Development Services Department

220 SE Green Street Lee's Summit, MO 64063 (816) 969-1200 FAX (816) 969-1201

Inspection Summary

Permit #:PRRES20180838, Building Permit - Residential
Address: 1841 SW BLACKSTONE CT, LEES SUMMIT, MO 64082

This work has been inspected and the inspection results noted below. Please call for re-inspection once all corrective actions have been completed. Do not cover any work until approved.

Inspection:

Inspector:

Outcome:

Date:

All Rough Inspection -

Jason McRoy

Passed

Wednesday, October 10, 2018

Residential

Corrective Action Required

)

Misc

- * ENGINEERS REPORT ON HINGED WALL IS FORTHCOMING*
- * OK TO INSULATE *

Comments:

Development Services Department

220 SE Green Street Lee's Summit, MO 64063 (816) 969-1200 FAX (816) 969-1201

Inspection Summary

Permit #:PRRES20180838, Building Permit - Residential
Address: 1841 SW BLACKSTONE CT, LEES SUMMIT, MO 64082

This work has been inspected and the inspection results noted below. Please call for re-inspection once all corrective actions have been completed. Do not cover any work until approved.

Inspection:

Inspector:

Outcome:

Date:

All Rough Inspection -

Jason McRoy

Passed

Wednesday, October 10, 2018

Residential

Corrective Action Required

2 Misc

- * ENGINEERS REPORT ON HINGED WALL IS FORTHCOMING*
- * OK TO INSULATE *

Comments:

October 9, 2018

Kevin Higdon Construction PO Box 847 Lee's Summit, MO 64063

Re:

1841 NW Blackstone Ct Lot 104 Napa Valley Lee's Summit, MO 64082

Apex Engineers, Inc. observed the house at the above referenced address. The contractor has retained our firm to address the following items from the city rough-in inspection:

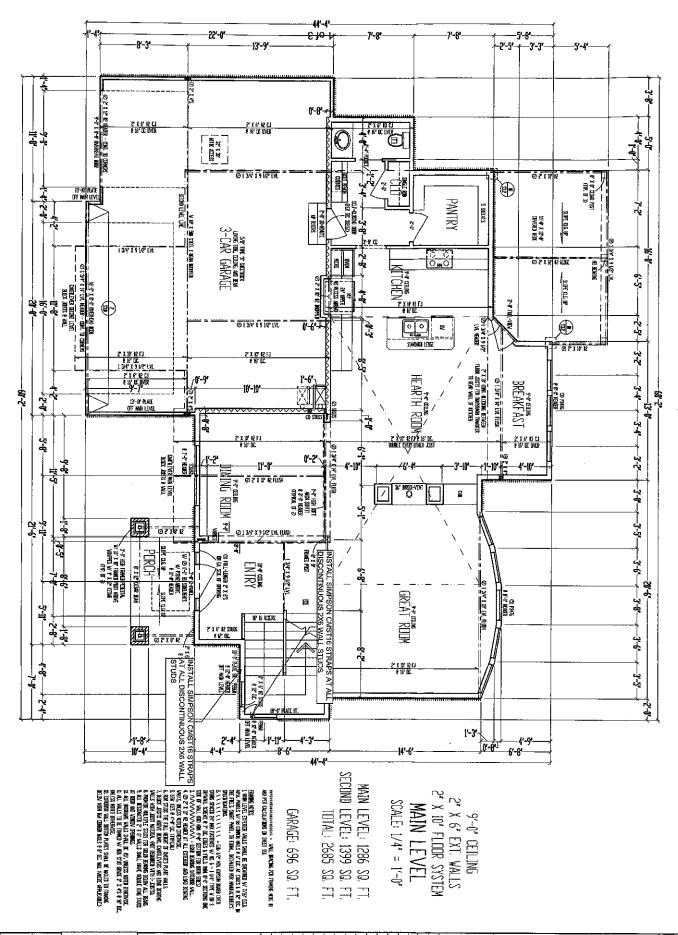
1. 2x6 exterior wall studs are discontinuous at stairway near entry.

a. The exterior walls studs near the entry at the front of the house at the stairway are discontinuous.

The 2x6 wall studs shall be connected at the discontinuity with a Simpson CS20 strap (1-1/4"x24" 20gauge strap). Install according the manufacturer's recommendations ((12) 10d common nails (0.148"x3") and 6" minimum end length). The straps shall be placed on the narrow edge of the 2x6 studs, on the interior side of the wall. Install a strap at each wall stud.

Please call if Apex Engineers, Inc. can be of further assistance.

LIMITATIONS


The scope of our services includes only those items specifically addressed herein. No attempt was made to design or check the design of any structural members other than those specifically addressed herein. All other items are outside the scope of this inspection; including but not limited to, any environmental assessment (such as, but not limited to mold. mildew, presence of hazardous or toxic materials in the soil, surface water, ground water, etc.).

In addition, the scope our services does not include any evaluation of the building or site for job-site safety and/or hazardous conditions. All construction shall be performed in compliance with IRC and OSHA standards at all times. Our firm has not been retained to examine the site or building for any of these conditions. In addition, the contractor shall retain sole responsibility for the quality of work, for adhering to plans, specifications appropriate codes, and, for repairing defects, deficiencies or omission, regardless of when they are found.

Best Regards. Apex Engineers, Inc.

Joshua M. Jensen, E.I.T.

Project Engineer

Sheat No. 2

Sheat

Coiled Straps

CMSTC provides nail slots for easy installation; it can be cut to length. CS are continuous utility straps which can be cut to length on the jobsite. Packaged in lightweight (about 40 lb.) cartons.

Finish: Galvanized. Some products available in ZMAX® coating; see Corrosion Information, pp. 15-18.

Installation: • Use all specified fasteners; see General Notes.

- Wood shrinkage after strap installation across horizontal wood members may cause strap to buckle outward.
- Refer to the applicable code for minimum nail penetration and minimum wood edge and end distances.
- The table shows the maximum allowable loads and the nails required to obtain them.
 Fewer nails may be used; reduce the allowable load as shown in footnote #3.
- The cut length of the strap shall be equal to twice the "End Length" noted in the table plus the clear span dimension.
- CMST only Use every other round hole if the wood tends to split. Use round and triangle holes for comparable MST loads, providing wood does not tend to split.
- · For lap slice and alternate nailing information, refer to technical bulletin T-CMST at strongtie.com.
- CS straps are available in 25' lengths; order CS14-R, CS16-R, CS18-R, CS20-R or CS22-R.

Codes: See p. 14 for Code Reference Key Chart

- These products are available with additional corrosion protection. For more information, see p. 18.
- These products are approved for installation with the Strong-Drive® SD Connector screw. See pp. 39–40 for more information.

		Total L	Ga.	DF/SP		SPF/HF		Allowable			
	Model No.			Fasteners	End Length	Fasteners	End Length	Tension Loads (160)	Code Ref.		
	CMST12	40'	40	(74) 16d	33"	(84) 16d	38"	9,215			
			12	(86) 10d	39"	(98) 10d	44"	9,215			
	CMST14	521/2'	14	(56) 16d	26"	(66) 16d	30"	6,490			
			14	(66) 10d	30"	(76) 10d	34"	6,490			
	CMSTC16	54'	16	(50) 16d sinker	20"	(58) 16d sinker	25"	4,585			
	CS14	100'	1000	14	(26) 10đ	. 15°	(30) 10d	16"	2,490	1	
			14	(30) 8d	16"	(36) 8d	19"	2,490	14,		
SS	CS16	1501	16	(20) 10d	11"	(22) 10d	13"	1,705	L3, FL		
			10	(22) 8d	13"	(26) 8d	14"	1,705] ' -		
	CS18	200'	2001	0 0001	18	(16) 10d	9"	(18) 10d	11"	1,370	
			'0	(18) 8d	11"	(22) 8d	12"	1,370			
	CS20	250'	20	(12) 10d	6"	(14) 10d	9"	1,030			
			20	(14) 8d	9"	(16) 8d	9"	1,030			
	C\$22	300'	22	(10) 10d	7"	(12) 10d	7"	845			
- 1			22	(12) 8d	7"	(14) 8d	8"	845			

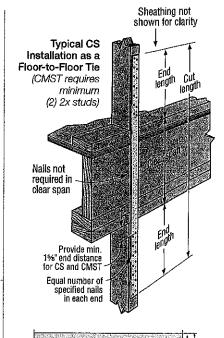
- 1. Fastener quantities and end lengths are calculated using an increase for wind or seismic loading.
- 2. Use half of the required nails in each member being connected to achieve the listed loads.
- 3. Calculate the connector value for a reduced number of nails as follows:

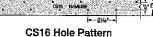
Allowable Load =
$$\frac{\text{No. of Nails Used}}{\text{No. of Nails in Table}} \times \text{Table Load}$$

C-C-2017 @2017 SIMPSON STRONG-TIE COMPANY INC.

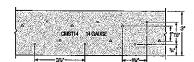
Example: CMSTC16 in DF/SP with 40 nails total. (Half of the nails in each member being connected)

Allowable Load = $\frac{40 \text{ Nails (Used)}}{50 \text{ Nails (Table)}} \times 4,585 \text{ lb.} = 3,668 \text{ lb.}$

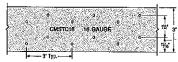

- 4. Tension loads apply for uplift when installed vertically.
- 5. Nails: 16d = 0.162" dia. x $3\frac{1}{2}$ " long, 16d sinker = 0.148" dia. x $3\frac{1}{2}$ " long, 10d = 0.148" dia. x 3" long. See pp. 26-27 for other nail sizes and information.


Not Sure How Much Coil Strap You Need?

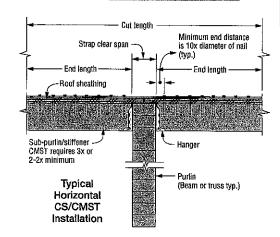
Simpson Strong-Tie has a web-based app, the Coil Strap Length Calculator, which can help you quickly determine the cut length of each strap and the total amount of coil strap needed for each application on a project.


For more information or to access, go to strongtie.com/software.

2 of 3



(All other CS straps similar)



CMST14 Hole Pattern (CMST12 similar)

CMSTC16 Hole Pattern

Gauge stamped on part for easy identification

Apex Engineers, Inc.

Kansas City, MO || Denver, CO || Lawrence, KS

www apex-engineers com

Project:	1841 SW Blackstone Ct
Client:	Kevin Higdon Construction
Engineer:	
Date:	10/9/2018

Discontinuous Wall Calculation

L1 9.0 ft Total length
L2 4.5 ft Length from bottom plate to mid plate

d 3.5 in Depth of stud s 24 in Stud spacing

Wind Design Pressure is calculated in accordance with ASCE 7-10: $q_z = 0.00256K_zK_{zi}K_dV^2$ ASCE 7-10 Equation (27.3-1)

 $q_z = 0.00256K_zK_{zt}K_dV^2$ ASCE 7 $q_z = 24.5$ psf

 q_z – 24.5 psi K_z = 0.85 Velocity Pressure Coefficient

 $K_{zt} = 1.00$ Topographic Factor $K_d = 0.85$ Directionality Factor

V_{ULT} = 115 MPH Basic Wind Speed (Ultimate)

 $p_{ULT} = q_z G C_p$ $p_{ULT} = 24.5 psf Wind design pressure$

G = 1.00 Gust Effect Factor $C_p = 1.00$ Pressure Coefficient

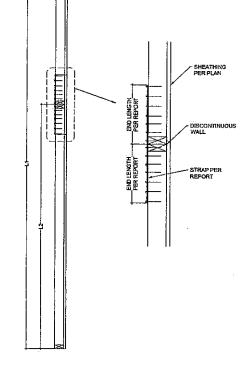
The term GCp is conservatively taken as 1.0.

From ASCE 7-10 Allowable Strength Design Load Combinations:

 $p_{ASD} = p_{ULT}(0.60)$

 $p_{ASD} = 14.7 psf$

 $M = wL_2/2(L_1-L_2)$


M 297 lb*ft Moment at mid plate w 29.35 plf Wind distributed load

T = M/d

1019 lbs Tension at interior face of stud.

Simpson Straps

Model No.	Total L	Ga	DF/SP		SPF/HF		Allowable	
			Fasteners	End Length	Fasteners	End Length 160	Tension Loads (160)	Code Rei.
			160	150	160			
OHIOTIO	40)	0' 12	74 - 16d	33*	84 - 16d	38,	9215	
CMST12	40'		86 - 10d	39*	98 - 10d	44"	9215	
CHETAL	52½'	521/2' 14	56 - 16d	26*	66 - 16d	30	6490	
CMST14			66 - 10d	30*	76 - 10d	34*	6490	
CMSTC16	54'	16	50 - 16d sinker	20*	58 - 16d sinker	25"	4585	
CS14	100'	00' 14	26 - 10d	15*	30 - 10d	16'	2490	1
U314		14	30 - 8d	16*	36 ~ 8d	19'	2490	14,
CS16	150	16	20-10d	11*	22 - 10d	12'	1705	L3, F2
U010		tD.	22 - 8d	13-	26 - 8d	14"	1705	
CS18	200	18	16 - 10d	9.	18 - 10d	10'	1370	
		10	18 - 8d	11"	22 - 8d	12	1370	
CS20	250 [.]	250 ⁻ 20	12 - 10d	6*	14 - 10d	8.	1030	
		20	14 - 8d	9,	16 - Bd	9,	1030	
CS22	300	300. 22	10 - 10d	7	12 - 10d	7'	845	
V022		. 46	12 - 8d	6	14 - 8d	8,	845	

