Miller Material Co.



2405 East 85<sup>™</sup> Street Kansas City, MO 64132-2600 Phone: (816) 444-2244 Fax: (816) 444-8736

November 1, 2016

Project: John Knox Village Lee's Summit, MO Contractor: Builders Stone & Masonry

#### Certification

The Concrete masonry units (CMU) produced by Miller Material have the following equivalent thickness fire rating.

8x8x16 Normal weight 1.5 hour fire rating

This assessment is based on a calculated analysis of our units conforming to ASTM C-90. Testing in accordance with ASTM C-140 is used to determine the units Equivalent Thickness and Percent Solid. These values along with the aggregate type (ASTM-C33) determine the Fire Resistance Rating.

Should you have any further questions contact me at 816-444-2244.

Respectfully Submitted,

Doug Cohee Masonry Sales Miller an Oldcastle co, Phone: (816) 444-2244 Fax: (816) 444-8736



13750 Sunrise Valley Drive Herndon, VA 20171-4662 703.713.1900 Fax: 703.713.1910 www.ncma.org

February 12, 2016

Todd Yuncker Miller Material Co. - Oldcastle 2405 E 85th Street Kansas, MO 64132

Please find enclosed a copy of a test report that we performed at your request on the following product that you supplied to the NCMA Research and Development Laboratory:

8 x 8 x 16 inch Concrete Masonry Unit Mark: '8 x 8 x 16 Regular NW' Made: 10/12/2015 NCMA Job Number: 15-528-4A

We are pleased to report that the tested properties from this report comply with the applicable requirements of ASTM C90-15, Standard Specification for Loadbearing Concrete Masonry Units.

The attached report includes the tested compressive strength of the concrete masonry unit. The compressive strength of masonry constructed using these units can be calculated using the Unit Strength Method as outlined in Section 1.4.B.2.b of Specification for Masonry Structures (TMS 602-13 / ACI 530.1-13 / ASCE 6-13). It should be noted that as a result of industry research, the Unit Strength Method was recalibrated in the 2013 edition of the Specification for Masonry Structures, reducing the conservatism in the calculated compressive strength of masonry that was present in previous editions. Because jurisdictions adopt model codes at different times, the calculated values using both the 2011 and the 2013 Specification for masonry structures is provided below.

In accordance with the Unit Strength Method, the compressive strength of masonry is a function of unit strength and mortar type. As shown in the attached test report...

Net Area Compressive Strength of 8 x 8 x 16 inch Concrete Masonry Unit Mark: '8 x 8 x 16 Regular NW' Made: 10/12/2015

3660 psi

Therefore, the net area compressive strength of masonry when these units are used, can be considered to be the following:

| TMS 602            | -13/ ACI 530.1- | 13/ ASCE 6-13 | TMS 602-11/ ACI 530.1-1 | 1/ ASCE 6-11 |
|--------------------|-----------------|---------------|-------------------------|--------------|
|                    | Net Area        |               | Net Area                |              |
| Co                 | ompressive St   | rength        | Compressive St          | rength       |
| When used with:    | of Masonry      | <u>/</u>      | <u>of Masonr</u>        | Y            |
| Type M or S mortar | 2660            | psi           | 2450                    | psi          |
| Type N mortar      | 2320            | psi           | 2310                    | psi          |

The values provided above can be compared directly to the specified compressive strength of masonry,  $f'_{m}$ . If these values exceed  $f'_{m}$ , compliance has been documented.

As mentioned before, the Unit Strength Method is a conservative method for determining compliance with the specified compressive strength of masonry when compared against the alternative Prism Test Method that may also be used. The results from the Prism Test Method will likely exceed the values calculated values of the Unit Strength Method.

Sincerely,

Nicholas R. Lang Director of Research & Development

Т



#### 13750 Sunrise Valley Drive Herndon, VA 20171-4662 703.713.1900 Fax: 703.713.1910 www.ncma.org

| ASTM C140/C140M-15 Tes<br>Sampling and Testing Cor | •                                                              | Related Units   |                  |                                      | Job No.:<br>Report Date:                                    |                                | 15-528-4A<br>2/12/2016 |                                   |
|----------------------------------------------------|----------------------------------------------------------------|-----------------|------------------|--------------------------------------|-------------------------------------------------------------|--------------------------------|------------------------|-----------------------------------|
| Address: 2405 E                                    | aterial Co Oldcastle<br>85th Street<br>MO 64132                |                 |                  | Testing Agency:<br>Address:          | National Con<br>Research and<br>13750 Sunris<br>Herndon, VA | d Developmer<br>e Valley Drive | nt Laborator<br>e      |                                   |
| Standard Specification:                            | ASTM C90-15                                                    |                 |                  | Sampling Party:                      | Miller Materia                                              | l Co Oldcas                    | stle                   |                                   |
| Mark: '8                                           | 6 inch Concrete Masonry L<br>x 8 x 16 Regular NW'<br>0/12/2015 | Jnit            |                  | Date Samples Received:               | 11/20/2015                                                  |                                |                        |                                   |
| Summary of Test Results                            | ASTM<br>C90-15<br>Specified                                    | Average<br>Test |                  |                                      |                                                             | ASTM<br>C90-15<br>Specified    | Average<br>Test        |                                   |
| Physical Property                                  | Values                                                         | <b>Results</b>  |                  | Physical Property                    |                                                             | Values                         | <u>Results</u>         |                                   |
| Net Compressive Strength                           | 2000 min                                                       | 3660            | psi              | Min. Faceshell Thickness             | (t <sub>fs</sub> )                                          | 1.25 min                       | 1.28                   | in.                               |
| Gross Compressive Strengt                          | ****<br>۱                                                      | 1780            | psi              | Min. Web Thickness (t <sub>w</sub> ) |                                                             | 0.75 min                       | 1.02                   | in.                               |
| Density                                            | ****                                                           | 131.5           | pcf              | Equivalent Web Thickness             |                                                             | ****                           | 2.34                   | in.                               |
| Absorption                                         | 13 max                                                         | 8.5             | pcf              | Normalized Web Area ( $A_w$          | n)                                                          | 6.5 min                        | 26.5                   | in. <sup>2</sup> /ft <sup>2</sup> |
| Percent Solid                                      | ****                                                           | 48.6            | %                | Equivalent Thickness                 |                                                             | ****                           | 3.72                   | in.                               |
| Net Cross-Sectional Area                           | ****                                                           | 58.13           | in. <sup>2</sup> | Max. Var. from Spec. Dim             | ensions                                                     | .125 max                       | 0.080                  | in.                               |
| Gross Cross-Sectional Area                         | ****                                                           | 119.61          | in. <sup>2</sup> |                                      |                                                             |                                |                        |                                   |

#### Individual Unit Test Results

|              |          | Received | Cross-So<br>Are |                 | Max.   | Compr<br>Stre | essive<br>ngth |
|--------------|----------|----------|-----------------|-----------------|--------|---------------|----------------|
| Compression  | Specimen | Weight   | Gross           | Net             | Load   | Gross         | Net            |
| Units        | No.      | lb       | in <sup>2</sup> | in <sup>2</sup> | lb     | psi           | psi            |
|              | #1       | 34.34    | 119.61          | 58.13           | 222290 | 1860          | 3820           |
|              | #2       | 34.58    | 119.61          | 58.13           | 220080 | 1840          | 3790           |
| Date Tested: | #3       | 34.38    | 119.61          | 58.13           | 195530 | 1630          | 3360           |
| 12/1/2015    | Average  | 34.43    | 119.61          | 58.13           | 212630 | 1780          | 3660           |

\* Unit areas determined as the average of the three absorption units and are assumed to be the same as those units tested in compression.

|              |          |       |        |        | Avg./Min.  |           |                  |                                   |
|--------------|----------|-------|--------|--------|------------|-----------|------------------|-----------------------------------|
|              |          | Avg   | Avg    | Avg    | Face Shell | Min. Web  | Minimum          | Normalized                        |
| Absorption   | Specimen | Width | Height | Length | Thickness  | Thickness | Web Area         | Web Area                          |
| Units        | No.      | in.   | in.    | in.    | in.        | in.       | in. <sup>2</sup> | in. <sup>2</sup> /ft <sup>2</sup> |
|              | #4       | 7.64  | 7.69   | 15.62  | 1.29       | 1.02      | 23.45            | 26.4                              |
|              | #5       | 7.66  | 7.71   | 15.65  | 1.28       | 1.02      | 23.57            | 26.5                              |
| Date Tested: | #6       | 7.65  | 7.70   | 15.65  | 1.29       | 1.02      | 23.53            | 26.5                              |
| 11/24/2015   | Average  | 7.65  | 7.70   | 15.64  | 1.28       | 1.02      | 23.52            | 26.5                              |

\*\*Where the thinnest points of opposite face shells differ in thickness by less than 0.125 inches, their measurements are averaged.

|              | Specimen | Received<br>Weight | Immersed<br>Weight | Saturated<br>Weight | Oven-Dry<br>Weight | Absorption | Density | Net<br>Volume   | Percent<br>Solid |
|--------------|----------|--------------------|--------------------|---------------------|--------------------|------------|---------|-----------------|------------------|
| Date Tested: | No.      | lb                 | lb                 | lb                  | lb                 | pcf        | pcf     | ft <sup>3</sup> | %                |
| 11/25/2015   | #4       | 34.58              | 20.17              | 36.28               | 34.12              | 8.4        | 132.2   | 0.2582          | 48.6             |
| to           | #5       | 34.38              | 20.01              | 36.18               | 33.94              | 8.6        | 131.0   | 0.2591          | 48.5             |
| 11/27/2015   | #6       | 34.56              | 20.13              | 36.32               | 34.12              | 8.5        | 131.5   | 0.2595          | 48.7             |
|              | Average  | 34.51              | 20.10              | 36.26               | 34.06              | 8.5        | 131.5   | 0.2589          | 48.6             |
|              |          |                    |                    |                     |                    |            | 1/1/17  | /               |                  |

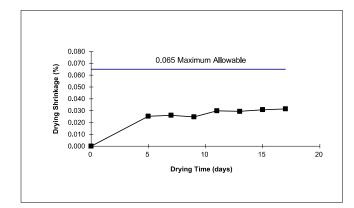
Comments: 1) These units meet or exceed the compression strength, absorption and dimensional requirements of ASTM C90-15.

Nicholas R. Lang Director of Research & Development

Haller K



#### 13750 Sunrise Valley Drive Herndon, VA 20171-4662 703.713.1900 Fax: 703.713.1910 www.ncma.org


| ASTM C426-10 Test Report<br>Linear Drying Shrinkage of Concrete Masonry Units                                            |                                        | Job No.:<br>Report Date: | 15-528-4B<br>2/12/2016 |
|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------|------------------------|
| Client: Miller Material Co Oldcastle<br>Address: 2405 E 85th Street<br>Kansas, MO 64132                                  | Testing Agency:<br>Address:            |                          |                        |
| Unit Specification: ASTM C90-15                                                                                          | Sampling Party:                        | Miller Material C        | o Oldcastle            |
| Unit Size and Description:<br>8 x 8 x 16 inch Concrete Masonry Unit<br>Mark: '8 x 8 x 16 Regular NW'<br>Made: 10/12/2015 | Date Samples Red<br>Date Testing Start |                          | 11/20/2016<br>1/7/2016 |

One face shell from each of three units was saw-cut from submitted specimens for the purpose of testing in accordance with ASTM C426-10.

Each reported value represents an average of calculated shrinkage values from measurements taken on each of two sides of the three specimens.

|           |        | Unit #1   | Unit #2 |           | Unit #3 |           |        | Average   |
|-----------|--------|-----------|---------|-----------|---------|-----------|--------|-----------|
|           |        | Linear    |         | Linear    |         | Linear    |        | Linear    |
|           |        | Drying    |         | Drying    |         | Drying    |        | Drying    |
|           | Weight | Shrinkage | Weight  | Shrinkage | Weight  | Shrinkage | Weight | Shrinkage |
|           | (lbs)  | (%)       | (lbs)   | (%)       | (lbs)   | (%)       | (lbs)  | (%)       |
|           |        |           |         |           |         |           |        |           |
| Saturated | 6.84   | —         | 7.13    | —         | 6.62    |           | 6.87   |           |
| 5 Days    | 6.52   | 0.025     | 6.78    | 0.026     | 6.30    | 0.024     | 6.53   | 0.025     |
| 7 Days    | 6.51   | 0.027     | 6.77    | 0.028     | 6.30    | 0.023     | 6.53   | 0.026     |
| 9 Days    | 6.51   | 0.025     | 6.77    | 0.027     | 6.30    | 0.023     | 6.53   | 0.025     |
| 11 Days   | 6.51   | 0.030     | 6.77    | 0.032     | 6.60    | 0.027     | 6.62   | 0.030     |
| 13 Days   | 6.51   | 0.031     | 6.76    | 0.031     | 6.29    | 0.026     | 6.52   | 0.029     |
| 15 Days   | 6.51   | 0.032     | 6.76    | 0.033     | 6.29    | 0.027     | 6.52   | 0.031     |
| 17 Days   | 6.51   | 0.033     | 6.76    | 0.034     | 6.29    | 0.028     | 6.52   | 0.031     |

| Final Linear Drying Shrinkage, S (%) |         |         |         |  |  |  |  |  |
|--------------------------------------|---------|---------|---------|--|--|--|--|--|
| Unit #1                              | Unit #2 | Unit #3 | Average |  |  |  |  |  |
| 0.032                                | 0.033   | 0.027   | 0.031   |  |  |  |  |  |



Comments: 1) These units comply with the dryining shrinkage requirements of ASTM C90-15.

Note: Final linear drying shrinkage, S, is calculated by averaging the final length measurement at equilibrium with the previous two measurements for each specimen.

Nicholas R. Lang Director of Research and Development

## Perlite Loose-Fill Perlite, an inorganic mineral, is as permanent as the walls it insulates. Masonry Insulation

The physical character of expanded perlite lends itself to a variety of special purposes – including use as loose-fill masonry insulation. For a detailed explanation of perlite expansion, see Infosheet: "Why Perlite Works"

## **PROPERTIES & BENEFITS**

*Insulation:* Thermal performance tests have shown significant energy savings when perlite is used to fill the cavities in concrete masonry structures.

#### Standards, Specifications and References:

- Perlite is represented in the standards by ASTM product specification C549. The ASTM test methods used to evaluate loose-fill Perlite insulation are listed below.
- ASTM C549 "Specification for Perlite Loose-Fill Insulation"
- ASTM C520 "Test Methods for Density of Granular Loose Fill Insulations"
- ASTM C1363 "Test Method for Thermal Performance of Building Materials and Envelope Assemblies by Means of a Hot Box Apparatus"
- ASTM E 84 "Test Method for Surface Burning Characteristics of Building Materials"
- ASTM E 136 "Test Method for Behavior of Materials in a Vertical Tube Furnace at 750°C"

#### Non-Combustible: Perlite attributes-

- The temperature range for perlite fusion is 2,300-2,450°F (1,260-1343°C).
- Perlite is a Class A, Class 1 building material
- Flame spread 0; Smoke density 0
- *4 Hour Fire Ratings:* Underwriters Laboratories Design No. U905 shows that a 2 hour rated 8, 10, or 12 inch (20, 25, or 30 cm) concrete block wall is improved to four hours when cores are filled with perlite. UL Designs U901, U904, and U907 also achieve 4 hour fire ratings.



### R AND U-VALUES FOR CONCRETE BLOCK ASSEMBLIES WITH AND WITHOUT PERLITE

TABLE

| BLOCK SIZE    | BLOCK TYPE  | Perlite Fill | R-Va <b>l</b> ue    | U-Va <b>l</b> ue    |
|---------------|-------------|--------------|---------------------|---------------------|
| 6 in. (15cm)  | Lightweight | No<br>Yes    | 2.59<br><b>5.24</b> | 0.39<br><b>0.19</b> |
| 8 in. (20cm)  | Lightweight | No<br>Yes    | 2.86<br><b>6.95</b> | 0.35<br><b>0.14</b> |
| 10 in. (25cm) | Lightweight | No<br>Yes    | 3.06<br><b>8.46</b> | 0.33<br><b>0.12</b> |
| 12 in. (30cm) | Lightweight | No<br>Yes    | 3.11<br><b>9.90</b> | 0.32<br><b>0.10</b> |
| 6 in. (15cm)  | Heavyweight | No<br>Yes    | 1.80<br><b>2.58</b> | 0.56<br><b>0.39</b> |
| 8 in. (20cm)  | Heavyweight | No<br>Yes    | 1.96<br><b>3.26</b> | 0.51<br><b>0.31</b> |
| 10 in. (25cm) | Heavyweight | No<br>Yes    | 2.08<br><b>3.82</b> | 0.48<br><b>0.26</b> |
| 12 in. (30cm) | Heavyweight | No<br>Yes    | 2.14<br><b>4.32</b> | 0.47<br><b>0.23</b> |

1 R-values with units ft<sup>2</sup>·hr·°F/Btu were calculated using the Isothermal Planes Method described in the *ASHRAE Handbook of Fundamentals*. The U-value with units Btu/ft<sup>2</sup>·hr·°F is the reciprocal of the R-value. The R-values and U-values include interior and exterior air-film resistances that total R 0.85.

- 2 R-values are based on apparent thermal conductivity for loose-fill perlite of 0.32 Btu·in./ft<sup>2</sup>·hr·°F, thermal conductivity of 2.97 Btu·in./ft<sup>2</sup>·hr·°F for light-weight concrete and 8.93 Btu·in./ft<sup>2</sup>·hr·°F for normal-weight concrete.
- 3 Block Density: Lightweight block nominal 85 lbs/ft<sup>3</sup> (1.36 kg/l); Heavyweight block nominal -135 lbs/ft<sup>3</sup> (2.16 kg/l)
- 4 RSI = R/5.678

# Perlite Loose-Fill Masonry Insulation

- *Permanent:* Perlite is an inorganic, naturally occurring mineral and is as permanent as the walls which contain it. It supports its own weight and will not settle or bridge.
- *Economical:* Perlite loose-fill masonry insulation offers excellent thermal and fire resistant properties at an economical cost. It is lightweight and pours easily and quickly without requiring special equipment or skills.

#### TABLE 2

#### THERMAL RESISTANCE VALUES for VENEER and CAVITY WALL CALCULATIONS

|                                                         | R Values<br>(°F•ft²•h/Btu) | R Values<br>(K•m²/W) |
|---------------------------------------------------------|----------------------------|----------------------|
| Outside Air Film                                        | 0.17                       | 0.03                 |
| Common Brick (w/ holes)                                 | 0.20                       | 0.04                 |
| Face Brick (no holes)                                   | 0.44                       | 0.08                 |
| Air Space in Cavity <sup>3</sup> /4 to 4 in (19-102 mm) | 0.97                       | 0.17                 |
| 1 inch (2.5 mm)<br>cavity filled w/ perlite             | 3.12                       | 0.55                 |
| 2 inch (5.1 mm)<br>cavity filled w/ perlite             | 6.25                       | 1.10                 |
| 3 inch (7.7 mm)<br>cavity filled w/ perlite             | 9.38                       | 1.65                 |
| 4 inch (10.3 mm)<br>cavity filled w/ perlite            | 12.5                       | 2.20                 |
| Reflective Air Space                                    | 3.08                       | 0.54                 |
| Furring<br>(nonreflective air space)                    | 1.01                       | 0.18                 |
| Gypsum or Plaster Board<br><sup>1</sup> /2 inch (13 mm) | 0.45                       | 0.08                 |
| Gypsum or Plaster Board<br><sup>5</sup> /8 inch (16 mm) | 0.56                       | 0.10                 |
| Inside Air Film                                         | 0.68                       | 0.12                 |





PERLITE INSTITUTE

Copyright © 2013 Perlite Institute All Rights Reserved

## Perlite Loose-Fill Masonry Insulation INSTALLATION GUIDE

| TABLE 3                                                                                                                                              |                                                                                                         |           |                                                            |                |               |                    |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------|----------------|---------------|--------------------|--|--|--|--|--|
| APPROXIMATE PERLITE MASONRY BLOCK LOOSE-FILL COVERAGE: BY AREA*<br>NUMBER OF 4 ft <sup>3</sup> BAGS REQUIRED (4 ft <sup>3</sup> EQUALS ~ 110 LITERS) |                                                                                                         |           |                                                            |                |               |                    |  |  |  |  |  |
| CORE FILL: BLOCK SIZE CAVITY FILL: CAVITY WIDTH                                                                                                      |                                                                                                         |           |                                                            |                |               |                    |  |  |  |  |  |
| WALL AREA ft <sup>2</sup> (m <sup>2</sup> )                                                                                                          | . AREA ft² (m²) 6 INCH (15cm) 8 INCH (20cm) 12 inch (30cm) 1 INCH (2.5cm) 2 INCH (5.0cm) 3 INCH (7.5cm) |           |                                                            |                |               |                    |  |  |  |  |  |
| 1,000 (93)                                                                                                                                           | 46                                                                                                      | 65        | 118                                                        | 21             | 42            | 62                 |  |  |  |  |  |
| APPROXIMATE                                                                                                                                          |                                                                                                         |           | L <b>OCK LOOSE-FI</b><br>3 BAG (4 ft <sup>3</sup> EQUALS ~ |                | E: BY BLOCK C | OUNT*              |  |  |  |  |  |
|                                                                                                                                                      | 12-INCH (30                                                                                             | cm) BLOCK | 10-INCH (25cm) BLOCK                                       | 8-INCH (20cm   | ı) BLOCK 6-IN | ICH (15cm) BLOCK   |  |  |  |  |  |
| Number of Blocks Filled                                                                                                                              | . 9                                                                                                     | )         | 13                                                         | 17             |               | 23                 |  |  |  |  |  |
|                                                                                                                                                      | 1 INCH (2.5cr                                                                                           | n) CAVITY | 1.5 INCH (3.9cm) CAVITY                                    | 2 INCH (5.1cm) | CAVITY 2.5 IN | ICH (6.4cm) CAVITY |  |  |  |  |  |
| Square Feet of Wall Filled48322419                                                                                                                   |                                                                                                         |           |                                                            |                |               |                    |  |  |  |  |  |
| *Adjust coverage to compensate for                                                                                                                   | filled/reinforced cav                                                                                   | ities.    |                                                            |                |               |                    |  |  |  |  |  |

## **GUIDELINES FOR USE:**

#### Materials

It is recommended that the loose-fill perlite shall conform to the requirements of ASTM Designation C549. Ask your supplier to provide documentation that the product conforms to ASTM C549 Standard Specification for Loose Fill Insulation.

## Installation

**1.** The loose-fill perlite should be installed in the following locations:

**a.** In the cores of all exterior (and interior) hollow masonry walls.

**b.** In the cavity between all exterior (and

interior) masonry walls.

**c.** Between exterior masonry walls and interior furring.

2. The loose-fill perlite should be poured directly (or via a hopper) in the top of the wall at any convenient interval (not in excess of 20 ft [6 m]). Wall sections under doors and windows should be filled before sills are placed. Rodding or tamping is not recommended.

**3.** All holes and openings in the wall through which loose-fill perlite can escape should be permanently sealed or caulked prior to installation. Screening should be used in all weep holes. (The inclusion of weep holes is considered good construction design practice to allow passage of any water which might penetrate the cavities or core spaces of wall construction.)

**4.** The loose-fill perlite must remain dry. Suitable means should be used as the work progresses to insure that the insulation is protected from inclement weather.

