

RE: P241184-04 - Roof

Site Information:

Project Customer: Clayton Properties Project Name: Baily Farms Clubhouse Lot/Block: -

Subdivision: Bailey Farms

Model:

Address: TBD

City: Lee's Summit State: MO

General Truss Engineering Criteria & Design Loads (Individual Truss Design

Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014

Wind Code: ASCE 7-16 Wind Speed: 117 mph Roof Load: 40.0 psf

Mean Roof Height (feet): 35

Design Program: MiTek 20/20 8.6

Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16

MiTek, Inc.

314.434.1200

16023 Swingley Ridge Rd.

Chesterfield, MO 63017

Floor Load: N/A psf

Exposure Category: B

Seal#	Truss Name	Date
178299041	A3	12/8/25
178299042	B4	12/8/25
10	B4A	12/8/25
10	B4B	12/8/25
10	B4C	12/8/25
10	B5	12/8/25
	178299041 178299042 10 10	178299041 A3 178299042 B4 10 B4A 10 B4B 10 B4C

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Premier Building Supply (Springhill, KS)20300 W 207th Street.

Truss Design Engineer's Name: Lu, Jie

My license renewal date for the state of Missouri is December 31, 2026.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

December 8,2025

Lu, Jie

1 of 1

Job Truss Truss Type Qtv Ply Roof 178299041 P241184-04 **A3** Piggyback Base Supported Gable Job Reference (optional) Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Dec 05 11:52:57 Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083 Page: 1 ID:QwTDiSsYcqxz9GAtFniyMoynaeB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 3<u>6-0-0</u> 14-1-11 2-3-12 11-9-15 7-8-10 11-9-15 2-3-12 REPAIR: 1-0-0 BREAK IN MEMBER 29-30 STARTING AT JOINT 29 6x6 ø 6x6 8⁹ 134 1<u>2</u> 8 15 4x8 4 16 3x6 4-0-0 ¹⁷18 4 ⁵ 1-4-0 10-0-0 37 38 33 32 31 30 29 28 27 26 25 34 24 20 6x6= 5x5= 6x6= 35 23 40 1-7-4 4x6 = 4L 12 0-6-14 T 3x6 ı 39 36 22 4x6= 4x6 =3x10 II 3x10 II ATTACH 7/16" OSB GUSSET (7/16" RATED SHEATHING 24/16 EXP 1) TO ATTACH //10 USB 0505521 (//10 NATED STEATHING 2-1/10 LAT 1) 10 ONE FACE OF TRUSS WITH (0.113" X.2") NAILS PER THE FOLLOWING NAIL SCHEDULE: 2 X 3'S - 2 ROWS, 2 X 4'S - 3 ROWS, 2 X 6'S AND LARGER - 4 ROWS: SPACED @ 2" O.C. INTO EACH COVERED TRUSS MEMBER. USE 2" MEMBER END DISTANCE. 36-0-0 2-5-8 9-10-12 26-1-4 33-6-8 Scale = 1:69 16-2-8 7-5-4 2-5-8 Plate Offsets (X, Y): [2:0-5-12,Edge], [2:0-1-13,0-1-10], [4:0-3-14,Edge], [9:0-1-15,Edge], [13:Edge,0-2-15], [20:0-4-0,0-2-3], [30:0-2-8,0-3-0] 2-0-0 CSI DEFL I/defl L/d **PLATES** GRIP Loading (psf) Spacing (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.81 Vert(LL) -0.03 20-23 >999 240 MT20 244/190 Snow (Pf/Pg) 21.9/20.0 Lumber DOL 1.15 BC 0.91 Vert(CT) -0.042-35 >999 180 TCDL WB 10.0 Rep Stress Incr NO 0.33 Horz(CT) -0.30 22 n/a **BCLL** 0.0 IRC2018/TPI2014 Code Matrix-S BCDL 10.0 Weight: 171 lb FT = 20%LUMBER **FORCES** (lb) - Maximum Compression/Maximum Wind: ASCE 7-16; Vult=117mph (3-second gust) Vasd=92mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; 2x4 SP No.2 *Except* 1-4:2x6 SP 2400F Tension TOP CHORD TOP CHORD 1-2=-430/482, 2-3=-3008/2952, Ke=1.00; Cat. III; Exp B; Enclosed; MWFRS (envelope) 2.0E, 18-21:2x4 SP 2400F 2.0E exterior zone and C-C Corner(3E) 0-0-0 to 5-0-0, 3-5=-2180/2195, 5-6=-1850/1869, **BOT CHORD** 2x4 SP No.2 *Except* 1-36,22-21:2x6 SP No.2 6-7=-1505/1571. 7-8=-1200/1258. Exterior(2N) 5-0-0 to 14-1-11. Corner(3R) 14-1-11 to 19-1-11, Exterior(2N) 19-1-11 to 21-10-5, Corner(3R) 8-9=-604/648, 9-10=-700/775, **WEBS** 2x4 SP No.2 10-11=-414/517, 11-12=-313/416, **OTHERS** 2x3 SPF No.2 12-13=-599/675, 13-14=-521/566 cantilever left and right exposed; end vertical left and BRACING right exposed; C-C for members and forces & MWFRS 14-15=-1080/1141, 15-16=-1380/1419, TOP CHORD Structural wood sheathing directly applied or 16-17=-1683/1705, 17-19=-1950/1954, for reactions shown; Lumber DOL=1.60 plate grip 4-3-8 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 9-13.

BOT CHORD

Rigid ceiling directly applied or 3-5-4 oc

22=7-10-12. 23=7-10-12.

24=7-10-12, 25=7-10-12,

35=7-10-12, 36=7-10-12

48), 36=-1403 (LC 45) 22=1495 (LC 51), 23=879 (LC 72),

36=1977 (LC 52)

Max Horiz 36=237 (LC 13)

26=16-2-8, 27=16-2-8, 28=16-2-8,

29=16-2-8, 30=16-2-8, 31=16-2-8,

22=-1346 (LC 56), 23=-504 (LC

32=16-2-8, 33=16-2-8, 34=7-10-12,

55), 24=-209 (LC 56), 25=-350 (LC

56), 26=-89 (LC 56), 27=-287 (LC

47), 28=-79 (LC 47), 29=-58 (LC

45), 30=-95 (LC 48), 31=-377 (LC

48), 32=-83 (LC 53), 33=-439 (LC 53), 34=-73 (LC 55), 35=-493 (LC

24=516 (LC 71), 25=661 (LC 71), 26=563 (LC 92), 27=655 (LC 76), 28=525 (LC 81), 29=495 (LC 81),

30=521 (LC 81), 31=729 (LC 75),

32=555 (LC 90), 33=749 (LC 70), 34=443 (LC 92), 35=940 (LC 69), 19-20=-2722/2675, 20-21=-261/247 1-36=-516/558, 32-33=-1294/1391 31-32=-1002/1071, 29-31=-724/821, 28-29=-348/443, 27-28=-626/721, 26-27=-903/971, 25-26=-1196/1291 2-35=-2415/2416, 34-35=-1947/1970, 33-34=-1655/1685, 24-25=-1553/1601 23-24=-1840/1873, 20-23=-2259/2318, 21-22=-321/321 11-29=-196/54, 10-30=-204/91,

WEBS 2-36=-1901/1448, 20-22=-1594/1519, 8-31=-454/391, 7-32=-207/79, 6-33=-203/87, 5-34=-201/77, 3-35=-348/357, 12-28=-204/75, 14-27=-375/301,

15-26=-206/83, 16-25=-206/77 17-24=-173/155, 19-23=-320/298

1) Unbalanced roof live loads have been considered for this design.

- 21-10-5 to 26-10-5, Exterior(2N) 26-10-5 to 36-0-0 zone; DOI = 1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=21.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.1; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- Unbalanced snow loads have been considered for this desian
- 6) Provide adequate drainage to prevent water ponding.

December 8,2025

Continued on page 2

BOT CHORD

REACTIONS (size)

bracing.

Max Uplift

Max Grav

- Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Roof	
P241184-04	A3	Piggyback Base Supported Gable	1	1	Job Reference (optional)	178299041

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Dec 05 11:52:57 ID:QwTDiSsYcqxz9GAtFniyMoynaeB-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

- All plates are 1.5x4 MT20 unless otherwise indicated.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) Bearings are assumed to be: Joint 35 SP No.2 crushing capacity of 565 psi, Joint 23 SP No.2 crushing capacity of 565 psi, Joint 26 SP No.2 crushing capacity of 565 psi, Joint 25 SP No.2 crushing capacity of 565 psi.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1403 lb uplift at joint 36, 439 lb uplift at joint 33, 95 lb uplift at joint 30, 350 lb uplift at joint 25, 1346 lb uplift at joint 22, 58 lb uplift at joint 29, 377 lb uplift at joint 31, 83 lb uplift at joint 32, 73 lb uplift at joint 34, 493 lb uplift at joint 35, 79 Ib uplift at joint 28, 287 lb uplift at joint 27, 89 lb uplift at joint 26, 209 lb uplift at joint 24 and 504 lb uplift at joint
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) This truss has been designed for a total drag load of 5000 lb. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 36-0-0 for 138.9 plf.
- 14) Girder carries tie-in span(s): 9-0-0 from 0-5-8 to 31-6-8
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 16) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-9=-54, 9-13=-64, 13-21=-54, 1-39=-20, 36-39=-157 (F=-137), 25-33=-157 (F=-137), 2-33=-157 (F=-137), 25-40=-157 (F=-137), 20-40=-20, 21-22=-20

Page: 2

Job Truss Truss Type Qty Ply Roof I78299042-R1 P241184-04 B4-R1 Piggyback Base Job Reference (optional) Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083 Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Dec 05 11:52:58 Page: 1 ID:CxlcAawns06YotXnFfnrK3yFLrf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 21-10-5 33-9-4 2-2-12 2-2-12 8-3-4 14-1-11 36-0-0 5-10-7 7-8-10 2-2-12 6-0-8 6-0-8 BREAK IN MEMBER 2-3 LOCATED 1-0-0 FROM JOINT 2. 6x6 🚜 5 22 23 25 6 3x6 3x4 -3x6 -3x43 7 ⁸26 213 10-0-0 10-0-0 20 27 4x6 🚜 4x6 28 9 ₩ 17 16 15 14 13 12 3x8 II 3x8 II 18 11 3x6= 3x6= 3x6= 1.5x4 II 1.5x4 II APPLY 2 X 4 X 6' SPF/DF/SP NO.2 SCAB(S) TO EACH FACE OF TRUSS CENTERED ON DAMAGE. ATTACH WITH (0.131" X 3") NAILS PER THE FOLLOWING NAIL SCHEDULE: 2 x 4'S - 2 ROWS: SPACED @ 4" O.C. STAGGER NAIL SPACING FROM FRONT FACE AND BACK FACE FOR A NET 2" O.C SPACING IN THE TRUSS. USE 2" MEMBER END DISTANCE 36-0-0 2-2-12 2-0-0 H 34-0-0 14-0-7 21-11-9 27-8-13 33-9-4 8-3-4 2-0-0 6-0-8 5-9-3 7-11-2 5-9-3 6-0-8 0-2-12 0 - 2 - 122-0-0

Plate Offsets (X, Y): [1:0-3-8,Edge], [5:0-3-0,0-2-3], [6:0-4-4,0-2-4], [10:0-3-8,Edge], [12:0-2-8,0-1-8], [17:0-2-8,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.84	Vert(LL)	-0.10	13-16	>999	240	MT20	244/190
Snow (Pf/Pg)	21.9/20.0	Lumber DOL	1.15	BC	0.54	Vert(CT)	-0.22	13-16	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.45	Horz(CT)	0.04	11	n/a	n/a		
BCLL	0.0	Code	IRC2018/TPI2014	Matrix-S								
BCDL	10.0										Weight: 185 lb	FT = 20%

LUMBER

2x4 SP No.2 *Except* 5-6:2x4 SP 2400F TOP CHORD

2.0E

BOT CHORD 2x4 SP No.2

WEBS 2x3 SPF No.2 *Except* 13-5:2x4 SP No.2 WEDGE

Left: 2x4 SP No.2 Right: 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

3-6-10 oc purlins, except

2-0-0 oc purlins (4-5-7 max.): 5-6. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing.

WEBS 1 Row at midpt 5-13, 4-16, 7-13

REACTIONS 11=0-5-8, 18=0-5-8 (size)

Max Horiz 18=-202 (LC 12)

Max Uplift 11=-49 (LC 17), 18=-49 (LC 16)

Max Grav 11=1713 (LC 40), 18=1713 (LC 40)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-80/64, 2-4=-1725/69, 4-5=-1511/127,

5-6=-1103/148, 6-7=-1512/127, 7-9=-1725/70, 9-10=-80/64

1-18=0/65, 17-18=-192/221, 16-17=-59/1331, BOT CHORD

13-16=-19/1102, 12-13=0/1331, 11-12=0/66,

10-11=0/66

WEBS 5-16=-24/395, 5-13=-135/137, 6-13=0/371,

2-18=-1592/128, 9-11=-1592/128,

4-16=-353/156, 7-13=-352/156, 4-17=-265/76, 2-17=-24/1323, 7-12=-266/76,

9-12=-24/1323

NOTES

Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=117mph (3-second gust) Vasd=92mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. III; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 5-0-0, Interior (1) 5-0-0 to 14-1-11, Exterior(2R) 14-1-11 to 21-2-9, Interior (1) 21-2-9 to 21-10-5, Exterior(2R) 21-10-5 to 28-11-3, Interior (1) 28-11-3 to 36-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=21.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.1; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- Unbalanced snow loads have been considered for this
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 49 lb uplift at joint 18 and 49 lb uplift at joint 11.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

December 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job Truss Truss Type Qty Ply Roof I78299042-R2 P241184-04 B4-R2 Piggyback Base Job Reference (optional) Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083 Run: 8.63 E Sep 26 2024 Print: 8.630 E Sep 26 2024 MiTek Industries, Inc. Mon Dec 08 11:43:18 Page: 1 ID:CxlcAawns06YotXnFfnrK3yFLrf-VzQgzKkLEq6FNq5Fnqsdp5PzUT_ZHW8r?_1qUlyB2fO 2-2-12 2-2-12 14-1-11 36-0-0 6-0-8 5-10-7 7-8-10 5-10-7 6-0-8 2-2-12 REPAIR BREAK IN MEMBER 4-5 LOCATED 2-6-0 FROM JOINT 5. 6x6 🔑 6x6= 5 22 23 25 6 3x4 a 3x6 3x4 3x6. 213 ⁸26 10-0-0 10-0-0 20 27 4x6 🗸 4x6 28 19 9 10 \aleph 15 12 17 16 14 13 3x8 II 3x8 II 18 11 3x6= 3x4= 3x6= 3x6= 3x8= 3x6= 1.5x4 II 1.5x4 II APPLY 2 X 4 X 5' SPF/DF/SP NO.2 SCAB(S) TO EACH FACE OF TRUSS CENTERED ON DAMAGE. ATTACH WITH (0.131" X 3") NAILS PER THE FOLLOWING NAIL SCHEDULE: 2 x 4'S - 2 ROWS: SPACED @ 4" O.C. STAGGER NAIL SPACING FROM FRONT FACE AND BACK FACE FOR A NET 2" O.C SPACING IN THE TRUSS. USE 2" MEMBER END DISTANCE 36-0-0 2-2-12 2-0-0 3 H 34-0-0 14-0-7 21-11-9 33-9-4 8-3-4 2-0-0 6-0-8 5-9-3 7-11-2 5-9-3 6-0-8 0-2-12 0 - 2 - 122-0-0

Plate Offsets (X, Y): [1:0-3-8,Edge], [5:0-3-0,0-2-3], [6:0-4-4,0-2-4], [10:0-3-8,Edge], [12:0-2-8,0-1-8], [17:0-2-8,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.84	Vert(LL)	-0.10	13-16	>999	240	MT20	244/190
Snow (Pf/Pg)	21.9/20.0	Lumber DOL	1.15	BC	0.54	Vert(CT)	-0.22	13-16	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.45	Horz(CT)	0.04	11	n/a	n/a		
BCLL	0.0	Code	IRC2018/TPI2014	Matrix-S								
BCDL	10.0										Weight: 185 lb	FT = 20%

LUMBER

2x4 SP No.2 *Except* 5-6:2x4 SP 2400F TOP CHORD

2.0E

BOT CHORD 2x4 SP No.2

WEBS 2x3 SPF No.2 *Except* 13-5:2x4 SP No.2 WEDGE

Left: 2x4 SP No.2 Right: 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

3-6-10 oc purlins, except

2-0-0 oc purlins (4-5-7 max.): 5-6. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing.

WEBS 1 Row at midpt 5-13, 4-16, 7-13 REACTIONS 11=1369/0-5-8, 18=1369/0-5-8 (lb/size)

Max Horiz 18=-202 (LC 12)

Max Uplift 11=-49 (LC 17), 18=-49 (LC 16)

Max Grav 11=1713 (LC 40), 18=1713 (LC 40)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250

(lb) or less except when shown

TOP CHORD 2-19=-1725/33, 19-20=-1604/48

20-21=-1599/54, 3-21=-1464/65,

3-4=-1459/69, 4-5=-1511/127,

5-22=-1103/148, 22-23=-1103/148, 23-24=-1103/148, 24-25=-1103/148,

6-25=-1103/148, 6-7=-1512/127,

7-8=-1459/70, 8-26=-1464/65, 26-27=-1599/54, 27-28=-1604/48,

9-28=-1725/33 16-17=-59/1331, 15-16=-19/1102,

BOT CHORD 14-15=-19/1102, 13-14=-19/1102,

12-13=0/1331

WFBS 5-16=-24/395, 6-13=0/371, 2-18=-1592/128,

9-11=-1592/128, 4-16=-353/156,

7-13=-352/156, 4-17=-265/76, 2-17=-24/1323, 7-12=-266/76, 9-12=-24/1323

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=117mph (3-second gust) Vasd=92mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. III; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 5-0-0, Interior (1) 5-0-0 to 14-1-11, Exterior(2R) 14-1-11 to 21-2-9, Interior (1) 21-2-9 to 21-10-5, Exterior(2R) 21-10-5 to 28-11-3, Interior (1) 28-11-3 to 36-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=21.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.1; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- Unbalanced snow loads have been considered for this design.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 49 lb uplift at joint 18 and 49 lb uplift at joint 11.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

December 8,2025

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Truss Type Job Truss Qty Ply Roof I78299042-R3 P241184-04 B4-R3 Piggyback Base Job Reference (optional) Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083 Run: 8.63 E Sep 26 2024 Print: 8.630 E Sep 26 2024 MiTek Industries, Inc. Mon Dec 08 11:43:25 Page: 1 ID:CxlcAawns06YotXnFfnrK3yFLrf-GVvie3qMMH66KujnFV0V8nlKThjQ9760rDz5mryB2fG 27-8-13 33-9-4 2-2-12 2-2-12 8-3-4 14-1-11 36-0-0 5-10-7 7-8-10 5-10-7 6-0-8 2-2-12 6-0-8 REPAIR BREAK IN MEMBER 12-13 LOCATED 2-0-0 FROM JOINT 13. 6x6 🚜 6x6= 24 25 6 5 22 23 3x4 💋 3x6 3x4. 3x6. 213 10-0-0 10-0-0 20 27 4x6 4 4x6 19 28 9 0-2-11 0-6-14 10 Š × 15 13 12 17 16 14 3x8 II 18 11 3x6 =3x4 =3x6 =3x6 =3x8= 3x6= 1.5x4 II 1.5x4 II APPLY 2 X 4 X 5' SPF/DF/SP NO.2 SCAB(S) TO EACH FACE OF TRUSS CENTERED ON DAMAGE. ATTACH WITH (0.131" X 3") NAILS PER THE FOLLOWING NAIL SCHEDULE: 2 x 4'S - 2 ROWS: SPACED @ 4" O.C. STAGGER NAIL SPACING FROM FRONT FACE AND BACK FACE FOR A NET 2" O.C SPACING IN THE TRUSS. USE 2" MEMBER END DISTANCE 36-0-0 2-2-12 2-0-0 H 34-0-0 14-0-7 21-11-9 33-9-4 8-3-4 2-0-0 6-0-8 5-9-3 7-11-2 5-9-3 6-0-8 0-2-12 0 - 2 - 122-0-0

Plate Offsets (X, Y): [1:0-3-8,Edge], [5:0-3-0,0-2-3], [6:0-4-4,0-2-4], [10:0-3-8,Edge], [12:0-2-8,0-1-8], [17:0-2-8,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.84	Vert(LL)	-0.10	13-16	>999	240	MT20	244/190
Snow (Pf/Pg)	21.9/20.0	Lumber DOL	1.15	BC	0.54	Vert(CT)	-0.22	13-16	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.45	Horz(CT)	0.04	11	n/a	n/a		
BCLL	0.0	Code	IRC2018/TPI2014	Matrix-S								
BCDL	10.0										Weight: 185 lb	FT = 20%

LUMBER

2x4 SP No.2 *Except* 5-6:2x4 SP 2400F TOP CHORD

2.0E

BOT CHORD 2x4 SP No.2

WEBS 2x3 SPF No.2 *Except* 13-5:2x4 SP No.2 WEDGE

Left: 2x4 SP No.2 Right: 2x4 SP No.2

BRACING

TOP CHORD

Structural wood sheathing directly applied or

3-6-10 oc purlins, except 2-0-0 oc purlins (4-5-7 max.): 5-6.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

WEBS 1 Row at midpt 5-13, 4-16, 7-13 REACTIONS 11=1369/0-5-8, 18=1369/0-5-8 (lb/size)

Max Horiz 18=-202 (LC 12)

Max Uplift 11=-49 (LC 17), 18=-49 (LC 16)

Max Grav 11=1713 (LC 40), 18=1713 (LC 40)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250

(lb) or less except when shown

TOP CHORD 2-19=-1725/33, 19-20=-1604/48

20-21=-1599/54, 3-21=-1464/65, 3-4=-1459/69, 4-5=-1511/127,

5-22=-1103/148, 22-23=-1103/148,

23-24=-1103/148, 24-25=-1103/148,

6-25=-1103/148, 6-7=-1512/127,

7-8=-1459/70, 8-26=-1464/65,

26-27=-1599/54, 27-28=-1604/48,

9-28=-1725/33

BOT CHORD 16-17=-59/1331, 15-16=-19/1102,

14-15=-19/1102, 13-14=-19/1102,

12-13=0/1331

WFBS 5-16=-24/395, 6-13=0/371, 2-18=-1592/128,

9-11=-1592/128, 4-16=-353/156,

7-13=-352/156, 4-17=-265/76, 2-17=-24/1323, 7-12=-266/76, 9-12=-24/1323

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=117mph (3-second gust) Vasd=92mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. III; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 5-0-0, Interior (1) 5-0-0 to 14-1-11, Exterior(2R) 14-1-11 to 21-2-9, Interior (1) 21-2-9 to 21-10-5, Exterior(2R) 21-10-5 to 28-11-3, Interior (1) 28-11-3 to 36-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=21.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.1; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- Unbalanced snow loads have been considered for this design.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 49 lb uplift at joint 18 and 49 lb uplift at joint 11.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

December 8,2025

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Qty Job Truss Truss Type Ply Roof I78299042-R4 P241184-04 B4-R4 Piggyback Base Job Reference (optional) Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083 Run: 8.63 E Sep 26 2024 Print: 8.630 E Sep 26 2024 MiTek Industries, Inc. Mon Dec 08 11:51:35 ID:CxlcAawns06YotXnFfnrK3yFLrf-wnWxUcmjzqra6CAyyPoQ?613pDy3zlQ8WSg1yRyB2Xc 21-10-5 27-8-13 33-9-4 2-2-12 2-2-12 8-3-4 14-1-11 36-0-0 6-0-8 5-10-7 7-8-10 5-10-7 2-2-12 6-0-8 REPAIR REPLACE DAMAGED MEMBER 13-16. 22 23 25 6 6x6= 6x6 🍃 3x4 🚜 3x6 3x6 4 3x4**、** 213 826 10-0-0 10-0-0 20 27 4x6 ~ 4x6 28 10 0-6-14 T 10 14 13 17 12 3x8 II 3x8 II 18 11 3x4= 3x8 3x6= 3x6= 1.5x4 II 1.5x4 II 2-0-0 2-0-0 ATTACH 7/16" OSB GUSSET (7/16" RATED SHEATHING 24/16 EXP 1) TO EACH FACE OF TRUSS WITH (0.131" X 2.5" MIN.) NAILS PER THE FOLLOWING NAIL SCHEDULE: INSTALL 2 X 4 SP NO.2 2 X 3'S - 2 ROWS, 2 X 4'S - 3 ROWS, 2 X 6'S AND LARGER - 4 ROWS: SPACED @ 4" O.C. NAILS TO BE DRIVEN FROM BOTH FACES. STAGGER SPACING FROM FRONT TO BACK FACE CUT TO FIT TIGHT. FOR A NET 2" O.C. SPACING IN EACH COVERED TRUSS MEMBER. USE 2" MEMBER END DISTANCE. 36-0-0 2-2-12 2-0-0 | 34-0-0 14-0-7 8-3-4 21-11-9 27-8-13 33-9-4 2-0-0 6-0-8 5-9-3 7-11-2 5-9-3 6-0-8 0-2-12 0-2-12 2-0-0

Scale = 1:71

Plate Offsets (X, Y): [1:0-3-8,Edge], [5:0-3-0,0-2-3], [6:0-4-4,0-2-4], [10:0-3-8,Edge], [12:0-2-8,0-1-8], [17:0-2-8,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.84	Vert(LL)	-0.10	13-16	>999	240	MT20	244/190
Snow (Pf/Pg)	21.9/20.0	Lumber DOL	1.15	BC	0.54	Vert(CT)	-0.22	13-16	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.45	Horz(CT)	0.04	11	n/a	n/a		
BCLL	0.0	Code	IRC2018/TPI2014	Matrix-S								
BCDL	10.0										Weight: 185 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 *Except* 5-6:2x4 SP 2400F

2.0E

BOT CHORD 2x4 SP No 2

2x3 SPF No.2 *Except* 13-5:2x4 SP No.2 WEBS WEDGE

Left: 2x4 SP No.2 Right: 2x4 SP No.2

BRACING

WEBS

Structural wood sheathing directly applied or TOP CHORD

3-6-10 oc purlins, except

2-0-0 oc purlins (4-5-7 max.): 5-6. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing.

1 Row at midpt 5-13, 4-16, 7-13

REACTIONS (lb/size)

11=1369/0-5-8, 18=1369/0-5-8

Max Horiz 18=-202 (LC 12)

Max Uplift 11=-49 (LC 17), 18=-49 (LC 16) Max Grav 11=1713 (LC 40), 18=1713 (LC 40)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250

(lb) or less except when shown.

TOP CHORD 2-19=-1725/33, 19-20=-1604/48

20-21=-1599/54, 3-21=-1464/65, 3-4=-1459/69, 4-5=-1511/127

5-22=-1103/148, 22-23=-1103/148, 23-24=-1103/148, 24-25=-1103/148, 6-25=-1103/148, 6-7=-1512/127,

7-8=-1459/70, 8-26=-1464/65, 26-27=-1599/54, 27-28=-1604/48,

9-28=-1725/33

BOT CHORD 16-17=-59/1331, 15-16=-19/1102,

14-15=-19/1102, 13-14=-19/1102, 12-13=0/1331

WEBS 5-16=-24/395, 6-13=0/371, 2-18=-1592/128,

9-11=-1592/128, 4-16=-353/156,

7-13=-352/156, 4-17=-265/76, 2-17=-24/1323, 7-12=-266/76, 9-12=-24/1323

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=117mph (3-second gust) Vasd=92mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. III; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 5-0-0, Interior (1) 5-0-0 to 14-1-11, Exterior(2R) 14-1-11 to 21-2-9, Interior (1) 21-2-9 to 21-10-5, Exterior(2R) 21-10-5 to 28-11-3, Interior (1) 28-11-3 to 36-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=21.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.1; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- Unbalanced snow loads have been considered for this design.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 49 lb uplift at joint 18 and 49 lb uplift at joint 11.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

December 8,2025

NOTES

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job Truss Truss Type Qty Ply Roof 178299043 P241184-04 **B**5 Piggyback Base Job Reference (optional) Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083 Run: 8.63 S Sep 26 2024 Print: 8.630 S Sep 26 2024 MiTek Industries, Inc. Fri Dec 05 11:52:59 Page: 1 ID:g8J_NwxPdKEPQ16_pNI4tHyFLre-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 2-2-12 2-2-12 8-3-4 14-1-11 21-10-5 27-0-13 32-5-4 36-0-0 6-0-8 5-10-7 7-8-10 5-2-7 3-6-12 5-4-8 REPAIR: PLATE DAMAGED AT JOINT 14 5 22 23 24 25 6 6x6= 12 81 3x6_❖ 3x4 🚜 3x4 213 ⁸26 10-0-0 10-0-0 4x6. 20 27 4x4 / 19 10 X 17 16 15 13 12 14 3x8 II 18 11 3x8 II 3x6= 3x6= 3x6= 3x8= 3x6= 3x4= 1.5x4 II 1.5x4 II APPLY 2 X 4 X 4' SPF/DF/SP NO.2 SCAB(S) TO EACH FACE OF TRUSS CENTERED ON SPLICE. ATTACH WITH (0.131" X 3") NAILS PER THE FOLLOWING NAIL SCHEDULE: 2 x 4'S - 2 ROWS: SPACED @ 4" O.C. STAGGER NAIL SPACING FROM FRONT FACE AND BACK FACE FOR A NET 2" O.C SPACING IN THE TRUSS, USE 2" MEMBER END DISTANCE. 2-2-12 32-8-0 36-0-0 2-0-0 14-0-7 21-11-9 32-5-4 27-0-13 2-0-0 6-0-8 5-9-3 7-11-2 5-1-3 5-4-8 0-2-12 3-4-0 0-2-12 Scale = 1:68.3

Plate Offsets (X, Y): [1:0-3-8,Edge], [5:0-3-0,0-2-3], [6:0-4-4,0-2-4], [10:0-3-8,Edge], [12:0-2-8,0-1-8], [17:0-2-8,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.82	Vert(LL)	-0.10	13-16	>999	240	MT20	244/190
Snow (Pf/Pg)	21.9/20.0	Lumber DOL	1.15	BC	0.53	Vert(CT)	-0.21	13-16	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.43	Horz(CT)	0.03	11	n/a	n/a		
BCLL	0.0	Code	IRC2018/TPI2014	Matrix-S								
BCDL	10.0										Weight: 185 lb	FT = 20%

LUMBER

2x4 SP No.2 *Except* 5-6:2x4 SP 2400F TOP CHORD

2.0E

BOT CHORD 2x4 SP No.2

WEBS 2x3 SPF No.2 *Except* 13-5:2x4 SP No.2 WEDGE

Left: 2x4 SP No.2

Right: 2x4 SP No.2 BRACING

TOP CHORD

Structural wood sheathing directly applied or

3-9-5 oc purlins, except 2-0-0 oc purlins (4-11-7 max.): 5-6.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing, Except:

6-0-0 oc bracing: 11-12,10-11. **WEBS** 1 Row at midpt 5-13, 4-16

11=0-5-8, 18=0-5-8 REACTIONS (size)

Max Horiz 18=-202 (LC 12)

Max Uplift 11=-51 (LC 17), 18=-51 (LC 16)

Max Grav 11=1783 (LC 40), 18=1637 (LC 40)

FORCES (lb) - Maximum Compression/Maximum

TOP CHORD

1-2=-80/65, 2-4=-1630/72, 4-5=-1400/118,

5-6=-946/139, 6-7=-1302/121, 7-9=-1352/67,

9-10=-125/230

BOT CHORD 1-18=0/65, 17-18=-193/220, 16-17=-66/1252,

13-16=-31/1009, 12-13=0/1011,

11-12=-118/119, 10-11=-118/119 5-16=-23/406, 5-13=-194/91, 6-13=-3/302,

2-18=-1518/124, 9-11=-1665/148,

4-16=-368/155, 4-17=-242/74,

2-17=-18/1242, 7-13=-166/202,

7-12=-453/77, 9-12=-32/1220

NOTES

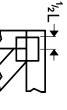
WEBS

1) Unbalanced roof live loads have been considered for this design.

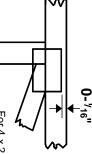
- 2) Wind: ASCE 7-16; Vult=117mph (3-second gust) Vasd=92mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. III; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 5-0-0, Interior (1) 5-0-0 to 14-1-11, Exterior(2R) 14-1-11 to 21-2-9, Interior (1) 21-2-9 to 21-10-5, Exterior(2R) 21-10-5 to 28-11-3, Interior (1) 28-11-3 to 36-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=21.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.1; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- Unbalanced snow loads have been considered for this
- Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 51 lb uplift at joint 18 and 51 lb uplift at joint 11.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

December 8,2025


MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

besign value to use only with recks colline tools. This design is based only upon parameters shown, and is not an individual busining denipolinit, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.
Dimensions are in ft-in-sixteenths.
Apply plates to both sides of truss and fully embed teeth.

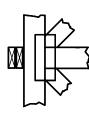
For 4 x 2 orientation, locate plates 0- $\frac{1}{16}$ from outside edge of truss.

?

This symbol indicates the required direction of slots in connector plates.

* Plate location details available in MiTek software or upon request.

PLATE SIZE

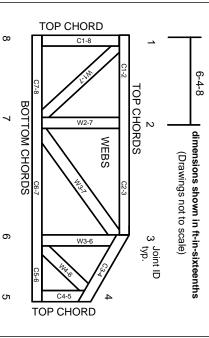

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur Min size shown is for crushing only.


Industry Standards:

National Design Specification for Metal Plate Connected Wood Truss Construction Design Standard for Bracing.

Building Component Safety Information, Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses.

ANSI/TPI1: DSB-22:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.

ω

- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other.

'n

- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.

9

- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- The design does not take into account any dynamic or other loads other than those expressly stated.