calculations – Table of Contents

Item	Page numbers
Structural loads	1-1 to 1-6
Lateral System Design	2-1 to 2-8
Roof Framing Design	3-1 to 3-22
Column/Footing Design	4- 1 to 4- 8
Miscellaneous Design	5-1 to 5-2

Page:	1-1
Date:	12/19/2019
Engr:	DLW

15

STRUCTURAL LOADS (Per 2018 International Building Code)

Lee's Summit Hybrid ER 190711-000

	DEAD LOAD	L	IVE LOAD	
ltem	unit wt. (psf)	20 ps	sf (non-reducible)	(Roof)
Roofing	5.00	0 ps	sf	(Floor)
Deck	1.00			
Joist/rafter	3.00	GRO	UND SNOW	
Sprinkler	2.00	Pg (psf) =	20	
Ceiling	3.00	exposure=	1	
Collateral	6.00	1=	1	
Special	10.00	Ct	1	
		Pf (psf) =	14	
Total	30.00	Pm (psf)=	20	
		See drift calc	ulation spreadsheet	t

BUILDING PARAMETERS

58 38

20

0.66 0.53 0.34

0.00

max.

0 /12

WIND LOAD (PER ASCE 7-10)

Wind Speed	(mph) =	120		Width (ft)=
Exposure =	C	1 Sprine 1		Length (ft):
Gust Factor	(G) =	0.85		Mean Roof
Kz =	0.90			height (ft)=
Kd =	0.85			L/W =
Kzt =	1.00			H/L =
Importance	N/A			H/W =
Gcpi = +/-	0.18			Roof slope
"a" =	3.80			Roof angle
Velocity Pres	ssure qz (p	sf) =	28.20	Ultimate

MAIN WIND FORCE RESISTING SYSTEM (Service)

 $p = q \times (G \times Cp - Gcpi)$

Velocity Pressure qz (psf) =

	CGCpi= 0	0.18		Gcpi=	-0.18	
	Ср	p (psf)		Ср	p (psf)	
Windward	0.8	8.46		0.8	14.55	
			18.70			18.70
Leeward	-0.5	-10.24	-or-	-0.5	-4.15	-10-
			18.70			18.70
Windward Roof	-0.9	-15.99		-0.9	-9.90	
Leeward	-0.9	-15.99		-0.9	-9.90	
Roof						

16.92

Service

Professional Engineering Consultants, P.A.Page:623 Massachusetts Stret, Suite 200Date:Lawrence, Kansas 66044Engr:

1-2

DLW

12/19/2019

WIND LOADS (CONT.) COMPONENTS AND CLADDING (Service)

Location	GCp - max	p-max (psf)	GCp - min	p-min (psf)
Interior Roof	0.30	8.12	-1.00	-19.97
Rake/Eave	0.30	8.12	-1.80	-33.50
Roof Corner	0.30	8.12	-2.80	-50.42
Interior Wall	1.00	19.97	-1.10	-21.66
Wall Corner	1.00	19.97	-1.40	-26.73
Overhang	-1:1	-15.57	-2.8	-50.42
SEISMIC LOADS	A CONTRACTOR OF A			

Site Class	D	(Assumed)	
Ss = 0	.101	Fa = 1.6	
S1 = 0	.069	Fv = 2.4	

Seismic Design Catego	ry =	В		
Seismic Use Group =	II.		k =	1
Response Factor =	3		$\rho =$	1.00
Importance Factor =	1.50		Cd =	3
Fund. Period =	0.19		Ai (ft^2)=	2204
Overstrength =	3.00		Ct=	0.02
TL	12.00		x=	0.75
Cs = 0.053867	controls			

Cs-max =	0.29183	Controlling	Controlling Cs =	
		V(ult.)=	10.18	
Cs-min =	0.00711			

Calculate Seismic Weights

Level	weight	height	w*h^k	Fx (k)	Eh	Εv	Eh+Ev	Eh-Ev
Roof	189	20	66.12	10.18	10.18	4.07	14.25	6.11
x	0	0	0	0.00	0.00	0.00	0.00	0.00
x	0	0	0	0.00	0.00	0.00	0.00	0.00
x	0	0	0	0.00	0.00	0.00	0.00	0.00
x	0	0	0	0.00	0.00	0.00	0.00	0.00
X	0	0	0	0.00	0.00	0.00	0.00	0.00
x	0	0	0	0.00	0.00	0.00	0.00	0.00
x	0	0	0	0.00	0.00	0.00	0.00	0.00
x	0	0	0	0.00	0.00	0.00	0.00	0.00
x	0	0	0	0.00	0.00	0.00	0.00	0.00
Sums	189		66.12	10.18 (ult)	10.18 (ult)	4.07	14.25	6.11

SDS =

SD1 = 0.110

0.108

ATC Hazards by Location

Search Information

Coordinates:	38.9042, -94.3329
Elevation:	1002 ft
Timestamp:	2019-12-18T22:15:49.195Z
Hazard Type:	Wind

ASCE 7-16	ASCE 7-10	ASCE 7-05
MRI 10-Year	MRI 10-Year	ASCE 7-05 Wind Speed
MRI 25-Year	MRI 25-Year	
MRI 50-Year	MRI 50-Year	
MRI 100-Year	MRI 100-Year	
Risk Category I	Risk Category I	
Risk Category II	Risk Category II	
Risk Category III	Risk Category IX-IV	
Risk Category IV		

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Disclaimer

Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer. Per ASCE 7, islands and coastal areas outside the last contour should use the last wind speed contour of the coastal areas – in some cases, this website will extrapolate past the last wind speed contour and therefore, provide a wind speed that is slightly higher. NOTE: For queries near wind-borne debris region boundaries, the resulting determination is sensitive to rounding which may affect whether or not it is considered to be within a wind-borne debris region.

Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by tatitude/longitude location in the report.

ATC Hazards by Location

Search Information

Coordinates:	38.9042, -94.3329
Elevation:	1002 ft
Timestamp:	2019-12-18T22:16:47.129Z
Hazard Type:	Seismic
Reference Document:	ASCE7-16
Risk Category:	III
Site Class:	D

1

Basic Parameters

Name	Value	Description
S ₆	0.101	MCE _R ground motion (period=0.2s)
81	0.069	MCE _R ground motion (period=1.0s)
SMB	0.161	Site-modified spectral acceleration value
5 _{M1}	0.165	Site-modified spectral acceleration value
Sos	0.107	Numeric seismic design value at 0.2s SA
801	0.11	Numeric seismic design value at 1.0s SA

Additional Information

Name	Value	Description
8DC	в	Seismic design category
F.	1.6	Site amplification factor at 0.2s
Fr	2.4	Site amplification factor at 1.0s
CRe	0.926	Coefficient of risk (0.2s)
CR1	0.876	Coefficient of risk (1.0s)
PGA	0.048	MCE ₀ peak ground acceleration
From	1.6	Site emplification factor at PGA
PGA	0.076	Site modified peak ground acceleration
TL	12	Long-period transition period (s)
SsRT	0.101	Probabilistic risk-targeted ground motion (0.2s)
SsRT SsUH	0.101 0.109	Probabilistic risk-targeted ground motion (0.2s) Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
		Factored uniform-hazard spectral acceleration (2% probability of
SsUH	0.109	Factored uniform-hezard spectral acceleration (2% probability of exceedance in 50 years)
SaUH	0.109	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years) Factored deterministic acceleration value (0.2s)
SsUH SsD S1RT	0.109 1.5 0.069	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years) Factored deterministic acceleration value (0.2s) Probabilistic risk-targeted ground motion (1.0s) Factored uniform-hazard spectral acceleration (2% probability of

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Disclaimer

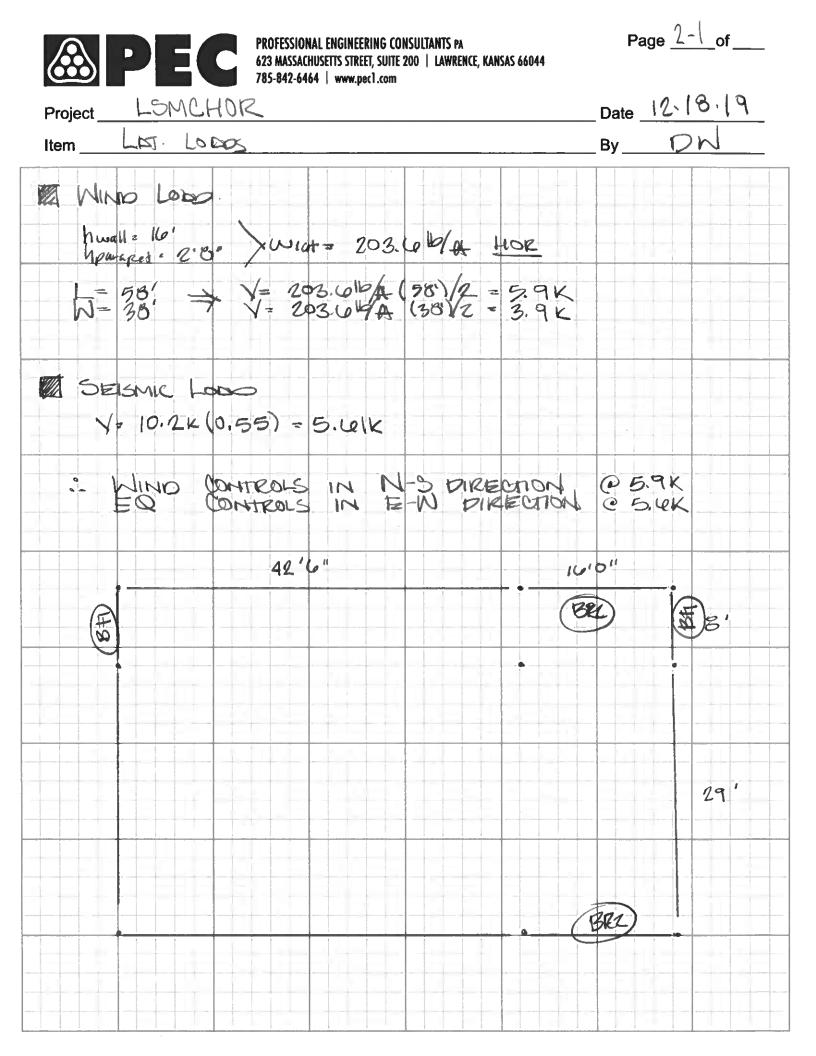
Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other Incomed professionals. And does used of the any specific oppresent whereas comments and versions of the sectored, sublance and experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the output of this website does not imply approval by the governing building code bodies responsible for building code approval the substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the output of this website does not imply approval by the governing building code bodies responsible for building code approval the substitute for the standard or care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the output of this website does not imply approval by the governing building code bodies responsible for building code approval the substitute for the standard or care required of the output of this website does not imply approval by the governing building code bodies responsible for building code approval the substitute for the standard by the substitute for the substitute for the standard by the s and interpretation for the building site described by latitude/longitude location in the report.

ATC Hazards by Location

Search Information




The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Disclaimer

Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interprinting and applying the results of the report provided by this website. Users of the information from this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

PROFESSIONAL ENGINEERING CONSULTANTS PA 623 MASSACHUSETTS STREET, SUITE 200 | LAWRENCE, KANSAS 66044 785-842-6464 | www.pecl.com

Page <u>1</u>⁻² of ____

Project LSMCHOR	Date _	12.18.19
Item LOT TREAGN	Ву	DN
BF1. H==16		
$H^{=}10^{\circ}$ $W^{=}3^{\circ}$ $\Phi^{=}03.43^{\circ}$ $L^{=}17.96^{\circ}$ $Y^{=}5.9K$ $T^{=}C^{=}13.2K$		
REACTON = 11.8K		
USE HSS 4.Av'a		
BF2		
H = u W = u Q = 45° L = 22.03° V = 5,0K		
T=C=7.9K REACTION = ± 5.6K		
145 HSS 4x4x4		
$W_{max2} = \frac{1094 KDGm}{38' = 155.26 lb/A}$		
USE 12" x 22 Sa. DATOCH WE'S PLODIO WENDS		

	chusetts	Stret, Suite	sultants, P.A 200	•	Page: Date: Engr:	12/18/2019 DLW
LSMCHOR		Contentine 70	and the states of			
BF1 Brace				Service State		
Section	ts4x4x1/4	\$				
P (kip)	13.2		t (in)	0.25	klx/rx	142.25
Mx(K*ft)	0.00		b/t	16.00	kly/ry	142.25
My (K*ft)	0.00		Sx(in^3)	4.11	Cc(ksi)	111.55
Lx(ft)	17.9		Sy(in^3)	4.11	F'ex(ksi)	7.38
Ly(ft)	17.9		A	3.59	F'ey(ksi)	7.38
Ltot(ft)	17.9		rx	1.51	lx(in^4)=	8.22
Fy(ksi)	46		ry	1.51	ly(in^4)=	8.22
bx(in)	4		kx	1.00	bx/t =	16.00
by(in)	4		ky	1.00	by/t =	16.00
	-	W/S Load		N		10.00
fa/Fa=	0.498					
Find Allowa	ble Bendi	ng Stresses	5			
Is Section C	Compact?	yes	yes			
Lcx (ft)	14.13	Lcy(ft)	14.13			
Fbx (ksi)	27.6	Fby (ksi)	27.6			
fbx (ksi)	0.00	fby (ksi)	0.00			
Check Com						
ls fa/Fa > 0	.15	YES				
Unity Chk.	0.498	ОК				
Check Defi	ections(ur	niform loads	only)			
Delta-x(in):	0		/ #DIV/0!			
Delta-y(in)=	0	≓L	/ #DIV/0!			
Torsion Ch	eck					
Vx (k) =	0.01		fvx (ksi) =	0.01	Fv (ksi)=	18.4
Vy (k) =	0.01		fvy (ksi) =	0.01	U.C. =	0.00
T (k*ft)=						

6 3

ł I

Professional Engineering Consultants, P.A.	Page:	2-4
623 Massachusetts Stret, Suite 200	Date:	12/18/2019
Lawrence, Kansas 66044	Engr:	DLW

LSMCHOR BF2 Brace

Section	ts4x4x1/4				
P (kip)	7.9	t (in)	0.25	klx/rx	179.60
Mx(K*ft)	0.00	b/t	16.00	kly/ry	179.60
My (K*ft)	0.00	Sx(in^3)	4.11	Cc(ksi)	111.55
Lx(ft)	22.6	Sy(in^3)	4.11	F'ex(ksi)	4.63
Ly(ft)	22.6	Α	3.59	F'ey(ksi)	4.63
Ltot(ft)	22.6	rx	1.51	lx(in^4)=	8.22
Fy(ksi)	46	ry	1.51	ly(in^4)=	8.22
bx(in)	4	kx	1.00	bx/t =	16.00
by(in)	4	ky	1.00	by/t =	16.00
	v	V/S Load (Y/N) =	N		

Find Axial A	llowable Stress		
Controlling Slenderness Ratio =		179.60	OK
kl/r / Cc=	1.61		
Fa (ksi) =	4.63		
fa(ksi)=	2.20		
fa/Fa=	0.475		

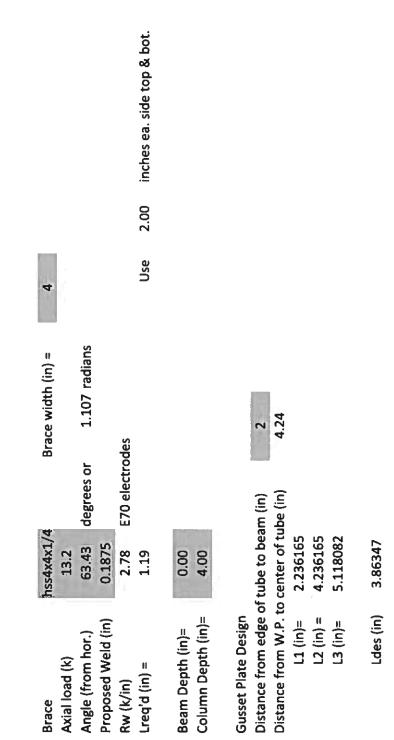
Find Allowable Bending Stresses

Is Section Compact?		yes	yes
Lcx (ft)	14.13	Lcy(ft)	14.13
Fbx (ksi)	27.6	Fby (ksi)	27.6
fbx (ksi)	0.00	fby (ksi)	0.00

Check Combined Stresses

ls fa/Fa >	0.15	YES
------------	------	-----

Unity Chk. 0.475 OK


Check Deflections(uniform loads only)

Delta-x(in):	0	=L/ #DIV/0!
Delta-y(in)=	0	=L/ #DIV/0!

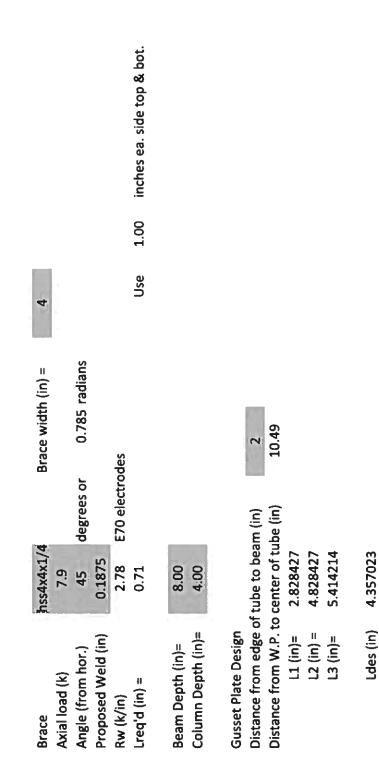
Torsion Check

Vx (k) =	0.01	fvx (ksi) =	0.01	Fv (ksi)≕	18.4
Vy (k) =	0.01	fvy (ksi) =	0.01	U.C. =	0.00
T (k*ft)=	0.01	t (ksi) =	0.02		

ISMCHOR

2-5 Date: 12/18/2019 Engr: DLW

Proj:


Lawrence, Kansas 66044			
Width of Whitemore Section (in) =Trial Plate Thickness =Ax (in^2) =Ax (in^4) =(in^4) =(in^4) =(in^4) =(in) =(12.00 0.375 0.375	Fy (ksi)= 36	
Bolt diameter (in) 0. Allow Bolt Shear (k) 9.	0.75 9.28 For ASTM A325N bolts	0	
Horizontal Brace reaction (k) = Vertical Brace reaction (k) =) = 5.90 11.81	required weld length to beam (in) = required weld length to column (in) =	1.060309 2.120161
Beam Reaction (k) =	2	use 1 for ASTM A325N bolts	olts

1.00 bolts

-9 P

2-6

LSMCHOR

て - 7 Date: 12/18/2019 Engr: DLW Proj:

Lawrence, Kansas 66044	044					
Width of Whitemore Set	Section (in) =		Co. Noch- DE			
Ax (in^2) = 2.25	•	C/C.O	DC - (ICN) AJ			
rx (in) = 0.11						
k 1.00						
kl/r = 40.25						
Fa (ksi) = 19.17	ХО					
fa (ksi) = 3.51	ŏ					
Bolt diameter (in)	0.75					
Allow Bolt Shear (k)	9.28	For ASTM A325N bolts	S			
Horizontal Brace reaction (k) =	tion (k) =	5.59	required weld length to beam (in) =	beam (in) =	1.003184	
Vertical Brace reaction (n (k) =	5.59	required weld length to column (in) =	column (in) =	1.003184	-'n
Beam Reaction (k) =		2	use 1 f	for ASTM A325N bolts		

1.00 bolts

2-8

1.5 B, BI, BA, BIA, BSV

Maximum Sheet Length 42'-0 Extra charge for lengths under 6'-0 ICC ER-3415 FM Global Approved²

> Interlocking side lap is not drawn to show actual detail.

SECTION PROPERTIES

Deck	Design	w		Section F	Properties			F	
type	thickness in.	psf	lp	Sp	l _n	Sn	Va Ibs/ft	F _y ksi	
	I		in ⁴ /ft	in ³ /ft	in ⁴ /ft	in ³ /ft		Kai	
824	0.0239	1.46	0.107	0.120	0.135	0.131	2634	60	
822	0.0295	1.78	0.155	0.186	0.183	0.192	1818	33	
B 20	0.0358	2.14	0.201	0.234	0.222	0.247	2193	33	
B19	0.0418	2.49	0.246	0.277	0.260	0.289	2546	33	
B18	0.0474	2.82	0.289	0.318	0.295	0.327	2870	33	
B16	0.0598	3.54	0.373	0.408	0.373	0.411	3578	33	

30" OR 36

ACOUSTICAL INFORMATION

Deck		Ab	sorption	Coefficie	ent		Noise Reduction
Туре	125	250	500	1000	2000	4000	Coefficient'
1.5BA, 1.5BIA	.11	.18	.66	1.02	0.61	0.33	0.60

Source: Riverbank Acoustical Laboratories.

Test was conducted with 1.50 pcf fiberglass batts and 2 inch polyisocyanurate foam insulation for the SDI.

VERTICAL LOADS FOR TYPE 1.5B

Type B (wide rib) deck provides excellent structural load carrying capacity per pound of steel utilized, and its nestable design eliminates the need for die-set ends.

1" or more rigid insulation is required for Type B deck.

Acoustical deck (Type BA, BIA) is particularly suitable in structures such as auditoriums, schools, and theatres where sound control is desirable. Acoustic perforations are located in the vertical webs where the load carrying properties are negligibly affected (less than 5%).

Inert, non-organic glass fiber sound absorbing batts are placed in the rib openings to absorb up to 60% of the sound striking the deck.

Batts are field installed and may require separation.

		Max.			Allo	wable Total (PSF) / Load (Causing Defle	ction of L/24	0 or 1 inch (P	SF)		
No. of	Deck	SDI Const.						in.) ctr to ctr o					
Spans	Туре	_ Span	5-0	5-6	6-0	6-6	7-0	7-6	8-0	8-6	9-0	9-6	10-0
	B24	4'-8	115 / 56	95/42	80 / 32	68 / 26	59/20	51 / 17	45/14	40 / 11	35/10	32/8	29/7
	B22	5'-7	98/81	81/61	68/47	58/37	50/30	44/24	38/20	34 / 17	30/14	27/12	25/10
1	B20	6'-5	123 / 105	102 / 79	86/61	73/48	63/38	55/31	48/26	43/21	38 / 18	34 / 15	31/13
	B19	7'-1	146 / 129	121/97	101 / 75	86 / 59	74 / 47	65/38	57/31	51/26	45/22	40/19	36 / 16
	B18	7'-8	168 / 152	138 / 114	116/88	99 / 69	85/55	74/45	65/37	58/31	52/26	46/22	42/19
	B16	8'-8	215 / 196	178 / 147	149 / 113	127 / 89	110/71	96/58	84/48	74 / 40	66/34	60 / 29	54/24
	824	5'-10	124 / 153	103 / 115	86 / 88	74/70	64/56	56/45	49/37	43/31	39/26	35/22	31/19
	B22	6'-11	100/213	83 / 160	70/124	59/97	51/78	45/63	39/52	35/43	31/37	28/31	25/27
2	B20	7'-9	128 / 267	106 / 201	89/155	76 / 122	66 / 97	57/79	51/65	45/54	40/46	36 / 39	32/33
	B19	8'-5	150 / 320	124 / 240	104 / 185	89 / 145	77 / 116	67/95	59/78	52/65	47/55	42/47	38/40
	818	9'-1	169 / 369	140 / 277	118/213	101 / 168	87 / 134	76 / 109	67/90	59 / 75	53/63	48/54	43/46
	B16	10'-3	213/471	176 / 354	149/273	127/214	110 / 172	95/140	84 / 115	74/96	66/81	60 / 69	54 / 59
	B24	5'-10	154 / 120	128 / 90	108/69	92 / 55	79/44	69/35	61 / 29	54/24	48/21	43 / 17	39/15
	B22	6'-11	124 / 167	103 / 126	87/97	74 / 76	64/61	56/50	49/41	43/34	39/29	35/24	31/21
3	B20	7'-9	159 / 209	132 / 157	111/121	95 / 95	82/76	72/62	63 / 51	56/43	50/36	45/31	40 / 26
	B19	8'-5	186 / 250	154 / 188	130 / 145	111 / 114	96/91	84/74	74/61	65 / 51	58/43	52 / 37	47/31
0.12	818	9'-1	210/289	174 / 217	147 / 167	126 / 132	108 / 105	95 / 86	83/71	74/59	66 / 50	59/42	54/36
	B 16	10'-3	264 / 369	219/277	185/214	158 / 168	136 / 135	119/109	105/90	93 / 75	83/63	74/54	67 / 46

Notes: 1. Minimum exterior bearing length required is 1.50 inches. Minimum interior bearing length required is 3.00 inches.

If these minimum lengths are not provided, web crippling must be checked.

2. FM Global approved numbers and spans available on page 21.

VULCRAFT

VULCRAFT \

1.5 (B, F, A) 22 ALLOWABLE DIAPHRAGM SHEAR STRENGTH (PLF) SUPPORT FASTENERS: 5/8" puddle welds¹ SIDELAP FASTENERS: #10 TEK screws

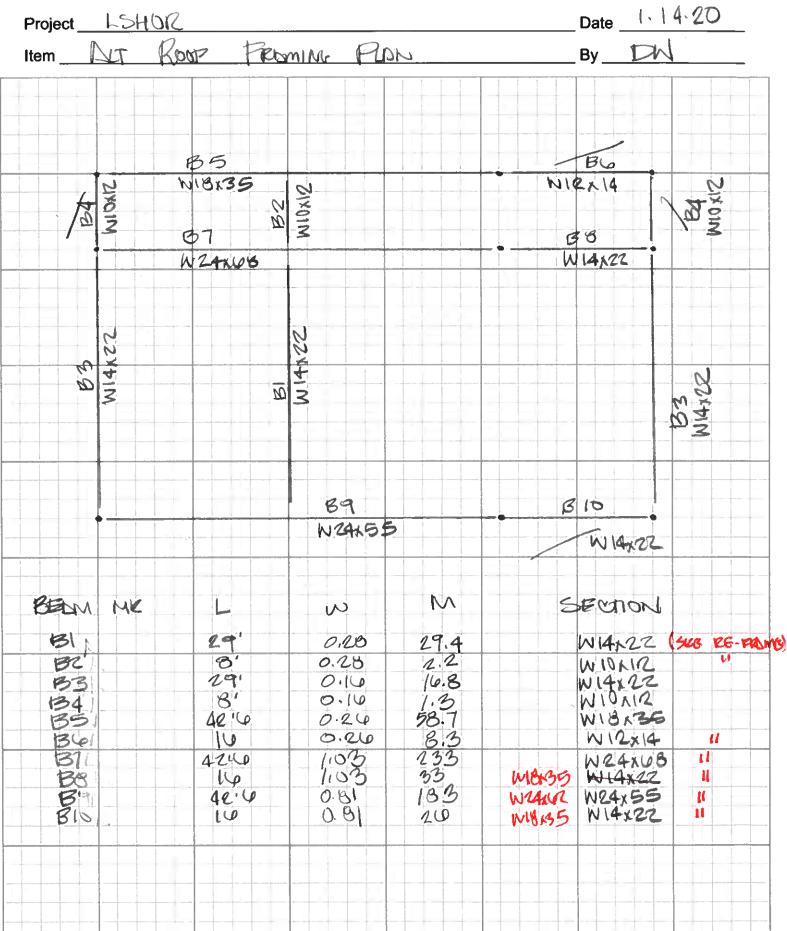
 $3.78 + 0.3*D_X + 3*K_1* SPAN$ SPAN SPAN is in feet Substitute DB, DF, or DA for DX

3-2

Factor of safety = 2.35

ADE QUATE

DIAPHRAGM


PROFESSIONAL ENGINEERING CONSULTANTS PA

 B
 PKUPESSIUNAL ENGINEERING CONSOLITIONS

 623 MASSACHUSEITS STREET, SUITE 200 | LAWRENCE, KANSAS 66044

 785-842-6464 | www.pecl.com

Page <u>3-3</u> of ____

	husetts Str	ing Consultants, P./ eet, Suite 200 44	A .		Page: Date: Engr.:	つ-4 1/14/2020 DLW
LSMCHOR						B1A
P (k) = Mx(k*ft)= My(k*ft)= L tot(ft)= Lx (ft)=	5.5 29.40 0.00 29 29	Section Ax(in^2) rx (in) = ry (in) = rt (in) =	w14x22 6.49 5.54 1.04 1.25	lx(in^4)= ly(in^4)= Sx(in^3)=	199.00 7.00 29.00	
Ly (ft) = Fy(ksi) =	2 50	d/Af = bf (in) =	8.20 5.00	Sy(in^3)= Lc(in) = Lu(in) =	2.80 48.76 53.74	
Calculate A kx = ky =	llow. Axial : 1 1	Stress kx*lx/rx = ky*ly/ry=	62.85 23.11	W/S load?	(Y/N)	N
Controlling s Fa (ksi) = fa (ksi)=	22.23 0.85			Cc = kl/r / Cc	107.00 0.59	
fa/Fa = Caclulate B Lb (in) =	0.04 ending Stre 24	esses L/rt =	19.20			
Fbx (ksi) = fbx(ksi)= Fby(ksi)=	33.00 12.17 37.5	Cb = fbx/Fbx=	1.00 0.37			
fby(ksi)=	0.00	fby/Fby=	0.00			
Check Com F'ex (ksi)= F'ey(ksi)=	ibined Stres 37.81 279.63	ses Cmx = Cmy =	1.00 1.00			
Unity Check	=	0.407 OK				
Check Defle Vert. Defl.	ections (Un 0.77	iform loads only) OR L/ 451				

Hor. Defl.

0.00

OR L/ #DIV/0!

3

P 3

623 Massac	al Engineeri chusetts Stra Kansas 6604	eet, Suit		ι.		Page: Date: Engr.:	ろ- り 1/14/2020 DLW
LSMCHOR							B2A
P (k) =	5.5		Section	W10X12			
Mx(k*ft)=	2.20		Ax(in^2)	3.54			
My(k*ft)=	0.00		rx (in) =	3.90	lx(in^4)=	53.80	
L tot(ft)=	9		ry (in) =	0.78	ly(in^4)=	2.18	
Lx (ft)=	9		rt (in) =	0.96	Sx(in^3)=	10.90	
Ly (ft) =	2		d/Af =	11.87	Sy(in^3)=	1.10	
Fy(ksi) =	50		bf (in) =	3.96	Lc(in) =	33.70	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				0.00	Lu(in) =	42.56	
Calculate A	llow. Axial S	Stress			W/S load?		Ň
kx =	1		kx*lx/rx =	27.70		()	and and the state
ky =	1		ky*ly/ry=	30.58			
	lenderness i	ratio =	30.58		Cc =	107.00	
Fa (ksi) =	27.08						
fa (ksi)=	1.55				kl/r / Cc	0.29	
fa/Fa =	0.06						
Caclulate B	ending Stre	sses					
Lb (in) =	24		L/rt =	25.00			
Fbx (ksi) =	33.00		Cb =	1.00			
fbx(ksi)=	2.42		fbx/Fbx=	0.07			
Fby(ksi)≕	37.5						
fby(ksi)=	0.00		fby/Fby=	0.00			
Check Com	bined Stres	Se S					
F'ex (ksi)=	194.57		Cmx =	1.00			
F'ey(ksi)=	159.65		Cmy =	1.00			
Unity Check	=	0.131	ок				
Check Defle	actions (Uni	form loa	ds only)				
Vert. Defl.	0.02	ORL	/ 5253				

3

Hor. Defl. 0.00 OR L/ #DIV/0!

)

Professiona 623 Massac Lawrence, H	husetts Str	eet, Suite	-	Le		Page: Date: Engr.:	ろーの 1/14/2020 DLW
LSMCHOR				and a second second			B3A
P (k) = Mx(k*ft)= My(k*ft)= L tot(ft)=	5.5 16.30 0.00 29		Section Ax(in^2) rx (in) = ry (in) =	W14X22 6.49 5.54 1.04	lx(in^4)= ly(in^4)=	199.00 7.00	
Lx (ft)= Ly (ft) = Fy(ksi) =	29 2 50		rt (in) = d/Af = bf (in) =	1.25 8.20 5.00	Sx(in^3)= Sy(in^3)= Lc(in) = Lu(in) =	29.00	
Calculate Al kx = ky =	l ow. Axial S 1 1	Stress	kx*ix/rx = ky*ly/ry=	62.85 23.11	W/S load	? (Y/N)	N
Controlling s Fa (ksi) = fa (ksi)= fa/Fa =	lenderness r 22.23 0.85 0.04	atio =	62.85		Cc = kl/r / Cc	107.00 0.59	
Caclulate Be Lb (in) = Fbx (ksi) = fbx(ksi)=	ending Stre 24 33.00 6.74		L/rt = Cb = fbx/Fbx=	19.20 1.00 0.20			
fby(ksi)= fby(ksi)=	37.5 0.00		fby/Fby=	0.00			
Check Com		58S	_				
F'ex (ksi)= F'ey(ksi)=	37.81 279.63		Cmx = Cmy =	1.00 1.00			
Unity Check	=	0.243	ОК				
Check Defle Vert. Defl.	octions (Uni 0.43	OR L/	÷.				

+

Hor. Defl. 0.00 OR L/ #DIV/0!

-

	husetts Str	ng Consultants, P eet, Suite 200 I4	. A .		Page: Date: Engr.:	み-7 1/14/2020 DLW
LSMCHOR						B4A
P (k) =	5.5	Section	W10X12			
Mx(k*ft)=	1.30	Ax(in^2)	3.54			
$M_{x}(k^{+}ft) =$	0.00	rx (in) =	3.90	lx(in^4)=	53.80	
L tot(ft)=	9	ry (in) =	0.78	ly(in^4)=	2.18	
Lx (ft)=	9	rt (in) =	0.96	Sx(in^3)=		
$L_X(tt) =$ Ly (ft) =	2	d/Af =	11.87	Sy(in^3)=	1.10	
Fy(ksi) =	50	bf (in) =	3.96	Lc(in) =	33.70	
i y(ksi) –	00	UI (III) =	0.00	Lu(in) =	42.56	
Calculate A	llow Axial S	tross		W/S load		N
kx =	1	kx*lx/rx =	= 27.70	110 1000	. (1714)	
ky =	1	ky*ly/ry=	30.58			
Controlling s			00.00	Cc =	107.00	
Fa (ksi) =	27.08				107.00	
fa (ksi)=	1.55			kl/r / Cc	0.29	
fa/Fa =	0.06				0.20	
Caclulate B	ending Stre	SSes				
Lb (in) =	24	L/rt =	25.00			
Fbx (ksi) =	33.00	Cb =	1.00			
fbx(ksi)=	1.43	fbx/Fbx=	0.04			
Fby(ksi)=	37.5					
fby(ksi)=	0.00	fby/Fby=	0.00			
Check Com	bined Stres	888				
F'ex (ksi)=	194.57	 Cmx =	1.00			
F'ey(ksi)=	159.65	Cmy =	1.00			
Unity Check	=	0.101 OK				
Check Defle	ections (Uni	form loads only)				

 Vert. Defl.
 0.01
 OR L/ 8890

 Hor. Defl.
 0.00
 OR L/ #DIV/0!

÷

Professiona 623 Massac Lawrence, I	husetts Str	eet, Suite	-	A .		Page: Date: Engr.:	3-8 1/14/2020 DLW
LSMCHOR							B5A
P (k) =	5.5		Section	W18X35			
Mx(k*ft)=	59.00		Ax(in^2)	10.3			
$M_X(k^+ft) =$	0.00		rx (in) =	7.04	lx(in^4)=	510.00	
L tot(ft)=	42.5		ry (in) =	1.22	ly(in^4)=	15.30	
Lx (ft)=	42.5		rt (in) =	1.49	Sx(in^3)=	57.60	
Lx (ft) =	42.5		d/Af =	6.94		57.00	
	50				Sy(in^3)=		
Fy(ksi) =	50		bf (in) =	6.00	Lc(in) =	57.63	
Calculate A	llow Avial 6		1		Lu(in) =	64.49	
kx =		otress	lesetter lase au	70.40	W/S load?	r (17/N)	N
	1		kx*lx/rx =	72.48			
ky =	1: Landarraa	ente -	ky*ly/ry=	49.23	0	407.00	
Controlling s		ratio =	72.48		Cc =	107.00	
Fa (ksi) =	20.47					0.00	
fa (ksi)=	0.53				kl/r / Cc	0.68	
fa/Fa =	0.03						
Caclulate B	endina Stre	8888					
Lb (in) =	60		L/rt =	40.27			
Fbx (ksi) =	30.00		Cb =	1.00			
fbx(ksi)=	12.29		fbx/Fbx=	0.41			
Fby(ksi)=	37.5			0.41			
fby(ksi)=	0.00		fby/Fby=	0.00			
103(100)	0.00		logit og	0.00			
Check Com	bined Stres	565					
F'ex (ksi)=	28.43		Cmx =	1.00			
F'ey(ksi)=	61.62		Cmy =	1.00			
Unity Check	=	0.436	ОК				
Check Defle	ections (Uni	form loa	ds only)				
Vert. Defl.	1.30	ORL					

Vert. Defl. 1.30 OR L/ 393 Hor. Defl. 0.00 OR L/ #DIV/0!

	chusetts Street, Sui Kansas 66044				Date: Engr.:	1/14/2 DL
LSMCHOR						
P (k) =	5.5	Section	W12X14			
Mx(k*ft)=	-8:30 11.5,	Ax(in^2)	4.16			
My(k*ft)=	0.00 W/RTU	1 rx (in) =	4.61	lx(in^4)=	88.60	
L tot(ft)=	16	ry (in) =	0.75	ly(in^4)=	2.36	
Lx (ft)=	16	rt (in) =	0.95	Sx(in^3)=	14.90	
Ly (ft) =	5	d/Af =	13.33	Sy(in^3)=	1.19	
Fy(ksi) =	50	bf (in) =	3.97	Lc(in) =	30.00	
	and the second			Lu(in) =	42.67	
Calculate A	Allow. Axial Stress			W/S load?		Ň
kx =		kx*lx/rx =	41.60		(,	in the second
ky =	1	ky*ly/ry=	79.66			
	slenderness ratio =	79.66		Cc =	107.00	
Fa (ksi) =	19.08	10.00			101.00	
fa (ksi)=	1.32			kl/r / Cc	0.74	
fa/Fa =	0.07				0.71	
Caclulate E	Bending Stresses					
Lb (in) =	60	L/rt =	63.16			
Fbx (ksi) =	26.82	Cb =	1.00			
fbx(ksi)=	6.68 9.20	fbx/Fbx=	0.25			
Fby(ksi)=	37.5					
fby(ksi)=	0.00	fby/Fby=	0.00			
Check Con	nbined Stresses					
F'ex (ksi)=	86.28	Cmx =	1.00			
F'ey(ksi)=	23.53	Cmy =	1.00			
Unity Checl		ок,				
	0,41		TU-1			
	lections (Uniform lo					
Vert. Defl.		L/ 1290				
Hor. Defl.	0.00 OR	L/ #DIV/0!				
				\		
)					
		111 0		Y INSP		
	I V	N14×21	Lor B			
	1	_				

Professional Engineering Cor 623 Massachusetts Street, Su Lawrence, Kansas 66044	•	,	Page: Date: Engr.:	3-10 1/14/2020 DLW
LSMCHOR			a anna an anna an an anna an anna an anna. Ann anna an anna an anna an anna an anna an an	B7A
$\begin{array}{llllllllllllllllllllllllllllllllllll$	<pre>// 'Section Ax(in^2) rx (in) = ry (in) = rt (in) = d/Af = bf (in) = kx*lx/rx = ky*ly/ry= 53.45</pre>	W24X68 20.1 9.54 1.87 2.26 4.62 8.97 53.45 32.06	Ix(in^4)= 1830.00 Iy(in^4)= 70.40 Sx(in^3)= 154.00 Sy(in^3)= 15.71 Lc(in) = 88.40 Lu(in) = 96.36 W/S load? (Y/N) Cc = 107.00 kl/r / Cc 0.50	Ň
	50	26.55 1.00 0.55 0.00 1.00 1.00	P1: 1.74k (P2: 2.86k (M1= 11.43kn M2=29.17kn M5=233.00 273.0	1300ms 283)

W24×68 Vor

Section

W14X22

5:5

LSMCHOR

P (k) =

Page: 5 - 11/14/20 Date: 1/14/20 Engr.: DLW

199.00

7.00

29.00

2.80

48.76

53.74

107.00

0.54

1/14/2020 DLW

	D V	0	>

N

Mx(k*ft)=	33.00		Ax(in^2)	6.49
My(k*ft)=	0.00		rx (in) =	5.54
L tot(ft)=	16		ry (in) =	1.04
Lx (ft)=	16		rt (in) =	1.25
Ly (ft) =	5		d/Af =	8.20
Fy(ksi) =	50		bf (in) =	5.00
Calculate A	llow. Axia	Stress		
kx =	1		kx*lx/rx =	34.67
ky =			ky*ly/ry=	57.77
Controlling s	lendernes	s ratio =	57.77	
Fa (ksi) =	23.09			
fa (ksi)=	0.85			
fa/Fa =	0.04			
Caclulate B	ending St	709909		
Lb (in) =	60	00000	L/rt =	48.00
Fbx (ksi) =			Cb =	1.00
fbx(ksi)=	13.66		fbx/Fbx=	0.46
Fby(ksi)=	37.5			0.40
fby(ksi)=	0.00		fby/Fby=	0.00
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Check Com	bined Stre) SS85		
F'ex (ksi)≕	124.21		Cmx =	1.00
F'ey(ksi)=	44.74		Cmy =	1.00
Unity Check	_	0.499	ОК	
Unity Check	-	0.499		

Check Defle	ections	(Uniform loads only)
Vert. Defl.	0.26	OR L/ 729
Hor. Defl.	0.00	OR L/ #DIV/0!

PRN-1=7.0+25.5 - 32.5K

M- 98.9+33 131.94

lx(in^4)=

ly(in^4)=

Sx(in^3)=

Sy(in^3)=

Lc(in) =

Lu(in) =

Cc =

kl/r / Cc

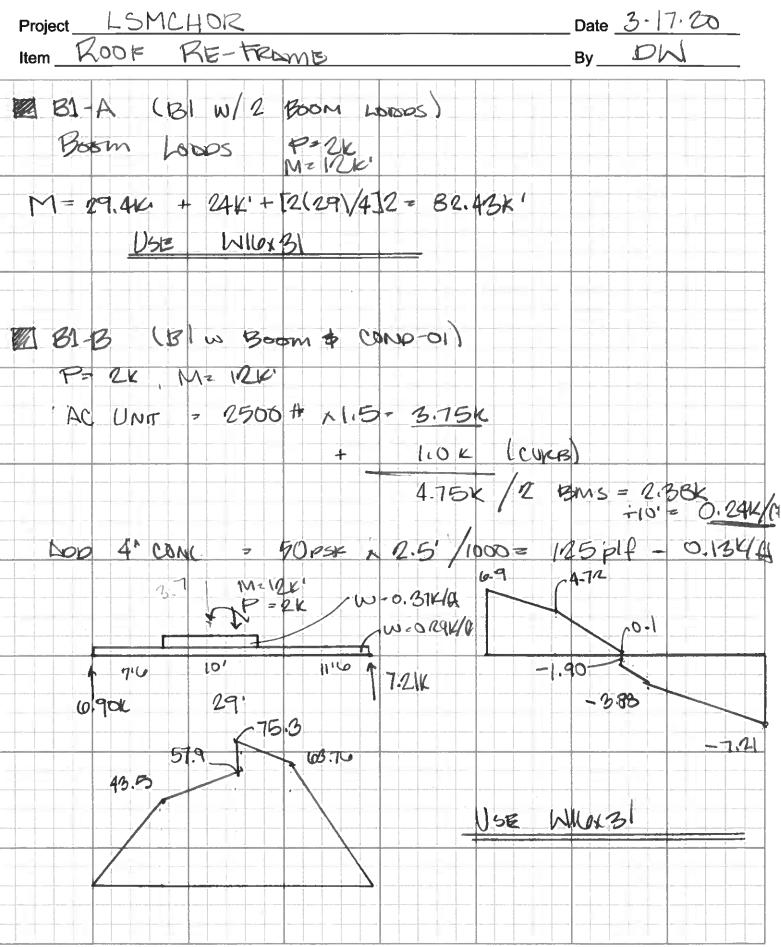
W/S load? (Y/N)

BUMP TO WIBK35 SEE FOLLOWING PAGE

Profession 623 Massa Lawrence,	chusetts S	treet, Suit		Page: Date: Engr.:	5-{L 3/17/2020 DLW		
LSMCHOR			-	1992			
P (k) =	ō		Section	W18X35			
Mx(k*ft)=	131.90		Ax(in^2)	10.3			
My(k*ft)=	0.00		rx (in) =	7.04	lx(in^4)=	510.00	
L tot(ft)=	15.5		ry (in) =	1.22	ly(in^4)=	15.30	
Lx (ft)=	15.5		rt (in) =	1.49	Sx(in^3)=	57.60	
Ly (ft) =	5		d/Àf =	6.94	Sy(in^3)=	5.10	
Fy(ksi) =	50		bf (in) =	6.00	Lc(in) =	57.63	
					Lu(in) =	64.49	
Calculate A	Allow, Axia	Stress			W/S load?		Ň
kx =	1		kx*lx/rx =	26.43		()	
ky =	1	6	ky*ly/ry=	49.23			
Controlling	slendernes	s ratio =	49.23		Cc =	107.00	
Fa (ksi) =	24.47						
fa (ksi)=	0.00				kl/r / Cc	0.46	
fa/Fa =	0.00						
Caciulate E	Bending St	resses					
Lb (in) =	60		L/rt =	40.27			
Fbx (ksi) =	30.00		Cb =	1.00			
fbx(ksi)=	27.48		fbx/Fbx=	0.92			
Fby(ksi)=	37.5						
fby(ksi)=	0.00		fby/Fby=	0.00			
Check Con	nbined Stre	SSes					
F'ex (ksi)=	213.73		Cmx =	1.00			
F'ey(ksi)=	61.62		Cmy =	1.00			
Unity Check	(=	0.916	ОК				
Check Defl	ections (U	niform loa	ids only)				
Vert. Defl.	0.39		/ 482				
Hor. Defl.	0.00		/ #DIV/0!				

623 Massa	al Engineering Cor chusetts Street, Su Kansas 66044		λ.	Page: 5-13 Date: 1/14/2020 Engr.: DLW
LSMCHOR				B9A
P (k) = Mx(k*ft)= My(k*ft)= L tot(ft)=	5.5 183.00 0.00 42.5	Section Ax(in^2) rx (in) = ry (in) =	W24X55 16.2 9.13 1.34	lx(in^4)= 1350.00 ly(in^4)= 29.10
Lx (ft)= Ly (ft) = Fy(ksi) =	42.5 5 50	rt (in) = d/Af = bf (in) =	1.68 6.66 7.01	$Sx(in^{3}) = 114.00$ $Sy(in^{3}) = 8.31$ Lc(in) = 60.03 Lu(in) = 75.29
kx = ky =	Allow. Axial Stress 1 1 slenderness ratio =	kx*lx/rx = ky*ly/ry= 55.87	55.87 44.77	W/S load? (Y/N) N Cc = 107.00
Fa (ksi) = fa (ksi)= fa/Fa =	23.41 0.34 0.01	55.67		kl/r / Cc 0.52
Caclulate E Lb (in) = Fbx (ksi) = fbx(ksi)=	60 33.00 1 0.26 27.66	L/rt = Cb = fbx/Fbx=	35.71 1.00 0.58	BUDK (Boom 1) ° B'
Fby(ksi)= fby(ksi)=	37.5 0.00	fby/Fby=	0.00	Pi= 110K (Boom 1) ° B' Paz 2.BLOK (Booms 2+3) ° 17.8' P3= 1.43K (BOOM 4) ° 28'
Check Com F'ex (ksi)=	nbined Stresses 47.84	Cmx =	1.00	P3= 1.43K (1300M 41 + CU
F'ey(ksi)=	74.51	Cmy =	1.00	P4-3.57K (IRCOND) @ 31'
Unity Check	(= - 0.598 <i>O</i> ·6	ок 49		
Check Defl Vert. Defl. Hor. Defl.	ections (Uniform lo 1.52 OR	ads only)	237	$M_{1} = 7.14 \text{K}'$ $M_{2} = 29.17 \text{K}'$ $M_{3} = 13.60 \text{K}'$ $M_{4} - 29.95 \text{K}'$ $M_{8} = 183.00 \text{K}'$ $2.62.92 \text{K}'$
	BU	MP	10	W 24x62

623 Massa		ng Consultants, P.A eet, Suite 200 44	I	Page: Date: Engr.:	3 - 14 1/14/2020 DLW	
LSMCHOR						B10A
P (k) = Mx(k*ft)= My(k*ft)= L tot(ft)=	5.5 26.00 0.00 16	Section Ax(in^2) rx (in) = ry (in) =	W14X22 6.49 5.54 1.04	lx(in^4)= ly(in^4)=	199.00 7.00	
Lx (ft)= Ly (ft) = Fy(ksi) =	16 5 50	rt (in) = d/Af = bf (in) =	1.25 8.20 5.00	Sx(in^3)= Sy(in^3)= Lc(in) = Lu(in) =	29.00 2.80 48.76 53.74	347441 (1997) - 1 (1997) - 1
kx = ky =	Allow. Axial \$ 1 1 slenderness (23.09 0.85 0.04	kx*lx/rx = ky*ly/ry=	34.67 57.77	W/S load? (Cc = kl/r / Cc	Y/N) 107.00 0.54	N
Caclulate E Lb (in) = Fbx (ksi) = fbx(ksi)= Fby(ksi)= fby(ksi)=	ending Stre 60 29.57 10.76 37.5 0.00	sses L/rt = Cb = fbx/Fbx= fby/Fby=	48.00 1.00 0.36 0.00	Miz	49.0	@ MID
Check Com F'ex (ksi)= F'ey(ksi)=	bined Stres 124.21 44.74	ses Cmx = Cmy =	1.00 1.00	Mfal =	75.	UK
Unity Check Check Defi Vert. Defi.		0.401 OK form loads only) OR L/ 925				


Hor. Defl. 0.00 OR L/ #DIV/0!

BUMP to WIBr35 For FIT

PROFESSIONAL ENGINEERING CONSULTANTS PA 623 MASSACHUSETTS STREET, SUITE 200] LAWRENCE, KANSAS 66044 785-842-6464 | www.pecl.com

Page <u>515</u> of ____

Profession 623 Massac Lawrence,	chusetts S	treet, Suit		Page: Date: Engr.:	Ъ – {Ø 3/17/2020 DLW		
LSMCHOR				19 1 1 1 1			B1A
P (k) = Mx(k*ft)=	0 82.43		Section Ax(in^2)	w16x31 9.12			
My(k*ft)=	0.00		rx(in) =	6.41	lx(in^4)=	375.00	
L tot(ft)=	29	4	ry (in) =	1.17	ly(in^4)=	12.40	
Lx (ft)=	29		rt (in) =	1.39	Sx(in^3)=		
Ly (ft) =	2		d/Af =	6.53	Sy(in^3)=		
Fy(ksi) =	50		bf (in) =	5.53	Lc(in) =	59.38	
		·			Lu(in) =	61.23	
Calculate A	llow. Axia	I Stress	W/S load		N		
kx =	Ĩ		kx*lx/rx =	54.27		. ,	
ky =	-1		ky*ly/ry=	20.58			
Controlling s	slendernes	s ratio =	54.27		Cc =	107.00	
Fa (ksi) =	23.67						
fa (ksi)=	0.00				kl/r / Cc	0.51	
fa/Fa =	0.00						
Caclulate B	Bending St	resses					
Lb (in) =	24		L/rt =	17.27			
Fbx (ksi) =	33.00		Cb =	1.00			
fbx(ksi)=	20.96		fbx/Fbx=	0.64			
Fby(ksi)=	37.5						
fby(ksi)=	0.00		fby/Fby=	0.00			
Check Com	nbined Stro	esses					
F'ex (ksi)=	50.70		Cmx =	1.00			
F'ey(ksi)=	352.50		Cmy =	1.00			
Unity Check	(=	0.635	ОК				
Check Defl	ections (U	niform loa	ids only)				
Vert. Defl.	1.15		/ 303				
LL-s D-A	0.00	001	7.4050.7051				

Vert. Defl. 1.15 OR L/ 303 Hor. Defl. 0.00 OR L/ #DIV/0!

623 Massac Lawrence, I		•		Date: Engr.:	3/17/20 DLW		
LSMCHOR			1112 E.			i e d	
P (k) =	Ō		Section	w16x31			
Mx(k*ft)=	75.30		Ax(in^2)	9.12			
My(k*ft)=	0.00		rx (in) =	6.41	lx(in^4)=	375.00	
L tot(ft)=	29		ry (in) =	1.17	ly(in^4)=	12.40	
Lx (ft)=	29		rt (in) =	1.39	Sx(in^3)=	47.20	
Ly (ft) =	2		d/Af =	6.53	Sy(in^3)=	4.49	
Fy(ksi) =	50		bf (in) =	5.53	Lc(in) =	59.38	
					Lu(in) =	61.23	
Calculate A	llow. Axial	Stress			W/S load?	(Y/N)	e N
kx =	1		kx*lx/rx =	54.27			
ky =	1		ky*ly/ry=	20.58			
Controlling s		s ratio =	54.27		Cc =	107.00	
Fa (ksi) =	23.67						
fa (ksi)=	0.00				kl/r / Cc	0.51	
fa/Fa =	0.00						
Caclulate B	ending St	resses					
Lb (in) =	24		L/rt =	17.27			
Fbx (ksi) =	33.00		Cb =	1.00			
fbx(ksi)=	19.14		fbx/Fbx=	0.58			
Fby(ksi)=	37.5						
fby(ksi)=	0.00		fby/Fby=	0.00			
Check Com	bined Stre	SSes					
F'ex (ksi)=	50.70		Cmx =	1.00			
F'ey(ksi)=	352.50		Cmy =	1.00			
Unity Check	=	0.580	ОК				

vert. Dett.	1.05	UR L/ 332
Hor. Defl.	0.00	or L/ #DIV/0!

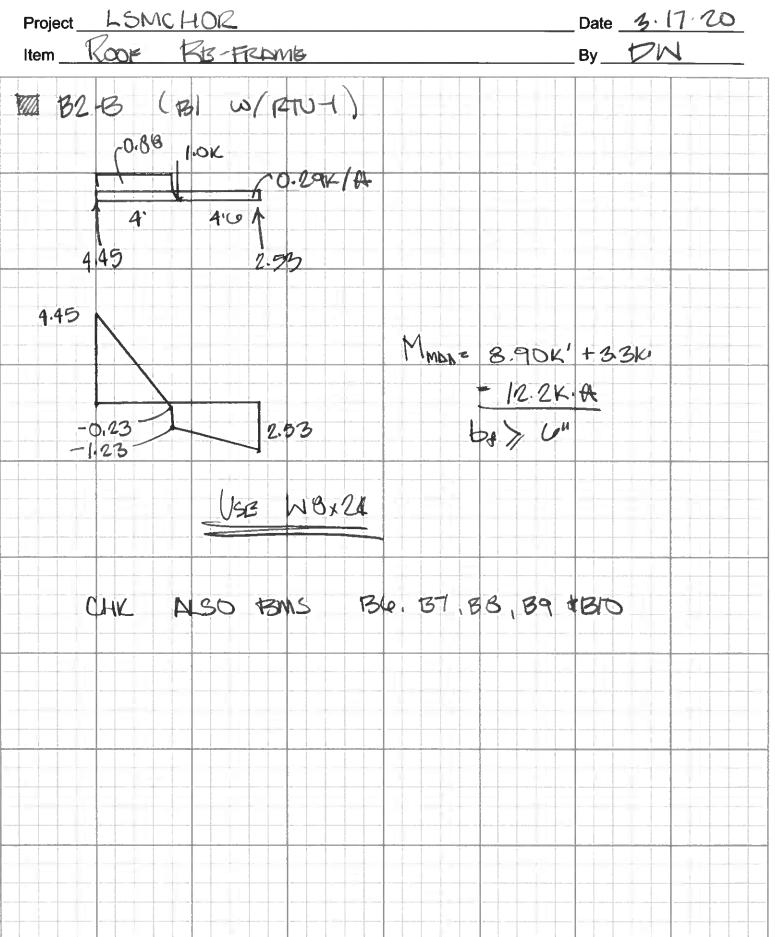
X

PROFESSIONAL ENGINEERING CONSULTANTS PA 623 MASSACHUSETTS STREET, SUITE 200 | LAWRENCE, KANSAS 66044 785-842-6464 | www.pec1.com

Project LSMC HOR ____ Date <u>3.11.20</u> _____ By __ DW Item ROOF RE-FRAME 1 B1-C (B1 W/ RTU-1 # CONR-) W=[40pst 12.5 + 15500(1.5)/30]/1000 = 0.875 WARSH D. RAK/A -W-0.80 WINT-1.17K/A-M= 123.0K.04 USIE W18×35 B2-D (B2 W/ Pormon Prover 1.0K Mporr 3:3K W= 0.29 K/A L=8'6 Mora - 1.0(B.5)/4 + 0.29(8.5) /8 + 7.3 - 8.04K.A USE NBX24 (bere)

Professional En 623 Massachus Lawrence, Kans	etts Street, Suite		Page: Date: Engr.:	か-{9 3/17/2020 DLW		
LSMCHOR				and the second	1	BIC
Mx(k*ft)= 123 My(k*ft)= 0. L tot(ft)= 2	0 3.00 00 9	Section Ax(in^2) rx (in) = ry (in) =	W18X35 10.3 7.04 1.22	lx(in^4)= ly(in^4)=	510.00 15.30	
Ly (ft) =	29 20 60	rt (in) = d/Af = bf (in) =	1.49 6.94 6.00	Sx(in^3)= Sy(in^3)= Lc(in) = Lu(in) =	57.60 5.10 57.63 64.49	
Calculate Allow				W/S load?	' (Y/N)	Ň
	1 1 ornogo rotio -	kx*lx/rx = ky*ly/ry= 49.46	49.46 19.69	Cc =	107.00	
-	.44	45.40		00 -	107.00	
· · ·	00 00			kl/r / Cc	0.46	
Caclulate Bendi	ng Stresses					
Lb (in) = 2	24	L/rt =	16.11			
	.00 .63	Cb = fbx/Fbx=	1.00 0.78			
• •	.03 7.5		0.78			
• • •	00	fby/Fby=	0.00			
Check Combine						
• •	.06	Cmx =	1.00			
F'ey(ksi)= 385	5.11	Cmy =	1.00			
Unity Check =	0.777	ОК				
Check Deflectio	ns (Uniform Ioa 26					

Vert. Defl. 1.26 OR L/ 276 Hor. Defl. 0.00 OR L/ #DIV/0!


Lawrence, I		reet, Suit 044	0 200			Date: Engr.:	3/17/2020 DLW
LSMCHOR							B2A
P (k) =	0		Section	W8X24			
Mx(k*ft)=	8.04		Ax(in^2)	7.08			
My(k*ft)=	0.00		rx (in) =	3.42	lx(in^4)=	82.80	
L tot(ft)=	8.5		ry (in) =	1.61	ly(in^4)=	18.30	
Lx (ft)=	8.5		rt (in) =	1.76	Sx(in^3)=	20.90	
Ly (ft) =	2		d/Àf =	3.05	Sy(in^3)=	5.64	
Fy(ksi) =	50		bf (in) =	6.50	Lc(in) =	69.81	
					Lu(in) =	131.05	
Calculate A	llow. Axial	Stress			W/S load?		N
kx =	1		kx*lx/rx =	29.83		. ,	
ky =	1		ky*ly/ry=	14.93			
Controlling s	lenderness	ratio =	29.83		Cc =	107.00	
Fa (ksi) =	27.17						
fa (ksi)=	0.00				kl/r / Cc	0.28	
fa/Fa =	0.00						
Caclulate B	ending Sti	esses					
Lb (in) =	24		L/rt =	13.64			
Fbx (ksi) =	33.00		Cb =	1.00			
fbx(ksi)=	4.62		fbx/Fbx=	0.14			
Fby(ksi)=	37.5						
fby(ksi)=	0.00		fby/Fby=	0.00			
Check Com	bined Stre	sses					
F'ex (ksi)=	167.86		Cmx =	1.00			
F'ey(ksi)=	670.11		Cmy =	1.00			
Unity Check	=	0.140	ОК				

Vert. Defl.	0.04	OR L/ 2342
Hor. Defl.	0.00	OR L/ #DIV/0!

PROFESSIONAL ENGINEERING CONSULTANTS PA 623 MASSACHUSETTS STREET, SUITE 200 | LAWRENCE, KANSAS 66044 785-842-6464 | www.pecl.com

Page <u>5-21</u> of ____

623 Massac Lawrence, I		-	ə 200			Page: Date: Engr.:	3/17/2020 DLW
LSMCHOR			- v	(Carlos		đ.	B2B
P (k) =	0		Section	W8X24			
Mx(k*ft)=	12.20		Ax(in^2)	7.08			
My(k*ft)=	0.00		rx (in) =	3.42	lx(in^4)=	82.80	
L tot(ft)=	8.5		ry (in) =	1.61	ly(in^4)=	18.30	
Lx (ft)=	8.5		rt (in) =	1.76	Sx(in^3)=	20.90	
Ly (ft) =	2		d/Af =	3.05	Sy(in^3)=	5.64	
Fy(ksi) =	50		bf (in) =	6.50	Lc(in) =	69.81	
					Lu(in) =	131.05	
Calculate A	llow. Axia	Stress			W/S load?	(Y/N)	. N
kx =	1		kx*lx/rx =	29.83			
ky =	- <u>1</u> '		ky*ly/ry=	14.93			
Controlling s		s ratio =	29.83		Cc =	107.00	
Fa (ksi) =	27.17						
fa (ksi)=	0.00				kl/r / Cc	0.28	
fa/Fa =	0.00						
Caclulate B	ending St	resses					
Lb (in) =	24		L/rt =	13.64			
Fbx (ksi) =	33.00		Cb =	1.00			
fbx(ksi)=	7.00		fbx/Fbx=	0.21			
Fby(ksi)=	37.5						
fby(ksi)=	0.00		fby/Fby=	0.00			
Check Com	bined Stre	SSes					
F'ex (ksi)=	167.86		Cmx =	1.00			
F'ey(ksi)=	670.11		Cmy =	1.00			
Unity Check	=	0.212	ОК				

CURCK Dall	acrititia i	(unition loads unity)
Vert. Defl.	0.07	OR L/ 1544

Hor. Defl. 0.00	OR	Ľ	#DIV/0!

PROFESSIONAL ENGINEERING CONSULTANTS PA 623 MASSACHUSETTS STREET, SUITE 200 | LAWRENCE, KANSAS 66044 785-842-6464 | www.pec1.com

Page 4-1_of___

Project	LSMC	HOR				Date 2.1	7.19
Item	1. 17ES/151	j.				By	M
COL MK	Cl	CN	СЗ	C4	C5	0.0	C7
Po	1.7	2.4	0.4	. 140	13.9	2.9	9.2
PL	1.7	2.4	0.0	7.9	10.8	2.9	6.2
Pw	-1.4	-1.9	-0.5	- 6.3	-8.0	- 2.3	- 4.9
PERDUE	± 11.8K	±5.0	土11.8	±11.8		±11.8	
Flinksh	1068	7.0	9.5	21.1	24-7	12.2	15.4
Phin	-12.2K	-6.1	-11.9	-11.5	-0.3	-12.4	0.9
SECTION	4		HSS 4x	1×4 -			
BASE R	<	1t	34 x 10 x	0'-10'' -			
Donar Bart	4		(4) ³ 4	φ			
Gr. Brit	38K	57K	IBK	2.84	-2.8K	28K	274
Poor (49K	Lo4K	2BK	FOR	53K	ATK.	45 TX
Proce		2	30" ¢	w/(11)#(₽€#3†	BC 2"	0. С.
PTC PTC NT. WOG.B	A" 30 3'0'50	3:0" SQ	6.6 50 5'0"50	51650	410150	516 50	24+4
A Con	nleuer Sume = 7			zor conne	BUGRS	.ok/A G	source

PROFESSIONAL ENGINEERING CONSULTANTS PA 623 MASSACHUSETTS STREET, SUITE 200 | LAWRENCE, KANSAS 66044 785-842-6464 | www.pecl.com

Page <u>4-2</u> of ____

Project	LSMCI	HOR				Date <u>2</u>	.19.19
Item	1. TESISA	j .				Ву	DN
COL MK	CB	<u> </u>		~			
Po	11.5	2.3		r 	وسورين و در مرود و مرود و در م	و مېروند وروند وروند وروند و و	
PL	8.5	2.3		الا الله الله الله الله الله الله الله		الى د كەر مەھىرىكى يەر	
Pw	-6-7	-1.8	in the (montant) of September	ngaga a dashmatan dan sana dan sa ta ta ta ta ta ta ta ta ta		and a surface of the lattice of the state of	
PERDUE	\$5.6	\$5.60					
FRANK	20.0 ok	6.9K. 4.00 -0.4				derit understande en dersemende beseinstenden opprecenten. Men of enderse en der eine der soften under eine soften eine soften eine soften eine soften eine soften eine so	
Phin	O.L D.ZOK	-9:4	ta Malanana da Walalanakan sata sar tanangar separa s		A the stands and the stand s		
SECTION	H55 4,	4x'4	a a georgram (gant in sort such such as		ag on a sin north to do, gan was been been	a na analy di Tajata a wai na na na na na	
Base 12	PL 34	x10x0'10"	analy and a second seco	مدد المراجع من مدين مراجع مراجع المراجع	the matter is the second secon	n salay aqua ta'di di atao musuka ya	erenter ere
Dovu Bat	(4)	34" Þ					
GR. BAI. LODIO	2TK	RTK	· · · ·			19 van de kalenaa	
Post	504	33K \$	y waariin ah y aa ka da da da da da ya				
Proc	401日 1日日 1日日 1日日 1日日 1日日 1日日 1日日 1日日 1日日	2/(16)HC 1705 @ 1/3.c.					
REINF	2:424:40	2:9, 9.0					
* Con	MLEVER	COLCULATIC)				4. But we have a set of the second of the second set of the sec

		43
Professional Engineering Consultants, P.A.	Page:	
623 Massachusetts Stret, Suite 200	Date:	12/19/2019
Lawrence, Kansas 66044	Engr:	DLW

LSMCHOR

Column Design

Section	ts4x4x1/4				
P (kip)	33.15	t (in)	0.25	klx/rx	127.15
Mx(K*ft)	0.00	b/t	16.00	kly/ry	127.15
My (K*ft)	0.00	Sx(in^3)	4.11	Cc(ksi)	111.55
Lx(ft)	16	Sy(in^3)	4.11	F'ex(ksi)	9.24
Ly(ft)	16	A	3.59	F'ey(ksi)	9.24
Ltot(ft)	16	rx	1.51	lx(in^4)=	8.22
Fy(ksi)	46	гу	1.51	ly(in^4)=	8.22
bx(in)	4	kx	1.00	bx/t =	16.00
by(in)	4	ky	1.00	by/t =	16.00
/		W/S Load (Y/N) =	N	·	

Find Axial Allowable Stress			
Controlling S	127.15	OK	
kl/r / Cc=	1.14		
Fa (ksi) =	9.24		
fa(ksi)=	9.23		
fa/Fa=	1.000		

Find Allowable Bending Stresses

Is Section C	Compact?	yes	yes
Lcx (ft)	14.13	Lcy(ft)	14.13
Fbx (ksi)	27.6	Fby (ksi)	27.6
fbx (ksi)	0.00	fby (ksi)	0.00

Check Combined Stresses Is fa/Fa > 0.15 YES

	 -	

Unity Chk. 1.000 OK

Check Deflection	ons(uniform	loads only)
Delta-x(in):	0	=L/ #DIV/0!

Delta-y(in)= 0	=L/ #DIV/0!
----------------	-------------

Torsion Check

Vx (k) =	0.01	fvx (ksi) =	0.01	Fv (ksi)≕	18.4
Vy (k) =	0.01	fvy (ksi) =	0.01	U.C. =	0.00
T (k*ft)=	0.01	t (ksi) =	0.02		

Professional Engineering Consultants, P.A. 623 Massachusetts Stret, Suite 200 Lawrence, Kansas 66044

Page:	4-4
Date:	12/19/2019
Engr:	DLW

LSMCHOR					
Base Plate	Design P	rogram			•
P(kip)=	24.70			f'c(ksi) =	4.00
T(kip)=	12.40			Fp(ksi) =	1.40
V(kip)=	5.90			Fy(ksi)=	36
Column Section		ts4x4x1/4			
d(in)=	4.00				
bf(in) =	4.00				
Assume A	Base Plat	e Size			
B (in) =	10.00		2n(in) =	6.40	
N (in) =	10.00		2m(in)=	6.40	
A(in^2)=	100.00		PL ext 1 =	3.00	
fp(ksi)=	0.25	OK	PL ext 2 =	3.00	
Base Plate	Thk. (in)=	0.53			

Check Anchor Bolts For Tension and Shear

Bolt diameter	r (in)=	0.75		Bolt area(in/	`2) =	0.442
Allow Shear/	bolt =	4.42		Fv(ksi) =	10.00	
Allow. Tensic	on/bolt =	8.84		Ft(ksi) =	20.00	
Number Req	uired=	1.40		Use	2	0.75 " dia bolts.
	bined Si	hear And Ter	ision			
V/Bolt (k)=	2.95	fv(ksi)=	6.68	OK		
T/bolt (k)=	6.20	ft(ksi)=	14.03	OK		
Check Pryin	g Actio	n (across coi	mers)			
Anchor Bolt (Ga.(in)=	9.00		b=	1.50	b'= 1.125
Required Pla	te Thick	ness(in)=	0.56	a=	1.50	a'= 1.875

i.

Professional Engineering Con 623 Massachusetts Stret, Suite Lawrence, Kansas 66044		Page: Date Engr:	4-5 2/5/2020 DLW	
LSMCHOR FOOTING DESIGN SPREADSH	EET	Typ footing	S	
P-live(K) 11 P-dead (K) 11 Ptot (K) 22 Pu (K) = 34.10 CHECK BEARING ALLOWABLE BRG. PRESS. (KS	M-live (K*FT) M-dead (K*FT) Mtot (K*FT) Mu (K*FT) SF) 2	0 0 0 0	f'c (KSI) = 4 $fy (KSI) = 60$ $Height 0$ Density (kcf) 0.1	
B (FT) = 3.5 N (FT) = 3.5 T (FT) = 1 A (SQ. FT) 12.25 FTG. WT (K) = 1.84 P-adj.(K)= 23.84 e (FT) = 0	d (IN) = 8.75 OVERBUR Pu-adj (K)		0.6*WT (k)= 1.10 Adj. L.F. 1.54	
MAXIMUM BEARING PRESSUR MINIMUM BEARING PRESSUR		OK OK		
CHECK PUNCHING SHEAR b (IN) = 10 n (IN) = 10 Vu (K) = 29.36 Phi*Vc = 141.12	bo (IN) = 75 PUNCHING SHEAR A PILASTER WT (K) =	REA (SQ. FT.) = 0.00	2.4414063	
CHECK 1-WAY SHEAR Vu (K) = 10.70 Phi*Vc = 39.51 OK				
CHECK BENDING Mu (K*FT) = 2.661043 TRY # 4 BARS @ As (SQ. IN.) = 0.39 a(in)= 0.58 \$\phi Mn = 14.95 OK	6 INCH CTR > (4/3)As-req Temp. Stee	uired= 0.09	ŌK	
Dr	PLIPT COPP	SUN = (3)	k + 1.8k (0.0)	
			2.9K	
			+ GR. BM C 1.1K/A	

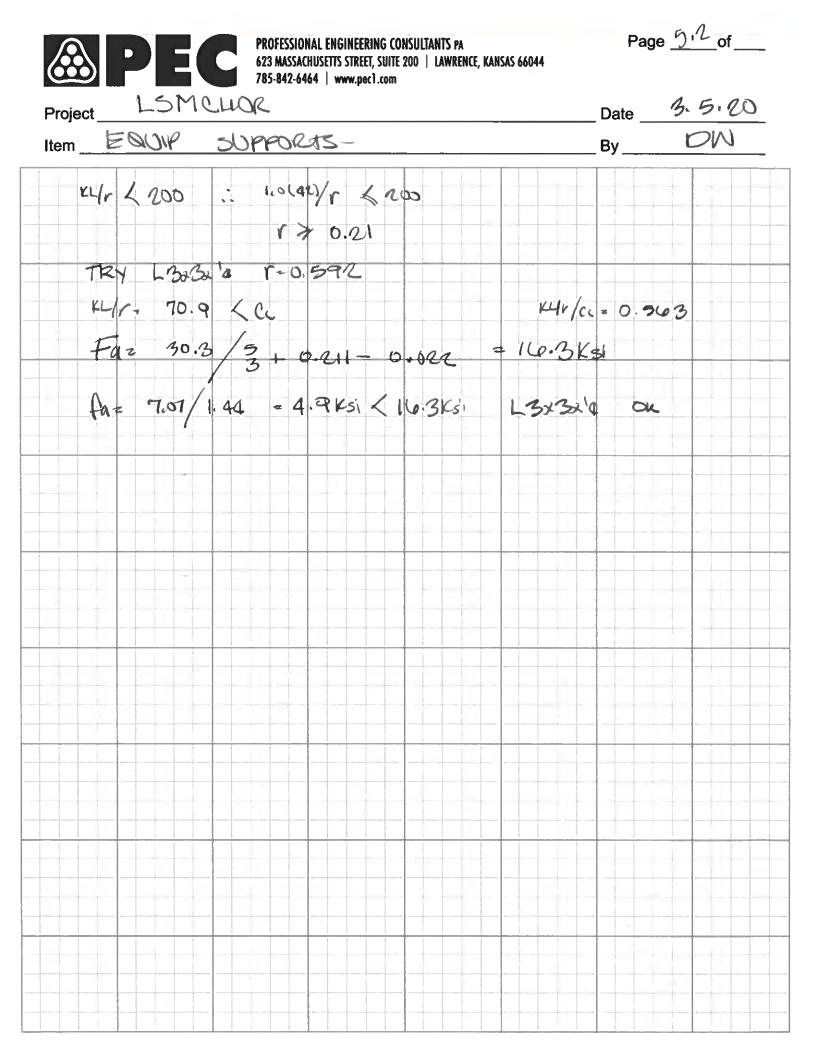
Professional Engineering Con 623 Massachusetts Stret, Suite Lawrence, Kansas 66044		Page: Date Engr:	A - C 2/5/2020 DLW
LSMCHOR FOOTING DESIGN SPREADSH	EET	Typ footings	
P-live(K) 18 P-dead (K) 18 Ptot (K) 36 Pu (K) = 55.80 CHECK BEARING ALLOWABLE BRG. PRESS. (KS B (FT) = 4.5 N (FT) = 4.5 T (FT) = 1	M-live (K*FT) 0 M-dead (K*FT) 0 Mtot (K*FT) 0 Mu (K*FT) 0 SF) 2 d (IN) = 8.75		fc (KSI) = 4 fy (KSI) = 60 Height 0 Density (kcf) 0.1
A (SQ. FT) 20.25 FTG. WT (K) = 3.04 P-adj.(K)= 39.04 e (FT) = 0 MAXIMUM BEARING PRESSUR MINIMUM BEARING PRESSUR	OVERBURDEN WT Pu-adj (K) 60.0525 RE (KSF) = 1.93 OK		0.6*WT (k)= <u>1.82</u> Adj. L.F <i>.</i> 1.54
CHECK PUNCHING SHEAR b (IN) = 10 n (IN) = 10 Vu (K) = 52.81 Phi*Vc = 141.12 OK CHECK 1-WAY SHEAR Vu (K) = 20.30	bo (IN) = 75 PUNCHING SHEAR AREA (SQ PILASTER WT (K) = 0.00	. FT.) =	2.4414063
Phi*Vc = 50.80 OKCHECK BENDING Mu (K*FT) = 4.983781 TRY #4BARS @As (SQ. IN.) = 0.39 a(in) = 0.58 ϕ Mn = 14.95 OK	6 INCH CTRS. > (4/3)As-required= Temp. Steel req'd =	0.17 0.19	OK

UPLIFT CAPPOINTY (3+3)016= 3.6K

+ GR. BM. WT.

Professional Engineering Cons 623 Massachusetts Stret, Suite Lawrence, Kansas 66044		Page: Date Engr:	4 -7 2/5/2020 DLW	
LSMCHOR FOOTING DESIGN SPREADSHI	EFT	Typ footings		
FOOTING DESIGN SI KEADSIII				
P-live(K) 27 P-dead (K) 27 Ptot (K) 54 Pu (K) = 83.70 CHECK BEARING ALLOWABLE BRG. PRESS. (KS	M-live (K*FT) 0 M-dead (K*FT) 0 Mtot (K*FT) 0 Mu (K*FT) 0 F) 2		fy (KSI) = Height	4 60 0 0.1
B (FT) = 5.5 N (FT) = 5.5 T (FT) = 1 A (SQ. FT) 30.25	d (IN) = 8.75	0.00	0.000/7 (1)	
FTG. WT (K) = 4.54 P-adj.(K)= 58.54 e (FT) = 0	OVERBURDEN WT Pu-adj (K) 90.0525		1000	.72 .54
MAXIMUM BEARING PRESSUR MINIMUM BEARING PRESSURI				
CHECK PUNCHING SHEAR b (IN) = 10 n (IN) = 10 Vu (K) = 82.78 Phi*Vc = 141.12	bo (IN) = 75 PUNCHING SHEAR AREA (SQ PILASTER WT (K) = 0.00	. FT.) =	2.4414063	
CHECK 1-WAY SHEAR Vu (K) = 33.09 Phi*Vc = 62.09 OK	I			
CHECK BENDING Mu (K*FT) = 8.103898 TRY # 4 BARS @ As (SQ. IN.) = 0.39 a(in)= 0.58 \$\$\phi Mn = 14.95	6 INCH CTRS. > (4/3)As-required= Temp. Steel req'd =	0.28 0.19	ÖK	
	UPLIP	r Cix	2047 23.	0+4.5)(04) 4.5K

+ GA-BW WT.


Page 4^{-6} of PROFESSIONAL ENGINEERING CONSULTAINTS IN 623 MASSACHUSETTS STREET, SUITE 200 | LAWRENCE, KANSAS 66044 785-842-6464 | www.pecl.com **PROFESSIONAL ENGINEERING CONSULTANTS PA** ____ Date <u>91.20</u> Project LSMCHOR Item ECCENTRIC FOOTINTES By 17W CI. Pca. 15.4K Ppl: 2.8K Ftor = 18.2K. ALLOW BRG PROSSURD = 2.0KSF DREED. 9.1 S.F. CONTROLLOD DIM= 2:4" = 2x 12" (TO MONTON SYMMETER) LROD= 9.1/2.33 = 3.90 A UGE 2'4" 4'0" × 1'0" FOOTING. w/ #4010" O.C. 5W. VIII CZ Pa. 20,0K DROOD= 20K/2KSF = 105.F. LRODZ 1054- /2.33 = 4.29A USB, 2'4" x 4'6" x 1'0" FOOTINE W/ # 4@ 6" O.C E.W.

PROFESSIONAL ENGINEERING CONSULTANTS PA 623 MASSACHUSETTS STREET, SUITE 200 | LAWRENCE, KANSAS 66044 785-842-6464 | www.pec1.com

Page <u><u>9</u>-1 of ____</u>

